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Abstract

Previous unsupervised domain adaptation
(UDA) methods for question answering (QA)
require access to source domain data while
fine-tuning the model for the target domain.
Source domain data may, however, contain
sensitive information and should be protected.
In this study, we investigate a more challenging
setting, source-free UDA, in which we have
only the pretrained source model and target
domain data, without access to source domain
data. We propose a novel self-training ap-
proach to QA models that integrates a specially
designed mask module for domain adaptation.
The mask is auto-adjusted to extract key do-
main knowledge when trained on the source
domain. To maintain previously learned do-
main knowledge, certain mask weights are
frozen during adaptation, while other weights
are adjusted to mitigate domain shifts with
pseudo-labeled samples generated in the tar-
get domain. Our empirical results on four
benchmark datasets suggest that our approach
significantly enhances the performance of pre-
trained QA models on the target domain, and
even outperforms models that have access to
the source data during adaptation.

1 Introduction

Question-answering (QA) systems have achieved
impressive performance in recent years with
the development of pre-trained language models
(PLMs). Despite this, research shows that PLMs
are sensitive to domain shifts, when training and
evaluation datasets have different distributions
(Yue et al., 2021c). In addition, the performance
of modern PLMs depends heavily on human-
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annotated in-domain data when it comes to spe-
cific tasks (Devlin et al., 2018; Liu et al., 2019).
The collection of high-quality datasets is time-
consuming and expensive, resulting in many real-
world applications relying mostly on unlabeled
data.

A possible solution to these issues is to transfer
knowledge from a relevant labeled source domain
to an unlabeled target domain, which is referred to
as unsupervised domain adaptation (UDA). The
key to implementing UDA for QA is to extract
common features from source and target contexts
that provide sufficient information to determine
where the answer is located. Following this idea,
previous work (Wang et al., 2019; Cao et al., 2020)
utilizes adversarial training to make the features
extracted from the source and target indistin-
guishable from each other. Recently, PLMs have
become capable of recalling large amounts of
information and performing a wide range of
tasks (Vaswani et al., 2017). Some recent studies
(Nishida et al., 2019; Cao et al., 2020; Yue et al.,
2021c) incorporate self-training and multitasking
training strategies into large PLMs for the task.
By simultaneously performing the QA task on the
source domain and the language modeling task
on the target domain, it is assumed that PLM
learns QA knowledge while dealing with domain
differences.

However, for these methods to be effective, they
must still have access to the source domain data
when the models are adapted to target domains.
This assumption is often not realistic in real-life
applications, as some datasets contain sensitive
information with limited access. In these cases,
only models trained on these datasets are avail-
able to the public. For example, due to privacy
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concerns in the clinical domain, the organizers
of SemEval 2021 Task 10 (Laparra et al., 2021)
released models trained on Mayo Clinic clinical
notes for public use, yet the original data re-
main confidential due to ‘‘complicated data use
agreements’’.

Our study explores source-free UDA, a set-
ting where users can adapt models developed on
private data to their own target domain without
access to private source data. Historically, this
has been a very difficult setting. Recent advance-
ments in transformer-based PLMs (Gururangan
et al., 2020; Yin et al., 2024) suggest that these
systems possess a remarkable capacity for learn-
ing domain-specific knowledge and effectively
answering queries. It is therefore feasible to ex-
plore how trained models can be adapted to target
domains in the absence of original source data.

We propose a novel approach based solely on
self-training, called masked domain adaptation
for question answering (MDAQA). A bottleneck
module is designed first with a masking mech-
anism. This bottleneck module is then inserted
between the QA encoder and the final prediction
layer. When the QA model is trained on the source
domain, the mask is learned automatically to pass
only values of specific kernels of the bottleneck
module to the prediction layer, while the remain-
ing kernels are left unused. When the QA model
is adapted to the target domain, weights of links to
early mentioned kernels are frozen in order to keep
previously learned domain knowledge, while the
weights related to remaining kernels are adjusted
to mitigate the domain variance. Since the target
domain data are unlabeled, we use the QA model
trained on the source domain to make predictions
on the target domain data. Then we use predictions
with high confidence as pseudo labels to further
fine-tune our model.1

We evaluate MDAQA on well-known QA
benchmark datasets. Experiment outcomes show
that MDAQA significantly improves the perfor-
mance of pretrained QA models on target domains.
MDAQA even outperforms previous UDA meth-
ods, which require access to source data during
adaptation. To summarize, the proposed method
has the following features:

• We introduce MDAQA, an innovative self-
training-based domain adaptation technique

1The code for our MDAQA framework is available at
https://github.com/maxwellyin/MDAQA.

specifically tailored for QA applications.
This approach features a masking module,
designed to facilitate the learning and reten-
tion of domain-specific knowledge by QA
models. Furthermore, it mitigates the detri-
mental effects associated with domain shifts
during the adaptation to target domains.

• The masking module we have engineered is
lightweight and modular, allowing for seam-
less integration into a broad array of existing
QA models. This design feature enhances
the applicability of the method and ensures
ease of use in diverse scenarios.

• Unlike previous approaches, MDAQA elimi-
nates the need for direct comparison between
source and target domain data during the ad-
aptation process. This characteristic renders
our method especially advantageous when
handling source data that may contain sen-
sitive information.

2 Related Work

In this section, we briefly review two lines of
related work. First, existing UDA for QA works.
Second, the recently proposed source-free UDA
methods.

2.1 Unsupervised Domain Adaptation of
Question Answering

QA systems are designed to generate answers from
text, with a significant focus on extractive QA—
identifying answer spans within unstructured text
based on a posed question. This aspect of UDA
has been thoroughly explored, beginning with
the pioneering work by Wang et al. (2019), which
brought domain adversarial training into the realm
of QA, extending the foundational work by Ganin
et al. (2016). Subsequent research has built upon
this by exploring various strategies to enhance
domain adaptation. For example, Nishida et al.
(2019) introduced a multitask training approach,
Cao et al. (2020) combined domain adversarial
training with self-training techniques, and Yue
et al. (2021c) applied contrastive learning to dis-
tinguish between answer and context token em-
beddings. In parallel, input-level masking has
emerged as another innovative pathway, where
pivot features—elements critical to the task and
common to both domains—are masked during
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pre-training, leading to the creation of domain-
agnostic representations (Blitzer et al., 2006;
Ziser and Reichart, 2018; Ben-David et al., 2020;
Lekhtman et al., 2021). Despite the progress made,
a common limitation of these methods is the ne-
cessity for concurrent access to data from both
source and target domains.

2.2 Source-free Unsupervised
Domain Adaptation

Source-free UDA studies the more restricted case
of UDA where the source domain data is not
available when we adapt the model trained on the
source domain to the target domain. Most previ-
ous research has focused on classification prob-
lems. Source-free UDA was first proposed by
Liang et al. (2020). They assume the classification
outputs for both source and target domain data
should be similar to each other. Therefore, they
leverage the idea of information maximization
(Hu et al., 2017) and fine-tune their encoder to
maximize the mutual information between inter-
mediate feature representations and outputs of the
classifier. 3C-GAN (Li et al., 2020) is another
representative work. Given the trained model and
target domain data, they use generative adversar-
ial networks (Goodfellow et al., 2020) to produce
target-style training samples. Huang et al. (2021)
introduce historical contrastive learning into this
research field, which contrasts the embeddings
generated by the currently adapted model and the
historical models.

Some researchers have recently introduced
Source-free UDA into the study of natural lan-
guage processing. Zhang et al. (2021) combine
knowledge distillation and source-free UDA to-
gether for sentence classification. Specifically,
they modify the joint maximum mean discrepancy
(Long et al., 2017) to match the joint distribu-
tions between a trained source model and target
domain samples while performing knowledge dis-
tillation. (Yi et al., 2023) explore the intersection
of source-free UDA and learning with noisy la-
bels, addressing the noise in pseudo-labels gener-
ated by source models due to domain shifts. Zeng
et al. (2022) and Wang et al. (2023) extend Source-
free UDA to more complicated setting.

Nevertheless, the primary focus of these studies
lies in classical classification problems or tasks
that can be adapted into such formats. As a result,
the majority of these methods are developed with
the premise that each specific sample correlates to

a distinct class label. In stark contrast, QA tasks
require a more nuanced approach. For each input
sample in QA tasks, a sequential classification
is required for the series of tokens it comprises.
This process involves determining the role of
each token—identifying it as either a start token,
an end token, or a regular token within the se-
quence. This classification underscores the impor-
tance of context, as the significance of each token
is defined not in isolation but in relation to the
entire sequence of tokens. This process is intrinsi-
cally context-dependent, making the classification
of isolated tokens substantially less meaningful.
Due to this fundamental difference, most exist-
ing source-free UDA techniques are not directly
applicable to QA tasks.

3 Problem Definition

For extractive QA, given a supporting context
p = (p1, p2, . . . , pL1

) with L1 tokens and a query
q = (q1, q2, . . . , qL2

) with L2 tokens, the answer
a = (pas , pas+1, . . . , pae) is a text piece in the
original passage p. This goal of extractive QA is
to identify the correct answer span (as, ae), 0 <
as < ae < L1, where as, ae represent the starting
and ending indexes of the answer in passage p.

Source-free UDA for QA can then be formally
defined as follows: There exists a source domain
DS , which possesses labeled data that is only ac-
cessible during the initial training of the source
model. A target domain DT exists, which has
freely accessible but unlabeled data. In the source
domain DS , we utilize n labeled samples
{xi, yi}ni=1, where the input xi = (pi, qi) and
label yi = (asi , a

e
i ). We then have n′ unlabeled

samples {x′
j}n

′
j=1 from the target domain DT , ad-

hering to the same QA task as aforementioned.
We postulate that the data distribution in DS and
DT are not identical. The initial step is to train a
model on DS , after which, access to DS ceases.
The core of the process, however, lies in the sub-
sequent adaptation of the pre-trained model to
DT . This transition is designed to maximize per-
formance on the target domain by proficiently
mitigating the domain shift between DS and DT .

4 Method

In this section, we introduce our proposed ap-
proach, Masked Domain Adaptation for Question
Answering (MDAQA). Our primary motivation
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is to leverage the domain knowledge acquired
from the source domain and adapt it efficiently
for the target domain within the context of QA.
The ideal model should be capable of discerning
and retaining vital information while adapting to
the differences between the source and target do-
mains, thus alleviating domain shift. To achieve
this, we propose MDAQA, which consists of a
feature extraction base model and a specially de-
signed mask module. The mask module plays
a pivotal role by controlling the activation and
usage of specific features or kernels in the predic-
tion layer, thereby focusing the model’s learning
process on pertinent domain knowledge.

Following this, we delve into the architecture
of the base model and the specialized mask mod-
ule. We also detail the training processes imple-
mented for both the source and target domains.

4.1 Base Model

Our feature extractor is the pre-trained language
model ROBERTA (Liu et al., 2019). We fine-tune
it for QA following the setup proposed by Nishida
et al. (2019). On top of this feature extractor,
we add a linear layer for extractive question an-
swers, whose output dimension is two. We then
add a softmax layer to map these dimensions to
probabilities, representing the probability that a
token is the start or end of an answer span. Given
a pair (pi, qi), the input sequence is [<s>; qi;
</s></s>; pi; </s>]. We then attribute a score to
each possible answer span by taking the product
of corresponding probabilities. The answer span
with the highest score is selected as the predicted
answer. For convenience, we denote the feature
extractor as g and the final prediction layer as
h. Therefore, the final output for this base model
can be denoted as ŷ(x) = (h ◦ g)(x).

4.2 Mask Module

The mask module, illustrated in Figure 1, consists
of a linear bottleneck layer f and a mask vector
M . The mask vector M is designed to learn and
select valuable features by taking on close-to-
binary values during training. Specifically,

M = σ(k ·N) (1)

where σ is the sigmoid function, N is another
learnable vector with initial values sampled from

Figure 1: Illustration of the proposed MDAQA archi-
tecture. The left part is the overall architecture, we
insert a mask module between the QA encoder and the
answer prediction layer. The QA encoder can be any
common language model. Here we use ROBERTA.
The right part is the detailed architecture of the mask
module.

a uniform distribution on the interval [−0.5, 0.5],
and k is a large hyperparameter to make sure the
output of σ is nearly binary. The mask module is
inserted between the feature extractor g and the
prediction layer h. The linear bottleneck layer is
designed to project the output of g to a lower
dimensional feature space. It also makes the mask
module separate from g and h, allowing for more
flexibility in combining the mask modules into
various QA models. Thus, the output feature of f
can be denoted as (f ◦g)(x). Then the mask vector
M is applied to it, thus only certain channels of
the feature embedding are activated and passed
to h. Therefore, the final output is changed to:

ŷ(x) = h(M � (f ◦ g)(x)) (2)

where M is broadcasted over the matrix during
the element-wise multiplication, denoted by �.

4.3 Training on Source Domain

During the training process on the source do-
main, we minimize the cross-entropy loss be-
tween the final outputs ŷ and labels y, and add
a sparsity loss to the mask vector M to preserve
only the most significant features. The loss func-
tion is defined as:

L = Lce(ŷ, y) + λ · sum(M)/b (3)
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Figure 2: A concise illustration of the weight adjust-
ment associated with the mask module during source
training and adaptation. All weights are free to change
when the model is trained on the source domain. The
red circles are kernels with mask values close to 1; thus,
their output is passed to the answer prediction layer.
During adaptation, the links marked in red experience
minimal weight adjustments, in contrast to the remain-
ing weights, which continue to adjust dynamically. If
the mask value of some kernel changes from 0 to 1,
denoted by the yellow circle, the output of that kernel
will also be passed to the final layer.

where sum(M) is the sum of all values in M
and λ is a hyperparameter.

4.4 Training on Target Domain

4.4.1 Mask Adaptation
As depicted in Figure 2, after training on the
source, the mask vector M should learn to acti-
vate only important kernels of the bottleneck layer
output (f ◦ g)(x), which contain domain knowl-
edge as well as QA knowledge, and the rest of
the kernels are masked. We denote its current
state as Mc.

As the model adapts to the target domain, we
expect it to retain previously learned knowledge
while learning to mitigate the effects of domain
shift. Therefore, we keep the weights of links
directly connected to previously activated kernels
fixed, while further adjusting the weights of the
remaining links to improve performance on the
target domain. Formally, assume Wf ∈ R

b×a is
the weight of the bottleneck layer f , Wh ∈ R

2×b

is the weight of the answer prediction layer h.
We use the previously learned Mc to regularize
the gradients flowing through the mask module
during backpropagation:

Wf ← Wf − (M̄c1
T
a )�

∂L
∂Wf

(4)

Wh ← Wh −
∂L
∂Wh

� (12M̄
T
c ) (5)

where M̄c = 1 −Mc, 1d is an all ones vector of
dimensionality d. Since the values in Mc are all
close to 0 or 1, this ensures that the key features
that are related to previously learned knowledge
are only minimally changed, while newly acti-
vated kernels focus on handling the domain shift.
For better flexibility and generalization ability,
the QA encoder is also fine-tuned during the ad-
aptation process. However, we set changes to it to
a much smaller adjustment range than the mask
module.

4.4.2 Self-training
Since there is no labeled sample in the tar-
get domain, we leverage a self-training strategy
(Yarowsky, 1995; McClosky et al., 2006) to gen-
erate pseudo labels. Specifically, we note that the
source domain Ds and the target domain Dt may
share some common characteristics even though
they have different distributions. Therefore, given
a model F (x) = h(Mc � (f ◦ g)(x)) learned on
the source domain Ds, and unlabeled samples
{x′

j}n
′

j=1 from the target domain Dt, some pre-
dicted answers from {ŷ′j | ŷ′j = F (x′

j), j =
1, . . . , n′} should be similar to the correct an-
swer spans for the corresponding samples in Dt.
Therefore, these predicted answers can be used
as pseudo labels for corresponding samples and
further fine-tune the trained model F .

As mentioned earlier, our model will assign
a likelihood score to each predicted answer. To
avoid significant error propagation, we select pre-
dictions of high confidence as pseudo labels.
Assume the score is sj for ŷ′j , we can obtain
a subset of target samples with pseudo labels:
{(x′

j , ŷ
′
j) | sj > α, j = 1, . . . , n′}, where the

threshold α is a hyperparameter. We use this sub-
set as the training dataset to fine-tune the trained
model F .

When we fine-tune the modelF on the target do-
mainDt, we use the same loss function as depicted
in Eq. 3. We repeat this process of pseudo-label
dataset generation and model fine-tuning multiple
times. We keep α the same value in all iterations.
As the number of iteration increases, the model
F should gradually learn new domain knowledge
of Dt and thus become more confident about its
own prediction. Therefore, the size of the gener-
ated dataset should increase accordingly with the
number of iterations. The full training procedure
is illustrated in Algorithm 1.
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Algorithm 1 MDAQA Training and Adaptation
Input: labeled samples {xi, yi}ni=1 in the
source domain Ds. Unlabeled samples {x′

j}n
′

j=1

in the target domain Dt. Pretrained QA base
model y(x) = (h ◦ g)(x). The source domain
training epoch number is Ns. Domain adapta-
tion training epoch number is Nt.
Output: Optimal model in the target domain.

1: Insert the proposed mask module into the pre-
trained model and get the MDAQA model F :
y(x) = h(M � (f ◦ g)(x))

2: for i ← 1 to Ns do
3: Train F with mini-batch from {xi, yi}ni=1.
4: end for
5: for i ← 1 to Nt do
6: Pseudo labeled set SP ← ∅
7: for j ← 1 to n′ do
8: Use F to predict the label ŷ′j for x′

j

9: Obtain probability score sj
10: end for
11: if sj > α then
12: Put {x′

j , ŷ
′
j} into SP

13: end if
14: for mini-batch B in SP do
15: Train F with mini-batch B
16: end for
17: end for

5 Experiment Setup

In this section, we introduce our experimental
setup. We first introduce our chosen dataset and
the necessary preparations. We then introduce
baselines for comparison. Finally, we show the
details of the model implementation.

5.1 Datasets
Following previous work (Nishida et al., 2019;
Yue et al., 2021c, 2022), We use datasets in the
MRQA 2019 Shared Task (Fisch et al., 2019). In
our experiments, we use SQuAD (Rajpurkar et al.,
2016) as our source domain dataset. For the tar-
get domain, we consider HotpotQA (Yang et al.,
2018), Natural Questions (NQ) (Kwiatkowski
et al., 2019), NewsQA (Trischler et al., 2017), and
BioASQ (Tsatsaronis et al., 2015) as they are com-
monly used benchmark datasets. For target domain
datasets, only unlabeled samples are accessible
for adaptation. In order to simulate a low-resource
setting that is commonly used in UDA research,

we randomly choose n = 1,000 unlabeled sam-
ples (about 1%–1.5% of original training sets)
from each target domain training dataset for do-
main adaptation. We also discuss the impact of
n in Section 6.5.

To more accurately represent the real-world
application of Source free UDA, we conduct an
extended experiment to assess the UDA perfor-
mance of our method and baselines in adapting
the model from SQuAD to a clinical dataset of
limited size. This dataset, sourced from MIMIC-
III (Yue et al., 2021a,b; Goldberger et al., 2000),
has been manually modified to conform to the
SQuAD format.

5.2 Baselines

In this study, we juxtapose MDAQA with
the subsequent advanced benchmarks: AdaMRC
(Wang et al., 2019), UDARC (Nishida et al.,
2019), and CAQA (Yue et al., 2021c). Given the
divergence in QA backbone models utilized in
these works, we undertake a reimplementation us-
ing the ROBERTA framework (Liu et al., 2019),
aligning with our employed model, to ensure an
equitable comparison.

Furthermore, we introduce a ‘‘No Adaptation’’
baseline, where the model is trained exclusively
on the source domain dataset and subsequently
assessed on the target domain datasets. This strat-
egy aims to gauge the foundational performance
in the absence of any prior knowledge pertaining
to the target domain.

In our extensive evaluation, we also introduce
a ‘‘Supervised Learning’’ baseline. In this con-
figuration, the model is granted unfettered access
to the entirety of the labeled target data. This
baseline serves as a benchmark, setting a poten-
tial performance ceiling. It aids in highlighting
the relative efficacy of our UDA approach com-
pared to scenarios with complete target domain
knowledge.

To provide a comprehensive analysis of our
proposed methodology, we conduct several abla-
tion studies to examine its different components.
The variant labeled ‘‘No Mask’’ allows us to
understand the performance metrics of MDAQA
without the inclusion of the mask module. On
the other hand, the ‘‘Random Mask’’ strategy re-
tains the mask module but initializes its weights
randomly and keeps them constant. This serves
to highlight the importance of having adaptable
mask weights in our model.
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Methods
HotpotQA NQ NewsQA BioASQ MIMIC-III

EM F1 EM F1 EM F1 EM F1 EM F1
No Adaptation 47.94 65.71 46.39 60.17 41.12 57.20 49.77 61.69 14.57 47.76
UDARC 48.51 66.40 46.93 60.49 41.18 57.26 50.11 62.51 15.63 50.12
AdaMRC 50.13 67.47 48.40 61.11 41.35 57.31 51.85 63.25 16.49 50.36
CAQA 51.28 68.85 51.10 64.01 44.29 59.02 52.64 63.09 18.12 51.78
No Mask 50.73 66.81 50.03 62.92 43.18 57.98 51.07 61.95 16.04 48.48
Random Mask 50.60 66.52 49.35 62.21 43.03 56.72 50.12 61.19 15.79 48.29
One Round 52.71 68.66 52.65 65.13 44.03 60.29 53.11 63.04 17.02 51.13
MDAQA 53.81 70.34 53.43 66.26 44.89 60.50 54.12 64.07 19.03 53.94

Table 1: Main results on comparing question-answering performance while performing domain adap-
tation from SQuAD to MRQA datasets and MIMIC-III. EM denotes the exact match.

To further explore the effects of the training
process on domain adaptation, a ‘‘One Round’’
baseline is incorporated. This baseline examines
the performance of the model when self-training
is conducted in a single iteration. This evaluation
aims to determine the significance of conducting
multiple iterations of training and to understand
the impact of a singular training round on domain
adaptation.

Building upon the baselines, we further extend
our analysis by comparing our mask module with
traditional adapter modules for UDA of QA. This
comparative study is pivotal for demonstrating the
robustness and innovation of our approach.

5.3 Implementation Details
All models, including baseline methods and our
proposed approach, are built upon the foundational
model roberta-base from the HuggingFace
transformers library (Wolf et al., 2020). To ensure
a fair comparison, we adhered strictly to default
parameter settings of the library, except where
explicitly stated. We set the hyperparameters as
k = 100, λ = 0.75, and α within the range of 0.5
to 0.7. The selection of α is based on the model se-
lection strategy (Nguyen et al., 2020; Yang et al.,
2023), and the self-training process is executed
for 5 rounds. The dimensionality of the bottleneck
layer is 256. For optimization, we employ the
AdamW optimizer. When the model undergoes
training on the source domain, the learning rate
for the mask module is 1e-3 and for the remaining
modules is 2e-5. During adaptation to the target
domain, the learning rate for the mask module
is adjusted to 5e-4, while for other modules it
remains at 2e-5. Given the absence of test sets in
the MRQA datasets, we partition the original dev

sets into new dev and test subsets at a 1:1 ratio.
For training in the source domain, we utilize all
available training data, while for domain adapta-
tion, only n = 1000 unlabeled samples are used,
as mentioned earlier.

For the ‘‘No Masking’’ ablation study, we
trained the model without the mask module, using
the same learning rates as the full model. In con-
trast, the ‘‘Random Masking’’ scenario employed
the mask module, but with its weights initialized
to random values sampled from a uniform distri-
bution, which remained fixed during training. For
the adapter-based approach, we follow the archi-
tecture proposed by Houlsby et al. (2019), with
the learning rate for the adapter set to match that
of the mask module. Across all ablation studies,
we ensured that all other parameters were kept
consistent, thereby distinctly attributing any vari-
ations in model performance to the effects of the
masking and adapter mechanisms.

6 Results

In this section, we present our experimental results
and analyze them. We first present the exper-
imental performance of MDAQA compared to
baselines on benchmark datasets, as well as the
ablation study. We then analyze the impact of
the number of available target domain samples.
Finally, we analyze the effect of the threshold α.

6.1 Performance on Target Domains

Table 1 reports the main results. As indicated in
the table, the No Adaptation baseline is consis-
tently outperformed by our proposed MDAQA
framework. Compared to this baseline, MDAQA
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leads to a performance improvement in EM of at
least 3.77% and can go as high as 7.04%, and
an improvement in F1 of at least 3.30% and up
to 6.09%. This verifies that the performance of
pretrained QA models suffers from domain shift
when used on target domains that have a different
distribution than the source domain from which
they are trained, and that UDA methods have good
application value in such circumstances.

MDAQA also outperforms all remaining base-
lines by a clear margin. CAQA yields the best
performance among all the baselines. Compared
with it, our proposed MDAQA leads to a perfor-
mance improvement in EM of at least 0.60% and
can go as high as 2.43%, and an improvement
in F1 of at least 0.98% and up to 2.25%. This
suggests that MDAQA is better at handling the
effects of domain shift than previous methods.
Since MDAQA does not need to access source
data when doing domain adaptation, it also has
wider applications.

The performance of UDA methods varies ac-
cording to different target domain datasets. As
depicted in Table 1, the NewsQA seems to be
the hardest one for domain adaptation. The No
Adaptation baseline has an EM of 41.12 and an F1
of 57.20, significantly lower than its performance
on other datasets. The UDA methods also yield
minimal improvement on this dataset. Compared
with the No Adaptation baseline, our proposed
MDAQA only improves EM by 3.77% and F1 by
3.30%. It is also only slightly better than CAQA.
This may be because NewsQA is the only dataset
based on news articles, while the articles in the
rest of the datasets are more academic. On the
other hand, the UDA methods seem to work best
on NQ dataset. Compared with the No Adaptation
baseline, our proposed MDAQA improves EM by
7.04% and F1 by 6.09%. This may be because that
NQ is also an open-domain QA dataset based on
Wikipedia articles, the same as SQuAD.

Notably, when adapting from SQuAD to
MIMIC-III, a considerable performance decrease
is observed for all methods compared to their per-
formance on MRQA datasets. This decline can be
attributed to the substantial domain gap between
the source and target domains, with the MIMIC-III
dataset potentially incorporating more noise due
to differences in data processing levels. Despite
these challenges, MDAQA still achieves the high-
est scores, reinforcing its effectiveness in diverse
and challenging real-world scenarios.

6.2 Ablation Study

This ablation study is carried out to systemati-
cally clarify the importance of the mask module
in our proposed framework. The data shown in
Table 1 confirm that MDAQA consistently out-
performs its baselines. A comparison between
MDAQA and its ‘‘No Mask’’ variant shows an
improvement in the EM metric that varies from
0.71% to 3.40%, and in the F1 metric that ranges
from 1.52% to 3.34%. These findings highlight
the critical role of the mask module in preserv-
ing domain-specific knowledge and effectively
handling domain shifts.

Furthermore, when examining the ‘‘Random
Mask’’ row in Table 1, it is worth noting that
MDAQA consistently outperforms this condition
as well. Specifically, the EM and F1 metrics
are markedly higher in MDAQA compared to the
‘‘Random Mask’’ configuration, lending credence
to our claim that the mask module is not just a
random operation but is systematically improving
performance.

The ‘‘One Round’’ approach in Table 1, which
involves a single iteration of self-training, presents
competitive performance. Furthermore, the iter-
ative nature of the self-training process in the
MDAQA model further enhances the results. As
depicted in Figure 4, across the four target do-
mains, there is a general trend of performance
improvement with each subsequent round of
self-training, culminating in the highest scores at
Round 5. This pattern underscores the progressive
learning capability of the MDAQA architecture,
where each round builds upon the previous,
fine-tuning the adaptability and accuracy of our
model.

These observations collectively affirm the effi-
cacy of the iterative self-training and the mask
module in the MDAQA architecture, validat-
ing their roles in enhancing question-answering
performance across diverse domains.

6.3 Comparative Study: Mask Module
vs. Adapter

In this section, we offer a concentrated anal-
ysis between our proposed mask module and
traditional adapter techniques in the field of
question-answering. Specifically, as delineated
in Table 2, the ‘‘Adapter’’ model substitutes
our mask module with a conventional adapter
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Figure 3: Impact of the number of available unlabeled target domain samples. We show the performance of
MDAQA and baselines measured by EM and F1 when adapted to HotpotQA or NQ. We use logarithmic scaling
for the x-axis because the performance change of the algorithms is more pronounced at low data volumes.

Figure 4: Performance evolution across domains over
five rounds of self-training.

to enable a direct comparison with established
adapter-centric methods.

As shown in Table 2, our MDAQA method
excels in both EM and F1 scores across multiple
datasets, thereby substantially outperforming the
adapter model. This edge is principally attributed
to the distinct capabilities of our mask module: it
not only offers fine-grained domain knowledge re-
tention but is also designed for computational and
memory efficiency. Moreover, it is specifically
engineered to tackle the unique challenges en-

countered in QA domain adaptation, particularly
in source-free settings.

6.4 Mask Module in UDA Compared with
Supervised Domain Adaptation

To further validate the efficacy of the mask
module, experiments were extended to transfer
learning scenarios, with the results summarized in
Table 3. The table illustrates that while the mask
module contributes to performance enhancements
in these settings, its impact is less pronounced
compared to UDA scenarios. On average, the
mask module results in an improvement of 2.81%
for EM and 2.87% for F1 in UDA scenarios.
Conversely, for supervised learning scenarios, the
increments are more modest, at 0.65% for EM and
0.61% for F1. This is in line with our expecta-
tions. The primary role of the mask module is to
preserve domain-invariant features and enhance
the learning process when ground truth labels for
the target domain are absent. Consequently, in
settings where labeled target data is already avail-
able, the marginal benefits conferred by the mask
module are reduced.

6.5 Sensitivity Analysis for Available Target
Domain Sample Numbers

In Table 1, we showed that with n (n = 1,000)
unlabeled target domain samples, we could adapt
a QA model to the target domain effectively. In
this section, we discuss the effect of the value of n
on the QA performance of the target domain. The
results are shown in Figure 3.

As depicted in the figure, the performance of
MDAQA and baselines keeps improving as the
size of available target domain samples increases,
although the target domain samples are unlabeled.
This is intuitive, as more target domain samples
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Methods
HotpotQA NQ NewsQA BioASQ Average

EM F1 EM F1 EM F1 EM F1 EM F1
Adapter 51.90 67.14 51.29 64.06 43.53 58.49 52.39 62.61 49.78 63.08
MDAQA 53.81 70.34 53.43 66.26 44.89 60.50 54.12 64.07 51.56 65.29

Table 2: Focused comparison of Adapter and MDAQA methods on question-answering performance
during domain adaptation. EM denotes exact match.

Methods
HotpotQA NQ NewsQA BioASQ Average

EM F1 EM F1 EM F1 EM F1 EM F1
UDA 53.81 70.34 53.43 66.26 44.89 60.50 54.12 64.07 51.56 65.29
-Mask 50.73 66.81 50.03 62.92 43.18 57.98 51.07 61.95 48.75 62.42
Supervised Learning 63.58 79.69 68.68 80.02 57.19 72.49 67.51 75.53 64.24 76.93
-Mask 63.48 79.41 67.16 79.33 56.86 71.91 66.86 75.01 63.59 76.42

Table 3: The performance of MDAQA under UDA and supervised learning scenarios with and without
the mask module. The ‘‘-Mask’’ rows indicate performance when the mask module is not included.

can make the measurement of domain shifts more
accurate, thus training better domain adaptation
models.

Our MDAQA outperforms baselines with a
clear margin across all data sizes. This fur-
ther demonstrates that the proposed masked
self-training strategy can help PLMs better cap-
ture domain differences regardless of the data size,
and the improvements produced by our method
are stable and reliable.

Moreover, even when the available target do-
main samples are extremely limited (n = 10),
MDAQA still achieves decent performance im-
provements compared with baselines. As depicted
in Table 1. When the source model is used
to directly predict answers to HotpotQA ques-
tions, without any domain adaptation techniques,
it achieves an EM of 47.94, an F1 of 65.71, while
MDAQA achieves an EM of about 50, an F1
of about 67.4, according to Figure 3. When the
source model is used to directly predict answers to
NQ questions, it achieves an EM of 46.39, an F1
of 60.17, while MDAQA achieves an EM of about
51.9, an F1 of about 65.1. This improvement is
very impressive considering that so few training
examples are used.

It is worth noting that we use logarithmic scaling
for the x-axis of Figure 3 for better demonstration.
Although the performance seems to be increasing
steadily in the figure, in reality, the performance
of the algorithms varies more drastically when
the available data size is small. Basically, most
algorithms get similar performance improvements

when n increases from 10 to 100 as when n in-
creases from 100 to 1,000. As depicted in Figure 3,
for HotpotQA, MDAQA achieves an EM of about
50 when n = 10, then it achieves an EM of about
52 when n = 100, the increase is about 2 per-
cent. Then it achieves an EM close to 54 when
n = 1, 000, this increase is also about 2 percent.
The performance increase for NQ is similar, albeit
more gradual.

In conclusion, MDAQA yields consistent gains
across all data sizes. It can be used when the avail-
able data is extremely limited, and the increase
in available data further improves performance.
However, the improvement is significantly slower
when the data size is quite large. Therefore, there
is a trade-off between the accuracy and cost of
collecting data, and MDAQA can be used to ob-
tain a decent performance in the case of a limited
budget.

6.6 Impact of Threshold

Figure 5a demonstrates the performance of
MDAQA varied with different threshold α for
different target domain datasets. It seems that
no matter what the target domain dataset is, the
performance of MDAQA always first increases
and then decreases as the value of α increases.
This makes sense. As we can see in Figure 5b
and Figure 5c, when the value of α is too low,
a large fraction of generated pseudo-labeled ex-
amples is used as training examples, even in the
early rounds. This may result in too much noisy
data during training, which is harmful to the final
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Figure 5: Influence of threshold α on adaptation performance for different datasets.

performance. On the other hand, when the value
of alpha is too high, the generated pseudo-labeled
examples suitable as training examples are too
limited. This can lead to overfitting.

As we can see in Figure 5a, MDAQA reaches
the best performance on HotpotQA when α is
around 0.7. As shown in Figure 5b, when α = 0.7,
about 40% of the instances generated in round 0
can be used as training instances, and slightly
more than 80% of the generated instances can be
used in round 2. On the other hand, the MDAQA
reaches the best performance on NQ when α is
around 0.5. As shown in Figure 5c, when α =
0.5, there are also about 40% of the instances
generated in round 0 which can be used as training
instances, and slightly more than 80% of the
generated instances which can be used for round
2. Therefore, 40% qualified generated samples
in round 0 seem to be a good starting point
for self-training. The qualified sample portion
is sufficient to learn domain features while being
refined enough to avoid excessive noise.

Moreover, as depicted in Figure 5a, overall, the
MDAQA has better performance on HotpotQA
than NQ. This suggests that the domain differ-
ence between NQ and the source domain may be
larger than that between HotpotQA and the source
domain. This is also validated by Figure 5b and
Figure 5c. For HotpotQA, even when α = 0.9,
there are more than 20% of pseudo-labeled exam-
ples are qualified as training examples in round 0.
This means that the MDAQA is quite confident
about its answers for at least 20% of the questions
in HotpotQA at the initial round. Furthermore, as
the number of rounds increases, almost all curves
in Figure 5b reach to near 1. This indicates that
MDAQA is confident in almost all of its predic-
tions in later rounds. On the other hand, for NQ,

Figure 6: T-SNE visualization of question-context input
embeddings.

when α = 0.9, there are only less than 10% of
pseudo-labeled examples are qualified as training
examples in round 0. Even in later rounds, only
slightly higher than 80% are qualified.

In summary, the greater the domain divergence
between the source and target domains, the less
confident the initial model is in its predictions and
the lower the number of pseudo-labeled examples
eligible for training. Therefore, we need to set the
value of the threshold α relatively low so that the
proportion of qualified examples in the first round
remains around 40%.

6.7 Visualization of Domain Discrepancies
and the Efficacy of Mask Module

Following the methodologies outlined by Wang
et al. (2019) and Zhu and Hauff (2022), we
utilized the t-SNE visualization technique on
question-context pairs. These pairs were embed-
ded using the ROBERTA encoder. As shown in
Figure 6, the data points of HotpotQA and BioASQ
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Figure 7: T-SNE visualization of question-context
masked embeddings.

are considerably close to those of SQuAD, con-
trasting with the data points of NewsQA which
are situated at a greater distance. This observation
aligns with our earlier experimental findings, indi-
cating that NewsQA exhibits the most significant
domain difference compared to SQuAD. Figure 7
presents the embeddings post mask module ap-
plication. The mask module visibly decreases the
domain discrepancies between samples from dif-
ferent domains. This serves as further proof of the
efficacy of our proposed mask module in capturing
domain-invariant features.

6.8 Feature Map Analysis

To elucidate the impact of our proposed mask
module, we visualized the feature embeddings
post-encoder for MDAQA in comparison with
the No Adaptation baseline. As delineated in
Figure 8, the MDAQA model, endowed with a
mask module, exhibits stark and coherent feature
extractions in both the source and target domains.
There exist zones of marked consistency within the
feature maps, indicative of the domain-invariant
features retained from the source domain. Con-
currently, we observe discrete regions wherein the
feature maps diverge across domains, suggesting
the assimilation of domain-specific features by
the model. By contrast, the feature maps of the
No Adaptation baseline manifest no discernible
extraction patterns. This contrast accentuates the
proficiency of MDAQA in not only conserving
pivotal domain knowledge from the source do-
main but also in its adeptness at assimilating
novel, domain-specific features pertinent to the
target domain. The absence of this dual capability

Figure 8: Comparative feature map analysis between
MDAQA and no adaptation baseline models on source
and target domains. The top two heatmaps illustrate
the feature embeddings for the MDAQA model on
source and target domains, respectively. The bottom
two heatmaps display the feature embeddings for the no
adaptation baseline model on the respective domains.

in the baseline model serves to emphasize the su-
perior domain adaptation prowess inherent in our
MDAQA methodology.

6.9 Diverse Source Domain Analysis

In the pursuit of understanding the impact of
source domain diversity on the efficacy of do-
main adaptation in QA systems, we conducted
an exhaustive analysis across all domain datasets.
The results, presented in Table 4, illustrate the
domain adaptation performance when different
datasets are used as the source domain. Notably,
SQuAD, known for its rich and diverse ques-
tion set, emerged as an exemplary source domain,
yielding substantial performance gains across all
targeted domains. This can be attributed to the
general-purpose nature of SQuAD, encompassing
a wide array of topics and question formats, which
provides a robust and comprehensive foundation
for the model.

6.10 Comparative Evaluation of Different
Backbone Models

To rigorously evaluate the robustness of the
MDAQA framework, we conducted extensive
experiments using a range of backbone models,
including BERT (Devlin et al., 2018), ALBERT
(Lan et al., 2019), and DistilRoBERTa. The re-
sults, as systematically presented in Table 5,
demonstrate a consistent improvement across all
models, emphatically affirming the robustness
and versatility of the MDAQA framework. This
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Datasets
SQuAD HotpotQA NQ NewsQA BioASQ

EM F1 EM F1 EM F1 EM F1 EM F1
SQuAD – – 53.81 70.34 53.43 66.26 44.89 60.50 54.12 64.07
HotpotQA 63.41 77.65 – – 48.78 61.71 38.53 54.50 46.81 61.67
NQ 61.30 77.51 51.82 68.18 – – 41.71 58.36 52.06 64.37
NewsQA 58.31 76.91 43.01 62.35 48.40 62.81 – – 44.61 60.53
BioASQ 65.30 79.27 52.00 68.87 50.20 62.53 37.70 54.24 – –

Table 4: Comprehensive Performance Analysis of UDA Across Multiple QA Datasets Using Diverse
Source Domains.

Models
HotpotQA NQ NewsQA BioASQ

EM F1 EM F1 EM F1 EM F1

BERT 43.50 60.58 42.61 56.31 37.06 53.63 45.68 57.01
+MDAQA 46.50 63.59 47.10 61.30 41.10 55.29 48.71 60.03

ALBERT 46.16 64.22 39.22 54.15 40.95 57.69 45.94 58.23
+MDAQA 48.00 66.79 43.51 58.25 43.71 58.72 49.23 58.74

DistilRoBERTa 43.38 60.27 41.57 54.78 39.48 54.95 45.74 57.05
+MDAQA 46.80 62.07 43.80 56.16 40.40 55.06 50.90 59.59

Table 5: Enhanced performance across multiple QA datasets with diverse backbone models: A
comparative analysis of BERT, ALBERT, and DistilRoBERTa with and without the MDAQA
framework.

Methods
HotpotQA NQ NewsQA BioASQ MIMIC-III

EM F1 EM F1 EM F1 EM F1 EM F1
No Adaptation 47.94 65.71 46.39 60.17 41.12 57.20 49.77 61.69 14.32 47.44
UDARC 47.98 66.01 46.53 61.32 41.08 56.97 50.21 62.98 15.11 49.02
AdaMRC 48.69 64.02 47.99 62.51 40.02 56.48 51.87 63.99 16.31 49.67
CAQA 50.62 64.39 50.21 67.13 40.98 57.65 53.22 64.18 17.81 51.36
MDAQA 52.69 66.05 53.11 70.32 42.19 58.58 54.30 66.98 18.42 52.48

Table 6: Experiment results on comparing question-answering performance while performing domain
adaptation from SQuAD to MRQA datasets and MIMIC-III with generated questions.

enhancement in performance is observed irre-
spective of the specific backbone model utilized,
underscoring the effectiveness of MDAQA in
augmenting model capabilities.

6.11 No-question Adaptation

We further evaluated our proposed method under a
more stringent condition where questions from the
target domain are unavailable. To achieve UDA in
this context, we employed the T5 model (Roberts
et al., 2019) as a supplementary question genera-
tion tool, training it on context-question pairs from
the source domain. This model subsequently gen-
erated pseudo-questions for the target domains.

These generated questions were used instead of
actual target domain questions, adhering to the
standard training protocol for MDAQA and the in-
troduced baseline models. Employing this strategy
facilitated a direct comparison of the effective-
ness of our method against traditional adaptation
techniques when real target-domain queries are
absent. The results, detailed in Table 6, affirm the
robustness of our approach in utilizing synthetic
questions to mitigate the domain discrepancy.

7 Conclusion

In this paper, we explore the possibility of trans-
ferring knowledge for UDA on QA tasks, without
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access to initial domain data. We proposed a
novel self-training-based approach, MDAQA. We
specially design an attention mask module to au-
tomatically retain key knowledge from the source
domain and learn to mitigate domain shift be-
tween source and target domains. The module can
be easily integrated into existing language models.
Our comprehensive experiments on well-known
benchmark datasets demonstrate that MDAQA
outperforms previous methods by a clear margin.
It also performs well even when the available tar-
get domain data is highly limited, suggesting that
MDAQA has wide applicability across a range of
scenarios.

Our current study primarily focuses on ex-
tractive QA tasks, aligned to the approach of
previous research in the field (Wang et al., 2019;
Nishida et al., 2019; Yue et al., 2021c). We chose
the ROBERTA model specifically for its excep-
tional aptitude for such tasks. Furthermore, we
recognize the potential and need to broaden the
scope of our work towards more versatile set-
tings, such as open-domain and generative QA.
To this end, our future plans include transitioning
from ROBERTA to a T5-based model. Known
for its ability to handle a wide variety of tasks,
the T5 model will provide us the flexibility and
breadth required to venture into broader and more
challenging realms of QA.
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