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Abstract
Despite significant improvements in enhanc-
ing the quality of translation, context-aware
machine translation (MT) models underper-
form in many cases. One of the main reasons is
that they fail to utilize the correct features from
context when the context is too long or their
models are overly complex. This can lead to the
explain-away effect, wherein the models only
consider features easier to explain predictions,
resulting in inaccurate translations. To address
this issue, we propose a model that explains the
decisions made for translation by predicting
coreference features in the input. We construct
a model for input coreference by exploiting
contextual features from both the input and
translation output representations on top of
an existing MT model. We evaluate and ana-
lyze our method in the WMT document-level
translation task of English-German dataset, the
English-Russian dataset, and the multilingual
TED talk dataset, demonstrating an improve-
ment of over 1.0 BLEU score when compared
with other context-aware models.

1 Introduction

With the rapid development of machine learning
techniques, the Machine Translation (MT) field
has witnessed changes from exclusively proba-
bilistic models (Brown et al., 1990; Koehn et al.,
2003) to neural network based models, such as sim-
plistic Recurrent Neural Network (RNN) based
encoder-decoder models (Sutskever et al., 2014)
or higher-level attention-based models (Bahdanau
et al., 2015; Luong et al., 2015), and finally turn
to the current state-of-the-art Transformer model
(Vaswani et al., 2017) and its variations.

The quality of MT models, including RNN-
based, attention-based, and Transformer models,
has been improved by incorporating contextual
information (Voita et al., 2018; Wang et al., 2017;
and others), or linguistic knowledge (Bugliarello
and Okazaki, 2020; Sennrich and Haddow, 2016;

and others). In the former context-aware meth-
ods, many successful approaches focus on context
selection from previous sentences (Jean et al.,
2017; Wang et al., 2017) using multiple steps of
translation, including additional module to re-
fine translations produced by context-agnostic MT
system, to utilize contextual information (Voita
et al., 2019; Xiong et al., 2019), and encoding all
context information as end-to-end frameworks
(Zhang et al., 2020; Bao et al., 2021). Although
they have demonstrated improved performance,
there are still many cases in which their models
perform incorrectly for handling, i.e., the ellipsis
phenomenon in a long paragraph. One of the rea-
sons is that their models are still unable to select
the right features from context when the context is
long, or the model is overly complex. Therefore,
the model will easily suffer from an explain-away
effect (Klein and Manning, 2002; Yu et al., 2017;
Shah et al., 2020; Refinetti et al., 2023) in which
a model learns to use only features which are
easily exploited for prediction by discarding most
of the input features.

In order to resolve the problem of selecting the
right context features in the context-aware MT,
we propose a model which explains decisions of
translation by predicting input features. The in-
put prediction model employs the representations
of translation outputs as additional features to pre-
dict contextual features in the inputs. In this work,
we employ coreference as the prediction task since
it captures the relation of mentions that are neces-
sary for the context-aware model. The prediction
model is constructed on top of an existing MT
model without modification in the same manner
as done in multi-task learning, but it fuses infor-
mation from representations used for the decisions
of translation in the MT model.

Under the same settings of the English-Russian
(En-Ru) dataset and the WMT document-level
translation task of the English-German (En-De)
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dataset, our proposed technique outperforms the
standard transformer-based neural machine trans-
lation (NMT) model in both sentence and context-
aware models, as well as the state-of-the-art
context-aware model measured by BLEU (Post,
2018), BARTScore (Yuan et al., 2021), and
COMET (Rei et al., 2020), and the human-
annotated test set in a paragraph (Voita et al.,
2019). Additionally, in the multilingual exper-
iments, our method shows consistent results,
paralleling those in the En-Ru and En-De data-
sets, and proving its versatility across languages.

Further analysis shows that our coreference
explanation sub-model consistently enhances the
quality of translation, regardless of type of dataset
size. Notably, the model demonstrates consistent
improvement when additional context is incorpo-
rated, highlighting its effectiveness in handling
larger context sizes. Additionally, the analysis
highlights a strong correlation between the self-
attention heat map and coreference clusters, un-
derscoring the significance of our coreference
prediction sub-model in capturing coreference
information during the translation process. More-
over, our proposed training method proves to be
effective in the coreference prediction task. We
also provide a suggestion to finetune the contri-
bution of the sub-model to optimize its impact
within the overall MT system. We release our
code and hyperparameters at https://github.com
/hienvuhuy/TransCOREF.

2 Background

2.1 Transformer-based NMT

Given an input single sentence x = (x1, . . . , x|x|)
and its corresponding translation y = (y1, . . . ,
y|y|), an MT system directly models the transla-
tion probability

p(y|x; θ) =
|y|∏

t=1

p(yt|y<t,x; θ), (1)

where t is the index of target tokens, y<t is
the partial translation before yt, and θ is the
model parameter. At inference time, the model
will find the most likely translation ŷ for a given
source input

ŷ = argmax
y

|y|∏

t=1

p(yt|y<t,x; θ). (2)

To model the translation conditional probabil-
ity p(y|x; θ), many encoder-decoder architec-
tures have been proposed based either on CNNs
(Gehring et al., 2017) or self-attention (Vaswani
et al., 2017), and we focus on the Transformer
(Vaswani et al., 2017) as our building block, given
its superior ability to model long-term depen-
dencies and capture context information features.
The encoder of the Transformer comprises le
stacked layers which transforms the input x into
hidden representations Hle

enc ∈ R
|x|×d where d

is a dimension for hidden vector representation.
Similarly, the decoder of the Transformer com-
prises ld stacked layers which consumes the
translation prefix y<t and Hle

enc to yield the fi-
nal representation Hld

dec ∈ R
|y|×d. The two pro-

cesses can be formally denoted as

Hi
enc = ENC(Hi−1

enc) (3)

Hi
dec = DEC(Hi−1

dec ,H
le
enc). (4)

Note that H0
enc is the representation of x from

the embedding layer, and H0
dec is the represen-

tation of y after embedding lookup with shift-
ing by the begin-of-sentence token. ENC(·) and
DEC(·) denote the function of the single Trans-
former encoder and decoder layer, respectively.

The output target sequence is predicted based
on the output hidden state Hld

dec from the top
layer of the decoder

p(yt|y<t,x; θ)

= SOFTMAX(WdecH
ld
dec[t])[yt] (5)

where Wdec ∈ R
|V|×d is the projection weight

matrix which maps the hidden state to the prob-
ability in the output vocabulary space V , and [·]
denotes an index/slice to a vector/matrix.

The standard training objective is to minimize
the cross-entropy loss function

LMT = −
∑

(x,y)∈D

|y|∑

t=1

log p(yt|y<t,x; θ) (6)

given a parallel corpus D = {(xw,yw)}|D|
w=1

which contains |D| pairs of single sentence and
its corresponding translation.

2.2 Context-Aware Transformer-base NMT
A context-aware MT model can be regarded as
a model which takes a document, i.e., multiple
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sentences, as an input and generates multiple
sentences as its corresponding translation. We
assume that each sentence is translated into a sin-
gle sentence, and define the source document x =
(x1, . . . ,xn) with n sentences and its correspond-
ing target language document y = (y1, . . . ,yn).
A context-aware MT system directly models the
translation probability

p(y|x; θ) =
n∑

k=1

p(yk|y<k,x; θ), (7)

where k is an index to a sentence in y, y<k

is the partial translation before the sentence yk.
In this model, we assume that

〈
x,y

〉
constitute

a parallel document and each
〈
xk,yk

〉
forms a

parallel sentence.
Several approaches can be used to produce a

translated document, i.e., keeping a sliding win-
dow of size m (Tiedemann and Scherrer, 2017),
joining these m sentences as a single input, trans-
lating these m sentences and selecting the last
sentence as an output (m-to-m) (Zhang et al.,
2020), or joining whole sentences in a document
as a very long sequence and translating this se-
quence (Bao et al., 2021), among other methods.
To simplify the definition of the context-aware
NMT model, we opt for the m-to-m method and
use a special character ( eos) between sentences
when feeding these m sentences to the model.
In this way, the context-aware translation model
can still be defined as a standard sentence-wise
translation in §2.1.

2.3 Coreference Resolution Task

Coreference Resolution is the task of identifying
and grouping all the mentions or references of a
particular entity within a given text into a cluster,
i.e., a set of spans. This task has progressed sig-
nificantly from its earlier approaches, which were
based on hand-crafted feature systems (McCarthy
and Lehnert, 1995; Aone and William, 1995), to
more advanced and effective deep learning ap-
proaches based on span-ranking (Lee et al., 2017,
2018; Kirstain et al., 2021) and for multilingual
languages (Zheng et al., 2023).

It is typically formulated as explicitly identi-
fying an antecedent span to the left of a mention
span in the same cluster. More formally, a set
of clusters C = {..., Ck, ...} is predicted for an
input sequence x, either a document or a sin-

gle sentence, with each cluster comprising a set
of non-overlapping spans Ck = {(i, j) : 1 ≤
i ≤ j ≤ |x|} (1 ≤ k ≤ |C|). We introduce an
alternative view using a variable A which rep-
resents mapping for all possible mention spans
S = {(i, j) : ∀1 ≤ i ≤ j ≤ |x|} of x to its
antecedent span within the sample cluster Ck, i.e.,
A = {..., s → c, ...}, where c ∈ Ck is an an-
tecedent to the left of s ∈ Ck and c = ε, i.e.,
an empty span, when s is not a member of any
clusters Ck. Note that we can derive a unique C
given a single derivation of A by forming a clus-
ter of spans connected by antecedent links, but
there are multiple derivations of A for C when
there exists a cluster |Ck| > 2. The task is mod-
eled by the conditional probability distribution
of independently predicting any possible ante-
cedents of a mention span in the same cluster

p(C|x) =
∑

A∈a(C)
p(A|x)

=
∏

s∈S

∑

A∈a(C)
p(As|s,x)

=
∏

s∈S

∑

A∈a(C)

exp (f(As, s;Hcoref ))∑
c∈Ms

exp (f(c, s;Hcoref ))

�
∏

s∈S

∑

A∈a(C)
COREF(As, s;Hcoref ), (8)

where a(·) is a function that returns all possi-
ble derivations for clusters and Ms is a set of
all possible spans to the left of s including ε.
f(·, ·) is a score function (Kirstain et al., 2021)
to compute both mention and antecedent scores
and Hcoref ∈ R

|x|×d is contextualized represen-
tation of the input sequence x, i.e., BERT (Devlin
et al., 2019). We denote the final function as
COREF(·, ·) for brevity.

We adopt the training scheme proposed by
Kirstain et al. (2021), which filters spans to avoid
the explicit enumeration of all possible mention
spans, and represents antecedent relations using
only the endpoints of the retained spans with a
biaffine transformation. At the training stage, we
minimize the negative log-likelihood of predict-
ing clusters

LCOREF = −
∑

(C,x)∈DCOREF

log
∏

s∈S

∑

A∈a(C)
p(As|s,x), (9)

where DCOREF is a training data for coreference
resolution.
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3 Context-Aware MT with Coreference
Information

Our motivation stems from the observation that
when translating a paragraph, translators are able
to pick up precise words and explain why a par-
ticular choice of word is better given the context
especially by relying on linguistic cues such as
discourse structure, verb equivalence, etc. Thus,
instead of modeling a translation by directly re-
lying on an additional conditional variable of
coreference clusters C for x, i.e., p(y|C,x), we
propose a model that is akin to the noisy chan-
nel framework (Yee et al., 2019), to explain the
decision y made by the translation model:

p(y|C,x) = p(y,C|x)
p(C|x) =

p(y|x)(C|y,x)
p(C|x)

∝ p(y|x)p(C|y,x), (10)

where p(C|y,x) is a model to predict corefer-
ence clusters given both an input sentence and
its translation. Note that we can omit the denom-
inator p(C|x) given that it is a constant when
predicting y, similar to the noisy channel model-
ing, since both x and C are input to our model.
The direct model p(y|C,x) is prone to ignor-
ing features in C, especially when the context is
long, since the information in x has direct corre-
spondence with y. In contrast, the model for the
coreference resolution task, p(C|y,x), will ex-
plain the coreference cluster information in x not
only by the features from x but additional features
from y and, thus, the higher p(C|y,x), the more
likely y will be a translation for x. When coupled
with the translation model p(y|x) especially when
jointly trained together, our formulation will be
able to capture long-distance relations in coref-
erence clusters since the coreference resolution
task needs to predict it given x and y.

Architecture The two sub-models, i.e., p(y|x)
and p(C|y,x), could be trained separately as done
in a noisy channel modeling approach of MT
(Yee et al., 2019). This work formulates it as a
multi-task setting by predicting two tasks jointly,
i.e., translation task and coreference resolution
task, by using the representations of the encoder
and decoder of Vaswani et al. (2017). More spe-
cifically, we do not alter translation task p(y|x),
but obtain the representation for the coreference

task by fusing the representations of the encoder
and decoder as follows

p(C|y,x) =
∏

s∈S

∑

A∈a(C)
COREF(As, s;H

′
coref )

H′
coref = DEC(H le

enc,H
ld
dec). (11)

Note that we obtain H′
coref from an additional

decoder layer for the encoder representation H le
enc

with cross attention for H ld
dec.

Training We jointly train our two sub-models
using the label-smoothing variant of the cross-
entropy loss function in Equation 6 and the mar-
ginal log-likelihood loss function in Equation 9,
but using H′

coref in Equation 11 as follows

L = LMT + αL′
COREF, (12)

where α is a hyperparameter that controls a con-
tribution of the coreference resolution task. Dur-
ing the training step, we feed pairs of sentences
together with coreference cluster information
generated by an external coreference resolution
framework since human annotation is not avail-
able in MT tasks.

Inference Inference is complex in that the model
for the coreference resolution task has to be eval-
uated every time a target token is generated by
the translation model as done in the noisy chan-
nel approach of MT (Yee et al., 2019). We resort
to a simpler approach of ignoring the term for
coreference clusters, i.e., p(C|y,x), and using
only the token prediction, i.e., p(y|x); alterna-
tively, we generate a large set of N -best trans-
lations from p(y|x) and rerank them using the
joint probabilities

log p(y|x) + β log p(C|y,x), (13)

where β is a hyperparameter to control the
strength of the coreference resolution task.

4 Experiments

4.1 Dataset

We utilized the En-Ru dataset (Voita et al., 2019)
and the widely adopted En-De benchmark dataset
IWSLT 2017, as used in Maruf et al. (2019), with
details provided in Table 1. We also used the
multilingual TED talk dataset (Qi et al., 2018) to
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Avg. #Coref. Clusters #Samples
train/valid/test train/valid/test

En-Ru 3.1/3.0/2.9 1.5M/10k/10k
En-De 4.4/4.4/4.4 206k/8k/2k

Table 1: Statistics of En-De and En-Ru datasets.

Family WO PP GP GA
English IE SVO ♦ 3SG SEM
Russian IE SVO ♠ 3SG S-F
German IE SOV/SVO ♥ 3SG S-F
Spanish IE SVO ♥ 1/2/3P SEM
French IE SVO ♥ 3SG S-F
Japanese JAP SOV ♣ 3P ♦
Romanian IE SVO ♠ 3SG S-F
Mandarin ST SVO ♥ 3SG ♦
Vietnamese AA SVO ♠ ♦ ♦

Table 2: Properties of Languages in Our Ex-
periments: WO (Word Order), PP (Pronouns
Politeness), GP (Gendered Pronouns), and GA
(Gender Assignment) denote language structural
properties. IE (Indo-European), JAP (Japonic),
ST (Sino-Tibetan), and AA (Austroasiatic) repre-
sent language families. Symbols ♦, ♥, ♣, and ♠
correspond to ‘None’, ‘Binary’, ‘Avoided’, and
‘Multiple’, respectively. The terms 3SG (Third
Person Singular), 1/2/3P (First, Second, and Third
Person), and 3P (Third Person) are used for pro-
noun references. SEM and S-F stand for Semantic
and Semantic-Formal, respectively, in Gender
Assignment.

assess the efficacy of our proposed method across
a variety of language types, including different
characteristics in pronouns, word order and gender
assignment with specifics delineated in Table 2.

The En-Ru dataset comes from OpenSubti-
tle 2018 (Lison et al., 2018) by sampling training
instances with three context sentences after token-
ization and, thus, no document boundary informa-
tion is preserved. In the En-De and multilingual
datasets, document boundaries are provided. To
maintain consistency in our translation settings
during experiments, we tokenize all texts by us-
ing MeCab1 for Japanese, Jieba2 for Chinese,
VnCoreNLP (Vu et al., 2018) for Vietnamese,
and the SpaCy framework3 for all other lan-

1https://taku910.github.io/mecab/.
2https://github.com/fxsjy/jieba.
3https://spacy.io.

guages. We also apply a sliding window with a
size of m sentences (m = 4) to each document
to create a similar format to that of the En-Ru
dataset. For the first m − 1 sentences, which do
not have enough m − 1 context sentences in the
m-to-m translation settings, we pad the begin-
ning of these sentences with empty sentences,
ensuring m − 1 context sentences for all sam-
ples in the dataset. For preprocessing, we apply
the BPE (Byte-Pair Encoding) technique from
Sennrich et al. (2016) with 32K merging op-
erations to all datasets. To identify coreference
clusters for the source language, i.e., English,
we leveraged the AllenNLP framework4 and em-
ployed the SpanBERT large model (Lee et al.,
2018). After generating sub-word units, we adjust
the word-wise indices of all members in coref-
erence clusters using the offsets for sub-word
units.

4.2 Experiment Settings

Translation Setting In our experiments, we
adopt the context-aware translation settings
(m-to-m with m = 4) utilized in previous work
(Zhang et al., 2020). For the context-agnostic
setting, we translate each sentence individually.

Baselines Systems We adopt the Transformer
model (Vaswani et al., 2017) as our two baselines:
Base Sent, which was trained on source and tar-
get sentence pairs without context, and Base Doc,
which was trained with contexts in the m-to-m
setting as described in §2.2. To make a fair
comparison with previous work that uses simi-
lar context-aware translation settings and enhance
MT system at the encoder side, we employ the
G-Transformer (Bao et al., 2021), Hybrid Con-
text (Zheng et al., 2020), and MultiResolution
(Sun et al., 2022). We also compare our approach
with the CoDoNMT (Lei et al., 2022) model,
which also integrates coreference resolution in-
formation to improve translation quality. Note
that all aforementioned baselines utilize provided
open-source code. Additionally, we trained a sim-
ple variant of a context-aware Transformer model
similar to Base Doc, but differ in that it incor-
porated a coreference embedding, alongside the
existing positional embedding, directly in to the
encoder side of the model (Trans+C-Embedding).
This coreference embedding is derived from the

4https://allenai.org.
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original positional embedding in the encoder with
the modification that all tokens within a corefer-
ence cluster share the same value as the left-most
token in the same cluster. Note that it is intended
as a simple baseline for a direct model as dis-
cussed in §3.

Our Systems We evaluate our proposed in-
ference methods, including the original infer-
ence method in Transformer without reranking
(Trans+COREF) or with reranking with the score
from our sub-model (Trans+COREF+RR) using
the coreference resolution task as denoted in
Equation 13.

Hardware All models in our experiments were
trained on a machine with the following speci-
fications: An AMD EPYC 7313P CPU, 256GB
RAM, a single NVIDIA RTX A6000 with 48GB
VRAM, and CUDA version 11.3. For multilin-
gual experiments, we used a single NVIDIA RTX
3090 GPU, Intel i9-10940X, 48GB VRAM, and
CUDA version 12.1.

Hyperparameters We use the same parame-
ters, including the number of training epochs,
learning rate, batch size, etc., for all models in our
experiments. Specifically, we train all models for
40 epochs when both losses of coreference and
translation in the valid set show unchanging or
no improvements.

For translation tasks, we use the Adam opti-
mizer with β1 = 0.9, β2 = 0.98 and ε = 1e − 9,
along with an inverse square root learning rate
scheduler. All dropout values are set to 0.1, and
the learning rate is set to 7e − 5. We use a
batch size of 128 and 32 for experiments on the
English-Russian and English-German datasets,
respectively. Other parameters follow those in
Vaswani et al. (2017).

For coreference tasks, we adopt parameters
from Kirstain et al. (2021), with some modifica-
tions to accommodate our GPU memory. We use
the Adam optimizer with β1 = 0.9, β2 = 0.98 and
ε = 1e−9, with a learning rate of 7e−5. Dropout
value is set to 0.3, top lambda (the percentage
of all spans to keep after filtering) is set to 0.4,
hidden size is set to 512, and the maximum span
length is set to 10. The maximum cluster values
are set to 8 and 20 for the English-Russian and
English-German datasets, respectively. To rerank
the N-best translations, we use Equation 13 and

perform a grid search on the validation set with
a step size of 0.0001 to select the optimal value
for β from −2 to 2.

4.3 Metrics

BLEU We employ SacreBLEU (Post, 2018)
as an automated evaluation metric to assess the
quality of translations in our experiments.

BARTScore We follow Yuan et al. (2021) and
use the mbart-large-50 model (mBART)5 to com-
pute the average BARTScore of all translation to
measure semantic equivalence and coherence be-
tween references and translations. In this metric,
the higher value, the better semantic equivalence
and coherence.

COMET We also utilize the COMET6 metric
(Rei et al., 2020), a neural network-based mea-
sure, since it is highly correlated to human
judgment in prior work by Freitag et al. (2022).

4.4 Results

The main results of our experiments are presented
in Table 3. Our results indicate that training the
baseline Transformer model with both context and
target sentences (Base Doc) results in better per-
formance than training with only target sentences
(Base Sent) in the En-Ru dataset. This finding
is consistent with those reported by Voita et al.
(2019), in which more contextual information is
helpful to achieve better translation. However,
in the En-De dataset, the Base Doc system per-
forms worse compared to the Base Sent system.
This discrepancy can be explained by the differ-
ent methodologies used in constructing the En-De
and En-Ru datasets. For the En-De datasets, both
context-aware and context-agnostic datasets are
compiled from the same pool of non-duplicate
sentences. However, for the En-Ru datasets, the
context-agnostic dataset is created by removing
context sentences from the context-aware dataset
(Voita et al., 2019), which results in varying num-
bers of non-duplicate sentences between these
context-agnostic and context-aware datasets.

When comparing our systems with the Trans-
former model (Base Doc), our approaches, both
Trans+COREF and Trans+COREF+RR, have proven
effective in enhancing translation quality by

5https://huggingface.co/facebook/mbart
-large-50.

6COMET-20 model (wmt20-COMET-da).
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En - Ru En - De

BL ↑ BS ↑ CM↑ BL ↑ BS ↑ CM↑

Base Sent 29.46 −9.695 82.87 22.76 −6.178 68.06
Base Doc 29.91 −9.551 83.40 21.54 −6.200 66.91
Hybrid Context (Zheng et al., 2020) 29.96 −9.590 83.45 22.05 −6.236 66.97
G-Transformer (Bao et al., 2021) 30.15 −9.691 83.13 22.61 −6.090 68.36
MultiResolution (Sun et al., 2022) 29.85 −9.763 81.76 22.09 −6.099 67.99
DoCoNMT (Lei et al., 2022) 29.92 −9.552 83.03 22.55 −6.197 67.93

Trans+C-Embedding 30.13 −9.522 83.43 22.54 −6.092 68.80
Trans+COREF 30.39∗ −9.501† 83.56• 23.57∗∗ −6.088† 69.17�

Trans+COREF+RR 30.43∗ −9.500† 83.56• 23.60∗∗ −6.086† 69.21�

(∗) and (∗) indicate statistical significance (Koehn, 2004) at p < 0.02 and p < 0.01, respectively, compared to the Base Doc

system and all other baseline systems. (�), (†), and (•) signify statistical significance at p < 0.05 compared to all baselines,
all except Trans+C-Embedding and G-Transformer, and all except Trans+C-Embedding, Hybrid Context, and G-Transformer,
respectively.

Table 3: The results of all main experiments. BL, BS and CM are abbreviations for BLEU, BARTScore and
COMET, respectively. The best performance per metric are in bold text.

explaining the decision of translation through
predicting coreference information. This is de-
monstrated by the superior BLEU scores (+0.52
in En-Ru and +2.06 in En-De for the Trans+
COREF+RR), BARTScore, and COMET observed
when comparing across different settings and
language pairs.

Compared to the G-Transformer system de-
scribed in Bao et al. (2021), our system shows
an improvement in both inference approaches
(Trans+COREF and Trans+COREF+RR). In the
En-Ru dataset, our system achieves a higher
BLEU score by+0.24, while in the En-De dataset,
it demonstrates a larger improvement of +1.14
in the same metric (Trans+COREF). Additionally,
our method outperforms the G-Transformer in
terms of the BARTScore and COMET for both
the En-Ru and En-De datasets. One possible
explanation for these results is that the G-
Transformer is specifically designed to map each
sentence in the source language to only a sin-
gle sentence in the target language during both
training and inference steps. This design choice
helps mitigating issues related to generating very
long sequences. However, when the dataset size
is small, as in the case of the En-De dataset, the
G-Transformer encounters difficulties in select-
ing useful information. In contrast, our approach
effectively selects useful information indirectly

through the coreference explanation sub-model,
especially when dealing with small-sized datasets,
which allows our system to outperform under the
scenarios with limited dataset size. Our method
also surpasses the Transformer model with addi-
tional position embedding (Trans+C-Embedding),
which relied on coreference information using a
direct modeling approach.

In the results of the multilingual TED talk
dataset in Table 4, where we compare our pro-
posed method to Transformer models and the
best baselines in Table 3, our method also sur-
passes other baselines within +1.0 to +2.3 BLEU
scores. These findings provide further evidence
that our approach is effective in improving transla-
tion quality and can be applied to diverse language
types.

We provide an example of translations from
our systems as well as other baseline systems in
Table 5. In this example, the correct translation
of the phrase in the last sentence,
(my team), is determined by identifying which
word refers to ‘‘my’’, in this case, i and me.
Both the G-Transformer and Trans+C-Embedding
systems fail to capture these mentions
and consequently produce an incorrect transla-
tion, . Despite correctly trans-
lating , the Base Doc system’s phrase

is grammatically
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Es ↑ Fr ↑ Ja↑ Ro ↑ Zh ↑ Vi ↑

Base Sent 37.23 37.75 12.11 24.35 12.38 31.74
Base Doc 36.22 36.89 10.13 23.27 11.66 31.22
G-Transformer 36.46 37.88 12.27 24.63 12.07 32.69
Trans+COREF 38.13∗ 39.01∗ 12.93∗ 25.56∗ 13.18∗ 33.51∗

∗With statistically significance (Koehn, 2004) at p < 0.01 compared to other systems.

Table 4: The results of multilingual dataset in the BLEU metric. The highest results are in bold text.

Table 5: Example of translations. The context and target sentences are highlighted in italics and
bold, respectively. Translations of the Trans+DEC+RR and Trans+DEC are identical. Underlined words
indicate the same mention entity.

incorrect and deviates from the original English
‘‘meet my team’’. Conversely, our systems cap-
ture this reference accurately, yielding a trans-
lation consistent with the reference.

5 Analysis

Contribution of Coreference Explanation We
conducted experiments by adjusting the value
of α in Equation 12 during the training of the
Trans+COREF without reranking. The experimental
results in Table 6 indicate that for medium-sized
corpora, selecting a value of α that is either too
small or too large negatively impacts translation
quality. The optimal range for α is 0.8 ≤ α ≤ 2.

Conditioning on Source and Target Language
We conducted a study on coreference explana-
tion on the En-De dataset (Maruf et al., 2019)
with coreference cluster information as in §4.1
by ablating the information from the translation
so that it conditions only on the input informa-
tion (Trans+ENC). This setting can be regarded
as a conventional multi-task setting in which

α BLEU ↑

Base Sent − 29.46
Base Doc − 29.91

Trans+COREF

0.8 30.36
1.0 30.31
2.0 30.39
3.0 30.27
4.0 30.15

10.0 30.00

Table 6: Ablation results on the En-Ru dataset
with different weight α. The highest result is in
bold text.

coreference on the input-side is predicted to-
gether with its translation. Specifically, we re-
place the input representation for coreference
resolution sub-model from DEC(·) in Equation 11
to ENC(·) in Equation 14 as follows

H′′
coref = ENCH le

enc. (14)
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BLEU ↑ P↑ R↑ F1↑

Trans+ENC 22.98 85.02 75.69 80.08

Trans+COREF 23.57 82.63 78.31 80.41

∗The MUC metric counts the changes required to align the
system’s entity groupings with the gold-standard, focusing
on adjustments to individual references.

Table 7: Evaluation of Trans+ENC and Trans+COREF

systems using BLEU and MUC∗ metrics on the vali-
dating set of the En-De dataset. The highest results are
in bold text.

As shown in Table 7, the conventional multi-task
learning setting of Trans+ENC performed lower
than Trans+COREF, which indicates the benefits
of fusing information from the predicted trans-
lation. We further examine the entity heat maps
derived from self-attention weights of both the
translation and coreference sub-models in Base
Doc, Trans+ENC, and Trans+COREF systems for
the input "I 0 hate that you 0 ’re leaving . Well,
Grandma ’s not doing well . So you 1 have to drop
everything to go take care of her ? Yes, William,
I 1 do ." from the human annotated test set from
Voita et al. (2019). In this particular example, the
coreference clusters are defined as[I 0, William],
[you 0, you 1, I 1], and [Grandma, her]. To pro-
vide visual representations, we depict the aver-
age self-attention values from the last encoder
layer of these three systems. This choice is based
on their tendency to focus more on semantic or
abstract information (Clark et al., 2019).

Figure 1 displays the entity heat maps, which
illustrate the behavior of self-attention in different
systems in the translation sub-model. In the Base
Doc system, self-attention primarily concentrates
on local sentences while disregarding information
between sentences. In contrast, the Trans+ENC sys-
tem exhibits the ability to focus on inter-sentences.
However, when it comes to tokens within coref-
erence clusters, the focused values are incorrect
for certain clusters, such as [I 0, William]. On
the other hand, the Trans+COREF system not only
exhibits inter-sentential focus in its self-attention
heat map but also accurately depicts the focused
values for tokens within coreference clusters.

Figure 2 demonstrates the entity heat maps in
the coreference sub-model. In the Trans+ENC sys-
tem, self-attention mainly concentrates on entities
within the local scope and immediate adjacent

sentences. However, when comparing these high
attention values with links in the coreference
clusters, a significant proportion is found to be
incorrect, i.e., [Grandma; I 1]. On the other hand,
the self-attention in Trans+COREF exhibits a more
balanced distribution of focus across all entities
within the input. This balanced distribution re-
sults in considerably fewer errors when compared
to self-attention in the Trans+ENC system. These
findings align with the MUC metric (Vilain et al.,
1995), which is based on the minimum number
of missing links in the response entities compared
to the key entities, with details, particularly the F1
score, provided in Table 7. Note that we use ref-
erence translations to form H ld

dec in Equation (11)
for identifying coreference clusters. Additionally,
we generate gold label coreference clusters us-
ing the AllenNLP framework, as discussed in
Section 4.1.

Impact of the Context Size We conducted ex-
periments with the COREF (Trans+COREF) and the
Transformer (Base Doc) systems by exploring
different context sizes in m-to-m settings ranging
from 2 to 4. The experimental results in Figure 3
demonstrate that the Base Doc system signifi-
cantly drops the translation quality when the con-
text gets longer, while Trans+COREF consistently
achieves gains as we incorporate more context.
This result also indicates the use of the corefer-
ence sub-model is able to capture contextual in-
formation better than the baseline.

Impact of Coreference Explanation We con-
duct experiments by reranking all translation
hypotheses with varying beam sizes during infer-
ence by the Equation (13) to assess the impact of
coreference explanation sub-model on the En-Ru
dataset (Voita et al., 2019). Figure 4 illustrates
the results of our experiments measured by BLEU
score. Our findings indicate that reranking with
the sub-model COREF yields improved results, with
differences ranging from 0.02 to 0.09. We also re-
port oracle BLEU score in Figure 5, which is
measured by selecting a hypothesis sentence that
gives the maximum sentence-BLEU scores among
potential hypotheses, to verify the potentially cor-
rect translations in an N-best list. The results of
this experiment with differences ranging from 0.2
to 0.4 suggest that using the sub-model COREF

has more potential to generate correct transla-
tions. Despite the relatively minor difference in
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Figure 1: Entity heat maps of self-attentions: (a) Base Doc, (b) Trans+ENC and (c) Trans+COREF.

Figure 2: Entity heat maps of self-attentions in the
coreference resolution sub-model.

Figure 3: Translation results on En-De datasets with
different m-to-m translation settings from m = 2 to
m = 4. The result in the m = 1 setting serves as the
Base Sent reference. The α in Equation 12 is set to 4.0.

the oracle BLEU score between the Trans+COREF

and the Base Doc systems, indicating a similarity
in their candidate space, the beam search pro-
cess yields better results with the Trans+COREF

when compared with the Base Doc system. This
reflects the differences in BLEU scores between
Trans+COREF and Base Doc. The performance
gap in the BLEU score between the Trans+COREF

and Trans+COREF+RR could potentially be further
maximized by incorporating the coreference re-

Figure 4: The results with N-best variants on the En-Ru
dataset (Voita et al., 2019).

Figure 5: The results with N-best variants using the
oracle BLEU metric on the En-Ru dataset (Voita et al.,
2019).

solution during the beam search at the expense of
more computational costs. We intend to explore
this possibility in future research.

To further understand the impact of the co-
reference explanation sub-model on translation
results, we perform an experiment on the contras-
tive test in Voita et al. (2019), which contains
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D ↑ EI ↑ EV ↑ L ↑

Base Doc 83.32 70.20 62.20 46.0
Trans+COREF 85.64 71.20 65.2 46.4

Table 8: Experimental results on the contrastive
test (Voita et al., 2019). D, EI, EV and L are
abbreviations for Deixis, Ellipsis Infl, Ellipsis Vp
and Lexical Cohesion, respectively. Note that we
only utilized the text described in §4.1, while other
studies may incorporate additional sentence-level
bilingual and monolingual texts associated with
Voita et al. (2019).

human-labeled sentences to evaluate discourse
phenomena and relies on the source text only, to
verify whether our method can solve phenomena
at the document level. Table 8 presents the results
this experiment, which indicate that our system
outperforms the Base Doc system in all aspects.
These results demonstrate the significant contri-
bution of the coreference explanation sub-model
to the MT system.

Impact of Coreference Accuracy We carried
out experiments to assess the impact of vary-
ing accuracies within the external coreference
framework, which was reported in 80.4% of the
F1 score on the MUC metric for the English
CoNLL-2012 shared task in Lee et al. (2018), on
the overall translation quality. This was achieved
by randomly omitting members from coreference
clusters while ensuring that each valid cluster
retained a minimum of two members, i.e., remov-
ing you 1 from the cluster [you 0, you 1, I 1] in
Figure 1.

Table 9 presents the outcomes of these ex-
periments, where a slight reduction in translation
quality is observed as members of coreference
clusters are randomly dropped. Remarkably, even
with the omission of up to half of the cluster
members, the results continue to exceed the per-
formance of the Base Doc system. This implies
that our method could be robust and effective,
particularly for languages with limited accuracy
in coreference resolution tasks.

Impact of the Corpus Size We randomly sam-
pled training instances from the En-Ru dataset
and varied the sample sizes to 200,000 (compa-
rable size to the En-De dataset), 500,000, and

Pruning (%)
BLEU ↑

− RR +RR

Base Doc − 21.54 −

Trans+COREF

0 23.57 23.60
10 23.43 23.44
20 23.40 23.41
30 23.29 23.29
50 22.86 22.86

Table 9: Experimental results on dropping co-
reference clusters on the En-De dataset. RR
means reranking with the coreference sub-model
using Equation 13.

Figure 6: Translation results on the En-Ru dataset
(Voita et al., 2019) with different sample sizes.

1,000,000. Subsequently, we evaluated the con-
tribution of the COREF sub-model (Trans+COREF)
and the Transformer (Base Doc) on these datasets
of different sample sizes. Figure 6 illustrates the
results of these experiments. Our proposed system
outperforms the Transformer model (Base Doc)
across all sample sizes in the test set. Notably, this
improvement is not limited to the small dataset
size setting but similar trends are observed for
medium-sized datasets. These results indicate that
our system consistently outperforms the trans-
former model and achieves improved translation
qualities regardless of the dataset size.

Remaining Challenges and Unresolved
Questions While our proposed method and
existing works enhance translation accuracy for
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Accuracy (%) ↑

Base Doc 12.71
G-Transformer 14.45

Trans+COREF 18.50

Table 10: Accuracy of translating the word we
into Vietnamese (173 samples).

certain linguistic phenomena, challenges persist,
particularly in handling deixis. Unlike straight-
forward scenarios where additional context aids
in accurately translating deictic terms (e.g., de-
termining the speakers in a conversation to cor-
rectly translate the words I and You), some
instances require a comprehensive understand-
ing of the provided text’s content to achieve
correct pronoun translation. Consider the follow-
ing example from the test data of the English-
Vietnamese dataset (Qi et al., 2018): "Oh my god!
you’re right! who can we[chúng ta] sue? Now Chris
is a really brilliant lawyer, but he knew almost
nothing about patent law and certainly nothing
about genetics. I knew something about genetics,
but I wasn’t even a lawyer, let alone a patent
lawyer. So clearly we[chúng tôi] had a lot to learn
before we[chúng ta] could file a lawsuit." In this
context, the English word we is translated as either
chúng tôi (we[chúng tôi]) or chúng ta (we[chúng ta]),
reflecting the exclusion or inclusion of the lis-
tener. This example underscores the importance
of contextual nuances in translating pronouns like
we or us from English to Vietnamese, where the
choice between chúng tôi and chúng ta is critical.

Building on the insights from the described
example, we extracted all samples that presented
similar linguistic challenges, in which a correctly
translated sample must ensure that every instance
of the word we is accurately translated. Table 10
presents the accuracy of translating the word we
into the correct Vietnamese. While our method
surpasses other baseline models in performance,
it still exhibits lower accuracy in comparison to
the deixis-related outcomes of the contrastive test
for Russian (Voita et al., 2019). This discrepancy
highlights the phenomenon as a significant chal-
lenge that warrants further investigation.

Computational Cost We present a detailed
comparison of the parameter count and training

No. of Training
En-De ↑

Params Time

Base Doc 92.03 407 21.54
MultiResolution 92.03 610 22.09
G-Transformer 101.48 566 22.61
Hybrid Context 65.78 1,776 22.05
CoDoNMT 92.03 638 22.55
Trans+COREF 98.59 503 23.57

Table 11: Number of parameters (in million),
training time for one epoch (in seconds), and
results of systems (in the BLEU metric) on the
En-De dataset.

time per epoch for our proposed method along-
side other baselines in Table 11. When compared
to the G-Transformer, our method uses fewer
parameters, takes less time to train, and yet
achieves better performance. On the other hand,
the Base Doc system uses the fewest parameters
and trains the quickest, but its results are nota-
bly underperforming.

6 Related Work

Multi-task learning has primarily been utilized
in MT tasks to integrate external knowledge
into MT systems. Luong et al. (2016), Niehues
and Cho (2017), and Eriguchi et al. (2017) have
employed multi-task learning with different vari-
ations of shared weights of encoders, decoders,
or attentions between tasks to effectively incorpo-
rate parsing knowledge into sequence-to-sequence
MT systems.

For incorporating coreference cluster informa-
tion, Ohtani et al. (2019), Xu et al. (2021), and Lei
et al. (2022) incorporate coreference cluster in-
formation to improve their NMT models. Ohtani
et al. (2019) integrates coreference cluster infor-
mation into a graph-based NMT approach to en-
hance the information. Similarly, Xu et al. (2021)
uses the information to connect words across dif-
ferent sentences and incorporates other parsing
information to construct a graph at the document-
level, resulting in an improvement in translation
quality. Lei et al. (2022) employs coreference
information to construct cohesion maskings and
fine-tunes sentence MT systems to produce more
cohesive outputs. On the other hand, Stojanovski
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and Fraser (2018) and Hwang et al. (2021) lever-
age coreference cluster information through aug-
mented steps. They either add noise to construct
a coreference-augmented dataset or use corefer-
ence information to create a contrastive dataset and
train their MT systems on these enhanced data-
sets to achieve better translation performance. For
context-aware MT, Kuang et al. (2018) and Tu
et al. (2018) focus on utilizing memory-augmented
neural networks, which store and retrieve pre-
viously translated parts in NMT systems. These
approaches help unify the translation of objects,
names, and other elements across different sen-
tences in a paragraph. In contrast, Xiong et al.
(2019) and Voita et al. (2019) develop a multiple-
pass decoding method inspired by the Delib-
eration Network (Xia et al., 2017) to address
coherence issues, i.e., deixis and ellipsis in para-
graphs. They first translate the source sentences
in the first pass and then correct the translations to
improve coherence in the second pass. Mansimov
et al. (2020) introduce a self-training technique,
similar to domain self-adaptation, to develop a
document-level NMT system. Meanwhile, various
methods aim to encapsulate contextual informa-
tion, i.e., hierachical attention (Maruf et al., 2019),
multiple-attention mechanism (Zhang et al., 2020;
Bao et al., 2021), and recurrent memory unit (Feng
et al., 2022).7 In a data augmentation approach,
Bao et al. (2023) diversify training data for the
target side language, rather than only using a sin-
gle human translation for each source document.

Recently, Wang et al. (2023) have shown that
state-of-the-art Large Language Models (LLMs),
i.e., GPT-4 (OpenAI et al., 2024), outperform tra-
ditional translation models in context-aware MT.
In other approaches, Wu et al. (2024) and Li et al.
(2024) have developed effective fine-tuning and
translation methods for lightweight LLMs; how-
ever, the efficacy of NMT models can exceed that
of lightweight LLMs, varying by language pair.

7 Conclusion

This study presents a context-aware MT model
that explains the translation output by predict-
ing coreference clusters in the source side. The

7In Feng et al. (2022), they provided source code without
instructions. We tried to reuse and reimplement their method;
however, we cannot reproduce their results in any efforts.
They did not reply our emails for asking training details. We
therefore decided not to include their results in Table 3.

model comprises two sub-models, a translation
sub-model and a coreference resolution sub-
model, with no modifications to the translation
model. The coreference resolution sub-model pre-
dicts coreference clusters by fusing the repre-
sentation from both the encoder and decoder to
capture relations in the two languages explicitly.
Under the same settings of the En-Ru, En-De, and
the multilingual datasets, and following analyses
on the coreference sub-model’s contributions, the
impacts of context and corpus size, as well as the
type of information utilized in the sub-model, our
proposed method has proven effective in enhanc-
ing translation quality.

Limitations

In this study, the hidden dimension size in the
coreference resolution sub-model is smaller than
typical state-of-the-art systems, i.e., 512 vs. 2048,
potentially limiting its accuracy and negatively
impacting the quality of translation. Additionally,
this study requires fine-tuning for a certain hy-
perparameter that combines the coreference res-
olution sub-model and the translation model to
achieve satisfactory results.
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