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Abstract

Instruction-following models are attractive
alternatives to fine-tuned approaches for ques-
tion answering (QA). By simply prepending
relevant documents and an instruction to their
input, these models can be adapted to var-
ious information domains and tasks without
additional training. However, these mod-
els tend to produce verbose responses with
supplementary information, which makes tra-
ditional QA metrics like exact match (EM)
and F1 unreliable for accurately quantifying
model performance. In this work, we eval-
uate instruction-following models along two
fronts: 1) how well they satisfy user’s in-
formation need (correctness), and 2) whether
they disseminate information supported by the
provided knowledge (faithfulness). Guided by
human evaluation and analysis, we highlight
the shortcomings of traditional metrics for both
correctness and faithfulness and propose sim-
ple token-overlap metrics that correlate highly
with human judgments. Our analysis reveals
that for correctness, instruction-following
models perform comparably to models specif-
ically fine-tuned for that task. However, they
struggle to accurately judge the relevance
of the provided knowledge and often hal-
lucinate in their responses. We hope our
work encourages more holistic evaluation of
instruction-following models for QA. Our
code and human annotation data is avail-
able at https://github.com/McGill-NLP
/instruct-qa.

1 Introduction

Instruction-following models, such as ChatGPT,
are appealing as they can perform tasks based
on natural language instructions. These models
are usually trained by exposing large language

∗Core contributor.

models (LLMs; Brown et al., 2020; Zhang et al.,
2022; Touvron et al., 2023a) to thousands of NLP
tasks formulated as instructions (Sanh et al., 2022;
Mishra et al., 2022; Wei et al., 2022; Chung
et al., 2022; Ouyang et al., 2022; Iyer et al., 2022;
Touvron et al., 2023b) or to synthetic examples
generated by other LLMs (Wang et al., 2022a;
Taori et al., 2023; Peng et al., 2023). In this pa-
per, we evaluate factual question-answering (QA)
ability of instruction-following models using a
given set of text passages.

Instruction-following models can perform QA
when provided with a task description, question,
and relevant text passages (Chung et al., 2022).
User-centric applications (e.g., Bing Chat) typi-
cally pair these models with a retriever or internet
search to provide relevant information. These
models generate natural, informative, and verbose
responses, a useful trait that helps build users’ trust
and engagement. However, the verbosity renders
traditional evaluation metrics such as exact match
(EM) and F1 unreliable, raising new challenges
for evaluation (Kamalloo et al., 2023). Moreover,
these models also tend to provide supplementary
information that may be hallucinated (Chiesurin
et al., 2023).

Consider Figure 1, where the user asks Where
are One Direction from?. Comparing the refer-
ence answer London, England with the first part
of model response One Direction are from Lon-
don, England yields 0 EM and 0.5 F1 score,
despite both answers being effectively equivalent
(the entire response scores 0.36 F1). Moreover,
the model asserts that One Direction is from
Mullingar. While correct, this fact is unsupported
by the provided knowledge. As EM and F1 only
compare with reference answers, they cannot es-
timate if the model response is supported by the
provided knowledge.
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Figure 1: Sample response generated by GPT-3.5. The
response is correct w.r.t. information need but only
partially faithful w.r.t. knowledge. Recall (§4.1) and
K-Precision (§5.1) approximate human judgment.

We posit that an optimal model should not only
correctly respond to user queries but also be faith-
ful, i.e., it should only disseminate information
that is inferrable or directly stated by external
documents (Rashkin et al., 2021b; Dziri et al.,
2022c). The resulting interpretability builds user
trust and allows for dynamic knowledge updates
(Lewis et al., 2020). In this work, we advocate
that QA models should be evaluated along two
fronts: 1) correctness w.r.t. information need,
which measures model’s efficacy in satisfying a
user’s information needs, and 2) faithfulness w.r.t.
provided knowledge, which measures a model’s
capability to ground factual information in pro-
vided knowledge. We evaluate several recent
instruction-following models—Flan-T5 (Chung
et al., 2022), Alpaca (Taori et al., 2023), GPT-3.5
(sibling model of Ouyang et al., 2022), and
Llama-2 (Touvron et al., 2023b)—on three pop-
ular factual information-seeking QA datasets:
Natural Questions (NQ; Kwiatkowski et al., 2019),
HotpotQA (Yang et al., 2018), and TopiOCQA
(Adlakha et al., 2022). We conduct a human anal-
ysis of 1800 model responses and correlate them
with several automatic metrics for correctness and
faithfulness.

Our findings suggest that for correctness, recall
(proportion of tokens in the reference answer
that are also in the model’s response) exhibits
a higher correlation than traditional QA metrics
like EM or F1. For faithfulness, K-Precision (pro-

portion of tokens in model response that appear
in the knowledge snippet) correlates better than
any other lexical metric. Although GPT-4 as an
evaluator achieves the highest correlation for both
correctness and faithfulness, it is expensive and
prone to systematic biases (Wang et al., 2023).
We demonstrate that our proposed lexical metrics
are close to GPT-4-based evaluation, allowing
us to evaluate instruction-following models at a
large scale.

A faithful model should not only answer when
the provided knowledge is relevant, but also ab-
stain from answering when it is irrelevant. Hence,
we also consider the model’s ability to abstain
from answering as a measure of its faithfulness.

To summarize, our contributions are as follows:

• We annotate responses from instruction-
following models for QA along the dimen-
sions of correctness and faithfulness, and
evaluate several evaluation metrics. We also
analyze the nature of responses where current
metrics fail.

• Guided by our analysis of traditional QA
metrics’ shortcomings, we propose simple
token-overlap metrics—recall for correct-
ness and K-Precision for faithfulness—and
demonstrate their strong correlation with
human judgments.

• We evaluate four instruction-following mod-
els across three diverse QA tasks. Our
results indicate that these models, even with-
out any further training, are comparable to
task-specific fine-tuned models for correct-
ness. However, they struggle to be faithful
to provided knowledge, often failing to ac-
curately identify its relevance.

2 Related Work

Instruction-following Models These models
are often trained on many NLP tasks verbal-
ized in the form of natural language instructions
(Wang et al., 2022b; Mishra et al., 2022; Chung
et al., 2022; Iyer et al., 2022). The number of
tasks varies from few tens (62 in Wei et al., 2022)
to several hundreds (1800+ in Iyer et al., 2022).
To increase diversity and scope of NLP tasks,
InstructGPT (Ouyang et al., 2022) and Llama-2
(Touvron et al., 2023b) incorporate high-quality
expert annotations during training. They are fur-
ther trained using human feedback to align them
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with human preferences (RLHF; Christiano et al.,
2017). Another popular approach, self-instruct
(Wang et al., 2022a), reduces dependency on
human-authored instructions by bootstrapping an
LLM to generate instructions and demonstrations
of new tasks. The resultant dataset is used to train
instruction-following models (Taori et al., 2023;
Peng et al., 2023).

Recent works (Lazaridou et al., 2022; Shi
et al., 2023) have paired retrievers with few-shot
language models for QA, alleviating the need
to learn additional parameters. In contrast to
these works, we evaluate retrieval-augmented
instruction-following models without any demon-
strations. In these settings, models do not follow
the distribution of reference answers, raising new
challenges for evaluation.

Evaluation in QA Previous research on
information-seeking QA has primarily relied on
lexical matching metrics such as exact match
(EM) and F1 for model evaluation (Rajpurkar
et al., 2016; Reddy et al., 2019). As simple
token-overlap metrics cannot capture semantic
equivalence (Min et al., 2021), subsequent
model-based metrics employ contextualized
embeddings (Zhang et al., 2020) or specialized
classifier (Bulian et al., 2022) to predict equiv-
alence. More recently, several studies resort to
prompting LLMs like GPT-4 (OpenAI, 2023) to
act as evaluators (Chiang et al., 2023; Peng et al.,
2023; Chiang and Lee, 2023; Kamalloo et al.,
2023; Liu et al., 2023b).

Recently, Kamalloo et al. (2023) compared the
correctness of InstructGPT (Ouyang et al., 2022)
with fine-tuned models for QA. They highlight
the shortcomings of traditional QA metrics and
propose model-based evaluation as a viable alter-
native. In contrast, we evaluate both correctness
and faithfulness of instruction-following models
and propose token-overlap metrics that correlate
highly with human judgments.

Evaluating Faithfulness Conversational mod-
els produce factually incorrect or unsupported
statements (Rashkin et al., 2021b; Dziri et al.,
2022b), known as hallucinations. Several met-
rics have been proposed to detect hallucina-
tion, or conversely, to measure faithfulness.
Knowledge-F1 (K-F1; Shuster et al., 2021) com-
putes token-overlap F1 between model response
and the provided knowledge. Q2 (Honovich et al.,

2021) checks for factual consistency based on
automatic question generation and question an-
swering. FaithCritic (Dziri et al., 2022a) uses a
trained model to predict hallucinations.

Recently, Chiesurin et al. (2023) demonstrated
that retrieval-augmented GPT-3 is likely to pro-
duce responses that appear trustworthy but are
unfaithful to the retrieved passages. They pro-
pose K-F1++, a variant of K-F1 that discounts
the tokens in the model response that appear in
the question. In our experiments, we observe that
this metric doesn’t correlate well with human
judgments.

Evaluation of Instruction-following Models
Instruction-following models have challenged
previously established evaluation protocols for
many NLP tasks. Goyal et al. (2022) demon-
strate that humans prefer summaries generated
by GPT-3 (Brown et al., 2020) over fine-tuned
models, but, existing automatic metrics cannot
capture this preference. Xu et al. (2023) advo-
cate multi-faceted evaluation for long-form QA
that focuses on fine-grained aspects such as com-
pleteness and ease of understanding. In this paper,
we propose multi-faceted evaluation for factual
information-seeking QA along correctness and
faithfulness.

3 Experimental Setup

3.1 Tasks
We evaluate instruction-following models on
three diverse information-seeking QA tasks based
on Wikipedia. For each task, we use a repre-
sentative popular dataset. We describe the tasks
below.

Open-domain QA Here we test the model’s
ability to answer questions with genuine
information-seeking intent and whose answer is
present in one of the Wikipedia passages. We
use the open version (Lee et al., 2019) of Natural
Questions (NQ; Kwiatkowski et al., 2019), which
contains queries from Google search engine.

Multi-hop QA Here we test the model’s abil-
ity to answer questions that require at least two
Wikipedia passages to reason upon jointly. We
use HotpotQA (Yang et al., 2018) for this task.

Conversational QA Here we test the model’s
ability to answer questions in conversational
context and whose answer is present in one

683



Dataset # Questions Answer # Passages
length (millions)

Natural Qns. 3,610 2.16 21
HotpotQA 7,405 2.46 5.2
TopiOCQA 2,514 10.98 25.7

Table 1: Statistics for datasets. We use the vali-
dation splits as the test sets are hidden. Answer
length is the average number of words.

Figure 2: Prompt template used for evaluating
instruction-following models. The passages are pro-
vided by the retriever hen evaluating for correctness
w.r.t. information need.

of the Wikipedia passages. We use TopiOCQA
(Adlakha et al., 2022), a dataset for open-domain
information-seeking dialogue.

Table 1 lists the total number of questions,
average answer length, and the total number of
passages in the Wikipedia corpus for each dataset.
These datasets contain short-form answers as
they are easier and more consistent to annotate
by humans. However, as users, humans prefer
verbose answers (Chiesurin et al., 2023). This
mismatch makes our evaluation setting realistic
and important.

3.2 Instruction-following Models

As shown in Figure 2, we use a standardized
prompt template that contains an instruction, pas-
sage(s) from an information source, and the ques-
tion to elicit answers from instruction-following
language models. We replace the question with
conversation history for TopiOCQA. Inspired
from Mishra et al. (2022), we formulate the in-
struction as – ‘‘Please answer the following
question given the following passages’’.
We refer to this instruction as Instr. v1. We con-
sider four models that differ primarily based on
their training regimes. We use the same generation

parameters for all instruction-following models,
described in Appendix A.

Flan-T5 (Chung et al., 2022) We use the 11B
parameter obtained by training T5 (Raffel et al.,
2020) on multiple instruction-following datasets
(Sanh et al., 2022; Wang et al., 2022b; Wei et al.,
2022). These datasets encompass 1800+ tasks, of
which 200+ are QA tasks. The training splits of
NQ and HotpotQA are included in these datasets.

Alpaca Taori et al. (2023) train LLaMA
(Touvron et al., 2023a) on GPT-3-generated
demonstrations using the self-instruct framework
(Wang et al., 2022a). We use the 7B variant.

GPT-3.5 We use the turbo version of GPT-3.5,1

described as a sibling to the InstructGPT model
(Ouyang et al., 2022). It is trained with user data
from the OpenAI API and expert annotations,
however, the exact distribution of training tasks
and datasets is not publicly available.

Llama-2 We use the 7B chat version of Llama-2
(Touvron et al., 2023b). The model is initially
bootstrapped on similar datasets as Flan-T5,
followed by fine-tuning on dialogue-style
instructions.

3.3 Retrieval

To evaluate instruction-following models for cor-
rectness, we pair them with a retriever that
provides the model with passages relevant to
the user query. For each task, we employ a
task-specific variant of DPR (Dense Passage Re-
trieval; Karpukhin et al., 2020). For NQ, we use
a pre-trained checkpoint from Karpukhin et al.
(2020), which is trained on multiple QA datasets.
For HotpotQA, we adopt the iterative multi-hop
DPR variant by Xiong et al. (2021) that selects
passages based on the query and prior retrievals.
For TopiOCQA, we utilize the checkpoint pro-
vided by Adlakha et al. (2022) that is trained for
conversational QA task.

The number of retrieved passages passed to
instruction-following models is constrained by
their input context size. For a fair comparison, we
provide the same number of retrieved passages to
each model within a specific task—8 for NQ and
HotpotQA, and 4 for TopiOCQA.

1openai.com/blog/introducing-chatgpt-and
-whisper-apis.
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4 Correctness w.r.t. Information Need

In this section, we investigate the correctness
of instruction-following models. We consider a
model response to be correct if it accurately sat-
isfies the user’s information need. For example,
when answering What is the capital of Canada?,
the model should convey that Ottawa is the capi-
tal of Canada. While the model’s response might
include additional information like Ottawa’s pop-
ulation, we limit the evaluation of correctness to
the part of the model response that is directly
relevant to the user’s information need. We ad-
dress evaluation of additional information in the
next section (Section 5). We describe lexical and
semantic similarity metrics for the task in §4.1.
Next, we conduct human evaluation and compare
several evaluation metrics (§4.2). Finally, using
metrics that correlate highly with human judg-
ments, we evaluate instruction-following models
for correctness (§4.3).

4.1 Evaluation Metrics

Evaluating correctness in QA involves compar-
ing model responses to human-annotated gold
answers. Below, we describe the two broad
categories of automatic evaluation metrics:

Lexical Matching These metrics score a model
response based on its token overlap with
the gold answer. While some metrics perform
bag-of-words matching (e.g., Exact Match (EM),
F1), others consider the order of the tokens by
n-gram matching such as METEOR (Banerjee
and Lavie, 2005), and ROUGE (Lin, 2004).

In this work, we also consider Recall—the pro-
portion of tokens in the reference answer that are
present in the model response. Recall does not
penalize a verbose response, as long as it contains
the reference answer tokens. Recent work (Liu
et al., 2023a; Mallen et al., 2023) has used a simi-
lar metric whereby a model response is correct if it
fully contains the reference answer as a substring.
We refer to this metric as Recall (Strict), as it is a
stricter version of token-level recall.

Semantic Similarity Unlike lexical metrics that
face the strictness issues (Min et al., 2021), seman-
tic similarity metrics typically leverage a model to
predict semantic equivalence. BERTScore (BertS,
Zhang et al., 2020) uses contextual BERT em-
beddings to compute precision, recall, and F1
between the model and reference answers. BEM

(BERT matching, Bulian et al., 2022) employs
a trained BERT model to predict the semantic
equivalence based on the question, the reference
answer, and the model response. We extend BEM
to conversational QA task by providing the most
recent question in the conversation as input.

Based on recent works (Chiang et al., 2023;
Peng et al., 2023), we also consider prompt-
ing LLMs (referred to here as GPT3.5-Eval and
GPT4-Eval) to act as evaluation agents. Given
the question, the reference answer, and the model
response, the LLM is instructed to predict if the
model response is correct or not. The prompt tem-
plate and the instruction used are described on our
project page.2

4.2 Human Evaluation

To establish a basis for comparing evaluation
metrics, we conduct human evaluation on a subset
of responses from all instruction-following mod-
els. Specifically, we focus on cases where the
gold passage is included in retrieved passages.
Therefore, any inaccuracies in the response can
be attributed to model’s failures, rather than in-
accurate retrieval. For each of the three tasks, we
take 100 samples, resulting in 1200 samples for
the four models.

In our evaluation setup, the annotator is pre-
sented with the question (or conversation history),
the reference answer, and the anonymized model
response. The annotator’s task is to assess if the
model response is correct, i.e., it is factually accu-
rate and satisfies the information need underlying
the user’s query. We hired four NLP graduate
students for the task. Each sample is labeled
by two annotators, achieving an inter-annotator
agreement of 92.42% and a Fleiss’ Kappa score of
76.4%. In cases of disagreement, a third annotation
is collected and majority vote is taken.

Out of 1200 model responses, 961 were judged
correct by humans, and 239 as incorrect. In
Table 2, we report distributional statistics of scores
assigned by EM, F1, Recall, and GPT4-Eval for
both correct and incorrect responses. While EM
assigns a 0.0 score to almost all human-judged
incorrect responses, it assigns 1.0 to only 22%
of human-judged correct responses. F1 does
only slightly better, obtaining 39% accuracy on
human-judged correct responses (when we con-
sider responses with ≥ 0.5 score as correct). This

2github:instruct-qa:correctness.
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EM F1 Recall GPT4

Human=1 ↑
Avg. 0.22 0.45 0.85 0.89
Median 0.00 0.33 1.00 1.00
SD 0.42 0.36 0.30 0.31

Human=0 ↓
Avg. 0.00 0.10 0.23 0.13
Median 0.00 0.00 0.00 0.00
SD 0.06 0.16 0.32 0.33

Table 2: Average, median, and standard deviation
(SD) of scores by evaluation metrics when humans
judge the model response correct (1) vs incorrect
(0). EM and F1 tend to be strict whereas Recall
and GPT4-Eval are more balanced.

highlights the well-known strictness problem (Min
et al., 2021; Kamalloo et al., 2023) of traditional
QA metrics. In contrast, GPT4-Eval and Recall
offer a relatively balanced assessment.

Qualitative Analysis of Failure Cases As evi-
dent from Table 2, traditional QA metrics like EM
and F1 tend to produce higher rates of false neg-
atives than false positives. For instance, 78% of
answers deemed correct by humans were falsely
marked incorrect (false negative) by EM, whereas
only 0.4% (1 out of 239) of answers judged in-
correct by humans were marked correct (false
positive). Similarly, F1 has 39% false negative rate
and 3.8% false positive rate. As the rate of false
positives is extremely low and they do not dispro-
portionately impact instruction-following models,
our analysis focuses solely on the false negatives.

We analyze the models’ responses that have ≤
0.3 F1 score, but have been deemed correct by
the annotators. This results in 448 samples out
of 1200. Our classification of errors is inspired
from Kamalloo et al. (2023) and Min et al. (2021),
modified to focus on instruction-following mod-
els. We list the categories of our classification and
their descriptions below.

• Semantic Equivalence: Here, the model re-
sponse is semantically similar to the reference
answer. Sub-categories include Multinomi-
nal entities, e.g., John Kennedy and John
F Kennedy, More Elaborate Answers, e.g.,
yes and yes, he is member of the band and
Synonymous Answers, e.g., from India and
Indian nationality.

• Symbolic Equivalence: This primarily
refers to different possible representations of

numeric quantities, e.g., four seasons and 4
seasons.

• Intrinsic Ambiguity in Questions: This
refers to queries with multiple valid in-
terpretations, leading to a range of correct
answers, e.g., Who won NFL football coach
of the year? could have different answers
dependent on the specific point in time being
referenced.

• Granularity Discrepancies: The level of
specificity in the model’s response may not
align with that in the reference answer. This
discrepancy in granularity can be Temporal,
e.g., August 25, 1939 and 1939, or Spa-
tial, e.g., Vancouver and British Columbia,
Canada.

• Incomplete Reference Answers: This refers
to cases when the reference answers fail
to cover the entire spectrum of correct re-
sponses. We consider two sub-categories:
List of named entities which includes ques-
tions like the cast of a movie or members of
the band, and Open-ended questions which
includes questions that can be answered in
multiple different ways, all of which are not
captured by reference answers, e.g., What
was the Watergate scandal?.

• Enumeration of Reference Answers is an
error category where the question seeks a
list (e.g., All states in north-east USA),
but each reference answer contains only
one entity (e.g., ‘‘Vermont’’, ‘‘Maine’’).
Instruction-following models often list mul-
tiple entities together in the response (e.g.,
Vermont and Maine), leading to mismatches.
This error category is very frequent in NQ.

• Satisfactory Subset Response represents the
inverse, where the model’s answer, though
shorter than the reference, still addresses the
query. An example is when a query asks for
songs of an artist, the reference lists 5–6,
but the model responds with only 1–2 song
names (primarily seen in TopiOCQA).

Figure 3 displays the distribution of error cases
based on our classification. A significant por-
tion of the errors (60.81%) fall under the More
Elaborate Answers category. This suggests that
traditional QA metrics often penalize models un-
justly due to the verbose nature of their responses.
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Figure 3: Categorization of failure cases when human
judged the response correct and F1 ≤ 0.3. More Elab-
orate Answers is most common failure sub-category,
followed by Open-ended Questions.

The next most common sub-category, Open-ended
Questions (10.81%), suggests that models are
occasionally penalized for providing correct re-
sponses that were not included in the reference
answers.

In Figure 4, we provide qualitative examples
of More Elaborate Answers and Open-ended
Questions sub-categories. Recall can act as an
effective fix for More Elaborate Answers. How-
ever, both lexical and semantic similarity metrics
struggle with Open-ended Questions. We also ob-
served that this is also the most common failure
sub-category for GPT4-Eval.

Overall, the results of our human evaluation
and analysis indicate that traditional metrics such
as EM and F1, typically used for QA models,
are not well-aligned with the verbose nature
of instruction-following models. To determine
more suitable metrics for these models, we an-
alyze the correlation of each metric with human
assessments.

Correlation Between Automatic Metrics and
Human Judgment With only four models
in our setup, correlations computed between
model rankings obtained from metrics and hu-
man judgments are not statistically significant.

Figure 4: Qualitative examples of two most common
failure modes of F1 – Open-ended Questions and More
Elaborate Answers.

To overcome this issue, we directly compare the
human judgments with the metric scores across
1200 annotated examples. We utilize Spearman’s
ρ and Kendall’s τ , both of which have mech-
anisms which prevent the ties from artificially
inflating or deflating the correlation measurement.
For instance, we use τ -b for Kendall (Kendall,
1945), which adjusts the normalizing factor by
discounting the number of tied pairs. Similarly,
for Spearman’s ρ, the average of the ranks that
would have been assigned to all the tied values
is assigned to each value. Simply put, a metric
achieves high correlation if it assigns a higher
score to samples deemed correct by humans than
to those deemed incorrect. Table 3 presents the
Spearman’s ρ and Kendall’s τ correlation of dif-
ferent metrics with human judgments. Apart from
metrics detailed in Section 4.1, we include token-
level precision, as well as precision and recall as
computed using BERTScore.

Notably, GPT4-Eval has the highest agree-
ment with human judgments, with 67.47 for both
Spearman and Kendall correlation, closely fol-
lowed by GPT3.5-Eval. We speculate that the
language comprehension capabilities and inher-
ent world knowledge embedded in LLMs help
them overcome many of the challenges associated
with evaluating responses of instruction-following
models that we identified in our human evaluation
study.
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Metric Spearman ρ Kendall τ

EM 27.326 27.326
F1 47.341 40.164
Recall 60.048 55.622
Recall (S) 52.535 52.535
Precision 43.929 37.636
METEOR 48.232 39.845
Rouge-L 45.874 38.797

BertS (F1) 31.853 26.133
BertS (Recall) 38.841 31.866
BertS (Precision) 20.876 17.129
BEM 53.704 43.868
GPT3.5-Eval 61.353 61.353
GPT4-Eval 67.474 67.474

Table 3: Correlation of several automatic evalu-
ation metrics with human judgments for correct-
ness w.r.t. information need. GPT4-Eval achieves
the highest correlation overall. Recall is the high-
est correlated among all lexical metrics.

After GPT4-Eval and GPT3.5-Eval, Recall
achieves the highest correlation with human judg-
ment. This simple token-overlap metric correlates
better than other lexical metrics or more com-
plex semantic similarity metrics like BERTScore
and BEM, likely because it does not penalize the
additional verbosity in model responses.

Although LLM-based evaluations such as
GPT4-Eval and GPT3.5-Eval exhibit the high-
est correlation with human judgments, they also
have certain limitations. Accessing these propri-
etary models incurs substantial API costs, which
renders them impractical for automatic evaluation
on large-scale datasets. Moreover, the reliability
of LLMs as evaluators is still unclear, as recent
studies have shown that they may exhibit system-
atic bias (Wang et al., 2023). Given these con-
siderations, we rely on Recall to evaluate model
performance.

4.3 Evaluating the Correctness of
Instruction-following Models

Equipped with proper evaluation metrics, we
evaluate instruction-following models for cor-
rectness across three QA tasks. Specifically, we
investigate the performance of current instruction-
following models in comparison to models that
have been specifically fine-tuned for those tasks.

Model EM ↑ F1 ↑ Recall ↑

N
Q

FiD 46.57 53.93 54.45
Flan-T5 41.16 50.62 54.03
Alpaca 8.84 19.5 48.82
GPT-3.5 1.41 16.22 57.98
Llama-2 0.64 9.78 59.28

H
ot

po
tQ

A

FiD 48.43 60.16 60.55
Flan-T5 58.12 71.14 71.28
Alpaca 16.27 33.45 57.53
GPT-3.5 5.66 22.49 66.77
Llama-2 1.39 15.15 69.75

T
op

iO
C

Q
A FiD 36.48 58.52 61.64

Flan-T5 18.34 43.17 52.54
Alpaca 5.85 26.72 43.37
GPT-3.5 2.7 34.32 67.39
Llama-2 0.95 22.79 61.4

Table 4: Comparison of instruction-following
models with FiD for correctness. EM and F1 rank
FiD higher on NQ and TopiOCQA. According
to Recall, which is more correlated with human
judgments, GPT-3.5 outperforms FiD on all three
datasets.

To compare against instruction-following mod-
els, we select FiD (Izacard and Grave, 2021) as our
task-specific fine-tuned baseline. This T5-based
(Raffel et al., 2020) encoder-decoder model sep-
arately encodes each retrieved passage with the
query, resulting in a set of vectors. The decoder
then autoregressively generates the answer by at-
tending to input passages and previously generated
tokens. For NQ and TopiOCQA, we use the pub-
licly available FiD checkpoints. For HotpotQA,
we train our own variant using the default hyper-
parameters. All checkpoints are base variants that
contain 220 million trainable parameters.

Unlike instruction-following models (Section
3.3), FiD is not restricted by input context size for
number of retrieved passages. We use the default
settings for each dataset—100 passages for NQ,
50 for TopiOCQA, and up to 18 for HotpotQA.

In Table 4, we report EM, F1, and Recall for
assessing correctness. Unsurprisingly, FiD, which
is fine-tuned separately on each dataset and thus
emulates the distribution of reference answers,
scores higher than instruction-following models
on traditional QA metrics like EM and F1 (with
the exception of Flan-T5 on HotpotQA). How-
ever, based on our findings (Section 4.2), we rely
on Recall for a more accurate evaluation. Using
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recall, the performance gap narrows significantly,
with some instruction-following models even out-
performing FiD. Notably, GPT-3.5 outperforms
FiD across all three QA tasks—by 6.48% in NQ,
10.27% in HotpotQA, and 9.33% in TopiOCQA,
whereas Llama-2 outperforms FiD on two out of
three tasks, matching FiD’s performance in Top-
iOCQA. It is also worth noting that TopiOCQA
serves as a test for generalization as it is not in-
cluded in any instruction-tuning datasets and was
released after the knowledge cutoff of GPT-3.5
(September 2021).

Overall, these results suggest that in retrieval-
augmented settings, instruction-following models
are equally, or sometimes even more, capable than
task-specific fine-tuned generators for generating
correct responses w.r.t. user information needs.

We also investigate the impact of retriever
on the final performance of instruction-following
models, using HotpotQA as a testbed (Appendix
B). Our findings underscore the importance of
selecting task-specific retrievers to maximize
performance.

5 Faithfulness w.r.t.
Provided Knowledge

Instruction-following models often provide ver-
bose responses with additional information apart
from user information needs. For example, when
asked What is the capital of Canada?, the model
might add information about the population –
Ottawa is the capital of Canada, with a popu-
lation of 1,017,449. Evaluating the correctness
ofz this supplementary information is challenging
without an oracle. Therefore, we focus on a more
limited goal of faithfulness (Rashkin et al., 2021a;
Dziri et al., 2022b; Chiesurin et al., 2023), which
measures if the supplementary information is in-
ferable or directly stated in the knowledge pro-
vided as input to these models. A faithful model
helps build user trust and enables knowledge
configurability.

Following Dziri et al. (2022a), we posit that a
faithful model response should be fully grounded
in the provided knowledge. Based on this hy-
pothesis, we split our analysis into two parts: 1)
faithfulness w.r.t. relevant knowledge, where we
provide the model with the relevant gold passage
and evaluate the groundedness of its response,
and 2) faithfulness w.r.t. irrelevant knowledge,
where we provide a related but irrelevant pas-

sage and measure how often the model refuses
to answer.

In this section, we first describe the automatic
evaluation metrics for evaluating faithfulness
(§5.1). Next, similar to correctness, we conduct
human evaluation to identify optimal metrics for
faithfulness w.r.t. relevant knowledge (§5.2). Fi-
nally, after outlining our approach to evaluate
a model faithfulness w.r.t. irrelevant knowledge
(§5.3), we present the results from large-scale
evaluation of instruction-following models (§5.4).

5.1 Evaluation Metrics

Given the user question or the conversation his-
tory (denoted by H), the gold passage K, and the
model response u, the objective of the metric is
to check if u can be inferred from K. We explore
several reference-free faithfulness and grounded-
ness metrics in the literature, broadly categorized
into two:

Lexical Matching Knowledge-F1 (denoted
K-F1) is a lexical overlap metric widely used
for knowledge-grounded dialogue (Shuster et al.,
2021; Dziri et al., 2022a) that checks for F1
overlap between the tokens of u and K. As
K-F1 checks for equivalence between the model
response and the knowledge snippet, we argue
that it is unsuitable for information-seeking QA
tasks. Grounding u in K in these tasks is an
inherently asymmetric task, i.e., u can be a subset
of K but K cannot be a subset of u. To capture
this intuition, we propose K-Precision—the
proportion of tokens in the model response u that
are present in K.

Chiesurin et al. (2023) propose K-F1++, a
variant of K-F1 that discounts tokens from user
question or the conversation history in the model
response. We also consider K-Precision++, which
applies similar discounting.

Semantic Similarity A parallel to K-F1 in se-
mantic space, we explore using BERTScore to
measure semantic similarity between K and u
based on contextual BERT token embeddings
(denoted K-BertS). We also consider Faith-
Critic, a hallucination critic model by Dziri et al.
(2023) that evaluates whether a response entails
a given passage. Q2 (Honovich et al., 2021) is
another evaluation metric used to quantify fac-
tual consistency between responses and provided
passages using automatic question generation,
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question answering, and natural language infer-
ence (NLI) models.

Similar to correctness, we investigate prompt-
ing LLMs to act as evaluators (LLMCritic). More
specifically, we prompt GPT-3.5 and GPT-4 to
annotate whether a given response uses only
the knowledge present in the provided passage.
The prompt template and the instruction used are
described on our project page.3

5.2 Faithfulness w.r.t. Relevant Knowledge
We use the same template and prompt that we
did for correctness (Section 3.2), but replace the
retrieved passages with the gold passage(s).

Human Evaluation Setup We randomly sam-
pled 50 examples for each dataset, resulting in 600
examples across four models. For each sample, we
provide annotators with the question (or the con-
versation history), model response, and the gold
passage(s). They are given two tasks: 1) to verify
if the given passage is indeed relevant to the user’s
query, and 2) to determine if the model response is
‘‘fully’’, ‘‘partially’’, or ‘‘not at all’’ supported by
the passages. We retain the same annotators from
the previous task. Each sample is annotated twice,
and in case of disagreement, a third annotation
is collected for a majority vote. The annotators
achieved an inter-annotator agreement of 86.33%
and Fleiss’ Kappa score of 70.57%. For our anal-
ysis, we filter out samples for which the passage
is marked as not relevant to the query, resulting in
544 samples.

Human Evaluation Results Overall, 85.3% re-
sponses were marked as ‘‘fully’’ supported by
the gold passage, 9% as ‘‘partially’’ and 5.7%
as ‘‘not at all’’. We include examples of model
responses marked as ‘‘partially’’ and ‘‘not at all’’
in Figure 5. Responses in the ‘‘not at all’’ category
generally contain short hallucinated information,
while ‘‘partially’’ supported responses tend to be
lexically aligned with the passage but with slight
modifications in some pieces of information.

Correlation of Automatic Evaluation Metrics
To compare with automatic evaluation metrics,
we consider model responses marked as ‘‘fully’’
as faithful, assigning them a score of 1.0. The
other two categories are given a score of 0.0. We
calculate Spearman’s ρ and Kendall’s τ corre-
lation between assessments of automatic metrics

3github:instruct-qa:faithfulness.

Figure 5: Examples of human annotations for faith-
fulness w.r.t. relevant knowledge. In ‘‘Partially’’, part
of the response is unsupported by the passage, while
‘‘Not at all’’ refers to completely hallucinated response.
Text in purple indicates hallucination; teal indicates
grounded in provided knowledge.

and human judgments and report the results in
Table 5.

We find that GPT-4-based LLMCritic
correlates the most with human evaluation.
K-Precision, the token-overlap metric that is
invariant to the length of the knowledge snippet,
is a close second, better than other semantic
similarity metrics like K-BertS, FaithCritic, and
Q2. This indicates that models trained to detect
hallucinations in knowledge-grounded dialogues
do not generalize well to information-seeking QA
tasks. Surprisingly, K-Precision also outperforms
GPT-3.5-based LLMCritic, indicating that
verifying faithfulness is still a challenging task
for LLMs.

Although GPT-4-based LLMCritic achieves
the highest Spearman correlation of 54.99, it
is still only moderately correlated with human
judgments, indicating that accurately quantify-
ing faithfulness is a challenging task for current
evaluation metrics. K-Precision is a simple inter-
pretable token-overlap metric that can serve as a
strong baseline for the development of more ro-
bust automatic metrics in the future. In this work,
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Metric Spearman ρ Kendall τ

K-F1 −10.266 −8.397
K-F1++ −5.541 −4.537
K-Precision 49.849 43.384
K-Precision++ 43.559 39.041
K-Recall −13.931 −11.397

K-BertS (F1) −0.456 −0.373
K-BertS (Precision) 23.083 18.866
K-BertS (Recall) −16.817 −13.745
FaithCritic 11.277 9.218
Q2 (F1) 28.708 24.478
Q2 (NLI) 28.862 25.084
LLMCritic (GPT-3.5) 23.851 23.851
LLMCritic (GPT-4) 54.995 54.995

Table 5: Correlation of evaluation metrics with
human judgements for faithfulness w.r.t. rele-
vant knowledge. LLMCritic (GPT-4) achieves the
highest correlation. K-Precision is a close second.

we rely on K-Precision to evaluate faithfulness
w.r.t. relevant knowledge.

5.3 Faithfulness w.r.t. Irrelevant Knowledge
An ideal model for QA should comprehend the
provided passage and avoid answering if the pas-
sage lacks relevant information. To test this, we
provide the models with a passage that is likely
to be irrelevant but related (e.g., a query about
Tom Cruise movie will be provided a Korean
movie passage that has nothing to do with Tom
Cruise). To do so, we treat the first passage after
the thousandth ranked passage as irrelevant but
related.

Our preliminary experiments demonstrated that
without explicit instruction, Flan-T5 and Alpaca
did not refrain from answering at all. Hence, we
modify the instruction from Section 3.2 (Instr. v1)
to direct the model to refrain from answering if
the passage is deemed irrelevant: Please answer
the following question given the follow-
ing passages. If the answer is not in the
passages or cannot be inferred from the
passages, respond as ‘‘I don’t know’’.
We refer to this instruction as Instr. v2. We report
the proportion of model responses that contain
I don’t know and other observed synonymous
expressions, referred to as PIR. To test for any
bias this instruction modification might introduce,
we also check for the model’s answer abstinence

Model K-Precision ↑ PIR ↑ PG ↓

N
Q

Flan-T5 94.0 92.0 24.8
Alpaca 69.4 0.0 0.0
GPT-3.5 65.5 98.4 47.4
Llama-2 69.4 97.8 57.8

H
ot

po
tQ

A Flan-T5 92.1 77.1 1.6
Alpaca 87.1 0.1 0.1
GPT-3.5 81.4 98.2 25.5
Llama-2 75.8 97.7 61.5

T
op

iO
C

Q
A Flan-T5 86.4 40.8 7.7

Alpaca 66.8 1.3 0.8
GPT-3.5 69.6 88.2 31.8
Llama-2 65.4 79.1 52.4

Table 6: Performance of instruction-following
models for faithfulness. K-Precision evalu-
ates faithfulness w.r.t. relevant knowledge
(Section 5.2). PIR and PG denote the proportion
of responses where model refrained from answer-
ing when provided with incorrect or gold passage
respectively, along with a modified instruction
(Section 5.3).

when provided with the gold passage, denoted by
PG. Ideally, a model should always refrain from
answering when given irrelevant information and
never refrain when given the correct passage(s).

5.4 Evaluating Faithfulness of
Instruction-following Models

We conduct large-scale evaluation of instruction-
following models for faithfulness. Table 6 reports
the results for faithfulness w.r.t. both relevant and
irrelevant knowledge.

Faithfulness w.r.t. Relevant Knowledge We
report K-Precision, the metric most correlated with
human judgments (Section 5.2). Flan-T5 achieves
the highest score for all three tasks, outperforming
all other models by a significant margin. GPT-3.5
is the least faithful for NQ, while Llama-2 is the
least faithful for HotpotQA and TopiOCQA. The
stark difference between the scores of Flan-T5
and other models denotes a trade-off between cor-
rectness and faithfulness: GPT-3.5 and Llama-2
outperform Flan-T5 in correctness but lag behind
significantly in faithfulness.

Answer Refraining and Prompt Sensitivity
When explicitly instructed to output ‘‘I don’t
know’’ and given an irrelevant passage, GPT-3.5
most often refrains from answering (98% in NQ
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and HotpotQA, 88% in TopiOCQA), followed
closely by Llama-2. Alpaca almost always an-
swers, indicating that it either fails to detect when
the answer is absent or it has difficulty follow-
ing the instruction. While Flan-T5 successfully
abstains from answering on NQ and HotpotQA,
it fails on TopiOCQA, indicating that it strug-
gles with out-of-distribution (TopiOCQA is not
included in its training).

When provided with gold passage with the
same instruction, surprisingly, both GPT-3.5
and Llama-2 still refrain from answering, with
Llama-2 refraining to answer more than 50% of
the time across all three datasets. This indicates
further research is required for models to identify
when and when not to refrain from answering.

We extend the evaluation of faithfulness to
real-world scenarios, providing models with re-
trieved passages instead of gold or irrelevant
passages. Additionally, we explore the impact of
modifying the instruction (Instr. v1 vs Instr. v2),
on both correctness and faithfulness (Appendix C).

6 Conclusion

In this paper, we analyze the responses of
instruction-following models for QA along the
dimensions of correctness w.r.t. information need
and faithfulness w.r.t. provided knowledge. Our
results show that Recall and K-Precision met-
rics correlate well with human judgments for
correctness and faithfulness respectively.

On evaluating instruction-following models us-
ing these proposed metrics, we find that these
models demonstrate a tradeoff between correct-
ness and faithfulness. GPT-3.5 and Llama-2
achieve high scores for correctness but have dif-
ficulty being faithful to the provided knowledge.
Moreover, they struggle to decide when to refrain
from answering.

When using instruction-following models for
QA, we urge to the community to move away
from reporting a single overall score and adopt
a more holistic evaluation that reports correct-
ness, faithfulness, and the ability to refrain from
answering.

Limitations Although we evaluate for correct-
ness, faithfulness, and the ability to refrain from
answering, it is not an exhaustive list of all the de-
sirable properties of a QA model. Previous works
(Xu et al., 2023) have focused on aspects like com-
pleteness and ease of understanding for long-form

QA. We leave the evaluation of these properties
for information-seeking QA to future work.

It is important to note that low faithfulness
of a response does not imply that it is incor-
rect. The model can potentially provide accurate
information using its parametric knowledge. How-
ever, such knowledge is difficult to interpret and
modify.

We propose Recall and K-Precision for correct-
ness and faithfulness respectively. Although these
metrics correlate highly with human judgments,
they are easy to hack. For instance, Recall might
score an affirmative statement and its negated ver-
sion equally, despite their contrasting meanings.
However, QA models tend to answer in affirma-
tion rather than negation. Similarly, K-Precision
can be hacked by copying all the knowledge from
the prompt. However, such strategy will be penal-
ized heavily when evaluated for faithfulness w.r.t.
irrelevant knowledge.

Acknowledgments

We thank the reviewers and action editor for
their valuable feedback. Furthermore, we thank
the members of SR’s research group for provid-
ing feedback throughout the project. We thank
Eva Portelance and Ehsan Kamalloo for helpful
discussions. PB is supported by the Mila-Intel
Grant program. XHL and NM are supported by
the NSERC CGSD Fellowship. SR is supported
by a Facebook CIFAR AI Chair and NSERC
Discovery Grant program.

References

Vaibhav Adlakha, Shehzaad Dhuliawala, Kaheer
Suleman, Harm de Vries, and Siva Reddy.
2022. TopiOCQA: Open-domain conversa-
tional question answering with topic switching.
Transactions of the Association for Computa-
tional Linguistics, 10:468–483. https://doi
.org/10.1162/tacl a 00471

Satanjeev Banerjee and Alon Lavie. 2005. ME-
TEOR: An automatic metric for MT evaluation
with improved correlation with human judg-
ments. In Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summariza-
tion, pages 65–72, Ann Arbor, Michigan.
Association for Computational Linguistics.

692

https://doi.org/10.1162/tacl_a_00471
https://doi.org/10.1162/tacl_a_00471


Tom Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared D. Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language models
are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33,
pages 1877–1901. Curran Associates, Inc.

Jannis Bulian, Christian Buck, Wojciech
Gajewski, Benjamin Börschinger, and Tal
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Figure 6: Correctness evaluation of instruction-
following models across various retrievers for Hot-
potQA dataset. DPR (multi-hop), the task-specific
retriever for multi-hop QA, performs the best.

B Impact of Retriever on Correctness

We evaluate the impact of different retrievers on
the correctness of instruction-following models,
using HotpotQA as a testing benchmark. We con-
sider three retrievers: (1) BM25 (Robertson et al.,
1995), a sparse lexical-overlap based retriever,
(2) DPR (Karpukhin et al., 2020), a dense re-
triever trained on multiple QA datasets, and (3)
Xiong et al. (2021), a multi-hop version of DPR
trained on HotpotQA, which we refer to as DPR
(multi-hop). We use the same prompt template
and evaluation setup as Section 4.

The comparison of different retrievers is pre-
sented in Figure 6. For all instruction-following
models, DPR (multi-hop) performs the best, high-
lighting the importance of using task-specific
retrievers to maximize performance. Similar to
Sidiropoulos et al. (2021), we found that BM25
outperforms DPR across all instruction-following
models, potentially due its ability to exploit high
overlap between the query and gold passages.

C Evaluation of Instruction-Following
Models in Real-world Settings

In this section, we evaluate faithfulness of
instruction-following models in real-world set-
tings. We also investigate the impact of changing
instructions on both correctness and faithfulness.

Experiment Setup We follow the prompt tem-
plate from Figure 2, providing models with
an instruction, retrieved passages, and question
or conversation history. We consider two in-
structions, Instr. v1 (Section 3.2) and Instr. v2
(Section 5.3). The latter adds a directive to not
answer if passages are irrelevant. For evaluation,

we use Recall for correctness and K-precision for
faithfulness. The correctness results with Instr. v1
are copied from Table 4 for easy comparison with
Instr. v2. With retrieved passages, K-Precision
is computed as the proportion of tokens in the
model’s response that are present in the retrieved
passages. For Instr. v2, we consider ‘‘I don’t
know.’’ to be an additional retrieved passage,
hence marking the response as faithful if the
model refrained from answering.

It is non-trivial to determine when the model
should refrain from answering (Section 5.3) with
retrieved passages as they may be relevant even
if they are not gold passages. However, if the
gold passages are retrieved, the model should
definitely not abstain from answering. Therefore,
we report PG, i.e., the proportion of times model
refrained from answering when the gold passage
was present, as a proxy of answer abstinence
(lower is better). A model that always output ‘‘I
don’t know.’’ with Instr. v2 will achieve the best
score in K-Precision but the worst score in PG.

Results We report the results in Table 7. Flan-T5
outperforms all other models by a significant
margin for faithfulness under Instr. v1, consistent
with previous findings (Table 6). Switching to
Instr. v2 increases the faithfulness of Flan-T5 and
GPT-3.5, with GPT-3.5 showing the largest gain.
Llama-2’s faithfulness drops by 12.33% across
all three tasks. Our manual inspection reveals
that Llama-2 often explains its reasoning for not
answering, which has a low overlap with the re-
trieved passages.

The instruction switch impacts the correctness
of all models, except Alpaca. GPT-3.5 experi-
ences the largest drop in performance across all
three datasets (37.26%), followed by Llama-2
(29.37%). This decline is likely due to the
models’ increased tendency to refrain from an-
swering under Instr. v2. PG scores support this
hypothesis—GPT-3.5 refrains from answering
39.01% of the time on NQ with Instr. v2, com-
pared to 2.18% with Instr. v1. Overall, these
scores indicate a similar observation as noted in
Section 5.4—GPT-3.5 and Llama-2 refrain from
answering more often than needed.

Alpaca is relatively unaffected with the change
in instruction across correctness, faithfulness and
answer abstinence, further confirming the ob-
servation that it has difficulty following the in-
struction to refrain from answering.
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Model
Correctness w.r.t. Faithfulness w.r.t. Retrieved

Answer Abstinence (PG ↓)
Information Need (Recall ↑) Knowledge (K-Precision ↑)

Instr. v1 Instr. v2 Instr. v1 Instr. v2 Instr. v1 Instr. v2 % Gold
N

Q

Flan-T5 54.03 50.52 96.59 98.88 0.00 5.95

36.79
Alpaca 48.82 48.00 80.87 79.16 0.00 0.08
GPT-3.5 57.98 34.10 81.50 96.27 2.18 39.01
Llama-2 59.28 44.03 83.26 76.46 0.08 31.55

H
ot

po
tQ

A Flan-T5 71.28 69.68 91.18 92.81 0.00 0.87

79.28
Alpaca 57.53 57.37 86.98 86.85 0.00 0.00
GPT-3.5 66.77 40.08 80.64 93.72 2.42 41.17
Llama-2 69.75 47.56 81.75 67.35 0.22 61.51

T
op

iO
C

Q
A Flan-T5 52.54 49.16 91.77 94.41 0.38 6.52

62.25
Alpaca 43.37 42.85 72.57 67.33 0.19 0.26
GPT-3.5 67.39 46.76 80.80 90.74 0.64 25.11
Llama-2 61.40 42.62 79.57 70.66 0.13 33.29

Table 7: Evaluation of correctness (Recall), faithfulness (K-Precision), and answer abstinence (PG) of
retrieval-augmented instruction-following models along different instructions. PG is reported on a subset
of questions for which the gold passage is present in the retrieved passages, denoted by % Gold.
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