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Abstract
The annotation of ambiguous or subjective
NLP tasks is usually addressed by various
annotators. In most datasets, these annota-
tions are aggregated into a single ground
truth. However, this omits divergent opin-
ions of annotators, hence missing individual
perspectives. We propose FLEAD (Federated
Learning for Exploiting Annotators’ Disagree-
ments), a methodology built upon federated
learning to independently learn from the opin-
ions of all the annotators, thereby leveraging
all their underlying information without rely-
ing on a single ground truth. We conduct an
extensive experimental study and analysis in
diverse text classification tasks to show the
contribution of our approach with respect to
mainstream approaches based on majority vot-
ing and other recent methodologies that also
learn from annotator disagreements.

1 Introduction

Artificial intelligence (AI) and in particular natu-
ral language processing (NLP) are dominated by
data-driven approaches that often require datasets
with human judgments (Uma et al., 2022). The
difficulty of annotating data is magnified in NLP
due to the inherent ambiguity of text (Basile et al.,
2021) and the subjectivity concerned in the eval-
uation of its meaning, which often depends on
the interpretation of individual annotators (Sandri
et al., 2023b). In other words, the annotation may

be a reflection on some private state caused by
emotions, sentiments, hate, or opinions of the au-
thor (Wiebe, 1990). This subjectivity is present in
many NLP tasks such as sentiment analysis (Pang
et al., 2008; Kenyon-Dean et al., 2018), offensive
language detection (Basile, 2021) and hate speech
analysis (Kocoń et al., 2021), to name a few. The
participation of more than one human annotator
per data instance is a common strategy to mitigate
the ambiguity and subjectivity of language (Sandri
et al., 2023b). Then, each item is adjudicated a
gold label. This implies that a ground truth exists,
which does not usually fit the real practice of text
annotation in which disagreements are frequent
among annotators (Plank et al., 2014b; Uma et al.,
2022; Leonardelli et al., 2023).

There are several approaches to adjudicate a
gold label overcoming the disagreement among
annotators (Uma et al., 2022): (1) approaches
which simply aggregate crowd annotations into
(typically, one) gold label for each instance; (2)
approaches which assume a gold label for each
item but consider disagreement to filter or weigh
items when the true label is uncertain; (3) ap-
proaches for directly learning a classifier from
crowd annotations; and (4) approaches that train a
classifier by combining both hard labels and soft
labels obtained from crowd annotations. In this
paper, we argue that integrating disagreement into
the learning process brings about clear benefits, as
the data perspectivism paradigm advocates (Basile
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et al., 2023). Instead of relying on a single aggre-
gated label, we can exploit all annotator’ opinions
by leveraging disagreement among annotators. To
this end, we propose FLEAD (Federated Learning
(FL) for Exploiting Annotators’ Disagreements),
a methodology that separately model each anno-
tator and consolidates all these annotator-specific
models into a global model that integrates all the
annotators perspectives. Our solution relies on
federated learning to model each annotator’s be-
havior and to summarize them into a global model.
Hence, our methodology does not rely on a single
ground truth, but instead exploits the information
provided by each annotator.

Our FL-based methodology requires datasets
with the labels of different annotators, which is
not a common practice in NLP, as the Perspec-
tivist Data Manifesto1 highlights. The emergence
of this paradigm has led to the construction of
datasets where individual annotator information
is provided. Nonetheless, the availability of re-
sources is mainly skewed to the English language.
Thus, as an additional contribution of this paper
we have created and annotated the multilingual
sentiment analysis dataset SentiMP for English,
Spanish, and Greek.

Finally, we evaluate our methodology on this
and other datasets from subjective NLP tasks, and
we compare it with other approaches taking into
account all the annotators’ information (Davani
et al., 2022). The results highlight the benefits of
our approach with respect to dominant paradigms
and previous work on modelling disagreement.
To better understand the behavior of the FLEAD
methodology, we perform an extensive analysis,
including targeted ablations on the components of
our proposed methodology.

2 Related Work

The quality of supervised learning models in NLP
depends on the quality of the annotation of the
datasets. This paradigm requires a human inter-
pretation of annotation guidelines and text content
that may cause disagreements among the annota-
tors (Basile et al., 2021; Parmar et al., 2022; Jiang
and Marneffe, 2022; Pavlick and Kwiatkowski,
2019). In many cases, the disagreements are con-
sidered to be noise, and they tend to be filtered
out by adjudicating a single gold label to each

1https://pdai.info/.

item. However, the use of disagreement as learn-
ing signal has been proved useful in NLP and other
areas of artificial intelligence (Uma et al., 2022).
Sandri et al. (2023a) went a step further defining
and providing a taxonomy of different types of
disagreements among annotators, including an of-
fensive language classification case study on the
MD-Agreement dataset (Leonardelli et al., 2021).

There are various strategies to learn from crowd
annotations. The prevalent method in the litera-
ture consists of the aggregation of the annotators
judgments into a single label (Paun et al., 2018),
for example via a majority vote. Depending on the
type of the annotation, other heuristics to reduce
the noise of the annotations are the following:
weighting labels according to probability distri-
butions (Jamison and Gurevych, 2015; Peterson
et al., 2019); re-annotation (Sheng et al., 2008);
filtering hard items (Reidsma and op den Akker,
2008); adapting the original labels to probabilis-
tic ones based on the labels of all annotators
(Sakaguchi and Van Durme, 2018; Chen et al.,
2020; Plank et al., 2014a); adding a specific layer
in an end-to-end model to learn the individual be-
havior of the annotators (Rodrigues and Pereira,
2018; Sullivan et al., 2023; Shahriar and Solorio,
2023); or adding information about the annotators
and labels into the model (Yin et al., 2023). In our
case, and building on the success of language mod-
els, we propose a single model that learns from all
the non-aggregated annotations, without altering
the language model or the individual labels. How-
ever, our proposed FLEAD methodology can be
applied to any context with multiple annotations,
regardless of the task and the underlying learning
model.

Most similar to our methodology are the ap-
proaches presented by Davani et al. (2022), who
built their proposal upon different aggregation
strategies: (1) ensemble, where a model is learned
for each annotator and models predictions are ag-
gregated at the end; (2) multi-label, in which all
possible labels are processed by a single model, ef-
fectively converting the problem into multi-label
classification; and (3) multi-task, where the labels
of each annotator are considered as an indepen-
dent classification task. In all cases, the last step
is based on a majority vote, which resembles the
traditional practice of adjudicating a gold label.
We show an overview of the baselines and our
proposed methodology, which we will explain in
more detail in the following section, in Figure 1.

631

https://pdai.info/


Figure 1: Overview of the text classification baselines on the left. Figure inspired by Davani et al. (2022). On the
right, illustration of the FLEAD methodology with three clients and a central server. For simplicity, in the figure
we assume three annotators: A, B, and C. Each annotator is shown in a different color and each data instance xi

refers to a classification training example and its corresponding annotator labels li. Finally, each client is depicted
by a language model.

3 Methodology

The FLEAD methodology is built upon FL with
the objective of learning from the disagreement
among annotators, building a global model that
integrates the perspectives of each of them. While
the FL-based methodology is flexible to be applied
to other tasks, in this paper our goal is to build
a text classification model. In the following we
formally define FL (Section 3.1) and present the
details of the FLEAD methodology (Section 3.2).

3.1 Federated Learning

Federated learning is a distributed learning
paradigm that preserves data privacy by orches-
trating the independent training of learning models
in data silos and the iterative aggregation of those
local models in a global model (Kairouz et al.,
2021). FL also stands out from better fit and
handle heterogeneous or non-iid data distribu-
tions (McMahan et al., 2017), as long as the data
distribution is not highly skewed (Zhao et al.,
2022). The annotation of items by several anno-
tators resembles the setting of FL, where each
annotator matches with a federated client and the
disagreement in the annotation matches a soft
non-iid distribution focused on the label distribu-
tion. Likewise, FL builds a global model from

the local models, which implies a real and in-
dependent integration of the evaluations of each
annotator that allows to exploit the disagreement
information.

More formally, given a set of clients or data
owners {C1, . . . , Cn} with their respective local
training data {D1, . . . , Dn}. Each of these clients
Ci, which implies the learning of n local learn-
ing models {L1, . . . , Ln}. FL aims at learning a
global learning model G, using the scattered data
across clients through an iterative learning process
known as a round of learning. For that purpose, in
each learning round t, each client trains its local
model over their local training data Dt

i , result-
ing in the update of the local parameters Lt

i to
L̂t
i. Thereafter, the global parameters Gt are com-

puted by aggregating the trained local parameters
{L̂t

1, . . . , L̂
t
n} using a fixed federated aggregation

operator Δ, and the local learning models are
updated with the aggregated parameters:

Gt = Δ(L̂t
1, L̂

t
2, . . . , L̂

t
n)

Lt+1
i ← Gt, ∀i ∈ {1, . . . , n}.

(1)

Updates among the clients and the server are
repeated for the learning process until a given stop
criteria is met. Thus, the final value of G will sum
up the knowledge modeled in the clients.
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FL for Text Classification The annotation of
a text classification dataset by several annotators
can be formally defined as: Given D as the entire
dataset to annotate, Ai ∈ {A1, A2, . . . , An} as the
annotator i out of n annotators and (Di, Li) as the
set of ki instances labeled by the annotator Ai,
where Di = {d1, d2, . . . , dki} represent the in-
stances of the dataset labeled by annotator Ai and
Li = {l1, l2, . . . , lki} their corresponding labels.
Finally, we denote lj = {lji1 , l

j
i2
, . . . ljim} as the m

labels assigned to the instance j of D where each
lji represent the label assigned by the annotator i
to this instance j.

3.2 FLEAD Methodology
We propose the Federated Learning for Exploiting
Annotators’ Disagreement (FLEAD) methodol-
ogy, which is grounded in FL for learning from
disagreement among annotators. It is based on the
use of all the evaluations of the annotators by the
training of a global model upon the aggregation of
as many learning models as annotators. Broadly
speaking, it consists of matching each annotator
Ai with a federated client and independently train-
ing their data Di in a local learning model LMi.
Formally, we define the t-th round of learning as

LM t
i ← train(LM t−1

i ; (Di, Li)), ∀i ∈ {1, 2, . . . , n}
LM t ← aggregation(LM t

i )i∈{1,2,...,n}

LM t
i ← LM t, ∀i ∈ {1, 2, . . . , n}

(2)

where the training is conducted on the clients and
the aggregation on the server. As aggregation we
rely on FedAvg (McMahan et al., 2017), since its
prominence in the literature (Zhao et al., 2022).
FedAvg consists of the average of all parameters
as follows:

FedAvg(LM t
i )i={1,2,...n} =

∑n
i=1 LM

t
i

n
. (3)

The result of the aggregation is a global learning
model (G) that summarizes the partial information
from the local learning models (LM ). In this case,
the global model integrates the perspectives of all
annotators, instead of relying on other aggregation
approaches like majority voting as other works do
(Davani et al., 2022).

In Figure 1 we depict the FLEAD methodology.
The figure shows an example in the case of three
annotators per dataset instance. In blue, red, and
yellow we represent the local training of each of
the models of each client, which matches with
each annotator. After the local training, the clients
share their model weights wi with the server, who

aggregates the weights resulting in wagg, which is
shared with the clients to be the start point in the
next round of learning.

Beyond the distributed aggregation provided by
FL, it also lends: (1) data-privacy: since the data
never leaves the local devices; (2) robustness:
since it converges to a common solution based
on the clients’ partial solutions; and (3) leverage
all information: since all annotator evaluations are
used to train the local models. Divergent opinions
thus come into play in training, not being disre-
garded during the adjudication of a gold label.
Moreover, this matching of each annotator with
a federated client is more effective than other as-
signment strategies due to it takes full advantage
of all available information (see Section 6.2).

4 Experimental Framework

In this section we present the text classifi-
cation experimental setup to test our FLEAD
methodology.

4.1 Data

While there exist many publicly available text
classification datasets, the availability of NLP
datasets with the annotations of all the annota-
tors is scarce, especially in languages other than
English. In Section 4.1.1, we present a compila-
tion of existing datasets which include individual
annotator’s information that we use for evaluation.

In addition to these existing datasets, we
create our own dataset (SentiMP henceforth, Sec-
tion 4.1.2) with the aim of including a diverse
set of languages and controlling all the stages
of the annotation process under consistent condi-
tions, which can provide insights into the strengths
and limitations of the FLEAD methodology. In
particular, the SentiMP dataset enables us to
better understand the relation between annota-
tor agreement and performance (Section 6.2), and
to perform a targeted error analysis (Section 6.4).

4.1.1 Datasets from the Literature
Since the main purpose of the paper is dealing
with disagreement, we focus on subjective tasks
as they represent a major challenge to annotators
resulting in higher disagreement. In particular, we
use the following datasets:

EmoEvent (Plaza del Arco et al., 2020) It is
a multilingual (English and Spanish) collection
of tweets about different events. The tweets are
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annotated according to the six Ekman’s basic
emotions plus the ‘‘neutral or other emotions’’
label (EmoEvent-emotion) and as offensive or not
offensive (EmotionEvent-offensive). We use the
following splits:

1. EmoEvent multiple: multi-class classification
task of the six Ekman’s basic emotions.

2. EmoEvent binary: binary classification task
of deciding whether a tweet is neutral or
shows other emotions.

3. EmoEvent offensive: binary classification of
tweets as offensive or not offensive.

TASS18 - GoodOrBad (Martı́nez-Cámara
et al., 2018) The dataset is aimed at modeling the
task of automatically selecting an adequate news
for posting ads in online newspapers. Hence,
it annotates the positive (SAFE) or negative
(UNSAFE) emotion that a news article raises
in a reader, which can be viewed as a type of
stance classification. The dataset is composed
of several online newspaper articles written in
different Spanish language varieties used in
diverse countries (Spain, Cuba, U.S.A., among
others).

GabHate (Kennedy et al., 2022) It consists of
English posts from gam.com designed for iden-
tifying ‘‘hate-based rhetoric’’. All the items are
annotated by at least three annotators from a
team of 18 annotators who participated in the
annotation.

ConvAbuse (Cercas Curry et al., 2021) It is the
first corpus on abusive language towards three
conversational AI systems. It is annotated by mul-
tiple annotators but each of them only labels a
sample of the dataset. The main challenge of this
dataset is its marked unbalancedness across labels.

4.1.2 SentiMP Dataset
Given the lack of sentiment analysis datasets with
individual annotations, we decided to construct
SentiMP. The SentiMP dataset is a multilingual
sentiment analysis dataset on the politics domain.
Due to its controversial nature, this domain leads to
divergent interpretations among the annotators. In
the context of politics, social media, and, in partic-
ular Twitter, is the main place where politicians,
and specifically members of parliament (MPs),
communicate with their voters and general citi-
zens. Hence, Twitter can act as a thermometer of

the politicians’ sentiment with respect to a specific
period or topic. Indeed, these tweets are generally
covered by mass media and arguably represent
the main means of communication nowadays both
from the government and opposition parties.

Data Collection The SentiMP dataset contains
tweets written by members of parliament in
Greece, Spain, and United Kingdom in 2021. We
collected 500 tweets per language using the tweet
collection provided by Antypas et al. (2022). For
each country, tweets from the data collected were
randomly sampled and annotated based on their
sentiment. All tweets were anonymized by remov-
ing non-verified user information and removing
URLs.2

Annotation We follow a three-level opinion
meaning annotation schema, adding an indeter-
minate label for those tweets whose sentiment
meaning is not evident, ambivalent or lacking
context. Specifically, the annotation labels are:

• Positive (1): Tweets which express happi-
ness, praise a person, group, country or a
product, or applaud something.

• Negative (−1): Tweets which attack a person,
group, product or country, express disgust,
criticism or unhappiness towards something.

• Neutral (0): Tweets which state facts, give
news or are advertisements. In general those
which do not fall into the above 2 categories.

Each set of tweets was annotated by a group
of native speakers, namely, five annotators for
the Spanish subset, and three for the English and
Greek sets. The annotators were a mix of uni-
versity students, faculty, and professionals with
gender parity and enough knowledge on politics
to conduct the annotation. The annotators were
advised to consider only information available in
the text, e.g., to not follow links, and in cases
where a tweet includes only news titles or sim-
ilar, to assess the sentiment of the item being
shared. Tweets annotated as indeterminate (X) by
one annotator were discarded in the experimental
evaluation.

2We release the three language sets of the SentiMP
dataset. The English set is available at https://
huggingface.co/datasets/rbnuria/SentiMP-En, the
Spanish one at https://huggingface.co/datasets
/rbnuria/SentiMP-Sp and the Greek set at https://
huggingface.co/datasets/rbnuria/SentiMP-Gr.
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Ann. 1 Ann. 2 Ann. 3 Gold
‘‘In 1984 only 12% of engineering students were women. Nearly forty
years later, the dial has barely moved to 14%.’’

NEG NEU POS NEG

‘‘The news channels available to MPs and their staff include propaganda
like RT com. But as of yet, we can’t get the new entrant in proper
broadcasting GBNEWS. I am sure this will be put right soon’’

POS NEG NEU NEG

‘‘Lots of constituents signed the important petitions being debated in
Parliament on #Israel #Palestine, but in an oversubscribed debate,
frustratingly I’ve not been selected. Rest assured, I’ll continue to speak
out whenever possible on the human rights abuses and violence there’’.

NEU POS NEG NEG

Table 1: Example of SentiMP-En instances with ties between annotators. The table shows the labels
given by each annotator (Ann. 1, Ann. 2, and Ann. 3), and the final label decided in a joint discussion
(Gold).

# Tweets avg. length MTLD
NEG NEU POS DIS ALL NEG NEU POS ALL NEG NEU POS ALL

Spanish 206 75 137 82 500 39.83 31.04 37.15 37.37 99.6 87.7 101.62 98.44
English 129 98 244 29 500 43.95 34.61 37.14 38.51 153.77 139.92 163.22 155.18
Greek 213 129 149 9 500 37.43 29.71 39.48 36.02 185.58 141.05 162.01 176.19

Table 2: Statistics of the SentiMP Dataset: Number of tweets, average length, and linguistic diversity
(in terms of MTLD) of negative (NEG), neutral (NEU), positive (POS), and discarded (DIS) tweets.

To break the ties, all the annotators met and
discussed their positions, arriving at a common
decision. The number of such tie-break cases was
relatively small, with 8 cases for the Greek subset,
14 for the Spanish, and 9 for UK. Note that the
discussion is only performed for ties in order to
decide a single gold standard label. We show
some examples of ties and the final gold label in
Table 1.

SentiMP Statistics We show the corpus statis-
tics in terms of number and lengths of tweets,
and linguistic diversity by means of the mea-
sure of textual lexical diversity (McCarthy, 2005,
MTLD), of each of the classes among the dif-
ferent datasets in Table 2. As can be observed,
the distribution of tweets differ across languages,
with the English subset being the most unbalanced
in terms of polarity (244 positive and 129 neg-
ative tweets). We also computed the percentage
of tweets in which there is at least one annotator
who labels it as positive and another as negative
(i.e., those with opposite annotations), and the
percentage in the datasets of the three languages
is among 5 and 10 percent (9.6 for Spanish, 6.8
for English, and 6.2 for Greek). In contrast to the
datasets described in the previous section, we do
not pre-define a train/test split for SentiMP. In-
stead, we run our experiments based on five-fold

cross-validation, which is a more statistical robust
evaluation method.3

4.1.3 Data Statistics
We present a summary of the data statistics of all
datasets in Table 3. According to the strength of
Cohen’s Kappa agreement, most datasets present
a moderated or fair agreement (Landis and Koch,
1977). In the case of the Greek and English sub-
sets of the SentiMP dataset, this agreement is
substantial. This difference in terms of anno-
tator agreement represents the diversity of the
experimental setup, which makes the evaluation
more complete in terms of conclusions drawn with
respect to varying levels of agreement.

4.2 Baselines
We compare the FLEAD methodology with sev-
eral baselines. First, we include the majority vote
baseline, where the gold label is adjudicated
by a majority vote, and the language model is
fine-tuned over those labels. This is the main
comparison baseline, which is the most common
approach used in the literature. In addition to
this aggregated baseline, we also compare with
three approaches for learning from disagreement
proposed by Davani et al. (2022).

3For the sake of reproducibility, we have made available
the 5 folds used in our experiments in the SentiMP website.
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Dataset Language Train Test Val Total #Labels #Annotators Task SM? C. Kappa

SentiMP
Spanish 418 – – 418 3 5 (5)

Sentiment analysis yes
54.48

English 471 – – 471 3 3 (3) 64.94
Greek 491 – – 491 3 3 (3) 70.03

EmoEvent-emotion Spanish 5723 1656 844 8223 7 3 (3)
Emotion classification yes

38.36
English 5112 1447 744 8049 7 3 (3) 27.16

EmoEvent-offensive Spanish 5723 1656 844 8223 2 3 (3)
Offensive language identification yes

54.67
English 5112 1447 744 8049 2 3 (3) 25.79

Tass18 - GoodOrBad Spanish 1250 500 250 2000 2 2 (2) Stance classification no 59.00
GabHate English 22124 5531 – 27655 2 18 (3.13) Hate speech detection yes 28.00
ConvAbuse English 4785 1026 1026 6837 5 8 (3.24) Nuanced abuse detection no 46.92

Table 3: Statistics of the datasets used in the evaluation. From left to right we include: (1) the language
of the dataset (Language); (2) the amount of instances of train (Train), test (Test), validation (Val), and
the total amount (Total); (3) the number of labels (#Labels); (4) the number of annotators (#Annotators)
specifying the total amount of annotators which participate in the annotation process and, between
parentheses the average of annotations per instance; (5) the task addressed (task); (6) whether the text
is from social media or not (SM?); and (7) the inter-annotator agreement according to Cohen’s Kappa
(C. Kappa).

• Ensemble: The partitions are created with the
instances labeled by each annotator with their
respective labels. Then, we train a language
model over each of these subsets. After that,
we use the ensemble of these models by
performing a majority vote over the classes
predicted by the models.

• Multi-label: All labels for each instance
are considered in a multi-label classification
model where each label denotes individual
annotators’ labels. The model first adds a
fully connected layer to get a vector of the
dimension of the number of annotators, and
then apply a sigmoid function.

• Multi-task: It considers the labels of each
annotator as independent classification tasks,
all sharing encoder layers to generate the
same representation of the input sentence,
each with its separate fully connected layer
and softmax activation. Compared with the
multi-label baseline, the multi-task approach
includes a fully connected layer explicitly
fine-tuned for each annotator.

An overview of these baselines and our pro-
posal can be found in Figure 1. In contrast to
our approach, all these baselines require a major-
ity vote layer. We re-implemented the ensemble,
multi-label, and multi-task baselines based on the
configuration expressed in Davani et al. (2022).4

4Training details in Section 4.4.

Finally, we also compare with a majority class
naive baseline, which does not rely on any model
training.

4.3 Language Models

While the FLEAD methodology could be applied
to any supervised model, in this paper we fo-
cus on transformer-based language models given
their state-of-the-art performance in NLP tasks
(Wolf et al., 2020). For practical reasons and due
to computational limitations, we decided to per-
form our main experiments with base-size models
(see Section 6.3 for an analysis using models of
different size). We use the following language
models:

Multilingual Language Model (XLM) De-
pending on whether the dataset is based on social
media texts or not, we use two different multi-
lingual models: (1) for Social media XLM, we
use the cardiffnlp/twitter-xlm-roberta-base model
(Barbieri et al., 2022), a XLM-roberta-base model
trained on tweets; (2) for No social media XLM, we
use the xlm-roberta-base model (Conneau et al.,
2019).

Monolingual Language Model (MLM) We
also carry out experiments using language models
trained on the target language. We use different
language models depending on whether the dataset
is from social media: (1) for English datasets, we
use the cardiffnlp/twitter-roberta-base (Barbieri
et al., 2020) model for the social media datasets
and roberta-base (Liu et al., 2019) for the
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Epochs EpochsFLEAD RoundsFLEAD LR Batch
SentiMP En 250 25 10 5e−5 16
SentiMP Sp 250 25 10 5e−5 16
SentiMP Gr 250 25 10 5e−5 16
EE-Sp off. 300 20 15 5e−5 32
EE-Sp bin. 300 20 15 5e−5 64
EE-Sp mul. 300 20 15 5e−5 64
EE-En off. 300 20 15 5e−5 32
EE-En bin. 300 20 15 5e−5 64
EE-En mul. 300 20 15 5e−5 64
GabHate 200 10 20 5e−4 32
ConvAbuse 200 10 20 5e−4 64
TASS18 200 20 10 5e−6 32

Table 4: Training hyperparameters of the FLEAD
methodology and baselines.

others; (2) for Spanish datasets, we use the
daveni/twitter-xlm-roberta- emotion-es model (Vera
et al., 2021) for social media datasets and
dccuchile/bert-base-spanish-wwm-cased (Cañete
et al., 2020) for the rest; and (3) for
the Greek dataset, we utilize the gealexandri/
palobert-base-greekuncased-v1 model (Alexandridis
et al., 2021).

4.4 Training Details
Table 4 shows the configuration of each learning
model to ease the reproducibility of the exper-
imental setup, and, in particular: epochs in the
baselines, epochs and learning rounds (FL Epochs
and Rounds, respectively) in the experiments fol-
lowing the FLEAD methodology, and learning
rate (LR) and batch size, which are common
to all the experiments. The hyperparameters uti-
lized were standard for each task, and the slight
variations were decided on a small validation
task from each training set for the majority
base baseline, and kept for all models. We use
as stop criteria a fixed amount of epochs and
learning rounds. Notice that, for a fair compar-
ison between FL experiments and the baselines
Epochs = EpochsFLEAD × RoundsFLEAD.
This way, we make the total number of rounds
of learning during which all models are trained
the same number of epochs, both in the FLEAD
and baselines experiments. Each model is trained
five times and the final results are averaged across
the five different runs.

5 Experimental Results

In this section we present the results with the
aim of evaluating our FLEAD methodology in a
multi-annotation context with both the standard

single label evaluation protocol and an additional
setting in which disagreement between annota-
tors is taken into account in the evaluation. We
use standard text classification evaluation met-
rics (Accuracy and Macro-F1) in Section 5.1,
and metrics specifically designed for disagreement
between annotators in Section 5.2.

5.1 Majority-based Single Label Evaluation
In order to compare with mainstream approaches
that do not model disagreement, we perform an
evaluation using standard Accuracy and Macro-F1
metrics. Since both Accuracy and Macro-F1 met-
rics require a single gold-standard label on which
to evaluate the models, we follow the methodol-
ogy widely used in the literature, which consists
of deciding this label by majority vote among the
annotators’ labels.

Table 5 shows that the FLEAD methodol-
ogy outperforms all the baselines according to
Macro-F1. In contrast, the FLEAD methodology
does not return the highest result according to
Accuracy (see top part of Table 5) on unbalanced
datasets, which are widely known to be skewed
toward the majority class. Indeed, the best per-
forming baseline in those cases is the majority
class. If we compare the monolingual and mul-
tilingual language models, performance, we find
that the results are very similar, with a slight su-
periority of the multilingual language models.

The results of the FLEAD methodology on the
Spanish and Greek datasets are similar to the
ones reached on the English datasets, as Table 6
shows. FLEAD is only slightly outperformed by
the multilabel baseline according to Accuracy.
Regarding the comparison between monolingual
and multilingual language models, the multilin-
gual language models achieve slightly superior
results. This difference with the results in Table 5
may be due to the small number of high-quality
language models in languages other than English.

5.2 Class Probabilities as Gold
Label Evaluation

For the evaluation in the previous section, we
used standard evaluation metrics that relied on
a single test label. This has the shortcoming of
depending strongly on such a gold test label,
without taking into consideration the disagreement
information among annotators. For example, an
instance labeled with {1, 1, 0} is assigned with the
final label 1, similarly to an instance labeled with
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SentiMP EmoEvent off. EmoEvent bin. EmoEvent mul. GabHate ConvAbuse
XLM MLM XLM MLM XLM MLM XLM MLM XLM MLM XLM MLM

A
cc

ur
ac

y
Maj. class 51.8 51.8 92.9 92.9 54.7 54.7 45.2 45.2 90.7 90.7 86.4 86.4
Maj. vote 82.0 75.1 92.8 92.8 61.6 62.1 58.4 54.5 90.2 90.2 85.4 83.4
Ensemble 81.9 76.3 83.0 88.4 63.9 62.9 57.6 57.3 88.2 87.7 86.4 82.9
Multilabel 83.0 72.6 82.2 89.1 65.1 64.2 59.1 58.8 88.7 87.5 83.4 83.6
Multitask 84.1 77.1 82.8 93.2 72.7 72.6 59.3 59.1 89.7 88.8 82.3 83.3
FLEAD 87.1 84.5 84.0 89.5 79.1 78.4 60.3 59.4 89.9 89.3 81.4 82.1

M
ac

ro
-F

1

Maj. class 22.7 22.7 48.1 48.1 35.3 35.3 8.9 8.9 46.2 46.2 46.3 46.3
Maj. vote 78.2 68.4 48.1 48.1 57.6 58.3 38.9 38.1 47.4 47.7 56.3 48.3
Ensemble 77.8 70.1 52.9 59.6 59.1 59.2 39.6 38.9 68.5 68.0 66.3 59.3
Multilabel 79.2 73.1 53.9 62.8 58.9 59.1 40.2 39.8 68.9 67.1 69.0 68.8
Multitask 83.3 75.6 56.4 65.4 59.3 59.4 40.6 40.3 71.9 69.5 70.9 69.5
FLEAD 86.8 79.0 68.4 66.3 60.5 60.8 41.2 40.9 72.1 71.6 72.8 71.9

Table 5: Results on the English datasets according to Accuracy and Macro-F1. We use the XLM and
MLM language models for each dataset. Best results for each model are highlighted in bold.

SentiMP Sp SentiMP Gr EmoEvent off. EmoEvent bin. EmoEvent mul. TASS18
XLM MLM XLM MLM XLM MLM XLM MLM XLM MLM XLM MLM

A
cc

ur
ac

y

Maj. class 49.3 49.2 43.3 43.3 91.6 91.6 52.6 52.6 47.3 47.3 60.8 60.8
Maj. vote 77.0 71.5 74.7 71.5 91.9 91.2 70.4 82.2 60.5 58.1 79.0 80.1
Ensemble 76.3 72.2 73.9 72.7 92.5 91.5 68.3 75.6 59.5 57.6 80.3 78.3
Multilabel 84.2 75.1 79.0 74.6 89.0 90.0 66.7 72.3 60.9 59.4 82.4 77.1
Multitask 83.4 75.9 80.3 79.1 92.6 91.7 67.6 70.5 61.2 60.3 82.4 79.3
FLEAD 84.1 82.8 88.7 79.9 94.8 92.3 78.9 80.1 63.4 62.7 94.1 90.1

M
ac

ro
-F

1

Maj. class 22.0 22.0 20.1 20.1 47.8 47.8 34.4 34.4 9.1 9.1 37.8 37.8
Maj. vote 71.6 64.4 75.7 68.5 47.9 47.7 70.3 65.4 44.1 40.5 79.0 78.4
Ensemble 72.3 67.8 77.1 68.9 69.3 47.7 63.4 60.5 46.2 42.5 80.9 76.5
Multilabel 78.8 68.3 78.0 72.1 70.1 69.9 62.2 61.9 47.8 44.2 83.2 75.9
Multitask 78.5 70.4 78.9 76.9 69.2 68.9 64.2 65.3 52.1 50.9 83.4 77.1
FLEAD 85.4 77.1 86.8 77.4 74.8 73.9 72.7 70.8 55.2 53.1 85.0 80.4

Table 6: Results on the Spanish and Greek datasets according to Accuracy and Macro-F1. We use the
XLM and MLM language models for each dataset. Best results for each model are highlighted in bold.

{1, 1, 1}. In this case, if the classifier model labels
both instances with 0, it is a mistake in both cases
according to the metrics used. However, the error
is arguably less pronounced in the first instance
than in the second one.

In this section, we replace gold labels by the
probability distribution of each label according to
the annotation of each item (Baan et al., 2022).
For instance, if we consider the labels {1, 1, 0},
the vector of probabilities over the three possible
labels {−1, 0, 1} would be {0, 0.33, 0.67}. We
use the following metric DistCE proposed in Baan
et al. (2022):

DistCE(x) = TVD(f(x), π(x)) (4)

where f(x) is the vector of class probabilities,
π(x) the probabilities predicted by the classifier
and TVD(y, z) = (||y − z||1)1/2. In essence, this
metric measures how close the probability distri-
bution returned by the model is to the probability
distribution over the labels of all annotators, so
the closer to zero the better.

Table 7 shows the results of the comparison
between the standard classification models based
on a single gold label for training (i.e., the major-
ity vote baseline) and the FLEAD methodology
in terms of the DistCE metric (see Equation 4).
The results highlight that the label probabilities
returned by the FLEAD methodology are more
similar to the objective annotation distribution
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Maj. vote FLEAD
SentiMP En 0.824 0.383
SentiMP Sp 1.127 0.466
SentiMP Gr 1.051 0.468
EmoEvent En Off 0.486 0.285
EmoEvent En Bin 0.671 0.325
EmoEvent En Mul 0.671 0.367
EmoEvent Sp Off 0.501 0.291
EmoEvent Sp Bin 0.568 0.317
EmoEvent Sp Mul 0.849 0.567
TASS 18 0.530 0.450
ConvAbuse 1.305 0.761

Table 7: DistCE results of the baseline Majority
Vote and the FLEAD methodology.

than the probabilities returned by the majority vote
baseline. This implies that the FLEAD method-
ology fits better to the annotators behavior and,
as we will see in Section 6.4, the errors are more
easily explainable by the subjectivity of the task.

6 Analysis

In this section, we analyze the source of the
FLEAD methodology improvement through ab-
lation studies in Section 6.1, the effect of the
disagreement between annotators in the gain of
performance of each approach in Section 6.2, and
the effect of the learning model used in Section 6.3.
We also perform a qualitative study in Section 6.4
with human annotators that supports the operation
of the FLEAD methodology.

6.1 Ablation Study
In order to analyze in which parts of the FLEAD
methodology the performance improvements lie,
we devise simple baselines to compare with.

Random Clients The FLEAD methodology
matches each annotator with a client in the fed-
erated scheme. We test if this match is really
essential, or if distributing the different anno-
tations among different models is enough. For
that, we design the baseline FL-random, in which
we simulate a federated scenario with as many
clients as annotators in the dataset. However, we
distribute the labels of the annotators randomly
among the clients instead of matching them with
each client. We find (see the rows FL-random in
Table 8) that the random distribution of the labels
among clients improves the results of the baseline
majority vote but not the results of the FLEAD

methodology, highlighting the value of matching
each annotator with a client.

Multitask + Aggregation In general, the com-
bination of different models provides more robust
results (Rokach, 2005). We aim to test if the im-
provements are simply due to this aggregation,
and not to the matching of each annotator to a
federated client and the FL operation. Thus, we
design the baseline multi-agg, which combines
the best baseline (multitask) with an aggregation
every few rounds of learning, similarly to what is
done in the FLEAD methodology. It consists of
training as many multitask models (as described
in Section 4.2) as annotators and aggregating the
weights of the models into a single one. This pro-
cess is repeated the same number of times as in
the FLEAD methodology (see Section 3 for more
details). The row Multi-agg in Table 8 shows
better results than the Multitask baseline, which
confirms that the aggregation of different models
produces better and more robust results in gen-
eral. However, this is not the only factor leading
to the FLEAD performance gains, as FLEAD still
reaches a higher performance in all the datasets.
Hence, the performance improvements are not
only due to the aggregation conducted every few
epochs but also to the FL operation.

Best Single Annotator The annotation of sub-
jective tasks may evidence that some annotators
are more accurate than others, i.e., their evalua-
tions lead to more accurate learning models. In
this analysis we train different models for each
annotator and report the best one. We refer to this
baseline as best annotator.

In Table 8 we show that the results are sig-
nificantly worse than the baselines in which all
the available information is used, thus confirm-
ing our claim that leveraging all the labels of the
annotators improves results.

6.2 Performance in Terms of Agreement

We explore the effect of the annotators in the
gain of performance of each approach with re-
spect to the majority vote baseline in terms of the
agreement. For that purpose, we formally define
the relative performance gain (rpg) of each model
following the expression:

rpg(model) =
MacroF1(model)

MacroF1(majority vote)
(5)
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S.MP En S.MP Sp S.MP Gr E.En.Off E.En.bin E.En.mul E.Sp.Off E.Sp.bin E.Sp.mul TASS18 G.Hate C.Abuse

A
cc

ur
ac

y
Maj. vote 82.0 77.0 74.7 92.8 61.6 58.4 91.9 70.4 60.5 79.0 90.2 85.4

Multitask 84.1 83.4 80.3 82.8 72.7 59.3 92.6 67.6 61.2 82.4 89.7 82.3

FLEAD 87.1 84.1 88.7 84.0 79.1 60.3 94.8 78.9 63.4 94.1 81.4 81.4

FL-random 85.3 82.7 85.5 85.5 78.9 60.1 95.5 78.8 62.1 93.9 88.2 81.8

Multi-agg 84.3 83.5 82.2 83.3 74.5 59.2 92.5 73.4 63.3 87.9 89.9 83.3

Best annotator 85.1 80.2 85.2 90.2 58.4 59.2 93.8 67.2 60.9 91.3 80.1 85.7

M
ac

ro
-F

1

Maj. vote 78.2 71.6 75.7 48.1 57.6 38.9 47.9 70.3 44.1 79.0 47.4 56.3

Multitask 83.3 78.5 78.9 56.4 59.3 40.6 69.2 64.2 52.1 83.4 71.9 70.9

FLEAD 86.8 85.4 86.8 68.4 60.5 41.2 74.8 72.7 55.2 85.0 72.8 72.8
FL-random 83.5 83.2 84.1 65.2 58.8 40.5 71.3 69.4 55.1 84.4 70.9 71.1

Multi-agg 83.7 78.8 80.1 62.1 60.2 40.9 72.5 67.8 53.4 84.5 71.9 71.5

Best annotator 81.2 80.1 80.9 61.3 53.1 38.7 70.5 65.6 54.3 82.9 45.6 55.2

Table 8: Results of the ablation study according to Accuracy and Macro-F1. We show the results of the
FLEAD methodology, the majority vote baseline, and all the new baselines proposed in the ablation
study. We only use the XLM model for each dataset. We highlight in bold the best results.

Figure 2: Relative performance gain with respect to
agreement (Kappa) in all datasets.

Our goal is to analyze whether there is any
correlation between the gain of performance and
the decrease of agreement (in terms of Cohen’s
Kappa). In Figure 2 we sort all the datasets
according to the agreement in an increasing or-
der and show the relative performance gain. We
find that there is no tendency in the graph, so
there appears to be no direct relationship be-
tween inter-annotator agreement and approach’s
performance. However, in this analysis we are
comparing different tasks. Accordingly, we chose
the SentiMP Spanish dataset, which is the only
dataset where all samples are labeled by more than
3 annotators. In order to have different datasets
with different agreements between annotators, we
create all subsets of the SentiMP Spanish dataset
considering three and four annotators. Note that
in these newly generated datasets only the gold
labels change, not the task. In Figure 3 we show
the results of this analysis, sorting the new datasets
according to agreement.

Figure 3: Relative performance gain with respect to
agreement (Cohen’s Kappa) in SentiMP Sp.

Although there is no solid trend, we observe
how the relative gain of the FLEAD methodology
is higher when agreement is lower (agreement <
0.58). Hence the FLEAD methodology appears
to be more useful when there is less agreement
among the annotators.

6.3 Language Model Size

In principle, FLEAD can be used with any learning
model, and in particular with any learning model
size if computational resources are available. Ac-
cordingly, we evaluate the FLEAD methodology
with language models of different sizes. We eval-
uate our methodology with Roberta multilingual
large (Liu et al., 2019), base (Liu et al., 2019), and
distill (Sanh et al., 2019) models in the English
datasets.

Table 9 shows the results of all models us-
ing Majority vote and FLEAD. FL-Large models
reach the highest results in all configurations that
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SentiMP EE. off. EE. bin. EE. mul. GabHate Convab.

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1
M

aj
.V

ot
e Large 87.1 86.5 83.0 53.3 76.5 59.4 55.7 39.3 90.2 57.8 86.5 47.5

Base 82.1 78.3 92.8 48.1 65.3 58.5 55.2 38.2 90.3 47.6 83.4 48.3
Distill 78.8 74.2 92.8 48.1 64.9 57.8 53.6 36.7 89.4 46.1 86.4 46.3

FL
E

A
D Large 87.3 87.1 89.5 67.8 78.2 61.1 60.3 42.1 – – – –

Base 87.2 86.8 89.6 67.3 77.9 60.7 59.5 40.8 89.3 71.5 82.1 71.9
Distill 87.0 84.1 88.8 65.2 77.2 60.1 58.3 38.7 90.1 68.0 83.2 69.5

Table 9: Comparison among large, base, and distill models using Majority Vote (Maj. Vote) and FLEAD.
FL-Large results for GabHate and ConvAbuse are missing due to the large number of annotators (18
and 8, respectively) and high computational requirements.

we could run because of computational resource
restrictions (see Section 7). However, the differ-
ences between the FL-Large and FL-Base models
are quite marginal compared to the difference in
computational capacity, with the large model be-
ing approximately 3 times the base model, which
is multiplied by the number of clients in the case of
the federated model. In fact, if we compare the re-
sults of the Large model and the FL-Base model,
whose computational requirements are similar,
we notice that the FLEAD methodology used in
FL-Base always achieves considerably better re-
sults. This shows that although the use of large
models in FL can be a constraint depending on
the number of clients, it is not such a strong is-
sue because competitive results can be reached
with smaller models. These results imply that the
FLEAD methodology provides a more efficient
learning process, as small language models can
reach similar results to large language models.

6.4 Error Analysis

In this section we perform qualitative analyses on
whether the errors made by the FLEAD methodol-
ogy can be more understandable or explained than
those made by the other baselines. To this end, in
Section 6.4.1 we analyze how many of the original
annotators agree with the output of each model,
and in Section 6.4.2 we perform an additional
analysis to understand whether new annotators
agree with the system outputs.

6.4.1 How Many Annotators Agree?

We propose a simple metric applied to the classifi-
cation errors to measure how many the annotators
agree with the output of the models. We refer to

All mistakes% Overlap%
Maj. vote FLEAD Maj. vote FLEAD

SentiMP En 28.9 85.3 34.4 61.2
SentiMP Sp 33.9 89.5 41.1 72.3
SentiMP Gr 29.8 77.5 39.2 62.1
EmoEvent En Off 49.8 85.9 52.4 52.4
EmoEvent En Bin 33.2 72.1 57.3 57.3
EmoEvent En Mul 27.1 67.2 29.9 57.7
EmoEvent Sp Off 52.3 88.1 58.2 58.2
EmoEvent Sp Bin 32.7 66.2 49.3 49.3
EmoEvent Sp Mul 24.1 67.9 35.4 66.2
TASS18 30.1 65.8 45.1 45.1
ConvAbuse 41.7 88.1 51.6 79.3

Table 10: Results in terms of any annotator metric
in the mistakes of each approach (columns 2 & 3)
and in the overlap of mistakes (columns 4 & 5) in
all datasets except for GabHate, whose annotator
labels in the test partition are not available.

this metric as any annotator and it is defined by
equation 6:

any annotator =
#annotator agrees

#mistakes
(6)

where#annotator agrees represents the amount
of mistakes in which at least one annotator gave the
label predicted by the classifier and #mistakes
is the total amount of mistakes produced by the
classifier. What this metric tries to measure is the
degree to which any of the annotators agreed with
the label provided by the model. In other words,
even if the model fails to get the label chosen by
a majority vote, it may still choose a reasonable
label according to the original annotators.

In Table 10 we compare the majority vote base-
line and the FLEAD methodology according to
this metric in both the own mistakes of each
proposal and the overlap of mistakes between
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Figure 4: Comparison in terms of percentage of agreement of the two annotators in the re-annotation qualitative
analysis among the Majority Vote baseline and the FLEAD methodology in the overlap of mistakes. We
respectively represent in green, yellow, and red the three levels of agreement defined.

Gold Label FLEAD Maj. Vote
‘‘I thought you better than this, Adam. John is a kind, honest and gracious man
who is respected across the political spectrum. Who were you hoping to engage
with a tweet such as this? Really disappointing.’’

NEG NEU POS

‘‘Fire and rehire is immoral - the fightback starts now. I’ll be showing my
solidarity and support for the strikes and actions starting tomorrow!’’

NEU POS NEG

‘‘Boris Johnson’s diabolical record in 2020 - please watch, share, organise.’’ NEU NEG POS

Table 11: Examples of SentiMP-En test instances misclassified by both FLEAD and the Maj. Vote
baseline. In the first one the external annotators disagree with the predicted labels by both models, and
in the second and third examples both external annotators strongly agree with FLEAD.

both approaches. We find that the any annotator
accuracy percentage achieved by FLEAD is con-
siderably higher than the percentage reached by
the majority vote baseline. This indicates that a
large portion of the instances mislabeled by our
federated approach are reasonable mistakes given
that a human agrees with that predicted label, even
if it does not match the gold standard.

6.4.2 How Much Does a New
Annotator Agree?

In this section we analyze how much a new human
annotator agrees with the output of the different
methodologies (majority vote and FLEAD). To
this end, we designed an analysis that consists of
providing new annotators with the misclassified
instances with their predicted label. Then, each
annotator is asked to consider whether this new
level is correct or not. We perform this analysis
in the SentiMP datasets, since we designed and
know the annotation guidelines.

We define three levels of agreement: (1) A
(strongly agree): if the label set by the learning
model is the one the re-annotator would assign,
(2) P (partially agree): if this is not the la-
bel re-annotator would assign, but she partially
agrees with it, and (3) D (strongly disagree): the

re-annotator disagrees with the label set by the
model.

In Figure 4 we show the mean results of the two
external annotators in all SentiMP datasets in the
overlap of mistakes between the FLEAD method-
ology and the majority vote baseline, respectively.
We see that in the three datasets the external an-
notators agree that the labels generated by the
FLEAD methodology make more sense than the
labels generated by the majority vote baseline,
which may be mostly due to the subjectivity of the
task and not due to models’ error.

Table 11 shows some examples of misclassified
SentiMP tweets in which both external annotators
concur with respect to the predicted labels. In
general, the labels predicted by FLEAD appear to
be more reasonable by the annotators than those
predicted by the majority vote baseline.

7 Limitations

We have identified five main limitations of our
proposal and evaluation:

1. Computational Resources. Using our
methodology for a large set of annotators is
computationally very demanding, especially
when it comes to memory requirements of
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language models that increase linearly with
respect to the number of annotators. For our
FLEAD methodology, a separate model is
required for each annotator. As we analyzed
in Section 6.3, there may be a trade-off
between model size and our methodology
when the number of annotators is large (e.g.,
in crowdsourcing annotation schemes). It
is likely that as the complexity of the task
increases, larger models may be necessary
to improve performance. Therefore, new
efficient techniques to address this issue
would need to be explored, especially when
the number of annotators is large. For
instance, there may be techniques to perform
the federated aggregation individually for
each model, alleviating memory issues.

2. Aggregation Methods. Most of our exper-
iments are based on the majority vote to
decide the gold label. However, as we argued
throughout the paper, other aggregation tech-
niques such as the one proposed by Baan et al.
(2022) and analyzed in Section 5.2 should be
more thoroughly analyzed.

3. Federated Aggregation. We use FedAvg for
all the experiments because of its prominence
in the literature and competitive perfor-
mance (Zhao et al., 2022). However, it
would be interesting for future work to an-
alyze the influence of the aggregator in the
methodology.

4. Annotator Diversity and Type of Disagree-
ment. Each dataset has a different degree of
annotator diversity. In the case of our newly
constructed dataset, SentiMP, both original
(see Section 4.1.2) and external annotators
(see Section 6.4) of SentiMP have some sim-
ilar demographic characteristics, which may
affect some of the conclusions drawn from
this dataset and the qualitative analysis. The
agreement between annotators of SentiMP is
among moderated and substantial (see Ta-
ble 3), which is larger than other datasets.
To mitigate this potential limitation, we have
performed an additional analysis with respect
to the impact of disagreement in Section 6.2.
Moreover, in this paper we do not focus on
the type of disagreement and this is modelled
jointly by the federated model. It is possible
that different types of disagreement affect the

model differently, but this is not explored or
explicitly analysed in this work.

5. Task Variety. We have only focused on text
classification and do not explore other NLP
tasks, partially due to the lack of datasets with
individual annotations. We believe that our
methodology is not specific to text classifica-
tion and can be applied to other NLP tasks, or
even other machine learning related applica-
tions where we can find similar disagreement
issues (Albarqouni et al., 2016; Beyer et al.,
2020; Cabitza et al., 2019, 2020), but we
leave this extended analysis for future work.

8 Conclusions

In this paper, we proposed a text classification
method to leverage the information from all an-
notators separately. To this end we put forward
FLEAD, a methodology based on FL and con-
sidering each annotator that participate in the
annotation of a dataset as a federated client.
Thus, the labels of each annotator are indepen-
dently learned and aggregated in a global or
final model. In general, our methodology shows
promising results and prove that FL can be used
beyond protecting data privacy, in this case to
learn from the disagreements among annotators in
subjective tasks.

Finally, we performed an in-depth evaluation
and analysis to understand the different com-
ponent of our methodology, with the following
conclusions: (1) The results on several multilin-
gual datasets of subjective text classification tasks
show that leveraging information from all the
annotators is indeed beneficial and enhances the
classification performance; (2) our ablation anal-
ysis highlights that the improvements are largely
due to the FL operation, in addition to other side
benefits that our methodology offers; (3) the qual-
itative analysis shows that the external annotators
generally agree more with the errors made by
our FLEAD-based model, in comparison to the
models trained on a single ground truth.
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Wong, Miguel López Campos, Daniel Jiménez
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Kolesnikov, Xiaohua Zhai, and Aäron van den
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Praneeth Vepakomma, Jianyu Wang, Li Xiong,
Zheng Xu, Qiang Yang, Felix X. Yu,
Han Yu, and Sen Zhao. 2021. Advances
and open problems in federated learning.
Foundations and Trends R©in Machine Learn-
ing, 14(1–2):1–210.https://doi.org/10
.1561/9781680837896

Brendan Kennedy, Mohammad Atari,
Aida Mostafazadeh Davani, Leigh Yeh,
Ali Omrani, Yehsong Kim, Kris Coombs,
Shreya Havaldar, Gwenyth Portillo-Wightman,
Elaine Gonzalez, Joe Hoover, Aida Azatian,
Alyzeh Hussain, Austin Lara, Gabriel
Cardenas, Adam Omary, Christina Park, Xin
Wang, Clarisa Wijaya, Yong Zhang, Beth
Meyerowitz, and Morteza Dehghani. 2022.
Introducing the Gab Hate Corpus: Defining
and applying hate-based rhetoric to social
media posts at scale. Language Resources and
Evaluation, 56(1):79–108. https://doi
.org/10.1007/s10579-021-09569-x

Kian Kenyon-Dean, Eisha Ahmed, Scott
Fujimoto, Jeremy Georges-Filteau, Christopher
Glasz, Barleen Kaur, Auguste Lalande, Shruti
Bhanderi, Robert Belfer, Nirmal Kanagasabai,
Roman Sarrazingendron, Rohit Verma, and
Derek Ruths. 2018. Sentiment analysis: It’s
complicated! In Proceedings of the 2018
Conference of the North American Chap-
ter of the Association for Computational
Linguistics: Human Language Technologies),
pages 1886–1895. https://doi.org/10
.18653/v1/N18-1171
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