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Abstract

Large-scale pretrained language models
(LLMs), such as ChatGPT and GPT4, have
shown strong abilities in multilingual trans-
lation, without being explicitly trained on
parallel corpora. It is intriguing how the LLMs
obtain their ability to carry out translation
instructions for different languages. In this pa-
per, we present a detailed analysis by finetun-
ing a multilingual pretrained language model,
XGLM-7.5B, to perform multilingual transla-
tion following given instructions. Firstly, we
show that multilingual LLMs have stronger
translation abilities than previously demon-
strated. For a certain language, the translation
performance depends on its similarity to En-
glish and the amount of data used in the pre-
training phase. Secondly, we find that LLMs’
ability to carry out translation instructions re-
lies on the understanding of translation in-
structions and the alignment among different
languages. With multilingual finetuning with
translation instructions, LLMs could learn
to perform the translation task well even for
those language pairs unseen during the in-
struction tuning phase.

1 Introduction

The emergence of large pretrained language mod-
els (LLMs) (Brown et al., 2020; OpenAI, 2023)
has revolutionized the research of machine trans-
lation (Hendy et al., 2023; Garcia et al., 2023).
These models have demonstrated remarkable mul-
tilingual translation capabilities, without requir-
ing explicit training on parallel corpora. For
instance, XGLM, a medium-sized multilingual
language model, outperforms supervised models
using only several examples as demonstrations

∗Equal contribution.
†Corresponding author.

(Lin et al., 2022); the cutting-edge LLM GPT4
has been shown to perform comparably to com-
mercial translation systems on multiple language
pairs (Jiao et al., 2023b).

Most existing research on LLMs for machine
translation focuses on in-context learning (ICL),
i.e., taking several parallel sentences as the de-
monstration to guide LLMs to perform translation
(Vilar et al., 2023; Agrawal et al., 2023; Hendy
et al., 2023; Zhu et al., 2023). However, these
methods rely heavily on the in-context learning
ability of LLMs. For smaller models, e.g., mod-
els with only 1B or 7B parameters, the relatively
weak ICL ability may result in an underestima-
tion of their potential translation ability.

Instead of relying on the ICL abilities, we
propose to investigate the ability of LLMs by di-
rectly training them to follow translation instruc-
tions. Inspired by the recent success of instruction
tuning (Wei et al., 2022; Chung et al., 2022), we
organize multilingual translation tasks as differ-
ent instances of the translation instruction, with
each instance corresponding to a specific language
pair. By training the LLMs to follow these in-
structions, i.e., with multilingual Finetuning with
Translation Instructions (mFTI), it is possible to
better elicit translation ability inside LLMs.

Our results show that by training on a mixed
dataset of 1,000 sentences per language pair, mFTI
outperforms the 8-shot in-context learning by near
3 BLEU on average, showing a greater potential
of LLMs’ translation ability than previously dem-
onstrated (Lin et al., 2022). In addition, we also
discuss how mFTI improves the LLMs and which
factors influence the performance.

To better understand why LLMs could fol-
low these instructions, we design a mFTI setting
where only a subset of the translation instruc-
tions, i.e., language pairs, are used for training.
Thus LLMs need to generalize their instruction
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following abilities for those language pairs un-
seen during mFTI. Surprisingly, mFTI elicits the
translation ability not only for trained language
pairs but also for those unseen during instruction
training. With further experiments and analyses,
we find that LLMs could learn translation behav-
ior in general by being trained to translate even
irrelevant language pairs. It is also interesting
that with mFTI, LLMs learn to directly align lan-
guages through the use of pivot languages, which
enhances the instruction-following ability for un-
seen language pairs.

2 Multilingual Finetuning with
Translation Instructions

2.1 Overall Framework

Given a corpus of multilingual parallel sentences
and their languages M = {(lsi, lti,xi,yi)},
where ls

i and lt
i are names of the source and

target language of i-th parallel sentence (xi,yi),
respectively, mFTI leverages an instruction tem-
plate T to organize the corpus M into a language
modeling dataset D. Each sentence di in D is
an instantiation of the translation instruction with
a specific sentence pair: di = T (ls

i, lt
i,xi,yi).

The parameter of LLMs are then optimized using
a standard next-token-prediction objective on D:

argmax
θ

|D|∑

i=1

|di|∑

j=1

log pθ(d
i
j |di<j), (1)

where θ are parameters of LLMs. The instruction
template we adopt is

Translation: [ls]: x [lt]: y,

where the prefix ‘‘Translation:’’ is used to indi-
cate the translation task; the pattern ‘‘[·]:’’ is used
to identify the name of the specific language.

2.2 Experiment Setup

Backbone Language Model We consider
XGLM-7.5B (Lin et al., 2022) as our backbone
language model. XGLM-7.5B is a massive multi-
lingual auto-regressive language model, which is
trained on a massive corpus of 500 billion tokens
comprising 30 diverse languages. Low-resource
languages have been up-sampled during training,
making it an ideal backbone model for multilin-
gual translation research.

Languages Following Lin et al. (2022), our
evaluation involves 13 languages that are covered
in the pretraining corpus of XGLM, i.e., English
(En), German (De), French (Fr), Catalan (Ca),
Finnish (Fi), Russian (Ru), Bulgarian (Bg), Chi-
nese (Zh), Korean (Ko), Arabic (Ar), Swahili
(Sw), Hindi (Hi), and Tamil (Ta). Among these
languages, En, De, Fr, Ru, and Zh are high-
resource languages (with ratios in the XGLM pre-
training data greater 4%); Ko, Fi, Ar, and Bg
are medium-resource languages (with ratios be-
tween 0.5%–4%); and Ca, Hi, Ta, and Sw are
low-resource languages (with ratios under 0.5%).

Evaluation Datasets Following previous work
(Lin et al., 2022), we evaluate translation models
on the FLORES-101 dataset (Goyal et al., 2022),
which provides manual translations of 1012 sen-
tences in 101 languages.

Finetuning Datasets Our finetuning dataset pri-
marily comes from WikiMatrix (Schwenk et al.,
2021). WikiMatrix provides a parallel corpus for
1620 different language pairs, including many
non-English language pairs, which enables a sys-
tematic investigation for the translation of lan-
guages other than English. We also leverage the
MultiCCAligned (El-Kishky et al., 2020) corpus
for language pairs that are not contained in Wiki-
Matrix, including Hi-Sw, Ko-Sw, Ta-Sw, Sw-Hi,
Sw-Ko, and Sw-Ta.

Optimization Details We finetune all models
using the Adam (Kingma and Ba, 2014) optimizer
with the learning rate fixed as 5e − 6. We use
a fixed batch size of 80 sentences and finetune
models for 1 epoch or 2000 steps (depending on
the size of the training corpus) for all experiments.

3 Understanding the Potential
Translation Ability of LLMs

In this section, we first assess the overall trans-
lation performance of mFTI by comparing it to
few-shot in-context learning.1 We then present
a detailed analysis of how the corpus for mFTI
influences the translation quality.

1We randomly select 8 examples from the FLORES-101
dev split as the demonstration for ICL. Random selection
strategy has been shown to be good enough in much previous
work (Vilar et al., 2023; Zhu et al., 2023). The template we
use for ICL is <src text> = <tgt text>, which shows good
performance according to Zhu et al. (2023).

577



Figure 1: Translation performance of 8-shot ICL and mFTI using 1000 sentences per language pair. Languages
are ordered by the data amount in the pretraining corpus.

3.1 Translation Ability of LLMs

We finetune XGLM on 156 language pairs span-
ning all 13 languages. Since our goal is to elicit
the translation ability of LLMs using a small num-
ber of examples, we limit the number of parallel
sentences to 1000 per language.

mFTI Better Elicits Translation Ability than
Few-shot ICL. Figure 1 shows the average
BLEU for translation to and from language X,
respectively. Full results on each langauge direc-
tion can be found in Appendix A. It is clear
that mFTI leads to better translation performance
than 8-shot ICL for all language pairs (3 BLEU
on average). For some languages, the gap is up
to 8 BLEU (e.g., translating into Catalan). This
demonstrates the effectiveness of mFTI in eliciting
LLM’s translation ability. It also shows that LLMs
have a greater potential for multilingual translation
than we saw with ICL (Lin et al., 2022).

Even for translating to and from English, mFTI
still outperforms 8-shot ICL, but with a much
smaller gap. This indicates that LLMs with ICL
are better at performing tasks that involve En-
glish rather than other languages, but they still
have the potential to perform even better.

XGLM is Still an English-centric Model. The
translation performance for each language varies
greatly. Considering that the number of sentences
used in mFTI is the same for each language, one
may suspect that the translation performance of
each language largely depends on the amount of

To X From X

Data Amount in Pretraining 0.39 0.36

Similarity To English
Geography 0.93 0.87
Syntax 0.85 0.80
Phylogeny 0.71 0.75
Phonology 0.50 0.49
Inventory 0.51 0.41

Table 1: Spearman correlation between average
translation performance (in BLEU) and possible
influence factors (data amount in pretraining, sim-
ilarity to English). The performance of translating
to and from language X is calculated separately.

its pretraining data. For this reason, the languages
in Figure 1 are listed in descending order of their
data amount in the XGLM pretraining. However,
there are clear fluctuations. For example, Russian
and Chinese are the two languages with the largest
portion of pretraining data other than English, but
their translation performance is much worse than
some other languages, such as French.

We calculate the Spearman correlation between
the translation performance and possible influ-
ence factors, namely, data amount in pretraining
and similarity to English. For data amount, we
use the size of the pretraining corpus reported in
Lin et al. (2022). For similarity to English, we
adopt lang2vec,2 which is a toolkit for querying

2https://github.com/antonisa/lang2vec.
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Figure 2: Comparison of mFTI with conventional su-
pervised machine translation models. Performances are
evaluated in BLEU.

the URIEL typological database, to get each lan-
guage’s feature vector of different perspectives
including geography, syntax, phylogeny, phonol-
ogy, and inventory.3

As shown in Table 1, the translation perfor-
mance indeed has a positive correlation with data
amount in pretraining (0.39/0.36). However, the
similarity between a specific language and En-
glish plays a more important role in determining
the final translation performance. All considered
features demonstrate a higher correlation coeffi-
cient than the data amount in pretraining. This
indicates that XGLM is still a predominantly
English-centric model. Based on these obser-
vations, we suggest taking the relation between
different languages into consideration when col-
lecting and sampling data for pretraining multi-
lingual LLMs.

It is not Trivial for LLM-based Models to Out-
perform Conventional Supervised MT Models.
To better posit the performance of mFTI, we
compare it with two conventional supervised MT
models, i.e., M2M-1.2B (Fan et al., 2020) and
NLLB-3B (Costa-jussà et al., 2022), in Figure 2.4

We can see that despite mFTI significantly im-
proving over 8-shot ICL and sometimes achieving
comparable performance to M2M-615M, it still
lags behind the stronger NLLB-3B by a large mar-
gin, rendering the challenge to adopt a medium-
sized LLM to outperform large-scale supervised
MT models.

3We refer readers to Littell et al. (2017) for details on
how the feature vector is obtained.

4We also include the performance evaluated by COMET
in Appendix C.

3.2 mFTI Brings Consistent Improvements
across Different Metrics, LLMs, and
Finetuning Strategies

In order to understand the universal effectiveness
of mFTI, we present experiments on more LLMs,
i.e., BLOOM-7b1 (Scao et al., 2022) and LLaMA
(Touvron et al., 2023), and parameter-efficient
finetuning strategy LoRA (Hu et al., 2022). We
report the performance averaged on 156 trans-
lation directions evaluated by both sacreBLEU
(Post, 2018) and COMET (Rei et al., 2022)5 in
Table 2.6

Firstly, we can see that methods based on
XGLM-7.5B performs significantly better than
BLOOM-7B and LLaMA-7B. This is because
many low-resource languages are ill-represented
in BLOOM and LLaMA. Secondly, mFTI consis-
tently outperforms 8-shot ICL in terms of BLEU
and COMET on all three studied LLMs, regard-
less of the finetuning strategy, which demon-
strates the universal effectiveness in different
scenarios. Contrary to previous findings (Jiao
et al., 2023a), we did not find LoRA to perform
better than full finetuning. We hypothesize that
learning translation on 156 pairs simultaneously
is more challenging and requires more model ca-
pacity, making full finetuning a better choice than
LoRA in this scenario.

3.3 mFTI Enhances Direct
Language Alignment

A distinct difference between ICL and mFTI is that
mFTI could learn from more parallel sentences
and update the model if needed. It is interest-
ing to see what changes after the update. Many
previous studies (Zhang et al., 2023; Jiao et al.,
2023b) have shown that translating by pivoting
through English significantly improves ICL’s
translation performance. To this end, we com-
pare performance gains of pivot translation using
ICL and mFTI, respectively.

Figure 3 presents the result. Each value in
the grid is the BLEU difference before and after
pivoting through English. We can first observe
that pivoting through English indeed improves
translation performance for ICL, up to 10 BLEU
in some language pairs. However, after mFTI, the
gap has been significantly reduced. Considering
the fact the mFTI achieves an average 3 BLEU

5We use the wmt22-comet-da version.
6Detailed hyperparameters are in Appendix B.
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BLOOM-7B LLaMA-7B XGLM-7.5B

BLEU COMET BLEU COMET BLEU COMET
8-shot ICL 8.4 60.9 9.0 61.0 13.9 73.4
mFTI (LoRA) 9.0 64.3 9.5 63.9 16.7 77.0
mFTI (Full Finetuning) 10.2 65.4 9.8 66.0 16.9 77.7

Table 2: Averaged translation performance on all 156 language pairs of 8-shot ICL and mFTI using
different LLMs and finetuning strategies.

Figure 3: Changes of BLEU score after pivoting
through English for 8-shot ICL and mFTI.

higher than ICL, the reduction of benefits from
pivoting through English compared to direct trans-
lation may indicate a better direct alignment be-
tween languages.

3.4 Influencing Factors of mFTI

The Quality of the Finetuning Corpus is
Crucial. Recent work on instruction tuning

BLEU

Low quality 15.0
High quality 16.9

Table 3: The translation performance of finetuned
XGLM as the quality of finetuning corpus varies.

demonstrates that the quality of instruction data
is crucial for achieving good performances (Zhou
et al., 2023). We observe a similar trend when
performing mFTI. Specifically, we construct high
and low-quality finetuning corpora by selecting
parallel sentences according to their attached
LASER7 similarity score from the full set of
parallel sentences. According to the results in
Table 3, finetuning with high-quality parallel sen-
tences can improve the BLEU score by around
2 points compared to finetuning with low-quality
parallel sentences, emphasizing the importance of
corpus quality, validating the importance of the
quality of finetuning corpus.

The Effectiveness of mFTI Scales with Model
Size and Training Examples. Figure 4 shows
translation performance when varying the number
of training examples per language pair (1k, 2k, 4k,
8k, 16k, 32k) and the number of model parameters
(564M, 1.7B, 2.9B, 4.5B, 7.5B). As we can see,
it follows a standard log-linear scaling law in
terms of both the number of training examples
and model size, which is consistent with findings
in the previous work (Kaplan et al., 2020).

4 Understanding the Ability of Carrying
Out Translation Instructions

In this section, we present a comprehensive anal-
ysis on how mFTI improves the model’s ability
to carry out translation instructions.

7https://github.com/facebookresearch/LASER.
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Figure 4: The translation performance of finetuned
XGLM as the number of model parameters and training
examples scales.

We begin by presenting an overarching ex-
periment where we intentionally withhold certain
language pairs during the mFTI process, which
allows us to study models’ ability to carry out
translation instructions under different conditions.

Furthermore, we delve deeper into our analysis
by exploring how mFTI enhances LLMs’ ability to
carry out translation instructions from following
perspectives: better understanding of translation
instructions (Section 4.3 and Section 4.4) and
better alignment between languages to execute
translation instructions (Section 4.5).

4.1 Manipulating Conditions

In Section 3, we have presented results in a fully
supervised setting, where all testing language pairs
are seen during instruction tuning. To provide fur-
ther insights into LLMs’ generalization ability
across language pairs, we simulate a more re-
alistic scenario where there may be a lack of
source and/or target language sentences during
the instruction tuning process.

More specifically, from the 13 selected lan-
guages, we hold out 6 languages as unseen lan-
guages. We further partition the remaining 7
languages into three groups: Only-Source (lan-
guages only appear on the source side), Only-

Target (languages only appear on the target side),
and Source-Target (languages appear on both the
source and target side). We then form language
pairs from these partitions following the require-
ment of partitions. This allows us to assess mFTI’s
performance under the following conditions:

• Seen Both Sides Both the source side and
target side language appear in the finetuning
corpus. This can be further divided to:

– Same Direction. The same translation
direction is trained during mFTI.

– Reversed Direction. The same trans-
lation direction does not appear when
training, but the reversed direction does.

– Unseen Direction. The translation pair
(neither the same nor the reverse) does
not appear when training.

• Unseen Src. Only the target language sen-
tences appear when training.

• Unseen Tgt. Only the source language sen-
tences appear when training.

• Unseen Both Sides. Neither source language
nor target language sentences appear in the
finetuning corpus.

4.2 mFTI Learns to Follow Translation
Instruction across Conditions

We finetune XGLM on the corpus described in
the previous section. Since there are 16 language
directions in the training corpus, we denote the
finetuned model as mFTI-16. The model finetuned
on all language pairs is denoted as mFTI-all.
Table 4 shows the results.

mFTI-16 Brings Improvements on Most Set-
tings, Yet Much Less Than mFTI-all. Firstly
we can see that mFTI-16 brings improvements
on most settings except Reversed Direction, de-
monstrating the effectiveness of mFTI-16. How-
ever, the improvements are less when compared
mFTI-all, even for the Same Direction parti-
tion. This can be attributed to fewer language
pairs when finetuning, which we will discuss in
Section 4.3.

Language Position Shift Between Training and
Testing Has Negative Effects on Translation
Performance. The translation performance of
mFTI-16 on Reversed Direction degrades by 0.8
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Seen Both Sides Unseen Src Unseen Tgt Unseen Both SidesSame Direction Reversed Direction Unseen Direction

8-shot ICL 14.5 14.5 11.2 13.5 13.6 14.6
mFTI-16 15.7(+1.2) 13.7(−0.8) 12.6(+1.4) 14.9(+1.4) 14.5(+0.9) 15.3(+0.7)

mFTI-all 16.7 16.8 14.6 17.6 17.0 18.4

Table 4: Translation performance under different data conditions. mFTI-16: XGLM multilingual
finetuned with translation instructions on a mixture of 16 language pairs described in Section 4.1.

BLEU compared to 8-shot ICL. By inspecting the
translation results, we find that mFTI-16 suffers
from severe off-target problems, i.e., generating
translations in wrong target languages. We hy-
pothesize that this could be attributed to the shift
in the relative positions of the source and target
languages during training.

Seeing Target Languages When Finetuning is
Better Than Source Languages. When there
are unseen languages in the language direction,
the improvement on Unseen Src is much larger
compared to Unseen Tgt, indicating the under-
standing of the specified target language may be
more important than the source language.

Unseen Both Sides Also Benefit From mFTI
Training. The most surprising phenomenon is
that language pairs from Unseen Both Sides parti-
tion also benefit from mFTI, with an improve-
ment of 0.7 BLEU compared to 8-shot ICL.
Since mFTI-16 does not see any sentences of the
source and target languages, the improvements
indicate a better understanding of the translation
instruction, which we will discuss in Section 4.4.

4.3 Instruction Tuning with More Language
Pairs Leads to Better Translation
Performance

Previous instruction-tuning works show that scal-
ing the number of tasks significantly benefits
the unseen tasks (Chung et al., 2022). Observing
the performance gap of Same Direction between
mFTI-16 and mFTI-all, we gradually add more
language pairs to mFTI-16, and plot the transla-
tion performance on each partition in Figure 5.
In order to isolate possible effects of additional
monolingual sentences, we only add language
pairs that exclude the studied 13 languages.8

It can be seen that as the number of language
pairs grows, the translation performance of all

8Detailed language pairs are in Appendix D.

Figure 5: Translation performance on different par-
titions as the number of language pairs grows. Left:
partitions where sentences of both source and tar-
get language are seen when training. Right: partitions
where source and/or target language sentences are
unseen when training.

partitions generally increase, validating the im-
portance of more language pairs. Notably, the
performance of the Reversed Direction partition
is significantly boosted, outperforming 8-shot ICL
by a large margin when increasing the number of
language pairs from 16 to 30.

Surprisingly, the performance of the Unseen
Both Sides partition improves the most. Since no
data of language pairs in Unseen Both Sides are
added, this indicates the ability of instruction-
following on these language pairs has been sig-
nificantly enhanced, which we will discuss in the
next section.
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4.4 mFTI Generalizes the Understanding
of Translation Instruction to
Unseen Directions

In this section, we aim to understand how mFTI
facilitates the understanding of instructions from
a more fine-grained view, i.e., specific language
directions and instruction-following errors.

For the language directions, we select Ru→
Fr (high-resource), Bg→Ar (medium-resource),
and Ca→Ta (low-resource) from the Unseen-
Both Sides partition to study mFTI’s effective-
ness under different resource settings.

For instruction errors, we identify the following
four major problems in translations:

• Source Copy (SC): This error occurs when
the model simply copies the source sentence
as the translation without making any mean-
ingful changes. We identify this error by
calculating the sentence-level BLEU score
between the translations and the source sen-
tences. If the BLEU score is above 80, it
indicates that the translation is nearly identi-
cal to the source.

• Off-target translation (OT): In this case, the
model fails to produce sentences in the tar-
get language. We detect this error by using
a language identification tool, such as fast-
text, to determine the language of the gen-
erated translations.

• Over/under translation (OU): This error
refers to situations where the model produces
translations that are significantly longer or
shorter than references. We consider transla-
tions with a length ratio above 2 or below 0.5
as over- or under-translations, respectively.

• Oscillatory hallucination (OH): This error
occurs when the model gets stuck in a spe-
cific translation state and generates repeated
n-grams until reaching the maximum length.
We define translations with n-grams that
consecutively repeat at least three times as
oscillatory hallucinations.

4.4.1 Adding Irrelevant Language Pairs
Reduces SC, OT and OU Ratios

In Section 4.3, we show that additional language
pairs in mFTI lead to improved BLEU scores
even for the Unseen Both Sides partition. We pro-

vide an in-depth analysis here from the afore-
mentioned fine-grained views. We plot the trends
of translation and instruction-following perfor-
mance, and the ratios of 4 specific instruction-
following errors as the number of additional
language pairs grows. The results are in Figure 6.

More Language Pairs Reduce Instruction-
Following Errors and Improve Translation
Performance. Firstly, we can see that as more
language pairs are added to the training corpus,
instruction-following errors on Unseen-both lan-
guage pairs are gradually reduced, leading to
improvements in BLEU scores. Comparing dif-
ferent language pairs, we can see that high- and
medium-resource language pairs generally per-
form better than low-resource language pairs on
all four types of errors. Since all these language
directions are unseen when instruction finetun-
ing, it highlights the importance of language skills
acquired during the pretraining phase.

SC: Solved. It can be observed that after adding
about 30-60 language pairs, the model learns to
avoid the SC problem, indicating this is a rela-
tively easy problem to solve.

OU: Decreased to the Level of mFTI-all. We
can further see that adding more language pairs
is also effective for reducing OU errors, as the
error ratios significantly decrease as the number
of language pairs grows. Notably, after scaling the
number of language pairs to 150, the OU ratios
of three unseen language pairs are comparable to
supervised full finetuning. This demonstrates the
effectiveness of mFTI.

OT: Decreased, but not to a Satisfactory Level.
Turning to the OT ratio, we observe that it also
decreases as the number of language pairs grows.
However, even after scaling the number of lan-
guage pairs to 150, the OT ratio still cannot be
decreased to the level of mFTI-all.

OH: No Effect. Finally, we can see that with
the increment in the number of language pairs, the
OH ratio does not show a clear decreasing trend,
which we will further discuss in the next section.

4.4.2 Joint Training with Monolingual
Generation Instructions Helps Reduce
OH and OT Problems More Efficiently

In the previous section, we find that the off-target
(OT) and oscillatory hallucination (OH) on some
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Figure 6: Trends of translation and instruction-following performance on 3 Unseen-both language pairs when
scaling up the number of language pairs during mFTI. The left 2 figures show the BLEU score and overall
instruction-following error ratios, respectively. The remaining 4 figures show the ratios of 4 specific error types,
respectively, i.e., source copy, off-target, over/under translation, and oscillatory hallucination. The x-axis denotes
the number of training language pairs. The y-axis denotes the percentage of translations with specific error types.

Ru→Fr Bg→Ar Ca→Ta

OT⇓ OH⇓ BLEU⇑ OT⇓ OH⇓ BLEU⇑ OT⇓ OH⇓ BLEU⇑
mFTI-16 1.2 0.2 25.1 10.4 1.8 8.1 13.9 11.8 5.2
+ unseen-mono 0.9 0.1 25.4 2.6 0.9 10.4 4.4 6.3 6.3

mFTI-150 0.8 0.3 27.0 3.4 2.3 10.8 1.8 14.8 8.7
+ unseen-mono 0.7 0.2 27.4 0.5 1.5 12.0 1.2 5.1 9.3

mFTI-all 0.7 0.2 28.0 0.1 1.5 12.7 1.0 8.7 9.6

Table 5: BLEU score, off-target ratio and oscillatory hallucination ratio before and after adding
monolingual sentences to the finetuning corpus. Scores where adding monolingual sentences leads to
improved quality are with green background.

language pairs cannot be fully solved to the level
of mFTI-all by adding more irrelevant language
pairs. We note that both problems are only re-
lated to the target language: The OT problem can
be attributed to models’ inability to relate tar-
get language names to the corresponding scripts
of the language, and the OH problem might be
caused by the poor modeling of the target lan-
guages. We hypothesize that finetuning models
on instructions of monolingual generation, i.e.,
given a language name, generates fluent sentences

from that language, and should help ease these
problems.

To this end, we organize the monolingual sen-
tences of the held-out languages into monolingual
generation instructions. The template we adopt
is ‘‘[li] : y’’. We then finetune XGLM on the
dataset composed of translation instructions and
these monolingual generation instructions.

We report the BLEU score, OT ratio, and
OH ratio, in Table 5. Firstly we can see that
adding monolingual generation instructions for
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the three Unseen Both Side language pairs can
help mitigate the OT and OH problem in most sce-
narios, leading to better translation performance.
Notably, by combining more irrelevant language
pairs and monolingual sentences, the gap between
mFTI-150 with monolingual sentences and mFTI-
all has significantly diminished, despite that the
model has never seen parallel sentences of the
tested language before.

4.5 mFTI Improves Language Alignment via
Pivot Languages

Besides the understanding of translation instruc-
tion, another crucial knowledge that models must
grasp to carry out the instruction is the alignment
between source and target languages. However,
in scenarios where direct parallel sentences are
not available, models have limited access to align-
ment information. This situation resembles the
zero-shot setting commonly studied in multilin-
gual translation research (Gu et al., 2019; Zhang
et al., 2020; Arivazhagan et al., 2019; Liu et al.,
2021). In this section, we aim to investigate the
ability of mFTI to establish meaningful align-
ments through pivot languages in this scenario.

Specifically, for the three Unseen Both Sides
language pairs X→Y studied in the previous
section, i.e., Ru→Fr, Bg→Ar and Ca→Ta, we
start from the mFTI-150 setting, and add parallel
sentences of X→En and En→Y to the training
corpus. We then perform mFTI using these aug-
mented corpora and evaluate the model’s per-
formance on test sentences that do not contain
instruction-following errors. As knowledge of
language alignments is the last requirement for
carrying out translation instructions once the
model has learned to execute translation instruc-
tions correctly, the performance on these sentences
serves as a reliable indicator of the model’s
proficiency in language alignment.

The result is in Table 6. First, we can see that
mFTI-150 and 8-shot ICL perform comparably,
both significantly worse than mFTI-all. Since the
tested three language pairs are unseen in mFTI-
150, this indicates that similar to mFTI-150, the
main role of ICL is to enhance the model’s un-
derstanding of the translation behavior instead of
source-targ et alignment knowledge.

However, after adding pivot parallel sentences,
the model’s performance (+pivot) is significantly
boosted. This demonstrates the potential of mFTI

Ru→Fr Bg→Ar Ca→Ta

8-shot ICL 27.0 11.6 9.7
mFTI-all 28.2 13.2 10.6

mFTI-150 27.5 11.6 9.2
+ pivot 27.9 13.0 10.8

Table 6: Translation performance on test sen-
tences without instruction-following errors. Best
performances are in bold. The second-best per-
formances are underlined.

to leverage pivot languages to boost direct align-
ment between languages and improve translation
performance.

5 Related Work

5.1 LLMs for MT

Machine translation researchers have widely rec-
ognized the potential of utilizing LLMs for
MT, as these models acquire advanced language
understanding skills during pretraining. The pre-
vailing paradigm for leveraging LLMs for MT
is in-context learning (ICL). For instance, Lin
et al. (2022) demonstrated that providing 32 ex-
amples during translation can outperform GPT-3
and a supervised multilingual translation model.
Other studies such as Vilar et al. (2023), Agrawal
et al. (2023), and Zhu et al. (2023) have inves-
tigated different factors that affect ICL’s per-
formance, including example quality, example
selection strategy, and template sensitivity. More-
over, works such as Hendy et al. (2023) and Jiao
et al. (2023b) have studied the translation quality
of various GPT-3 models and found their perfor-
mances to be comparable to commercial trans-
lation systems on high-resource language pairs.
In contrast to these works, our research focuses
on exploring existing LLMs’ translation ability
by directly tuning them to follow translation
instructions.

The most similar work to ours is Jiao et al.
(2023a), which finetunes an open-source LLM
LLaMA (Touvron et al., 2023) on the mixes
translation data and the alpaca instruction dataset
(Taori et al., 2023) to make it a better transla-
tor. However, they mainly focus on the bilingual
translation setting while our work investigates
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the multilingual generalization when finetuning
LLMs to carry out translation instructions.

5.2 Generalization On Unseen
Language Pairs

Our work also has a close relation to zero-shot
translation in the multilingual translation setting,
where there are no direct parallel sentences be-
tween the source and target language. There are
two major problems for zero-shot translation: gen-
erating correct languages and learning universal
language representations.

For the first problem, Gu et al. (2019) and
Zhang et al. (2020) leverage back-translation to
add more target-language-related training data.
Arivazhagan et al. (2019) and Liu et al. (2021)
impose regularization on the encoder/decoder to
make the model more aware of the target lan-
guage. Unlike their work, we discuss the off-target
problem in the context of LLMs, and find that
adding both irrelevant language pairs and addi-
tional monolingual sentences can ease the prob-
lem to a great extent.

For the second problem, previous studies fo-
cus on learning language-agnostic representations
through additional regularization of model repre-
sentations (Arivazhagan et al., 2019; Pan et al.,
2021), and consistency between semantic equiv-
alent sentences (Al-Shedivat and Parikh, 2019;
Yang et al., 2021). Instead, our work mainly aims
to reveal the helpfulness of multilingual finetun-
ing LLMs for unseen language pairs by internal-
izing the pivot language information.

Furthermore, our discussion encompasses a
more stringent version of zero-shot translation,
where neither source nor target language sentences
are present in the finetuning corpus. This demands
a stronger generalization ability, as the model must
effectively utilize the language knowledge ac-
quired during pretraining and the translation task
knowledge acquired during finetuning to generate
high-quality translations.

5.3 Instruction Finetuning
Our work focuses on finetuning LLMs with
instructions to improve zero-shot translation per-
formance. Prior studies have demonstrated that
LLMs face great difficulty in achieving good
performance in zero-shot settings when lack-
ing few-shot examples. Nevertheless, finetuning
LLMs on a variety of tasks can significantly im-
prove zero-shot performance on several tasks.

For instance, Wei et al. (2022) aims to improve
generalization in unseen tasks by performing in-
struction tuning. Muennighoff et al. (2023) further
extend to finetune LLM by multilingual data in-
stead of English data and find that multilingual
finetuning leads to better performance on unseen
tasks and unseen languages. Chung et al. (2022)
explore instruction tuning from the perspective
of the number of tasks in finetuning corpus and
LLM size. Chung et al. (2022) found that scaling
these factors can dramatically improve zero-shot
performance.

In our work, we primarily focus on the trans-
lation performance of LLMs. We adopt a com-
prehensive approach to consider the factors
mentioned above, including the scale of the fine-
tuning corpus, the size of model parameters, and
the language selection within the fine-tuning cor-
pus, for a comprehensive analysis of the transla-
tion performance of the LLMs. Additionally, we
conduct a detailed analysis of the model’s under-
standing and execution capabilities in translation
tasks after instruction finetuning.

6 Conclusion

In this paper, we explore Multilingual Finetun-
ing with Translation Instructions (mFTI), to bet-
ter unleash the translation ability of multilingual
LLMs. Through extensive experiments, we de-
monstrate that by training on a mixture of 1000
sentences per language pair, mFTI achieves better
performance than 8-shot ICL, indicating the un-
tapped potential of translation ability in LLMsv
by previous works.

Moreover, we systematically discuss the work-
ing mechanism of mFTI by analyzing it from the
view of instruction-following. Our experiments
demonstrate that mFTI helps the model better fol-
low the instruction by introducing more language
pairs and monolingual sentences, and enhances
the direct language alignment by learning from
pivot language pairs.

Our paper also unveils remaining translation is-
sues when adopting LLMs for zero-shot machine
translation, i.e., over/under translation, oscillatory
hallucination, and mistranslation caused by in-
correct alignments. Future work should focus on
acquiring more language knowledge from the pre-
training phase and designing better regularization
terms to solve these problems.
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and André F. T. Martins. 2022. COMET-22:
Unbabel-IST 2022 submission for the met-
rics shared task. In Proceedings of the Seventh
Conference on Machine Translation (WMT),
pages 578–585, Abu Dhabi, United Arab Emi-
rates (Hybrid). Association for Computational
Linguistics.

Teven Le Scao, Angela Fan, Christopher Akiki,
Ellie Pavlick, Suzana Ilić, Daniel Hesslow,
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Appendix

A Full Results

Table 8 shows all 156 language pair results of
8-shot ICL and mFTI on XGLM, evaluated by
both BLEU and COMET.

B Training and Evaluation Details of
mFTI-156 in Different LLMs

The distribution of pretraining corpus varies
across different LLMs, hence we adopt diverse
hyperparameters in Table 7. Moreover, we con-
duct evaluations on LLMs at regular steps (250

for Full-finetuning and 500 for LoRA) during the
training phase, selecting the best-performing re-
sult in the end.

C Comparison of mFTI and Supervised
Machine Translation Models
Evaluated by COMET

We present the comparison of mFTI and su-
pervised MT models evaluated by COMET in
Figure 7. It can be seen that when evaluated by
COMET, mFTI’s performance is comparable to
M2M-1.2B, yet still substantially underperforms
NLLB-3B.

D Additional Language Pairs for mFTI

We construct the additional language pairs in
Section 4.3 from the other 17 languages covered
in the pretraining corpus of XGLM, including
Spanish, Greek, Portuguese, Japanese, Vietnam-
ese, Urdu, Thai, Turkish, Telugu, Italian, Haitian,
Creole, Basque, Indonesian, Estonian, and Bangali.

Figure 7: Comparison of mFTI with conventional
supervised machine translation models. Performances
are evaluated in COMET.
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BLOOM-7B and LLaMA-7B XGLM-7.5B

Method Hyperparameter Value Value

LoRA

LoRA

modules query, key, value query, key, value

rank 4 4

scaling factor 32 32

dropout 0.1 0.1

learning rate 5e-5 5e-4

batch size 80 80

training steps 5000 5000

evaluation frequency 500 500

Full-finetuning

learning rate 1e-5 5e-6

batch size 80 80

training steps 2500 2000

evaluation frequency 250 250

Table 7: Hyperparameter configurations of LoRA and Full-fine-tuning in LLMs.
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en de fr ca fi ru bg zh ko ar sw hi ta avg

en

bleu
8-shot ICL – 29.4 38.5 37.2 25.1 25.6 34.8 17.5 15.6 15.7 22.2 19.9 10.1 24.3

mFTI – 30.4 39.7 37.5 25.5 26.3 35.2 16.6 16.2 16.6 22.1 21.7 9.1 24.7

comet
8-shot ICL – 82.7 83.2 84.5 89.8 85.4 87.7 81.4 82.7 80.2 79.1 70.6 77.1 82.0

mFTI – 84.3 85.1 85.2 90.8 85.8 88.4 81.1 81.8 81.8 80.8 73.0 75.2 82.8

de

bleu
8-shot ICL 38.0 – 28.8 17.6 20.9 19.7 25.3 12.4 7.7 8.9 14.8 16.4 8.9 18.3

mFTI 41.3 – 31.0 27.7 20.2 21.0 26.6 12.9 14.3 16.9 11.7 16.0 5.2 20.4

comet
8-shot ICL 86.3 – 80.0 77.7 86.7 82.6 83.9 77.8 69.4 69.3 73.7 65.0 71.6 77.0

mFTI 90.1 – 85.3 82.4 88.5 87.2 86.1 78.4 77.8 78.6 74.7 66.1 63.7 79.9

fr

bleu
few-shot 39.3 15.8 – 29.0 19.5 20.5 27.2 12.3 6.5 10.7 18.1 14.3 8.9 18.5

mFTI 41.7 23.8 – 33.9 18.6 22.0 27.5 16.7 11.6 13.7 15.0 14.0 6.6 20.4

comet
8-shot ICL 86.1 75.4 – 81.7 86.5 83.4 86.3 77.0 68.3 73.3 76.6 63.5 73.5 77.6

mFTI 86.7 84.8 – 86.2 85.5 85.1 88.6 78.1 77.7 78.7 74.7 64.1 63.9 79.5

ca

bleu
8-shot ICL 41.0 19.5 33.5 – 9.2 9.0 23.5 11.1 4.2 1.8 13.7 10.8 8.4 15.5

mFTI 42.6 22.4 35.6 – 18.2 21.4 27.2 12.6 11.4 13.5 16.3 14.2 9.6 20.4

comet
8-shot ICL 86.4 76.3 82.2 – 70.1 61.6 81.4 77.5 60.5 57.2 69.8 59.2 71.4 71.1

mFTI 87.5 81.4 85.7 – 88.7 85.3 86.3 79.7 77.3 78.6 77.6 66.0 66.9 80.1

fi

bleu
8-shot ICL 29.0 17.9 23.9 18.4 – 15.9 12.7 12.2 10.0 8.9 9.2 10.3 3.9 14.4

mFTI 30.6 17.6 24.4 23.2 – 17.4 20.7 12.0 11.7 9.7 14.9 12.9 4.1 16.6

comet
8-shot ICL 87.1 80.8 81.2 80.4 – 82.2 74.7 79.1 76.6 74.8 70.9 60.5 61.7 75.8

mFTI 88.0 79.4 82.0 81.7 – 85.2 84.3 78.3 76.7 76.0 73.4 66.6 64.8 78.0

ru

bleu
8-shot ICL 30.9 19.3 25.7 15.6 4.2 – 25.5 12.0 7.7 7.9 7.8 12.2 6.8 14.6

mFTI 32.5 20.4 28.0 25.7 17.6 – 29.5 12.4 10.1 14.9 12.2 13.2 6.2 18.6

comet
8-shot ICL 83.7 78.5 79.1 76.9 72.6 – 88.4 77.1 72.1 70.4 64.8 62.0 66.7 74.4

mFTI 86.2 80.6 84.1 83.0 88.1 – 91.7 76.3 76.4 78.4 75.6 67.0 63.4 79.2

bg

bleu
8-shot ICL 35.7 20.4 26.6 14.5 14.5 22.8 – 12.5 8.9 10.7 10.0 6.8 1.6 15.4

mFTI 37.6 21.2 30.2 28.1 17.1 24.7 – 12.5 10.2 12.7 12.9 14.4 4.6 19.2

comet
8-shot ICL 85.8 78.7 79.8 78.2 81.0 86.8 – 77.1 74.4 74.8 69.5 53.6 57.1 74.7

mFTI 88.0 83.4 83.0 84.8 87.3 88.9 – 77.4 74.5 78.4 74.8 66.6 63.5 79.2

zh

bleu
8-shot ICL 21.9 6.5 10.4 6.4 3.6 1.9 14.7 – 9.6 3.0 7.6 13.3 9.6 9.0

mFTI 23.4 11.5 18.7 25.2 12.3 12.8 15.4 – 12.4 8.5 9.5 12.9 4.6 13.9

comet
8-shot ICL 82.5 66.4 70.9 70.1 65.4 56.7 81.0 – 77.7 62.1 69.3 64.6 75.6 70.2

mFTI 86.1 76.4 78.9 80.4 84.7 83.7 84.3 – 79.9 76.2 73.0 67.3 64.8 78.0

ko

bleu
8-shot ICL 21.1 11.2 15.0 7.3 2.8 3.1 9.9 11.9 – 3.0 2.4 0.7 0.4 7.4

mFTI 22.9 10.3 16.0 15.5 10.8 10.4 13.4 12.1 – 9.8 9.1 13.2 6.3 12.5

comet
8-shot ICL 83.6 74.3 75.5 73.0 66.7 58.4 74.5 78.8 – 62.4 58.8 56.4 66.6 69.1

mFTI 86.2 75.9 74.8 78.6 84.6 82.1 82.1 79.4 – 72.9 73.8 64.3 69.8 77.0

ar

bleu
8-shot ICL 28.2 12.7 21.3 8.8 4.3 10.0 19.0 9.4 1.7 – 4.3 10.4 7.2 11.4

mFTI 30.6 13.7 23.2 24.8 14.0 14.9 21.9 9.3 8.3 – 11.9 11.4 4.1 15.7

comet
8-shot ICL 82.5 72.5 76.0 73.4 65.8 69.6 80.0 74.4 56.2 – 61.0 58.1 67.9 69.8

mFTI 86.6 75.4 79.4 82.9 84.0 83.9 84.5 73.1 71.6 – 72.4 61.6 62.5 76.5

sw

bleu
8-shot ICL 32.2 14.2 23.2 17.5 10.5 13.2 12.4 9.5 7.1 9.7 – 8.5 2.7 13.4

mFTI 32.1 14.9 21.0 20.4 10.4 12.5 16.3 8.6 9.0 10.4 – 12.7 4.8 14.4

comet
8-shot ICL 80.9 70.9 73.2 73.6 73.4 76.6 68.0 72.2 70.2 71.3 – 54.2 51.6 69.7

mFTI 82.7 70.0 72.6 75.8 76.6 76.2 81.0 70.0 72.5 74.6 – 62.1 63.0 73.1

hi

bleu
8-shot ICL 23.7 12.8 15.6 8.4 9.5 11.3 9.9 11.3 11.0 6.0 5.0 – 0.2 10.4

mFTI 28.0 12.8 17.8 16.9 12.1 12.0 16.3 10.8 12.2 8.9 10.9 – 10.1 14.1

comet
8-shot ICL 82.5 74.6 74.9 74.1 78.1 78.5 66.4 76.9 76.7 68.7 62.8 – 45.7 71.7

mFTI 86.1 76.2 75.3 79.9 82.2 81.3 81.1 75.9 77.9 75.0 73.8 – 71.7 78.0

ta

bleu
8-shot ICL 16.1 8.8 11.2 5.7 6.9 9.0 8.9 8.3 8.7 5.5 3.1 6.6 – 8.2

mFTI 16.0 7.7 9.5 10.4 5.9 6.3 8.1 6.6 7.7 5.4 6.4 13.3 – 8.6

comet
8-shot ICL 78.5 70.7 71.3 70.6 74.2 77.0 72.3 73.2 75.6 71.1 61.4 53.3 – 70.8
mFTI 78.6 64.3 66.0 70.1 74.4 71.6 72.9 68.4 69.0 69.1 67.1 63.4 – 69.6

avg

bleu
8-shot ICL 29.8 15.7 22.8 15.5 10.9 13.5 18.7 11.7 8.2 7.7 9.9 10.9 5.7 13.9

mFTI 31.6 17.2 24.6 24.1 15.2 16.8 21.5 11.9 11.3 12.1 12.7 14.1 6.3 16.9

comet
8-shot ICL 83.8 75.2 77.3 76.2 75.9 74.9 78.7 76.9 71.7 69.6 68.1 60.1 65.5 73.4

mFTI 86.1 77.7 79.4 80.9 84.6 83.0 84.3 76.3 76.1 76.5 74.3 65.7 66.1 77.7

Table 8: Translation performance of 8-shot ICL and mFTI based on XGLM-7.5B on FLORES-101
(test). Source language in rows, target language in columns.
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