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Abstract

When children learn new words, they em-
ploy constraints such as the mutual exclusivity
(ME) bias: A novel word is mapped to a novel
object rather than a familiar one. This bias
has been studied computationally, but only in
models that use discrete word representations
as input, ignoring the high variability of spo-
ken words. We investigate the ME bias in the
context of visually grounded speech models
that learn from natural images and continuous
speech audio. Concretely, we train a model on
familiar words and test its ME bias by asking it
to select between a novel and a familiar object
when queried with a novel word. To simulate
prior acoustic and visual knowledge, we ex-
periment with several initialization strategies
using pretrained speech and vision networks.
Our findings reveal the ME bias across the dif-
ferent initialization approaches, with a stronger
bias in models with more prior (in particular,
visual) knowledge. Additional tests confirm
the robustness of our results, even when dif-
ferent loss functions are considered. Based on
detailed analyses to piece out the model’s rep-
resentation space, we attribute the ME bias to
how familiar and novel classes are distinctly
separated in the resulting space.

1 Introduction

When children learn new words, they employ a
set of basic constraints to make the task eas-
ier. One such constraint is the mutual exclusivity
(ME) bias: When a learner hears a novel word,
they map it to an unfamiliar object (whose name
they don’t know yet), rather than a familiar one.
This strategy was first described by Markman and
Wachtel (1988) over 30 years ago and has since
been studied extensively in the developmental
sciences (Merriman et al., 1989; Markman et al.,

2003; Mather and Plunkett, 2009; Lewis et al.,
2020). With the rise of neural architectures, recent
years saw renewed interest in the ME bias, this
time from the computational modeling perspec-
tive: Several studies have examined whether and
under which conditions the ME bias emerges in
machine learning models (Gulordava et al., 2020;
Gandhi and Lake, 2020; Vong and Lake, 2022;
Ohmer et al., 2022).

The models in these studies normally receive in-
put consisting of word and object representations,
as the ME strategy is used to learn mappings
between words and the objects they refer to. Ob-
ject representations vary in their complexity, from
symbolic representations of single objects (e.g.,
Gandhi and Lake, 2020) to continuous vectors
encoding a natural image (e.g., Vong and Lake,
2022). Word representations, however, are based
on their written forms in all these studies. For
example, the textual form of the word fish has
an invariable representation in the input. This is
problematic because children learn words from
continuous speech, and there is large variation in
how the word fish can be realized depending on
the word duration, prosody, the quality of the in-
dividual sounds and so on; see, e.g., Creel (2012)
on how the ME bias affects atypical pronuncia-
tions such as [fesh] instead of [fIsh]. As a result,
children face an additional challenge compared to
models trained on written words. This is why it
is crucial to investigate the ME bias in a more
naturalistic setting, with models trained on word
representations that take into account variation
between acoustic instances of the same word.

Recently, there has been considerable head-
way in the development of visually grounded
speech models that learn from images paired
with unlabeled speech (Harwath et al., 2016,
2018a; Kamper et al., 2019; Chrupała, 2022;
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Peng and Harwath, 2022a; Peng et al., 2023;
Berry et al., 2023; Shih et al., 2023). Several
studies have shown, for instance, that these mod-
els learn word-like units when trained on large
amounts of paired speech–vision data (Harwath
and Glass, 2017; Harwath et al., 2018b; Olaleye
et al., 2022; Peng and Harwath, 2022c; Nortje
and Kamper, 2023; Pasad et al., 2023). Moreover,
some of these models draw inspiration from the
way infants acquire language from spoken words
that co-occur with visual cues across different sit-
uations in their environments (Miller and Gildea,
1987; Yu and Smith, 2007; Cunillera et al., 2010;
Thiessen, 2010). However, the ME bias has not
been studied in these models.

In this work we test whether visually grounded
speech models exhibit the ME bias. We focus on a
recent model by Nortje et al. (2023), as it achieves
state-of-the-art performance in a few-shot learn-
ing task that resembles the word learning setting
considered here. The model’s architecture is rep-
resentative of many of the other recent visually
grounded speech models: It takes a spoken word
and an image as input, processes these inde-
pendently, and then relies on a word-to-image
attention mechanism to learn a mapping between
a spoken word and its visual depiction. We first
train the model to discriminate familiar words. We
then test its ME bias by presenting it with a novel
word and two objects, one familiar and one novel.
To simulate prior acoustic and visual knowledge
that a child might have already acquired before
word learning, we additionally explore different
initialization strategies for the audio and vision
branches of the model.

To preview our results, we observe the ME
bias across all the different initialization schemes
of the visually grounded speech model, and the
bias is stronger in models with more prior visual
knowledge. We also carry out a series of addi-
tional tests to ensure that the observed ME bias
is not merely an artefact, and present analyses
to pinpoint the relationship between the model’s
representation space and the emergence of the ME
bias. In experiments where we look at different
modeling options (visual initialization and loss
functions, in particular), the ME bias is observed
in all cases. The code and the accompanying
dataset are available from our project website.1

1https://sites.google.com/view
/mutualexclusivityinvgs.

2 Related Work

Visually grounded speech models learn by bring-
ing together representations of paired images and
speech while pushing mismatched pairs apart.
These models have been used in several down-
stream tasks, ranging from speech–image retrieval
(Harwath et al., 2018b) and keyword spotting
(Olaleye et al., 2022) to word (Peng and Harwath,
2022c) and syllable segmentation (Peng et al.,
2023).

In terms of design choices, early models used
a hinge loss (Harwath et al., 2016, 2018b), while
several more advanced losses have been proposed
since (Petridis et al., 2018; Peng and Harwath,
2022a; Peng et al., 2023). A common strategy
to improve performance is to initialize the vi-
sion branch using a supervised vision model, e.g.,
Harwath et al. (2016) used VGG, Harwath et al.
(2020) used ResNet, and recently Shih et al.
(2023) and Berry et al. (2023) used CLIP. For
the speech branch, self-supervised speech models
like wav2vec2.0 and HuBERT have been used for
initialization (Peng and Harwath, 2022c). Other
extensions include using vector quantization in
intermediate layers (Harwath et al., 2020) and
more advanced multimodal attention mechanisms
to connect the branches (Chrupała et al., 2017;
Radford et al., 2021; Peng and Harwath, 2022a,b).

In this work we specifically use the few-shot
model of Nortje et al. (2023) that incorporates
many of these strategies (Section 5). We also
look at how different design choices affect our
analysis of the ME bias, e.g., using different losses
(Section 7.4).

As noted already, previous computational stud-
ies of the ME bias have exclusively used the
written form of words as input (Gulordava et al.,
2020; Gandhi and Lake, 2020; Vong and Lake,
2022; Ohmer et al., 2022). Visually grounded
speech models have the benefit that they can take
real speech as input. This better resembles the ac-
tual experimental setup with human participants
(Markman and Wachtel, 1988; Markman, 1989).

Concretely, since the models in Gulordava et al.
(2020) and Vong and Lake (2022) are trained on
written words, which are discrete by design, they
need to learn a continuous embedding for each
of the input classes. However, this makes dealing
with novel inputs difficult: If a model never sees
a particular item at training time, its embeddings
are never updated and remain randomly initialized.
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As a result, the ME test becomes a comparison of
learned vs random embeddings instead of novel
vs familiar. To address this issue, Gulordava et al.
(2020) use novel examples in their contrastive loss
during training, while Vong and Lake (2022) per-
form one gradient update on novel classes before
testing. These strategies mean that, in both cases,
the learner has actually seen the novel classes
before testing. Such adaptations are necessary in
models taking in written input. In contrast, a visu-
ally grounded speech model, even when presented
with an arbitrary input sequence, can place it in
the representation space learned from the familiar
classes during training. We investigate whether
such a representation space results in the ME bias.

3 Mutual Exclusivity in Visually
Grounded Speech Models

Mutual exclusivity (ME) is a constraint used to
learn words. It is grounded in the assumption
that an object, once named, cannot have another
name. The typical setup of a ME experiment
(Markman and Wachtel, 1988) involves two steps
and is illustrated in Figure 1. First, the exper-
imenter will ensure that the learner (usually a
child) is familiar with a set of specific objects by
assessing their ability to correctly identify objects
associated with familiar words. In this example,
the familiar classes are ‘clock’, ‘elephant’, and
‘horse’, as illustrated in the top panel of the fig-
ure. Subsequently, at test time the learner is shown
a familiar image (e.g., ELEPHANT) and a novel im-
age (e.g., GUITAR) and is asked to determine which
of the two corresponds to a novel spoken word,
e.g., guitar (middle panel in the figure). If the
learner exhibits a ME bias, they would select the
corresponding novel object, GUITAR in this case
(bottom panel).

Our primary objective is to investigate the ME
bias in computational models that operate on the
audio and visual modalities. These models, known
as visually grounded speech models, draw inspi-
ration from how children learn words (Miller and
Gildea, 1987), by being trained on unlabeled spo-
ken utterances paired with corresponding images.
The models learn to associate spoken words and
visual concepts, and often do so by predicting a
similarity score for a given audio utterance and an
input image. This score can then be used to select
between competing visual objects given a spoken
utterance, as required in the ME test.

Figure 1: Top: A learner is familiarized with a set
of objects during training. Middle: At test time, two
images are given, one from a familiar class seen during
training and the other from an unseen novel class.
Bottom: If a learner has a ME bias, then when prompted
with a novel spoken query, the novel object (GUITAR)
would be selected.

In Section 4 below we describe how we set
up our test of the ME bias. In Section 5 we then
present the visually grounded speech model that
we use in this study.

4 Constructing a Speech–Image Test for
Mutual Exclusivity

To construct our ME test, we need isolated spo-
ken words that are paired with natural images of
objects. We also need to separate these paired
word–image instances into two sets: familiar
classes and novel classes. A large multimodal
dataset of this type does not exist, so we cre-
ate one by combining several image and speech
datasets.

For the images, we combine MS COCO (Lin
et al., 2014) and Caltech-101 (Fei-Fei et al., 2006).
MS COCO contains 328k images of 91 objects in
their natural environment. Caltech-101 contains
9k Google images spanning 101 classes. Ground
truth object segmentations are available for both
these datasets. During training, we use entire im-
ages, but during evaluation, we use segmented
objects. This resembles a naturalistic learning sce-
nario in which a learner is familiarized with objects
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Familiar bear, bird, boat, car, cat, clock, cow, dog,
elephant, horse, scissors, sheep, umbrella

Novel ball, barrel, bench, buck, bus, butterfly,
cake, camera, canon, chair, cup, fan, fork,
guitar, lamp, nautilus, piano, revolver,
toilet, trumpet

Table 1: The familiar and novel classes in our ME
test setup.

by seeing them in a natural context, but is pre-
sented with individual objects (or their pictures)
in isolation at test time.

For the audio, we combine the FAAC (Harwath
and Glass, 2015), Buckeye (Pitt et al., 2005),
and LibriSpeech (Panayotov et al., 2015) datasets.
These English corpora respectively span 183, 40,
and 2.5k speakers.

To select familiar and novel classes, we do
a manual inspection to make sure that object
segmentations for particular classes are of a rea-
sonably high quality and that there are enough
spoken instances for each class in the segmented
speech data (at least 100 spoken examples per
class). As an example of an excluded class, we
did not use CURTAIN, since it was often difficult to
reliably see that curtains are depicted after these
are segmented out. The final result is a setup with
13 familiar classes and 20 novel classes, as listed
in Table 1.

During training (Figure 1, top panel), a model
only sees familiar classes. We divide our data so
that we have a training set with 18,279 unique
spoken word segments and 94,316 unique unseg-
mented natural images spanning the 13 familiar
classes. These are then paired up for training as
explained in Section 5.1. During training we also
use a development set for early stopping; this
small set consists of 130 word segments and 130
images from familiar classes.

For ME testing (Figure 1, middle panel) we re-
quire a combination of familiar and novel classes.
Our test set in total consists of 8,575 spoken
word segments with 22,062 segmented object im-
ages. To implement the ME test, we sample 1k
episodes: Each episode consists of a novel spo-
ken word (query) with two sampled images, one
matching the novel class from the query and the
other containing a familiar object. We ensure that
the two images always come from the same image
dataset to avoid any intrinsic dataset biases. There

Figure 2: MATTNET (Nortje et al., 2023) consists of a
vision network and an audio network. These are con-
nected through a word-to-image attention mechanism.
The model outputs a score S indicating the similarity
of the speech and image inputs.

is no overlap between training, development, and
test samples.

5 A Visually Grounded Speech Model

We want to establish whether visually grounded
speech models exhibit the ME bias. While there
is a growing number of speech–image models
(Section 2), many of them share the same gen-
eral methodology. We therefore use a visually
grounded speech model that is representative of
the models in this research area: the Multimodal
ATTention NETwork (MATTNET) of Nortje et al.
(2023). This model achieves top performance in
a few-shot word–object learning task that resem-
bles the way infants learn words from limited
exposure. Most useful for us is that the model
is conceptually simple: It takes an image and a
spoken word and outputs a score indicating how
similar the inputs are, precisely what is required
for ME testing.

5.1 Model

MATTNET consists of a vision and an audio branch
that are connected with a word-to-image attention
mechanism, as illustrated in Figure 2.

A spoken word a is first parameterized as a
mel-spectrogram with a hop length of 10 ms, a
window of 25 ms, and 40 bins. The audio branch
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takes this input, passes it through an acoustic net-
work consisting of LSTM and BiLSTM layers,
and finally outputs a single word embedding by
pooling the sequence of representations along the
time dimension with a two-layer feedforward net-
work. This method of encoding a variable-length
speech segment into a single embedding is simi-
lar to the idea behind acoustic word embeddings
(Chung et al., 2016; Holzenberger et al., 2018;
Wang et al., 2018; Kamper, 2019).

The vision branch is an adaptation of AlexNet
(Krizhevsky et al., 2017). An image v is first re-
sized to 224×224 pixels and normalized with
means and variances calculated on ImageNet
(Deng et al., 2009). The vision branch then en-
codes the input image into a sequence of pixel
embeddings.

The audio and vision branches are connected
through a multimodal attention mechanism that
takes the dot product between the acoustic word
embedding and each pixel embedding. The maxi-
mum of these attention scores is taken as the final
output of the model, the similarity score S. The
idea behind this attention mechanism is to focus
on the regions within the image that are most
indicative of the spoken word.

The similarity score S(a,v) should be high if
the spoken word a and the image v are instances
of the same class, and low otherwise. This is
accomplished by using a contrastive loss that
pushes positive word–image pairs from the same
class closer together than mismatched negative
word–image pairs (Nortje et al., 2023):

� = d (S(a,v), 100)

+

Nneg∑

i=1

d
(
S(a−i ,v), 0

)
+

Nneg∑

i=1

d
(
S(a,v−

i ), 0
)

+

Npos∑

i=1

d
(
S(a,v+

i ), 100
)
+

Npos∑

i=1

d
(
S(a+i ,v), 100

)

(1)
where d is the squared Euclidean distance, i.e., S
is pushed to 0 for negative pairs and to 100 for
positive pairs. In more detail, for an anchor pos-
itive word–image pair (a,v), we sample positive
examples (a+1:Npos

, v+
1:Npos

) that match the class of
the anchor and negative examples (a−1:Nneg

, v−
1:Nneg

)
that are not instances of the anchor class. We use
Npos = 5 and Nneg = 11 in our implementation.

As a reminder from Section 4, the model is
trained exclusively on familiar classes and never
sees any novel classes during training. Novel

classes are also never used as negative exam-
ples. We train the model with Adam (Kingma and
Ba, 2015) for 100 epochs and use early stopping
with a validation task. The validation task involves
presenting the model with a familiar word query
and asking it to identify which of the two familiar
object images it refers to. We use the spoken words
and isolated object images from the development
set for this task (see Section 4).

5.2 Different Initialization Strategies as a
Proxy for Prior Knowledge

The ME bias has been observed in children at the
age of around 17 months (e.g., Halberda, 2003).
At this age, children have already gained valuable
experience from both spoken language used in
their surroundings and the visual environment
that they navigate (Clark, 2004). For example,
4.5-month-olds can recognize objects (Needham,
2001), and 6.5-month-olds can recognize some
spoken word forms (Jusczyk and Aslin, 1995).
These abilities can be useful when learning new
words. In light of this, we adopt an approach that
initializes the vision and audio branches of our
model to emulate prior knowledge.

For the vision branch, we use the convolu-
tional encoder of the self-supervised AlexNet
(Koohpayegani et al., 2020), which distills the
SimCLR ResNet50×4 model (Chen et al., 2020)
into AlexNet and trains it on ImageNet (Deng
et al., 2009). For the audio branch, we use an
acoustic network (van Niekerk et al., 2020) pre-
trained on the LibriSpeech (Panayotov et al., 2015)
and Places (Harwath et al., 2018a) datasets us-
ing a self-supervised contrastive predictive coding
(CPC) objective (Oord et al., 2019). Both these
initialization networks are trained without super-
vision directly on unlabeled speech or vision data,
again emulating the type of data an infant would
be exposed to. When these initialization strategies
are not in use, we initialize the respective branches
randomly.

Considering these strategies, we end up with
four possible MATTNET variations: one where both
the vision and audio branches are initialized from
pretrained networks, one where only the audio
branch is initialized from a CPC model, one
where only the vision branch is initialized from
AlexNet, and one where neither branch is initial-
ized with pretrained models (i.e., a full random
initialization).
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Model initialization Accuracy (%)

Audio (CPC) Vision (AlexNet) Familiar–familiar Familiar–novel

1 Random baseline N/A N/A 50.19 49.92

2

MATTNET

✗ ✗ 72.86 57.29
3 ✗ ✓ 85.89 59.32
4 ✓ ✗ 75.78 55.92
5 ✓ ✓ 83.20 60.27

Table 2: Performance for different initialization strategies of MATTNET. The ME results are given in the
familiar–novel column. As a reference, discrimination performance between familiar classes is given
under familiar–familiar.

In the following sections, we present our results.
We compare them to the performance of a naive
baseline that chooses one of the two images at ran-
dom for a given word query. To determine whether
the differences between our model variations and
a random baseline are statistically significant, we
fit mixed-effects regression models to MATTNET’s
scores using the lme4 package (Bates et al., 2015).
Details are given in Appendix A.

6 Mutual Exclusivity Results

Our main question is whether visually grounded
models like MATTNET (Section 5) exhibit the ME
bias. To test this, we present the trained model with
two images: one showing familiar and one show-
ing a novel object. The model is then prompted
to identify which image a novel spoken word
refers to (Section 3). We denote this ME test as
the familiar–novel test. With this, we also intro-
duce our notation for specific tests: <image one
type>–<image two type>, with the type of
the audio query underlined. The class of the audio
query will match the one of the underlined image,
unless explicitly stated. Table 6 in Appendix B
contains a cheat sheet to understand the tests’
notation.

Before we look at our target familiar–novel
ME test, it is essential to ensure that our model
has successfully learned to distinguish the familiar
classes encountered during training; testing for the
ME bias would be premature if the model does not
know the familiar classes. We therefore perform a
familiar–familiar test, where the task is to match
a word query from a familiar class to one of two
images containing familiar classes.

Table 2 presents the results of these two tests
for the different MATTNET variations described in
Section 5.2. The results of the familiar–familiar
test show that all the model variations can dis-
tinguish between familiar classes. The vision
(AlexNet) initialization of the vision branch con-
tributes more than the audio (CPC) initialization:
The two best familiar–familiar models both use vi-
sion initialization. Our statistical tests confirm the
reported patterns: All model variations are signifi-
cantly better than the random baseline, and adding
the visual (AlexNet) and/or audio (CPC) initial-
ization to the basic model significantly improves
MATTNET’s accuracy on the familiar–familiar test.

We now turn to the ME test. The results are
given in the familiar–novel column of Table 2.
All MATTNET variations exhibit the ME bias, with
above-chance accuracy in matching a novel au-
dio segment to a novel image, as also confirmed
by our statistical significance test (Appendix A).
From the table, the strongest ME bias is found
in the MATTNET variation that initializes both the
audio (CPC) and vision (AlexNet) branches (row
5), followed by the variation with the vision ini-
tialization alone (row 3). Surprisingly, using CPC
initialization alone reduces the strength of the
ME bias (row 2 vs row 4). Again, these results
are confirmed by our statistical tests. To summa-
rize: Even the basic MATTNET has the ME bias,
but the AlexNet initialization makes it noticeably
stronger.

To investigate whether the reported accura-
cies are stable over the course of learning, we
consider MATTNET’s performance over training
epochs on the two tests: familiar–familiar and
familiar–novel. We use the model variation with
the strongest ME bias, i.e., with both the audio
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Figure 3: MATTNET’s performance over training
epochs. The cross indicates the highest overall ME
familiar–novel score. The triangles show the scores at
the point where the best familiar–familiar score oc-
curs. Results are for the variant of MATTNET with both
CPC and AlexNet initializations, and performance is
averaged over five training runs.

and vision branches initialized. Figure 3 shows
that the ME bias (familiar–novel, green solid
line) is stronger early on in training and then
decreases later on. The pattern is similar for the
familiar–familiar score (red dashed line), but the
highest score in this case is achieved later in
training than the best familiar–novel score. The
scores stabilize after approximately 60 epochs;
at this epoch, the model’s accuracy is 84.38%
on the familiar–familiar task and 56.78% on the
familiar–novel task (numbers not shown in the fig-
ure). This suggests that the results reported above
for both tests are robust and do not only hold for
a particular point in training.

In summary, we found that a visually grounded
speech model, MATTNET, learns the familiar set
of classes and thereafter exhibits a consistent and
robust ME bias. This bias gets stronger when the
model is initialized with prior visual knowledge,
although the results for the audio initialization
are inconclusive. Whereas the strength of the ME
bias slightly changes as the model learns, it is
consistently above chance, suggesting that this is
a stable effect in our model.

7 Further Analyses

We have shown that our visually grounded speech
model has the ME bias. However, we need to make
sure that the observed effect is really due to the
ME bias and is not a fluke. In particular, because
our model is trained on natural images, additional
objects might appear in the background, and there
is a small chance that some of these objects are

from the novel classes. As a result, the model may
learn something about the novel classes due to in-
formation leaking from the training data. Here we
present several sanity-check experiments to show
that we observe a small leakage for one model
variant, but it does not account for the strong and
consistent ME bias reported in the previous sec-
tion. Furthermore, we provide additional analyses
that show how the model structures its audio and
visual representation spaces for the ME bias to
emerge.

7.1 Sanity Checks

The familiar–novel column in Table 3 repeats
the ME results from Section 6. We now evalu-
ate these ME results against three sanity-check
experiments.

We start by testing the following: If indeed
the model has a ME bias, it should not make
a distinction between two novel classes. So we
present MATTNET with two novel images and a
novel audio query in a novel–novel test. Here, one
novel image depicts the class referred to by the
query, and the other image depicts a different novel
class. If the model does not know the mappings
between novel words and novel images, it should
randomly choose between the two novel images.
The results for this novel–novel test in Table 3
are close to 50% for all MATTNET’s variations, as
expected.

Surprisingly, our statistical test shows signifi-
cant differences between the baseline and two out
of the four variations: MATTNET with full random
initialization scores higher than the baseline on this
novel–novel task, and MATTNET with the vision
initialization lower. Since the differences between
each model and the baseline are small and in
different directions (one model scores lower and
the other higher), we believe these patterns are
not meaningful. At the same time, one possible
explanation of the above-chance performance of
MATTNET with random initialization is that there
may be some leakage of information about the
novel classes that may appear in the background
of the training images. To test whether our ME
results can be explained away by this minor leak-
age, we observe that the model’s scores in the
familiar–novel task (the ME task) are noticeably
higher than the scores in the novel–novel task. An
additional statistical test (Appendix A) shows that
the differences between MATTNET’s scores across
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Model initialization Accuracy (%)

Audio Vision Familiar–novel Novel–novel Familiar–novel∗ Familiar–novel
1 Random baseline N/A N/A 49.92 49.85 49.72 50.58

2

MATTNET

✗ ✗ 57.29 51.05 55.52 69.68
3 ✗ ✓ 59.32 48.74 58.51 86.92
4 ✓ ✗ 55.92 50.52 53.41 70.93
5 ✓ ✓ 60.27 49.92 58.41 82.88

Table 3: To ensure that the ME bias is real and not because of a peculiarity of our setup, we compare
the ME test (familiar–novel) to three sanity check experiments for the different variants of MATTNET.

the two tasks are, indeed, statistically significant
for three out of the four variations (except the one
with the audio initialization alone). This suggests
that the ME bias cannot be explained away by
information leakage for most model variations.

To further stress test that the model does not
reliably distinguish between novel classes, we
perform an additional test: familiar–novel∗. In the
standard familiar–novel ME test, the model is
presented with a familiar class (e.g., ELEPHANT)
and a novel class (GUITAR) and correctly matches
the novel query word guitar to the novel class.
If the model truly uses a ME bias (and not a
mapping between novel classes and novel words
that it could potentially infer from the training
data), then it should still select the novel image
(GUITAR) even when prompted with a mismatched
novel word, say ball. Therefore, we construct a
test to see whether a novel audio query would
still be matched to a novel image even if the
novel word does not refer to the class in the novel
image. Results for this familiar–novel∗ test in
Table 3—where the asterisk indicates a mismatch
in classes—show that the numbers are very close
to those in the standard familiar–novel ME test.
All the MATTNET variations therefore exhibit a ME
bias: A novel word query belongs to any novel
object, even if the two are mismatched, since the
familiar object already has a name. Our statistical
tests support this result.

Finally, in all the results presented above,
MATTNET has a preference for a novel image. One
simple explanation that would be consistent with
all these results (but would render them trivial) is
if the model always chose a novel object when
encountering one (regardless of the input query).
To test this, we again present the model with a
familiar and a novel object, but now query it with a
familiar word. The results for this familiar–novel

Figure 4: A box plot of similarities for four types
of audio–image comparisons with MATTNET. The au-
dio–image examples of a familiar class have higher
similarity (A) than mismatched familiar instances (B).
Novel class instances are in-between (C), but they
aren’t placed as close as the learned familiar classes (A).
Novel instances (C) are still closer to each other than
to familiar ones (D).

test in Table 3 show that all MATTNET variations
achieve high scores in selecting the familiar ob-
ject. Again, our significance test confirms that all
the scores are significantly higher than random.

7.2 Why Do We See a ME Bias?

We have now established that the MATTNET visu-
ally grounded speech model exhibits the ME bias.
But this raises the question: Why does the model
select the novel object rather than the familiar one?
How is the representation space organised for this
to happen? We attempt to answer these questions
by analyzing different cross-modal audio–image
comparisons made in both the familiar–familiar
and familiar–novel (ME) tests. Results are given in
Figure 4, where we use MATTNET with both visual
and audio encoders initialized (row 5, Table 3).

First, in the familiar–familiar setting we com-
pare two similarities: (A) the MATTNET similarity
scores between a familiar audio query and a fa-
miliar image from the same class against (B) the
similarity between a familiar audio query and a
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familiar image from a different class (indicated
with familiar∗). Perhaps unsurprisingly given the
strong familiar–familiar performance in Table 2,
we observe that the similarities of matched pairs
(familiar audio – familiar image, A) are substan-
tially higher than the similarities of mismatched
pairs (familiar audio – familiar∗ image, B). This
organization of the model’s representation space
can be explained by the contrastive objective in
Equation 1, which ensures that the words and
images from the same familiar class are grouped
together, and different classes are pushed away
from one another.

But where do the novel classes fit in? To answer
this question, we consider two types of compar-
isons from the familiar–novel ME setting: (C) the
MATTNET similarity scores between a novel query
and a novel image (from any novel class) against
(D) the similarity between a novel query and a
familiar image. We observe that the novel audio
– novel image similarities (C) are typically higher
than the novel audio – familiar image similarities
(D). That is, novel words in the model’s repre-
sentation space are closer to novel images than to
familiar images. As a result, a novel query on av-
erage is closer to any novel image than to familiar
images, which sheds light on why we observe the
ME bias.

The similarities involving novel words (C and
D) are normally higher than those of the mis-
matched familiar classes (B). This suggests that
novel samples are closer to familiar samples than
familiar samples from different classes are to one
another. In other words, during training, the model
learns to separate out familiar classes (seen during
training), but then places the novel classes (not
seen during training) relatively close to at least
some of the familiar ones. Crucially, samples in
the novel regions are still closer to each other (C)
than they are to any of the familiar classes (as
indicated by D).

How does the contrastive loss in Equation 1
affect the representations of novel classes during
training, given that the model never sees any
of these novel instances? In Figure 5 we plot
the same similarities as we did in Figure 4 but
instead we use the model weights before training.
It is clear how training raises the similarities of
matched familiar inputs (A) while keeping the
similarities of mismatched familiar inputs low
(D), which is exactly what the loss is designed to

Figure 5: The same analysis as in Figure 4, but for
MATTNET before training. We can see how similarities
are affected through training.

do. But how are novel instances affected? One a
priori hypothesis might be that training has only
a limited effect on the representations from novel
classes. But, by comparing Figures 4 and 5, we
see that this is not the case: Similarities involving
novel classes change substantially during training
(C and D). The model thus uses information from
the familiar classes that it is exposed to, to update
the representation space, affecting both seen and
unseen classes.

7.3 Finer-grained Analysis

We have seen a robust ME bias in the aggre-
gated results above. But what do results look like
at a finer level? We now consider each of the
20 novel words individually and compute how
often the model selects the corresponding novel
image (Figure 6a) or any of the familiar images
(Figure 6b). While most of the novel words are
associated with the ME bias (Figure 6a, dots to the
right of the vertical red line), a small number of
words yields a strong anti-ME bias when paired
with certain familiar words (Figure 6b, red cells).
For example, for the novel word bus, in 91% of the
test cases the model picks an image of a familiar
class BOAT rather than an image of the novel class
BUS. It is worth emphasizing that the ME bias isn’t
absolute: Even in human participants it isn’t seen
in 100% of test cases. Nevertheless, it is worth
investigating why there is an anti-ME bias for
some particular words (something that is easier to
do in a computational study compared to human
experiments).

One reason for an anti-ME result is the phonetic
similarity of a novel word to familiar words. For
example, bus and boat start with the same conso-
nant followed by a vowel. If we look at Figure 6c,
which shows the cosine similarities between the
learned audio embeddings from MATTNET, we
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Figure 6: A finer-grained analysis looking at the ME bias individually for each of the 20 novel words.

see that spoken instances of bus and boat in-
deed have high similarity. In fact, several word
pairs starting with the same consonant (followed
by a vowel) have high learned audio similari-
ties, e.g., buck–boat, bench–boat and cake–cat,
all translating to an anti-ME bias in Figure 6b.

However, the anti-ME bias cannot be explained
by acoustic similarity alone: Some anti-ME
pairs have low audio similarities, e.g., nau-
tilus–elephant. For such cases, the representation
space must be structured differently from the ag-
gregated analysis in Section 7.2 (otherwise we
would see a ME bias for these pairs). Either the
spoken or the visual representation of a particular
class can be responsible (or both). To illustrate
this, we zoom in on the two novel words showing
the strongest anti-ME results in Figure 6a: nautilus
and chair.

Figure 7a presents a similar analysis to that of
Figure 4 but specifically for nautilus. We see the
anti-ME bias: Nautilus audio is more similar to
familiar images (C) than to NAUTILUS images (A).
This is the reverse of the trend in Figure 4 (C
vs D). Is this due to the nautilus word queries
or the NAUTILUS images? Here in Figure 7a, box
B shows what happens when we substitute the
NAUTILUS images from box A with any other novel
image: The similarity goes up. This means that
NAUTILUS images are not placed in the same area of
the representation space as the other novel images.
But this isn’t all: Boxes B and C are also close

Figure 7: Box plots of similarities between combina-
tions of novel and familiar class instances focused on
two classes: (a) nautilus and (b) chair.

to each other. Concretely, if we compare B vs C
here in Figure 7a to C vs D in Figure 4, then we
still do not see the difference corresponding to the
ME result, as in the latter case. This means that
the NAUTILUS audio is also partially responsible for
the anti-ME result here in that it is placed close to
familiar images.

Let us do a similar analysis for chair: Figure 7b.
We again see the anti-ME results by comparing
A and C. But now swapping out CHAIR images
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Accuracy (%)

Loss Familiar–familiar Familiar–novel
MATTNET (1) 83.20 60.27
Hinge (2) 87.21 57.85
InfoNCE (3) 93.16 63.91

Table 4: The effect of different losses on the
ME test (familiar–novel) and the sanity check
(familiar–familiar).

for other novel images (B) does not change the
similarities. In this case, the culprit is therefore
mainly the chair audio.

Further similar analyses can be done to look
at other anomalous cases. But it is worth not-
ing, again, that the aggregated ME scores from
Section 6 are typically between 55% and 61%
(not 100%). So we should expect some anti-ME
trends in some cases, and the analysis in this
section shows how we can shed light on those.

7.4 How Specific Are Our Findings
to MATTNET?

We have considered one visually grounded speech
model, namely, MATTNET. How specific are our
findings to this particular model? While several
parts of our model can be changed to see what
impact they have, we limit our investigation to
two potentially important components: the loss
function and the visual network initialization.

Loss Function. Apart from the loss in
Equation 1, we now look at two other contrastive
losses. The hinge loss is popular in many visually
grounded speech models (Harwath et al., 2016;
Chrupała et al., 2017). It uses a piece-wise linear
function to ensure a greater similarity for matched
pairs:

� =

Nneg∑

i=1

max
(
0, S(a−i ,v)− S(a,v) +m

)

+

Nneg∑

i=1

max
(
0, S(a,v−

i )− S(a,v) +m
)

(2)

where m = 1 is a margin parameter. We sample
negatives within a batch, similar to Harwath et al.
(2016).

InfoNCE is a loss typically employed by
self-supervised models (Oord et al., 2019) and
vision–text models (Jia et al., 2021; Li et al.,
2021; Radford et al., 2021). It uses the logistic

Accuracy (%)

Vision initialization Familiar–familiar Familiar–novel

Self-supervised 83.20 60.27
Supervised 87.08 61.66

Table 5: The effect of using a self-supervised or
supervised version of AlexNet for visual initializa-
tion. Scores for the ME test (familiar–novel) and
the sanity check (familiar–familiar) are reported.

function to select a positive pair from among a set
of negatives:

� = log
expS(a,v)

expS(a,v) +
∑Nneg

i=1 expS(a,v−
i )

+ log
expS(a,v)

expS(a,v) +
∑Nneg

i=1 expS(a−i ,v)

(3)

Apart from changing the loss, the rest of the
MATTNET structure is retained. Results are shown
in Table 4 for models that use self-supervised CPC
and AlexNet initializations. The two new losses
can learn the familiar classes and exhibit a ME
bias. In fact, an even better familiar–familiar per-
formance and a stronger ME bias (familiar–novel)
are obtained with the InfoNCE loss. This loss
should therefore be considered in future work
studying the ME bias in visually grounded speech
models.

Visual Network Initialization. In Section 6
we saw that vision initialization contributes
most to the ME strength. Here we investigate
whether we can get an even greater performance
boost if we initialize MATTNET using a super-
vised version of AlexNet instead of the
self-supervised variant used thus far. Both the
self-supervised (Koohpayegani et al., 2020)
and supervised (Krizhevsky et al., 2017) ver-
sions of AlexNet are trained on ImageNet
(Deng et al., 2009), so we can fairly com-
pare MATTNET when initialized with either
option. Both MATTNET variants shown in
Table 5 make use of CPC initialization. We
observe that the supervised AlexNet initialization
performs better on the familiar–familiar task than
the self-supervised initialization. However, the
ME (familiar–novel) results with the supervised
AlexNet initialization are only slightly higher
than with the self-supervised initialization.

While there is a broad space of visually
grounded models that could be used to consider
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the ME task, it is encouraging that all the variants
in this work show the bias.

8 Conclusion and Future Work

Mutual exclusivity (ME) is a constraint employed
by children learning new words: A novel word is
assumed to belong to an unfamiliar object rather
than a familiar one. In this study, we have demon-
strated that a representative visually grounded
speech model exhibits a consistent and robust ME
bias, similar to the one observed in children. We
achieved this by training the model on a set of spo-
ken words and images and then asking it to match
a novel acoustic word query to an image depicting
either a familiar or a novel object. We consid-
ered different initialization approaches simulating
prior language and visual processing abilities of a
learner. The ME bias was observed in all cases,
with the strongest bias occurring when more prior
knowledge was used in the model (initializing the
vision branch had a particularly strong effect).

In further analyses we showed that the ME
bias is strongest earlier on in model training and
then stabilises over time. In a series of additional
sanity-check tests we showed that the ME bias was
not an artefact: It could not be explained away by
possible information leakage from the training
data or by trivial model behaviors. We found that
the resulting embedding space is organized such
that novel classes are mapped to a region distinct
from the one containing familiar classes, and that
different familiar classes are spread out over the
space to maximize the distance between familiar
classes. As a result, novel words are mapped on
to novel images, leading to a ME bias. Lastly,
we showed that the ME bias is robust to model
design choices in experiments where we changed
the loss function and used a supervised instead of
self-supervised visual initialization approach.

Future work can consider whether using a larger
number of novel and familiar classes affects the
results. Another interesting avenue for future stud-
ies resolves around multilingualism. Following
on from the original ME studies with young
children, Byers-Heinlein and Werker (2009) and
Kalashnikova et al. (2015), among others, have
looked at how multilingualism affects the use of
the ME constraint. This setting is interesting since
in the multilingual case different words from the
distinct languages are used to name the same ob-
ject. These studies showed that in bi- and trilingual

children from the same age group, the ME bias is
not as strong as in monolingual children. We plan
to investigate this computationally in future work.
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A Testing for Statistical Significance

To determine whether the differences between
our model variations and a random baseline are
statistically significant, we fit two types of logistic
mixed-effects regression models to the data, where
each of them predicts the (binary) model’s choice
for each test episode. All models are fitted using
the lme4 package (Bates et al., 2015). Unlike many
other statistical tests, mixed-effects models take
into account the structure of the data: For example,
certain classes or even individual images/queries
are used in multiple pairwise comparisons.

The first mixed-effects model tests whether
each MATTNET’s variation is better than the ran-
dom baseline: it uses the MATTNET variation as
a predictor variable and random intercepts over
trials, test episodes, the specific acoustic realisa-
tion of the test query, individual image classes and
their pairwise combinations, and specific images
in the test episode.

The second mixed-effects model does not
consider the random baseline, and instead tests
whether adding the visual initialization, the audio
initialization or a combination of both improves
MATTNET: It uses the presence (or lack of) visual
initialization and audio initialization as two binary
independent variables, as well as their interac-
tion, and the same random intercepts as described
above.

In Section 7.1 we additionally test whether
MATTNET’s scores in the familiar–novel test are
significantly higher than in the novel–novel test.
For this, we fit a logistic mixed-effects model
to MATTNET’s combined scores from both tests,
with test type and model variation as predictor
variables, together with their interaction, as well
as random intercepts as described above.

B Test Notation

Setup Query audio Target image Other image
Familiar–familiar familiar FAMILIAR FAMILIAR∗

Familiar–novel familiar FAMILIAR NOVEL

Familiar–novel novel NOVEL FAMILIAR

Novel–novel novel NOVEL NOVEL∗

Familiar–novel∗ novel NOVEL∗ FAMILIAR

Table 6: A summary of the evaluation setups
in terms of the input types (familiar or novel)
used for the audio query and the two images. The
asterisk indicates different classes for the same
input type. For example, FAMILIAR and FAMILIAR∗

are two different familiar classes.
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