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Abstract
Answering factual questions from heteroge-
nous sources, such as graphs and text, is a
key capacity of intelligent systems. Current
approaches either (i) perform question an-
swering over text and structured sources as
separate pipelines followed by a merge step or
(ii) provide an early integration, giving up the
strengths of particular information sources. To
solve this problem, we present ‘‘HumanIQ’’,
a method that teaches language models to dy-
namically combine retrieved information by
imitating how humans use retrieval tools. Our
approach couples a generic method for gath-
ering human demonstrations of tool use with
adaptive few-shot learning for tool augmented
models. We show that HumanIQ confers sig-
nificant benefits, including i) reducing the error
rate of our strongest baseline (GPT-4) by over
50% across 3 benchmarks, (ii) improving hu-
man preference over responses from vanilla
GPT-4 (45.3% wins, 46.7% ties, 8.0% loss),
and (iii) outperforming numerous task-specific
baselines.

1 Introduction

The ability to answer factual questions reliably
is one of the hardest problems in AI. Large lan-
guage models (LLMs) have shown promise on
factual question answering (QA) tasks. However,
LLMs that rely only on internal parameters can
become stale and do not perform well on tail
knowledge (Sun et al., 2023). Moreover, it is dif-
ficult to curate LLM’s parametric knowledge or
attribute responses to information sources. This
has led to research in which LLMs are equipped
with external tools to retrieve information from
external sources (Thoppilan et al., 2022; Nakano
et al., 2021) to reduce hallucinations and establish
a connection between sources of evidence and the
generated response to a question. Such external
information sources can be in structured form,

e.g., in the shape of a knowledge graph, or in un-
structured form, e.g., text corpora. Textual sources
usually provide higher recall whereas structured
sources offer potentially higher precision and sup-
port executing complex queries. The field of
hybrid question answering, which pre-dates the
rise of LLMs, has investigated approaches to an-
swer questions by retrieving information from
structured and unstructured information sources.

A main approach to hybrid QA (a field some-
times also referred to as heterogeneous QA) is to
use late fusion: In this line of research, the input
question is processed by separate systems opti-
mised for specific types of information sources
and the responses are merged or selected after-
wards. While this has the advantage of being easy
to parallelize, a drawback is that the different in-
formation sources do not interact with each other,
i.e., evidence found in one source does not influ-
ence pipelines for other sources. To remedy this,
early fusion QA approaches integrate information
sources into a unified format before performing
inference steps. This allows to run a single pipe-
line over all sources. However, the unified for-
mat represents a least common denominator of
the input sources and does not allow to use the
strength of different input sources: (i) the flexibil-
ity and generality of unstructured representations
and (ii) the ability to perform compositional que-
ries to aggregate, combine, sort, and order struc-
tured data.

To overcome these restrictions, we propose
to follow a new direction in this field: Rather
than performing early or late fusion, we integrate
inference steps over heterogeneous information
sources by mimicking how humans find responses
to question. We find that human reasoning tends
to transcend the boundaries of different informa-
tion sources and can benefit from mutually com-
plementary information. Specifically, we propose
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Figure 1: Overview of aggregated evaluation results for HumanIQ applied to hybrid question answering (HQA):
On the left, the percentage of correctly answered questions over 3 QA benchmarks is plotted. On the right, the
results of a human evaluation using questions from the same benchmarks is shown. For each question, annotators
could indicate preference for the output of a system. Detailed results can be found in Section 5.

the HumanIQ (‘‘Human-like Intelligent Queries’’)
methodology for collecting human solution pro-
cesses and using those to prompt LLMs. The
methodology can be applied to tasks that use tools
and benefit from human-like thought processes.1

The methodology is divided into a preparation
stage, performed by humans, and an inference
stage. During the preparation stage, the method
requires to identify suitable tools and solution
processes using those tools. For hybrid QA, this
includes search and retrieval over unstructured
information, entity linking, and querying over
structured information. Solution processes de-
scribe how those tools can be combined to find an
answer for a particular question, in particular, they
also contain thoughts in natural language humans
have when using those tools. At inference stage,
we aim to replicate those solution processes. We
use an LLM-based approach in which we pro-
vide tools to an LLM and the reasoning is done
by generating thoughts about the usage of those
tools and the interpretation of their results (also
called observations). We achieve human-like rea-
soning by injecting complete solution processes as
few-shot examples in the LLM prompt. We adapt
the prompt to the input by selecting few-shot ex-
amples based on their similarity to the input as
well as maximizing the diversity of their tool us-
age. The method does not require fine-tuning the
LLM.

1Code available at https://github.com/NIMI
-research/Human-IQ.

We tested our approach on three different QA
benchmarks and observed performance improve-
ments over the used GPT-3.5 and GPT-4 base
models as illustrated in Figure 1 (left). An addi-
tional benefit over vanilla LLMs is that we also
obtain a reasoning trace including used sources
and thoughts about observations. We observed
large improvements over task-specific baselines
(see Section 5) and conducted a human evaluation
study showing that users prefer our system over
GPT-4, GPT-3.5, and MPT (Figure 1 right).

2 HumanIQ Methodology

The HumanIQ methodology is illustrated in
Figure 2. We first cover its task preparation stage.
The input to this stage is a set of instances of a
task sampled from the training set. Humans pro-
ficient at the task then need to decide which tools
(also called services or APIs) are most relevant for
solving the task. Those tools are then registered
at one of the available LLM-tool-augmentation
frameworks, e.g., Langchain2 or OpenAI Func-
tion Calling,3 and connected to the HumanIQ user
interface (see Figure 3). The user interface follows
the ReAct (Yao et al., 2023) approach dividing
steps into actions (= commands for invoking
tools), observations (= tool output), and thoughts
(= natural language reasoning) until the LLM
outputs a final response. We call the combination
of all of those steps a solution process. The user

2https://www.langchain.com.
3https://openai.com/blog/function

-calling-and-other-api-updates.
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Figure 2: HumanIQ workflow – the parts marked yellow are specific to hybrid question answering (Section 3) and
all other elements are part of the generic HumanIQ methodology (Section 2).

Figure 3: HumanIQ user interface for collecting for
collecting thoughts and actions from human users.

interface can be applied on concrete instances of
a task to construct a human-like solution process.
Action sequences can differ substantially for dif-
ferent task instances. For example, some factual
questions require more work around entity disam-
biguation, e.g., distinguishing between the ‘‘The
Hunger Games’’ movie, movie series, or book.
In some cases multiple tries are needed to con-
struct a query returning the desired information
or retrieving documents useful for solving a ques-
tion. While applying the tool-augmented LLM
on particular task instances, humans can identify
whether particular tools are missing or should be

implemented differently to follow a human-like
solution process. For example, in this initial phase
we added a linker to map from individual doc-
uments to entity IDs enabling a bridge between
unstructured and structured information sources.
This improvement cycle is depicted in the left in
Figure 2. Once the tool set is established, a set of
solution processes demonstrating desired behav-
ior is constructed resulting in few-shot library. To
be sample efficient, this can be done in the spirit
of active learning using a verify & fix approach:
Tool-augmented LLMs can be automatically ap-
plied on task instances in the training set and, when
those fail, humans can manually build successful
solution processes for those instances. During this
process, the tool outputs (observations) can be
rated (e.g., on a 1–5 Likert scale). This can be
used as supervised feedback signal for individual
tools.

The second part of the HumanIQ methodology
is the inference stage aiming to replicate human
solution processes: We use a base LLM that we
instruct to follow the general pattern for solution
processes as well as announcing the tools that
are available along with instructions for solving
the task (e.g., ‘‘Answer the question below by
accessing the information sources with the given
tools!’’) and few-shot examples. Each few-shot
example contains the entire solution process and
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can typically span several hundred tokens, i.e.,
we primarily instruct the model to follow the pro-
cess, which is similar in spirit to (Lightman et al.,
2023), rather than focusing only on output. Given
LLM context length limitations, we can usually
not include all elements on the few-shot library
when applying HumanIQ in an in-context learn-
ing setting. To select a set of few-shot examples,
we therefore use a Determinantal Point Process
(DPP) (Kulesza et al., 2012) to obtain solution
processes that are relevant and diverse. Relevance
in our case is measured by the similarity to the
input question using SentenceBERT. Intuitively,
similar questions should be more relevant demon-
strations of the desired behavior. However, using
this as sole criterion can lead to selecting examples
which all exhibit very similar solution processes.
Therefore, we include example diversity as objec-
tive. The diversity of two given solution processes
is measured via the Levenshtein distance of their
actions with each action encoded by a different
single symbol. The DPP based on using the above
similarity and diversity metrics is then condi-
tioned to a fixed number k of desired few-shot
examples. We search the configuration of exam-
ples with the highest probability density using a
greedy optimiser (Kaushal et al., 2022) and include
those in the LLM prompt. Executing the inference
stage successfully is a demanding task for LLMs:
The model needs to learn human thought patterns
by example, understand the intricate relationship
between different tools, observations, and needs
to support long context as we inject full solu-
tion processes with multiple thoughts and tool
invocations.

3 HumanIQ Applied to Hybrid QA

We applied the HumanIQ methodology to three
hybrid QA4 benchmarks—Mintaka (Sen et al.,
2022), QALD9-Plus (Perevalov et al., 2022) and
CompMix (Christmann et al., 2023a)—and call
the resulting approaches HQA. We use Wikipedia
as unstructured and Wikidata (Vrandečić and
Krötzsch, 2014) as structured knowledge sources.

Tool specification: We organized two work-
shops, each with 10 participants with gender and
ethnic diversity. All the participants were com-
puter scientists. There was no overlap with the
authors of this submission, nor between the two

4Code available at https://github.com/NIMI
-research/Hybrid-QA.

workshop participants. Half of the participants
in each workshop were recruited in-house, and
half of them were recruited from external institu-
tions. The first workshop yielded tools that helped
humans succeed in tasks:

1. wikisearch(): identifying suitable documents
given a search query using the Wikipedia
API

2. read(): extracting an answer given a doc-
ument and an input question using GPT-4
with the question and document as input

3. getWikiDataID(): returning the Wikidata ID
for a given Wikipedia document

4. generateQuery(): taking a set of relevant en-
tity IDs as input and returning a SPARQL
query based on (Lehmann et al., 2023)

5. runQuery(): executing a SPARQL query

6. getLabel(): returning natural language labels
for entity IDs

The tools allow for different action sequences to
obtain a solution: for example, a query against the
knowledge graph can be generated directly, but it
is also possible to first identify relevant Wikipedia
pages and map those to Wikidata entities, which
are then used as the base for query construction.

Solution Process Collection: In the second
workshop, we collected 20 solution processes for
each benchmark which then constitute the respec-
tive few-shot libraries. The libraries are separate
for each benchmark to avoid training leakage.

Final Response Generation: In addition to the
default HumanIQ workflow, we implemented a
final response generation step to combine the ev-
idence obtained from heterogeneous data sources
into a final response. This is done using a sepa-
rate LLM request, which takes the question, the
parametric response and the HumanIQ workflow
response (summarizing obtained evidence from
different sources, thoughts and relevant surround-
ing factual information) as input. This allows us
to instruct the LLM to deliver the desired user
experience, e.g., preferring short vs. long answers
or including or omitting source attribution for the
different parts of the response.

4 Experimental Setup

4.1 Datasets and Base LLMs
In our work, we investigate closed book QA.
Therefore, we selected the Mintaka, QALD 9
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Plus, and CompMix benchmarks, since all of them
contain manually written and curated questions—
i.e., are not templated or machine generated, and
reflect questions answered in a production QA
system well. CompMix was specifically devel-
oped for hybrid QA across Wikipedia texts, tables,
and Infoboxes as well as the Wikidata KG. QALD
targets Wikidata specifically. For constructing
Mintaka, crowdworkers could freely phrase ques-
tions and answers which were afterwards linked
to Wikidata. For QALD, we evaluate on the full
test set of 150 questions whereas for CompMix
and Mintaka we limit our evaluation to a random
sample of 200 questions of the test due to the
associated effort for manual evaluation. From the
GPT model series, we use GPT-3.5-Turbo-16k
and GPT-4-0314 via API as base LLMs. To in-
clude open models, we also attempted to use the
MPT-30B Instruct model,5 since it is instruction-
tuned and allows a large context (8k tokens) but
it was not able to follow the provided instruc-
tions. We select 3 few-shot examples as described
in Section 2 from the given 20 examples per
benchmark.

4.2 Baselines
Knowledge Graph QA Models: KVMemNet
(Miller et al., 2016) proposes key-value net-
works for storing knowledge graph triples with
corresponding retrieval operations. EmbedKGQA
(Saxena et al., 2020) uses an answer scoring mod-
ule that scores and selects answer entities using a
KG embedding and an answer embedding mod-
ule. Rigel (Saffari et al., 2021) is an end-to-end
question answering system using differentiable
knowledge graphs. DiFAR (Baek et al., 2023) is
an approach for QA via direct fact retrieval from
a knowledge graph. Both input question as well
as all facts in the knowledge graph are embedded
into a dense embedding space. A similarity metric
in combination with a reranking approach is then
used to retrieve relevant facts.

Text-focused QA Models: DPR (Karpukhin
et al., 2020) is a retriever-reader approach us-
ing a dense retriever for identifying (Wikipedia)
passages for the input question and a reader model
to score retrieved passage spans. We use the base
reader trained on Natural Questions (Kwiatkowski
et al., 2019). For the reader, we report scores from

5https://huggingface.co/mosaicml/mpt
-30b-instruct.

(Sen et al., 2022) for the zero-shot setting and for
a model trained on Mintaka.

Hybrid QA Models: CONVINSE (Christmann
et al., 2022) is a conversational hybrid question
answering system using a frame-like representa-
tion to capture evidence from text, knowledge
graph and tables with a fusion-in-decoder model
for answer generation. UniK-QA (Oguz et al.,
2022) is an open-domain hybrid QA system ho-
mogenising all sources by converting them into
text and then applying a retriever-reader model.
EXPLAIGNN (Christmann et al., 2023b) is a con-
versational hybrid QA system which constructs a
heterogeneous graph from entities and evidence
snippets retrieved from knowledge graphs, text
corpora, tables and infoboxes.

LLMs: T5 (Kwiatkowski et al., 2019), short for
Text-To-Text Transfer Transformer, frames NLP
problems as text-to-text problems in a consistent
and adaptable manner. T5 for closed book QA
(Roberts et al., 2020) is an extension fine-tuned as
a QA model that can implicitly store and retrieve
knowledge. MPT-30B-Instruct (Liu et al., 2024) is
an open instruction-tuned language model. GPT3
(Brown et al., 2020), GPT-3.5 and GPT-4 are au-
toregressive Transformer-based language models
by OpenAI.

4.3 Metrics

We compute two metrics per benchmark: The first
metric is implemented as described in the bench-
mark papers (hits@1 exact match for CompMix
and Mintaka, Macro F1 for QALD) and allows
comparing against other approaches. For genera-
tive models, using those measures only provides
a rough (under)estimate given that they can return
correct responses which do not exactly match the
gold standard. For this, we use manual evaluation
(marked ‘‘M’’) as second metric. We verify all
responses manually which are not exact matches.
In this process, we also fix incorrect gold stan-
dard responses and skip nonsensical questions. We
will release the specific instructions for manual
evaluation as well all score sheets.

5 Evaluation Results

RQ1: Is the approach competitive against
task-specific baselines?

We analyze the performance of HumanIQ against
QA baselines in Table 1, Table 2, and Table 3.
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Model Hits@1 in %
EM M

KVMemNet 12.0 –
EmbedKGQA 18.0 –
Rigel 20.0 –
DiFAR 34.0 –

DPR (zero-shot) 15.0 –
DPR (trained) 31.0 –

T5 28.0 –
T5 for CBQA (zero-shot) 20.0 –
T5 for CBQA (fine-tuned) 38.0 –
MPT-30B-Instruct∗ 36.5 47.4
GPT-3.5∗ 55.0 80.0
GPT-4∗ 60.5 91.9

HQA-GPT-3.5∗ (ours) 55.5 85.9
HQA-GPT-4∗ (ours) 62.0 95.9

Table 1: Response accuracy on the Mintaka data
set. The first 9 rows are from Sen et al. (2022)
and Baek et al. (2023) and the rest from us. Entries
marked with ∗ used 200 random samples from the
Mintaka test set.

On all three benchmarks, our approach outper-
forms task-specific baselines by a wide margin
even though some of those were optimized on the
training set whereas we only use three few-shot
examples (selected from 20 in total). A caveat is
that our evaluation was only performed on a ran-
dom sample of 200 questions for CompMix and
Mintaka. However, applying a Z-test comparing
the scores with different sample sizes shows that
the HQA results are better than all task-specific
baselines with high confidence (p < 0.01). To
a large degree, the performance improvement is
due to the capabilities of the base language mod-
els in analyzing and reasoning over the different
information sources.

RQ2: Is HQA more accurate than base LLMs?
Given the wide performance gap to task-specific
approaches, we focused most of our evaluation
efforts on comparisons against LLM baselines.
Tables 1 to 3 indicate that using the HumanIQ
method for retrieval from heterogeneous infor-
mation sources leads to performance gains over
the LLM baselines including the most powerful
model GPT-4. Aggregated results are shown in
Figure 1 (left) and show that HQA-GPT-4 has a

Model QALD9-Plus En in %
Macro F1 M

DeepPavlov 12.4 –
Platypus 15.0 –
QAnswer 30.4 –

MPT-30B-Instruct 32.0 51.0
GPT 3.5 39.0 75.2
GPT 4.0 43.0 77.5
HQA-GPT-3.5 (ours) 43.0 83.5
HQA-GPT-4 (ours) 50.0 88.4

Table 2: Performance of different approaches on
QALD9-Plus EN with the first three rows taken
from Perevalov et al. (2022) and the rest by us.

Model hits@1 in %
EM M

CONVINSE 40.7 –
UniK-QA 44.0 –
EXPLAIGNN 44.2 –

GPT-3.0 (text-davinci-003) 50.2 –
MPT-30B-Instruct 31.5 43.2
GPT 3.5∗ 53.0 72.3
GPT 4.0∗ 58.5 80.7

HQA-GPT-3.5∗ (ours) 61.0 79.6
HQA-GPT-4∗ (ours) 65.5 91.1

Table 3: Performance on the CompMix data set.
The first four rows are taken from Christmann
et al. (2023a) and other rows done by us. Entries
marked with ∗ used 200 random samples from the
CompMix test set.

remaining error rate of 8.2%, which is less than
half of the GPT-4 error rate. In addition to ob-
taining higher accuracy than vanilla LLMs, our
approach is also explainable in the sense that it (i)
pinpoints information sources of evidence and (ii)
the thoughts contain explanations of how the final
response was derived. However, there is a latency
cost for generating additional tokens (575 addi-
tional tokens generated on average) and executing
tools (5.0 tool calls per question on average).

In addition to measuring performance on bench-
marks, we also performed a human evaluation. In
this evaluation, we used a different final response
generation prompt, which lets the LLM output
normal length responses rather than very brief
responses potentially matching the gold standard.
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For vanilla LLMs, we use exactly the question as
input with no further instruction. We employed
10 annotators who are disjoint from the au-
thors and the HumanIQ workshop participants in
Section 3 as well as diverse in gender and location.
The annotators performed a win rate comparison,
i.e., they decided which system generated a bet-
ter response for a given question. We sampled
50 questions from the test set of each of the 3
benchmarks and compared our strongest system
(HQA-GPT-4) against GPT-4, GPT-3.5, MPT and
HQA-GPT-3.5. In addition to scoring which re-
sponse is better, annotators provide the following
metrics for each response:

(1) Truthfulness: Rated ‘‘false’’ if any element
of the response is factually incorrect and ‘‘true’’
otherwise. The outcome is ‘‘cannot judge’’ if
the verification could not be performed within 5
minutes using web search.

(2) Informativeness: Rated as ‘‘not infor-
mative’’ if the response provides insufficient
information to answer the question, ‘‘somewhat
informative’’ if the response provides sufficient
information but not further interesting informa-
tion beyond this and ‘‘informative’’ otherwise.

(3) Quality: This is a compound assessment of
several factors with definitions and examples pro-
vided to the annotators. The ratings are ‘‘terrible’’,
‘‘poor’’, ‘‘acceptable’’, or ‘‘high’’.

After judging the individual response quality,
annotators are asked to decide whether one sys-
tem response is better or the result is a tie. We
duplicated 20% of the comparisons to measure
annotator reliability via Cohen’s Kappa. The ob-
tained value of 0.328 indicates ‘‘fair’’ agreement
between annotators. Overall, 720 comparisons
were made requiring approximately 40 annota-
tor hours of work, most of which was spent on
checking factual accuracy. The overall results for
response rating are shown in Table 4.

HQA responses were generally judged to be of
higher quality and more informative, e.g., 62.8%
of HQA-GPT-4 answers are informative com-
pared to 36.7% for GPT-4. This is usually achieved
by including surrounding information from the
documents it retrieves while keeping a lower hal-
lucination rate than the vanilla models. GPT-4
and GPT-3.5 generated not truthful responses in
11-12% of all cases (approximately 10% when
ignoring questions requiring information after
the pre-training cutoff). Many hallucinations are
not in the fact(s) answering the question, but in

HQA-4 HQA-3.5 GPT-4 GPT-3.5 MPT-30B

Truthfulness

True 91.2 86.7 84.0 80.7 48.0
False 5.2 7.3 12.0 11.3 46.0
Can’t j. 3.7 6.0 4.0 8.0 6.0

Informativeness

Inf. 62.8 55.3 36.7 29.5 16.0
Som.inf. 32.3 40.0 57.3 62.4 46.0
Not inf. 4.8 4.7 6.0 8.1 38.0

Answer quality

High 55.4 50.7 29.7 25.5 13.3
OK 39.3 40.7 58.8 59.7 34.0
Poor 3.8 8.0 8.1 12.1 28.7
Terrible 1.5 0.7 3.4 2.7 24.0

Table 4: Human evaluation scores in % from
overall 720 comparisons of system outputs rated
in terms of truthfulness, informativeness and an-
swer quality.

the provided additional information. HQA-GPT-4
generated incorrect responses in 5.4% of the cases
that were not rated as ‘‘cannot judge’’, which is
lower than GPT-4 by a factor of 2.3.

Figure 1 (right) contains the win rates of
HQA-GPT-4 against other systems. The average
score on the right is obtained by rating a win as 1
point, a tie as 0.5 points and a loss with 0 points
and aggregating this on all questions. HQA-GPT-4
is rated significantly above 0.5 for all systems
indicating that users prefer its responses on the
tested QA benchmarks.

RQ3: How do structured, unstructured and
parametric knowledge affect performance?

We analyzed the importance of structured, un-
structured and parametric knowledge in obtaining
the final solution. To do this, we observed the
responses from those sources before the final
response generation and report the results in
Table 5. All three forms of knowledge are rel-
evant, but play different roles: We almost always
obtain a parametric response (recall close to 100)
since our benchmarks do not contain input, such
as sensitive content, that the LLM is trained not to
reply to. The precision of parametric knowledge
is on average lower than the information sources.
Unstructured information has a higher recall in
our experiments than structured information. This
is primarily the case because the system is not
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Model Source Mintaka QALD CompMix Aggregated
re prec prev re prec prev re prec prev re prec prev

GPT-3.5 stru. 33.3 87.8 20.2 32.4 87.9 27.0 40.9 87.3 26.9 35.5 87.6 24.7
unstru. 67.6 87.3 47.5 58.5 88.0 48.0 57.5 87.3 43.5 61.2 87.5 46.3
param. 100.0 79.8 72.7 97.7 70.0 67.2 100.0 74.6 65.2 99.3 74.8 68.3

GPT-4 stru. 52.5 82.6 36.3 62.0 95.6 48.9 65.2 83.3 44.5 59.9 87.1 43.2
unstru. 81.8 93.8 71.2 69.0 85.7 54.9 71.5 92.0 60.1 74.1 90.5 62.0
param. 100.0 90.4 84.3 97.8 79.0 64.8 100.0 80.8 65.8 99.2 83.4 71.6

Table 5: Analysis of information sources: For each benchmark, we list how often a particular source
of information could provide a response to a question (re = recall), how often it was correct when
provided (prec = precision) and how often it was selected in the final response generation step
(prev = prevalence). Prevalence can add up to more than 100% since responses from several sources
can be equal.

Figure 4: Comparison of HQA-GPT-4 accuracy rel-
ative to confirming/disagreeing information sources
(frequency in parentheses).

able to construct an executable KG query for each
question—either because there is no query that
would answer the question or because it cannot
find it. The precision of structured and unstruc-
tured information is similar in our experiments.
For structured information, the main source of
imprecision are incorrectly identified entities and
incorrectly constructed queries. For unstructured
information, the main source of imprecision are in-
correctly identified entities. We report more error
types in RQ6.

We also investigated the effect of multiple
source types (structured/unstructured/parametric)
either confirming or disagreeing on a particu-
lar response and visualized this in Figure 4.
For HQA-GPT-4, in 29.2% of the cases all
source types report the same answer. Questions
in this category have 100% precision across all
datasets compared to an HQA baseline of 91.8%

(see Figure 1). Generally, having either two
non-conflicting sources or 3 sources with at at
most 2 different responses results in high accu-
racy above the baselines. Other responses can be
hedged, e.g., HQA sometimes uses phrases like
‘‘While I could not verify this information, I be-
lieve . . . ’’). This makes the risk explicit for the
user.

RQ4: Is there a performance benefit of
in-prompt integration compared to
late fusion?

HumanIQ keeps the solution process for struc-
tured and unstructured knowledge retrieval in the
same prompt. We want to assess whether this is
beneficial by comparing this to separate pipelines.
We create a structured pipeline by only allow-
ing it to use the generateQuery(), runQuery(), and
getLabel() tools. The unstructured pipeline is al-
lowed to use the search() and read() tools. After
the pipelines are executed, we use two types of
response generation steps: 1.) If only one of the
systems responds, we return this response. If both
respond, we randomly select an answer since re-
trieval from both sources has similar precision.
2.) We use an LLM-based response generation
as in our approach, i.e., we give the LLM the
result of the structured and unstructured pipelines
as well as the parametric generation and ask it to
provide a final response. The results are shown in
Figure 5. There is a substantial performance delta
between using late fusion on separate pipelines
versus the HQA approach of applying both in the
same prompt. This suggests that evidence obtained
from one type of source benefits retrieval for the
other type of source.
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Figure 5: Comparison against baselines which only
use either unstructured or structured data and two late
fusion approaches. HQA uses in-prompt integration.

RQ5: How do the solution processes as
few-shot examples affect performance?

We perform three ablation studies here. 1. Us-
ing random few-shot examples instead of using
adaptive selection. 2. Using zero-shot prompt-
ing instead of few-shot prompting. 3. Using only
relevance and only diversity in construction of
few-shot examples. Results averaged over all
benchmarks are in Figure 6. Generally, we ob-
serve that including few-shot examples, which
were designed to follow a human-like process,
improves performance by 8.4% compared to only
giving the LLM general tool usage instructions.
We observed that the adaptive few-shot selection
plays a significant role increasing performance by
2.8% compared to a random selection, i.e., example
similarity and diversity has a relevant impact.

For the third ablation study to analyze the effect
of relevance and diversity in few-shot example
construction. Keeping the same procedure as be-
fore, we observed that examples selected solely
based on relevance gave an average hits@1(M%)
of 85.03% across all three datasets. Conversely,
when diversity was the sole criterion to select the
examples, the average hits@1(M%) is 86.4%.

To conclude, our findings indicate that em-
ploying an adaptive few-shot selection approach
enhances performance significantly, demonstrat-
ing a 6.77% improvement over relevance-based
selection and a 5.4% increase compared to
diversity-based selection.

RQ6: Is it beneficial to employ an interactive
workflow compared to a static workflow?

We aim to quantify whether there is a benefit from
following a flexible interactive tool-augmented

Figure 6: HQA-GPT-4 performance with different
few-shot settings (aggregated over all benchmarks).

Mintaka QALD9 CompMix

Static 88.8 84.6 87.0
Dynamic 95.9 88.4 91.1

(+7.1%) (+3.8%) (+4.1%)

Table 6: Response accuracy ablation study of
HQA-GPT-4 against a static baseline.

LLM approach compared to following a static
pipeline. The interactive approach has the advan-
tage that it can react based on the observations,
i.e., when a call does not deliver the expected
information it can retry with a different input or
change to a different strategy. However, this type
of pipeline does not lend itself easily to paralleliza-
tion techniques like REWOO (Xu et al., 2023) that
allow substantial efficiency improvements and
reduce API token consumption by decoupling pa-
rametric modules from non-parametric tool calls.
We compare our dynamic pipeline with a static
pipeline that corresponds to the most frequently
used execution pipeline in our setting, which is
the sequence search(), getWikidataID(), generate-
Query(), runQuery(), getLabel(). The results in
Table 6 shows a performance drop of 3.8% to
7.1% response accuracy and affects questions,
which require multi-hop inference across several
documents or more complex KG queries.

RQ7: How much are results affected by the
LLM pre-training cutoff?

Vanilla LLMs can usually not answer questions
requiring information beyond their pre-training
cutoff. To analyze the effect of this, we manually
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Mintaka P@1 M QALD9+ P@1 M CompMix P@1 M
HQA-GPT-4 GPT4 HQA-GPT-4 GPT4 HQA-GPT-4 GPT4

Non-transient / before cutoff (539) 96.2 93.0 87.9 79.5 90.9 81.8
Post pre-training cutoff (36) 91.6 75.0 94.4 61.1 100.0 50.0

Table 7: Analyzing the effect of the GPT-4 pre-training cutoff on response accuracy.

marked all questions in our test sets requir-
ing information beyond the September 2021
pre-training cutoff of GPT-3.5 (and GPT-4). We
then analyzed the performance of HQA-GPT-4
relative to GPT-4 on this subset as well as
all other questions and present the results in
Table 7. We observe that there is still a perfor-
mance improvement of HQA-GPT-4 compared to
the vanilla model baseline. For questions requiring
recent information, the delta is naturally bigger.
GPT-4 could still answer some of those questions
correctly, which we attribute to its supervised
fine-tuning and learning from human feedback
cycles after pre-training which can lead to an
integration of newer information in the models.

RQ8: Are the solution processes human-like?

The question can be broken down into several
sub-questions: 1. Are the generated action se-
quences human-like? 2. Are the thoughts gener-
ated in the solution process human-like?

In our earlier analysis in Figure 6, we com-
pared the performance of the approach with zero,
one and three examples using both random and
adaptive settings. Beyond this, we also measured
the number of tool calls and generated tokens in
solution processes. We observed that the number
of tool calls is reduced when we add adaptive
few-shot examples: 7.2, 5.9, and 5.0 calls for zero,
one, and three examples, respectively. Similarly,
the number of generated tokens also decreases
(769, 652, 576). For human-created solution pro-
cesses in the workshops, we measured an average
of 6.75 tool calls and 642 used tokens. This indi-
cates the following: 1. Using human-like solution
processes leads to a more efficient use of tools
(while being more effective as the comparison to
the standard ReAct retrieval in Figure 6 shows).
2. This efficiency improvement is not bound by
human efficiency since we see no convergence
but rather a reduction below the number of tool
calls and tokens used in human-created solution
processes.

We conducted three additional experiments on
solution processes drawing inspiration from Zaitsu
and Jin (2023). For comparing human-likeness, we
look at three different types of solution processes:
human-written (i.e., manually done during the
workshops), GPT-4 (standard ReAct approach),
and HQA-GPT-4 (including 3 adaptive few-shot
examples). For each type, we randomly selected
15 steps (consisting of action, observation and
thought) of solution processes per dataset, i.e.,
overall 45 steps across datasets for each setting.
The ‘‘thought’’ part of the solution processes
were used for Experiment 1 and 2 while 126
steps with entire solution processes was used for
Experiment 3.

Experiment 1. One part of our evaluation
involves stylometric analysis. We consider sty-
lometric features of thoughts, in particular (1)
bigrams of tokens, (2) frequency of stop words
in thoughts (‘‘a’’, ‘‘the’’, ‘‘is’’, etc.), and (3) the
use nouns/adjectives (‘‘worse’’, ‘‘better’’, etc.),
(4) use of words that describes the narrative flow
(‘‘first’’, ‘‘next’’, ‘‘finally’’, etc.). Figure 7 shows
that human-written thoughts tend to align more
closely with HQA-GPT-4 thoughts in terms of sty-
lometric features. Thoughts extracted from both
of the HQA-GPT-4 as well as the human-written
thoughts are distinct from GPT-4 thoughts.

Experiment 2. In this experiment, we com-
pared the thought distribution for different pairs
of sources, specifically GPT4-H (GPT-4 vs
human-written) and HQA-H (HQA-GPT-4 vs
human-written). For this, we used Jensen-Shannon
divergence distance (JSD) for comparison, with
lower values indicating higher similarity in the
distribution. JSD is defined as follows:

JSD(P ‖ Q) =

√
1

2
DKL(P ‖ M) +

1

2
DKL(Q ‖ M)

(1)
where P and Q are the two probability distri-
butions obtained by the softmax of the BERT
embeddings of the compared texts. For exam-
ple, for the GPT4-H comparison, P represents
the embedding distribution of GPT-4 generated
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Figure 7: Plot of a stylometric analysis with each point
representing a sample from three types of thoughts:
human-written, GPT-4 generated, and HQA-GPT-4
generated. The stylometric input features were reduced
to two dimensions (PC1, PC2) via principal compo-
nent analysis. HQA-GPT-4 generated thoughts show
a closer resemblance to human thoughts compared to
GPT-4 generated thoughts.

n GPT4-H HQA-H Δ(%)

1 0.0889 0.0897 −0.89
≤ 2 0.0700 0.0674 3.71
≤3 0.0630 0.0618 1.90
≤4 0.0600 0.0576 4.00
≤5 0.0579 0.0549 5.18
≤6 0.0570 0.0540 5.26
≤7 0.0569 0.0537 5.62
≤8 0.0568 0.0535 5.80

Table 8: Jensen-Shannon Divergence Scores for
GPT4-H and HQA-H outputs where n is the n-th
thought in the sequence.

text and Q represents the embedding distribu-
tion from human-written text. M = 1

2(P + Q)
is the midpoint distribution defined and DKL de-
notes the Kullback-Leibler divergence between
two distributions.

For each pair of distributions the JSD scores
are calculated. The average JSD scores across all
pairs of embeddings in the solution process are
shown in Table 8 where n is the n-th thought in
the sequence. The table shows a trend of decreas-
ing JSD scores, i.e. scores later in the solution
process are closer to human-written ones.

Additionally, JSD scores for HQA-H are
smaller than those of GPT4-H except for the
first thought in the sequence (n = 1). This could
imply that human-like few-shot examples have an

Error Category Count

(1) Lack of support for tables 6
(2) SPARQL query generation 4
(3) Entity selection 2
(4) Iteration limit error 2
(5) Final response generation step 9
(6) Search: incorrect document picked 20
(7) Answer not found in document 5

Table 9: Error categories observed across all test
sets.

influence on making the AI-generated thoughts
more closely resemble human thought patterns, as
represented by the embeddings.

Experiment 3. Seven independent annotators,
distinct from the authors, were engaged for this
experiment. The analysis involves 126 samples
across three datasets, each containing complete
solution processes generated by both HQA-GPT-4
and GPT-4. Their task was to assess all three types
of solution processes, i.e., human written, GPT-4
generated, HQA-GPT-4 generated, side-by-side
in terms of stylistic features, coherence and plau-
sibility of thoughts. Specifically, the annotators
could see the solution processes of two systems
A1 and A2 which were taken from HQA-GPT-4
and GPT-4 in random order and then had to judge
which of those has a closer proximity to a system
B which were human-written solution processes.
They were instructed to pay attention to whether
the thoughts reflect and analyse the observations
(i.e. tool outputs) and provide a coherent chain of
reasoning. The analysis of 126 samples demon-
strated a preference for HQA-GPT-4 over GPT-4
in 67.4% of instances, indicating that HQA-GPT-4
aligned with the human-written processes. This
preference is statistically significant (p-value of
< 0.0001 in a sign test).

To calculate the Cohen’s kappa score for
inter-rater agreement, 27% of the samples were
double annotated which resulted in a score of
0.71 indicating ‘‘substantial’’ agreement between
annotators.

RQ9: What types of errors do we observe?

Here, we qualitatively analyze the errors made
by HQA-GPT-4 and group them into categories
as shown in Table 9. The main source of error
is the search tool, i.e., a document to answer the
question exists but was not found.
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The second largest error bucket is not selecting
the correct response in the final response genera-
tion step followed by the lack of support for tables.
We aim to address this via more powerful tools in
the future.

6 Related Work

The main areas related to our work are early/late
fusion approaches for hybrid QA, and information
integration and human-like thoughts in LLMs.

Late Fusion: In late fusion (Sawant et al., 2019;
Savenkov and Agichtein, 2016; Xu et al., 2016b)
over a set of heterogeneous information sources,
a pool of candidate answers is collected using QA
pipelines for each type of source. The answers of
those pipelines are then combined in a final merge
step, e.g., employing a waterfall model based on
individual pipeline result precision. Several late
fusion models focus on one type as the primary
source and use the other source to gather support-
ing evidence. The final merge step usually only
considers the final responses of the individual
pipelines and not the evidence collected within
their processing steps. Generally, a drawback of
those methods is that evidence in one type of
knowledge source does not influence the infer-
ence steps for other types of information sources
(Sun et al., 2018). Some approaches perform an
integration via a query language that supports text
retrieval (Bahmid and Zouaq, 2018; Xu et al.,
2016a; Usbeck et al., 2015). While this allows for
a more direct integration of sources, the responses
are restricted by the expressiveness of the query
language and the text retrieval, which is usually
limited to simple facts.

Early Fusion / Unified Representations: In early
fusion approaches (Sun et al., 2019; Wang et al.,
2022) different types of sources are combined at
an early pipeline stage to find an answer to an in-
put question. The most common way to achieve
this is to build unified representations, i.e., rep-
resent all information sources in a uniform way;
most commonly (i) converting facts in a knowl-
edge graph to text or (ii) converting or integrating
text in a KG. GRAFT-Net (Sun et al., 2018) al-
lows to query information from a KG and textual
sources linked from its entities. They construct
a query subgraph for an input question and then
apply a graph convolution based neural network.
Pramanik et al. (2023) build context graphs from
KG and text inputs on the fly. An advantage of

their method is that it allows to run complex que-
ries over the context graphs. However, the graph
construction from text is in itself a challenging task
with high error rates. Oguz et al. (2022) flatten a
KG to text and leverage dense passage retrieval
(DPR) in combination with fusion-in-decoder
(FiD) to pass facts into an LLM. While this ap-
proach is promising, it does not allow to use que-
ries over the input KG. Generally, early fusion
approaches have the drawback that a) building a
unified representation can lead to errors that prop-
agate into the QA approach and b) the selected
representation is often the least common denom-
inator of the input sources and does not exploit
source-specific advantages such as compositional
queries for structured data.

Information Integration and Human-like Rea-
soning for LLMs: Retrieval-augmented language
models (Guu et al., 2020; Borgeaud et al., 2022)
enable the integration of external information
into language models but do not allow querying
structured information. API-augmented language
models allow to connect to different services, in-
cluding text retrieval and graph querying, by let-
ting the LLM generate actions and feeding the
output of those actions back into the LLM con-
text. Specifically, we use ReAct (Yao et al., 2023)
as the API augmentation framework in our ap-
proach. Several related frameworks have been
developed over the past years. For example, the re-
cently introduced DSPy approach (Khattab et al.,
2022, 2023) provides an abstraction layer over
LLM calls and retrieval modules. DSPy was
developed in parallel to HumanIQ and focuses
mostly on automatic few-shot generation and op-
timization whereas HumanIQ focuses on improv-
ing inference by appropriately selecting human
few-shot examples. Combining both may be an
interesting avenue for future work. Chameleon
(Lu et al., 2024) is another LLM-based planner,
which supports a wide range of tools and tasks.
A difference to HumanIQ is that our few-shot
prompts include complete solution processes and
the reasoning about which tool to invoke with
what argument is made during inference whereas
Chameleon generates a program consisting of the
sequence of tools to invoke in advance. Several
LLM reasoning frameworks have been applied to
question answering. In Trivedi et al. (2023), simi-
lar to our approach, retrieval and action generation
are interleaved for QA tasks based on the observa-
tion that the next action can depend on the actual
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outcome of the previous retrieval step. A differ-
ence to our method is that we investigate the use
of full solution processes in the LLM prompt and
support heterogenous retrieval including struc-
tured knowledge. Dua et al. (2022) and Khot
Khot et al. (2022) use LLMs for decomposing
complex questions. In our case decomposition is
done implicitly by the provided LLM instructions
and few-shot examples.

We are also inspired by using human-like rea-
soning techniques, since those were shown to be
very sample-efficient (Hu and Clune, 2024). The
integration of contextual knowledge via in-context
learning has been shown to work particularly well
for very large language models (Wei et al., 2023),
i.e., it appears to be an emergent property of
LLMs. The implication of those insight for our
approach, which was also confirmed by our exper-
iments, is that this type of information integration
and reasoning via in-context learning is primarily
applicable in today’s most powerful LLMs.

7 Conclusions and Future Work

We introduced the HumanIQ methodol-
ogy and showed that applying it to hybrid
question-answering allows reasoning over het-
erogeneous information sources in the LLM
prompt leading to state-of-the-art results on three
benchmarks. Users preferred the system over
vanilla LLMs in a human evaluation study. A
natural next step is to apply HumanIQ in other
settings than factual QA. Furthermore, we aim
to investigate prompt compression and memory
techniques. Another interesting direction are
multilingual NLP tasks, in particular retrieving
from sources in different languages and using this
to build evidence in the required target language.
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