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Abstract
Building upon the considerable advances in
Large Language Models (LLMs), we are
now equipped to address more sophisticated
tasks demanding a nuanced understanding
of cross-cultural contexts. A key example is
recipe adaptation, which goes beyond simple
translation to include a grasp of ingredients,
culinary techniques, and dietary preferences
specific to a given culture. We introduce a
new task involving the translation and cul-
tural adaptation of recipes between Chinese-
and English-speaking cuisines. To support
this investigation, we present CulturalRecipes,
a unique dataset composed of automatically
paired recipes written in Mandarin Chinese
and English. This dataset is further enriched
with a human-written and curated test set. In
this intricate task of cross-cultural recipe adap-
tation, we evaluate the performance of various
methods, including GPT-4 and other LLMs,
traditional machine translation, and informa-
tion retrieval techniques. Our comprehensive
analysis includes both automatic and human
evaluation metrics. While GPT-4 exhibits im-
pressive abilities in adapting Chinese recipes
into English, it still lags behind human ex-
pertise when translating English recipes into
Chinese. This underscores the multifaceted
nature of cultural adaptations. We anticipate
that these insights will significantly contribute
to future research on culturally aware lan-
guage models and their practical application in
culturally diverse contexts.

1 Introduction

Cooking recipes are a distinct form of proce-
dural text whose accurate interpretation depends
on several factors. Familiarity with ingredients
and measurement units, common sense about the

∗Equal contribution.

cooking environment, and reasoning about how
tools and actions affect intermediate products in
the cooking process are necessary to successfully
craft a recipe. Such knowledge varies by culture
and language, as a result of geography, history,
climate, and economy (Albala, 2012). These fac-
tors impact the frequency of ingredient usage,
the available forms and cost of heat for cooking,
common taste profiles, written recipe style, etc. (§2).

Identifying and adapting to cultural differences
in language use is important and challenging
(Hershcovich et al., 2022). Recipe translations
with current machine translation technology may
gloss over culture-specific phraseology or yield
mistranslations due to a lack of grounding in the
physical and cultural space. Literal translations

are often opaque or odd: a Chinese dish,
(literally, ‘husband and wife lung slices’), can
be adapted in translation to ‘Sliced Beef in Chili
Sauce’ for English-speaking cooks. Structural pat-
terns in recipes in different cultures (e.g., mise en
place1) additionally make straightforward recipe
translation difficult: cuisines differ in dish prepara-
tion methods, and temporal dependencies between
actions complicate the disentanglement of recipe
actions (Kiddon et al., 2015; Yamakata et al.,
2017).

In this work, we introduce the task of adapting
cooking recipes across languages and cultures.
Beyond direct translation, this requires adaptation
with respect to style, ingredients, measurement
units, tools, techniques, and action order prefer-
ences. Focusing on recipes in Chinese and English,
we automatically match pairs of recipes for the
same dish drawn from two monolingual corpora,

1In French cooking, mise en place is the practice of
measuring out and cutting all ingredients in advance.
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and train text generation models on these pairs. We
evaluate our methodology with human judgments
and a suite of automatic evaluations on a gold
standard test set that we construct. We provide
ample evidence that recipe adaptation amounts to
more than mere translation and find that models
finetuned on our dataset can generate grammat-
ical, correct, and faithful recipes, appropriately
adapted across cultures. Intriguingly, Large Lan-
guage Models (LLMs) outperform our finetuned
models in both automatic and human evalua-
tions, even without training on our paired dataset.
This unexpected result opens multiple avenues
for future research, including how large-scale
pre-training could complement our dataset and
nuanced evaluation metrics that could better cap-
ture the complexities of recipe adaptation. Our
contributions are as follows:

(a) We introduce the task of cross-cultural
recipe adaptation and build a bidirectional Chinese-
English dataset for it, CulturalRecipes (§3).

(b) We experiment with various sequence-
to-sequence approaches to adapt the recipes,
including machine translation models and mul-
tilingual language models (§6).

(c) We evaluate and analyze the differences
between Chinese- and English-speaking cultures
as reflected in the subcorpora (§4) and to the
translation and adaptation of recipes (§6).

Our dataset, code, and trained models are avail-
able at https://github.com/coastalcph
/cultural-recipes.

2 Cultural Differences in Recipes

Extensive cross-cultural culinary research reveals
compelling differences in ingredients, measure-
ment units, tools, and actions, each reflecting
historical, geographical, and economic influences
unique to each culture (Albala, 2012). For exam-
ple, the historical reliance on open flame cooking
in China has cultivated an array of oil-based
cooking techniques exclusive to Chinese cuisine.
Further complexities arise from culture-specific
terminologies for cooking methods and dish
names, which pose formidable challenges to trans-
lation and adaptation (Rebechi and da Silva, 2017).
Additionally, the visual presentation of online
recipes exhibits striking contrasts across different
cultural contexts (Zhang et al., 2019a). Delving

Figure 1: An example of cultural differences between
Chinese (left) and English (right) recipes by color: blue
text signals contrasts in ingredient measurement units;
green, ingredients; orange, actions performed by cooks;
and purple, tools. For readability, we show our literal
translation on the left along with the original Chinese.

deeper, culinary preferences also demonstrate re-
gional patterns in flavor profiles; Western cuisines
tend to combine ingredients that share numerous
flavor compounds, while East Asian cuisines of-
ten intentionally avoid such shared compounds
(Ahn et al., 2011). These intricate cultural nuances
underscore the complexity and diversity inherent
in global culinary practices, thereby emphasizing
the intricacy involved in adapting recipes across
different cultures.

Examples. Figure 1 presents a Mandarin Chi-
nese recipe and its human-authored adaptation to
American English, highlighting key differences:

(1) Ingredients. Distinct ingredients feature promi-
nently in each recipe; the Chinese version

highlights ‘rice wine’, ‘red beans’, and

‘ginger with skin’. Interestingly, while
‘red bean’ is referenced in Chinese recipes, the
equivalent ingredient is typically recognized as
‘adzuki beans’ in Western countries.

(2) Measurement units. Chinese recipes often rely
on imprecise measurements, guided by the cook’s
experience, while American English recipes use
precise U.S. customary or Imperial units like
‘cups’, ‘inches’, ‘pints’, and ‘quarts’. Occasion-
ally, Chinese recipes employ traditional units such

as and , or metric system units like ‘grams
(g)’ and ‘milliliters (mL)’.
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(3) Tools. Specificity varies between recipes, with
English recipes typically specifying pot sizes
while Chinese recipes provide more general de-
scriptions. Chinese recipes also favor stovetop
cooking over ovens, contrasting with their English
counterparts.
(4) Actions by cook. Preparation methods often
vary between Chinese and English recipes. For in-
stance, Chinese recipes usually involve shredding
ginger, while English recipes recommend peel-
ing and julienning. Additionally, unique processes

like ‘blanching’, common in Chinese cook-
ing to remove unwanted flavors, are rarely found
in English recipes. These differences highlight the
subtle cultural nuances in similar recipes.

Over-generalization and Bias. In a study of
cultural adaptation, it is important to recognize
that the concept of ‘‘culture’’ is multifaceted
and complex. When we refer to Chinese- and
English-speaking cultures throughout this work,
we make the simplifying assumption that there
are general features that characterize the cooking
of these cultures and make them distinct in cer-
tain systematic ways. We recognize that there is
enormous diversity within these simplistic cate-
gories,2 but as a first step towards the adaptation
of recipes across cultures, we restrict ourselves to
the coarse-grained level only.

To enable the development and benchmarking
of recipe adaptation, we build a dataset for the
task.

3 The CulturalRecipes Dataset

Our dataset, CulturalRecipes, builds on two ex-
isting large-scale recipe corpora in English and
Chinese, respectively. We create two collections
of automatically paired recipes, one for each
direction of adaptation (English→Chinese and
Chinese→English), which we use for training and
validation in our recipe adaptation experiments
(§6). Additionally, CulturalRecipes incorporates
a small test set of human adaptations expressly
crafted for the task in each direction, serving as
references in our experimental evaluation.

3.1 Recipe Corpora

We source recipes from two monolingual corpora:
RecipeNLG (Bień et al., 2020) and XiaChuFang

2For example, southern and northern Chinese cuisines are
vastly different, with rice and wheat as staples, respectively.

(Liu et al., 2022).3 RecipeNLG consists of over
2M English cooking recipes. It is an extension of
RECIPE1M (Salvador et al., 2017) and RECIPE1M+
(Marin et al., 2019), with improvements in data
quality. XiaChuFang consists of 1.5M recipes
from the Chinese recipe website xiachufang
.com, split into a training and evaluation set.
We use the training set and clean it by removing
emojis,4 special symbols, and empty fields. We
use the title, ingredients, and cooking steps fields
of the recipes from both corpora. The recipes in
RecipeNLG consist of nine ingredients and seven
steps on average, and in XiaChuFang, of seven in-
gredients and seven steps. As these two corpora are
independent and monolingual, discovering recipe
equivalents between them is not trivial.

3.2 Recipe Matching Rationale

Our recipe matching procedure relies on the fol-
lowing assumption: If two recipes have the same
title, they describe the same dish. This assumption
can be applied even in a monolingual context:
if two recipes are both titled ‘Veggie Lasagna’,
we can assume that they describe the same dish
(Lin et al., 2020; Donatelli et al., 2021). It is
permissible that there is some mismatch in the
set of ingredients, in the number and sequence
of steps, in the measurement units and exact
amounts, etc. The same assumption can be said
to hold for a recipe with a slightly different,
but semantically equivalent title, e.g., ‘Vegetable
Lasagna’. Similarly, if we take the Chinese recipe

title , we translate it to ‘Cabbage
tomato beef soup’ and we find a recipe with a very
similar title in English, e.g., ‘Cabbage beef soup’,
we can assume that these two recipes describe
the same dish. The degree to which this assump-
tion holds depends on the quality of translation
of recipe titles from one language into the other,
on the measure of similarity, and on how much
distance we allow for between two recipe titles
before they are no longer considered semantically
equivalent. These factors guide our approach to
building a silver-standard dataset for the task,
further described below, with the procedure also

3For license details, please refer to https://
recipenlg.cs.put.poznan.pl/dataset for RecipeNLG
and https://xiachufang.com/principle for
XiaChuFang.

4Despite their potential significance, we remove emojis
since they occur only in a few XiaChuFang recipes.
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Figure 2: Training and validation (left) and test
(right) silver-standard data compilation in the direc-
tion Chinese→English. The process is analogous for
the opposite direction.

# Recipes Mean # Tokens
Source Target Source Target

T
ra

in
&

V
al zh→en 44,5k 144,6k 159.1 140.2

en→zh 43,8k 120,7k 117.1 164.8

Si
lv

er
T

es
t zh→en 82 82 140.5 144.7

en→zh 52 52 122.7 153.3

G
ol

d
T

es
t zh→en 25 25 139.8 97.1

en→zh 41 41 115.7 176.5

Table 1: Statistics of (many-to-many) training,
(one-to-one) silver-standard and gold-standard
(human-written) evaluation sets for both direc-
tions. zh: Chinese. en: English. We count tokens
with whitespace tokenization for English and
jieba text segmentation for Chinese.

visualized in Figure 2, and the statistics of the
resulting datasets reported in Table 1.5

3.3 Silver-standard Data

Training and Validation Sets. We obtain train-
ing recipe pairs by (1) automatically translating
all recipe titles in the Chinese corpus to English
using a pre-trained machine translation model
(Tiedemann and Thottingal, 2020);6 (2) encod-
ing all English and translated Chinese titles
with the MPNet sentence encoder (Song et al.,
2020)7 to obtain two embedding spaces; and
(3) in each direction (English→Chinese and

5Prior to the procedure described below, we filter out
recipes longer than 512 subword tokens (arbitrarily using the
mT5 tokenizer; Xue et al., 2021) to facilitate using the neural
approaches described in §6.

6Helsinki-NLP/opus-mt-zh-en.
7sentence-transformers/all-mpnet-base-v2.

Chinese→English), retrieving up to k = 10 near-
est neighbors per source title from the target space,
and filtering out any neighbors that have a cosine
similarity against the source title lower than 0.85.8

The resulting sets, one in each direction, contain
multiple reference targets for each source recipe.
We further split the matches into training and
validation sets.

We recognize that the aforementioned proce-
dure can be susceptible to various sources of noise
due to the translation of titles, the encoder rep-
resentations, and the fixed similarity threshold.
We trust that the signal-to-noise ratio should still
be sufficient to enable model learning, but for
evaluation we need cleaner, more representative
data.

Test Set. We are able to eliminate one of
the aforementioned sources of noise by col-
lecting manual translations of Chinese recipe
titles into English and vice versa from websites
that explicitly mention the original dish name
when presenting an adapted version.9 This should

resolve issues like being translated lit-
erally by an automatic MT system (see §1). To
supplement these titles with a corresponding list
of ingredients and steps, we look up each title in
the recipe corpus of the corresponding language
and find the most similar title within, allowing
for different capitalization, punctuation and slight
differences in word choice and order, e.g., ‘Rice
with caramelized leeks’ and ‘Caramelized Leek
Rice’ (we manually inspect candidate matches to
ensure semantic equivalence).

The resulting test set closely resembles the
training data, thus allowing us to determine how
well the models we train do in the setting they
were trained for (mapping between automatically
matched recipes). In order to evaluate the models’
ability to perform the true task we want to solve,
i.e. adapting specific recipes from one culture to
another, we also construct a gold-standard test set.

8The similarity threshold for retrieval was chosen through
manual inspection of the quality of retrieved pairs.

9For Chinese→English we use Easy Chinese Recipes,
Recipes Archives, Asian Food Archives, Authentic
Chinese Recipes; for English→Chinese, Christine’s Recipes
and Wikipedia. We convert any traditional Chinese text to
simplified Chinese using zhconv to match our other data
sources.
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Figure 3: Screenshot from our human recipe adaptation
platform, demonstrating the English→Chinese direc-
tion, with the source recipe on the left. On the right,
participants should adapt the title, ingredients, and steps
based on their culinary knowledge and cultural habits.

3.4 Gold-standard Test Data

We include human-written adaptations in our
dataset as the ground truth for reference-based
evaluations (§5.1, §5.2) and as a point of compar-
ison in human evaluations (§5.3). We select 41
English recipes and 25 Chinese recipes manually
from the silver test sets to adapt each to the other
culture.

We develop an in-house web application
as our recipe writing platform, illustrated in
Figure 3. Our guidelines encourage participants
to adapt recipes based on their culinary knowl-
edge and cultural customs. We give participants
the option to skip a recipe if they are not able
to confidently adapt it. Six native Chinese speak-
ers proficient in English with experience in both
Chinese and Western cooking volunteered for the
task, spending 6.4 minutes on average to adapt a
recipe. Subsequently, three of the authors, fluent
in both English and Chinese, who have substantial
cooking experience, hand-corrected and improved
all adapted recipes, including filtering incomplete
source recipes, and correcting grammatical er-
rors, spelling mistakes, and non-executable recipe
expressions.

4 Corpus Analysis

Here, we perform a data-driven analysis to inves-
tigate how the cultural differences discussed in §2
are realized in English and Chinese recipe corpora
through the lens of distributional semantics.

4.1 Embedding Alignment
In this analysis, we train static monolingual word
embeddings on English and Chinese recipe data,
respectively, as a means of capturing their dis-
tributional properties. While the global geometry
of English and Chinese distributional spaces is
similar (Lample et al., 2018), we hypothesize that
cultural differences would lead to mismatches in
the local geometry of the two spaces (Søgaard
et al., 2018). We test this hypothesis through
cross-lingual embedding alignment, wherein the
English and Chinese embeddings are aligned
through a linear mapping to obtain a cross-lingual
embedding space, in which semantic equivalents
between the two languages should occupy a
similar position.

We train monolingual word embeddings using
Word2Vec based on a skipgram model by Mikolov
et al. (2013b) on the entire English and Chinese
corpora (§3.3),10 and align them using VecMap
(Artetxe et al., 2017) with weak supervision from
a seed dictionary of 15 culturally neutral word
pairs we manually curate.11

4.2 Analysis
We use the top 100 most common Chinese content
words in the XiaChuFang dataset (not included in
our seed dictionary) as query terms and retrieve
their five nearest neighbors in the English embed-
ding space, thus inducing a bilingual lexicon from
the cross-lingual embedding space (Mikolov et al.,
2013a). We manually evaluate this dictionary for
correct literal translations and report performance
in terms of Precision@5: The ratio of query words
for which the correct translation is among the
word’s five nearest neighbors in the target space
(Lample et al., 2018). The equation is defined as:

Precision@k =
N@k

N

whereN@k is the number of pairs with the correct
literal translation in top k nearest neighbors and
N is the total number of pairs.

The result is 68% (i.e., 68 of 100 query words
were correctly mapped), which indicates that (a)

10We train 300-dimensional embeddings for 5 epochs
using a minimum frequency count of 10, window size of
5, and 10 negative samples. Chinese text is tokenized with
jieba.

11Seed dictionary: spinach- , onion- , flour- ,

potatoes- , egg- , salt- , sugar- , apples- , mix-

, chop- , pour- , knife- , bowl- , pot- , chicken- .
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Table 2: Top-5 examples from bilingual lexicon
induction with underlined literal matches, mis-
matches, and matches that can be attributed to
cultural differences.

the global geometry of the two embedding spaces
is indeed similar and VecMap has successfully
aligned them using a seed lexicon of just 15 word
pairs; and that (b) in the majority of the cases
there is a 1:1 match between the Chinese and
English words. More interesting, however, are the
32 words without a literal match. Here we find
that 26 map onto what can be considered a cultural
equivalent, while the other six can be considered
accidental errors (due to lacking quality in the
monolingual embeddings and/or inaccuracies in
the alignment). We provide qualitative examples
in Table 2.

A successful word match can be exemplified

by ‘fruit’, which correctly aligns with its En-
glish equivalent ‘fruit’ among the top five nearest
neighbors. An instance of an inadvertent mis-

alignment, however, can be observed with
‘salad’. It is mapped closer to salad ingredients,
other side dishes, and particular salad types, rather
than precisely corresponding to the English term
‘salad’.

Certain instances of misalignment can be at-
tributed to cultural differences between English
and Chinese culinary practices. Take for instance

the ingredient ‘tofu’, a staple protein source
in Chinese cuisine, which aligns with ‘ham’,
‘sausage’, and ‘bacon’—protein-rich food items
prevalent in English-speaking cuisines. Similarly,

‘starch’ is matched with ‘flour’. In terms of
kitchen utensils, ‘chopsticks’ corresponds to
‘fork’, ‘spatula’, and ‘toothpick’, which perform
comparable functions in Western culinary settings.

Furthermore, the cooking technique ‘steam’
maps onto ‘bake’, a heat-processing method more
frequently used in English recipes. These exam-
ples underscore the cultural discrepancies between

English and Chinese recipes, emphasizing that
recipe adaptation goes beyond mere translation.

5 Cross-cultural Recipe Adaptation Task

We propose the task of cross-cultural recipe
adaptation, which extends the task of machine
translation with the requirement of divergence
from the source text semantics in order to ad-
dress cultural differences in the target culture.
While translation studies have long considered
culture (Bassnett, 2007), this is not yet explored
in machine translation. Our matched cross-lingual
corpora allow us to inform recipe adaptation by
both language and culture simultaneously. In §6
we adopt an end-to-end sequence-to-sequence ap-
proach to the task to establish a set of baselines
since this is the dominant approach in machine
translation.

The evaluation of cultural adaptation should
prioritize meaning preservation while allowing
divergences in meaning as long as they stem from
cross-cultural differences. This subjective crite-
rion is challenging to implement, as cross-cultural
differences, and by extension, the task itself, are
not well-defined. As common in text generation
tasks, we first adopt reference-based automatic
evaluation metrics (§5.1). Furthermore, to capture
structural similarity between references and pre-
dictions, we employ meaning representations for
evaluation (§5.2). Crucially, since reference-based
metrics are often unreliable for subjective tasks
(Reiter, 2018), we additionally perform human
evaluation (§5.3).

5.1 Surface-based Automatic Evaluation
We use various metrics to assess the similar-
ity between the generated and reference recipes.
We use three overlap-based metrics: BLEU
(Papineni et al., 2002), a precision-oriented metric
based on token n-gram overlap and commonly
used in machine translation evaluation, ChrF
(Popović, 2015), a character-level F-score met-
ric that does not depend on tokenization,12 and
ROUGE-L (Lin, 2004), a recall-oriented met-
ric based on longest common subsequences
and widely used in summarization evaluation;13

and one representation-based metric, BERTScore
12For BLEU and ChrF, we use SacreBLEU (Post, 2018)

version 2.3.1 with default parameter settings.
13For evaluation, we replace newlines with spaces in all

reference and generated recipes. We segment Chinese text to
words with jieba.
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(Zhang et al., 2019b), based on cosine similarity
of contextualized token embeddings14 and shown
to correlate better with human judgments than the
above metrics in various tasks.

5.2 Structure-aware Automatic Evaluation
Standard metrics may not effectively capture se-
mantic similarity between texts due to sensitivity
to surface form. To address this, we employ graph
representations, a favored choice for capturing the
flow of cooking actions, tool usage, and ingredient
transformations in recipes (Mori et al., 2014; Kiddon
et al., 2015; Jermsurawong and Habash, 2015;
Yamakata et al., 2016). These allow for an ex-
amination of structural differences influenced by
language and culture (Wein et al., 2022). Here, we
leverage Abstract Meaning Representation (AMR;
Banarescu et al., 2013), a general-purpose graph
meaning representation, to represent recipes.

To generate AMR graphs, we employ XAMR
(Cai et al., 2021),15 a state-of-the-art cross-lingual
AMR parser that can parse text from five different
languages into their corresponding AMR graphs.
It is based on a sequence-to-sequence model, uti-
lizing mBART (Liu et al., 2020a) for both encoder
and decoder initialization.

To assess the similarity between model-
generated and reference texts’ AMRs, we use
the Smatch metric (Cai and Knight, 2013), which
aligns both graphs and computes the F1 score that
measures normalized triple overlap.

5.3 Human Evaluation
While the above automatic metrics provide quan-
tifiable results, they inherently suffer from the
limitation of depending on a fixed reference set.
In reality, there exist multiple legitimate ways to
adapt a recipe. To address this, we propose four
criteria for human evaluation, which we conduct
on the gold-standard test set.

We have evaluators assess the outputs from
all methods, including the human-written adap-
tations, on four dimensions key to the cultural
adaptation of recipes: (1) Grammar—The gen-
erated recipe is grammatically sound and fluent;
(2) Consistency—The output aligns with the for-
mat of a fully executable recipe encompassing
coherent title, ingredients, and cooking steps; (3)

14We rely on bert-base-uncased for representing
English text and bert-base-chinese for Chinese text.

15We use the trained AMR parser model from https://
github.com/jcyk/XAMR.

Preservation—The adapted recipe largely retains
the essence of the source recipe, producing a
dish akin to the original; (4) Cultural Appro-
priateness—The generated recipe integrates well
with the target cooking culture, aligning with the
evaluator’s culinary knowledge and recipe style
expectations. Evaluators mark each dimension on
a 7-point Likert scale (Likert, 1932), where a
higher score indicates superior performance. A
single evaluator rates each recipe pair separately
and independently.

Crowdsourcing Evaluation. We recruit eval-
uators on Prolific16 and deploy our evaluation
platform on the same in-house web application
used for human recipe writing (§3.4). To ensure
the evaluation validity, we require participants to
be native speakers of the target language and pro-
ficient in the source language for each adaptation
direction. Additionally, participants must success-
fully undergo a comprehension check, guided by
our evaluation tutorial. Each evaluator is required
to evaluate two example recipes for the compre-
hension check and three recipes for our tasks. This
rigorous screening process secures the reliability
and accuracy of the evaluations conducted for our
study.

6 Experiments

Here we describe our recipe adaptation exper-
iments and results, using the CulturalRecipes
dataset introduced in §3. Due to their success
in machine translation, we experiment with three
end-to-end sequence-to-sequence classes of mod-
els to adapt recipes across cultures: (finetuned)
machine translation models, finetuned multilin-
gual encoder-decoder models, and prompt-based
(zero-shot) multilingual language modeling. Ad-
ditionally, we evaluate the automatic matching
approach used in our dataset construction. These
will serve as baselines for future work on this task.

6.1 Experimental Setup

We use our silver training set for finetun-
ing in each direction and evaluate on both
the silver and gold test sets. We represent a
recipe as a concatenation of title, ingredients,
and steps, each section prefixed with a heading

16https://www.prolific.co/.
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(‘Title:’, ‘Ingredients:’ and ‘Steps:’,
for both English and Chinese recipes).17

Automatic Matching. Since the source recipes
used in the creation of the gold-standard test
set are a subsample of the ones found in the
silver-standard test set, we have matches for
them in the target language retrieved based
on title similarity (see §3.3 for a reminder of
how the silver-standard test set was constructed).
We evaluate these retrieved matches against the
gold-standard human-written references, to de-
termine whether title-based retrieval is a viable
method for recipe adaptation.

Machine Translation. Recognizing the intrin-
sic translation component of recipe adaptation
between languages, we leverage pre-trained ma-
chine translation systems in our experiments. We
experiment with opus-mt models (Tiedemann
and Thottingal, 2020),18 which show a strong per-
formance in machine translation. We first evaluate
them in zero-shot mode (MT-zs), that is, purely as
machine translation models, and additionally after
finetuning using our training and validation sets
(MT-ft).

Multilingual Language Modeling. We fine-
tune multilingual encoder-decoder pre-trained
language models on the CulturalRecipes dataset.
Such models perform well on translation tasks
(Tang et al., 2020) and are generally trained on
abundant monolingual as well as parallel data,
so they could prove more suitable for the recipe
domain and for our ultimate goal, recipe adapta-
tion. We choose mT5-base (Xue et al., 2021),19

a multilingual multitask text-to-text transformer
pre-trained on a Common Crawl-based dataset
containing 101 languages, and mBART50 (Tang
et al., 2020),20 a variant of mBART (Liu
et al., 2020b) based on a multilingual autoencoder
finetuned for machine translation.

Prompting LLMs. Building on the remark-
able performance of Multilingual LLMs in
zero-shot translation without additional finetun-
ing or in-context learning (Wang et al., 2021),
we explore their recipe translation and adaptation
capabilities.

17We treat these headings as language-invariant meta-text,
which is removed in post-processing prior to evaluation.

18Helsinki-NLP/opus-mt-{zh-en/en-zh}.
19google/mt5-base.
20facebook/mbart-large-50.

We use BLOOM (Scao et al., 2022), an
LLM trained on the multilingual ROOTS cor-
pus (Laurençon et al., 2022).21 Using the ROOTS
search tool (Piktus et al., 2023), we find it does
not contain our recipe corpora. As BLOOM is an
autoregressive language model trained to continue
text, we prompt as follows for English→Chinese:

[English recipe] , :

and for Chinese→English:

[Chinese recipe] Recipe in English,

adapted to an English-speaking audience:

Further, we experiment with GPT-4 (OpenAI,
2023),22 and ChatGLM2 (Zeng et al., 2022; Du
et al., 2022),23 state-of-the-art multilingual and
Chinese instruction-tuned LLMs (Ouyang et al.,
2022). While they have likely been trained on
both our recipe corpora (§3.1), they do not benefit
from our matching procedure (§3.3) or our newly
written human-adapted recipes (§3.4). We prompt
them as follows for English→Chinese:

Convert the provided English recipe into

a Chinese recipe so that it fits within

Chinese cooking culture, is consistent

with Chinese cooking knowledge, and meets

a Chinese recipe’s style. [English recipe]

and for Chinese→English:

Convert the provided Chinese recipe into

an English recipe so that it fits within

Western cooking culture, is consistent

with Western cooking knowledge, and meets

a Western recipe’s style. [Chinese recipe]

Technical Details. For finetuning, we use a
batch size of 64 for MT-ft and 32 for mT5-base and
mBART50; and a learning rate of 1e-4.24 We set
the maximum sequence length to 512 tokens and
finetune models for 30 epochs with early stopping

21bigscience/bloom-7b1, a 7B-parameter model
with a 2k-token length limit. Preliminary experiments
showed poor results with BLOOMZ-7B, mT0-xxl-mt and
FLAN-T5-xxl (Chung et al., 2022), which are finetuned
on multitask multilingual prompts (Muennighoff et al.,
2022)—they are biased towards short outputs, prevalent in
their training tasks.

22gpt-4-0314 via the OpenAI API (8k-token length
limit).

23Accessed via FastChat (ChatGLM2-6B).
24Selected among the learning rates {1e-5, 1e-4} for

MT-ft, {5e-5, 1e-4} for mT5-base and mBART50; and batch
sizes {64, 128} for MT-ft and {32, 64} for mT5-base and
mBART50.
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Method BLEU ChrF R-L B-Sc Smatch # Tok.
Chinese → English

MT-zs 6.8 28.7 12.0 54.0 23.7 82.4
MT-ft 68.9 43.8 22.3 64.6 33.1 98.7
mT5 60.0 37.2 19.5 62.9 31.0 85.2
mBART50 44.5 36.0 21.0 63.4 32.1 89.9

English → Chinese
MT-zs 2.6 9.3 49.7 62.4 20.6 110.6
MT-ft 38.5 37.1 54.5 71.4 26.8 91.4
mT5 39.2 36.3 54.9 71.9 27.0 82.1
mBART50 30.5 32.9 56.2 71.1 25.5 103.2

Table 3: Automated evaluation results on the
silver test sets using reference-based metrics:
SacreBLEU (BLEU), ChrF, R-L (ROUGE), B-Sc
(BERTScore)—all token-based, and Smatch—a
structure-aware metric assessing AMR graph sim-
ilarity. Higher scores indicate better performance
on all metrics.

after 5 epochs of no improvement in BLEU on
the silver validation set. We use two 40GB A100
GPUs for finetuning mT5 and mBART50 and a
single one for finetuning MT-ft and for prompting
BLOOM. We use the default settings for GPT-4.
For ChatGLM2 we set the temperature to 0.7 and
the maximum sequence length to 1024 tokens. For
generation with all other models, we use a beam of
size 3 and a repetition penalty of 1.2; we prevent
repeated occurrences of any n-gram of length ≥ 5.

6.2 Results

Automatic Evaluation on the Silver Test Sets.
As presented in Table 3, we restrict our evaluation
on the silver-standard test set to finetuned meth-
ods,25 as a sanity check for their quality under
conditions resembling their training setting. We
discern that finetuning the MT model considerably
improves its performance across all metrics and in
both adaptation directions. In Chinese→English,
MT-zs emerges as the optimal foundation for
finetuning, outperforming the other two meth-
ods, mT5, and mBART50, across all metrics.
However, English→Chinese displays mixed out-
comes, with diverse models excelling in different
criteria. Structure-aware automatic evaluation re-
sults generally match other automatic results:
MT-ft performs best on Chinese→English, while
mT5-base performs best on English→Chinese.

25We include MT-zs as a reference point to observe the
gains from finetuning this model to obtain MT-ft.

Method BLEU ChrF R-L B-Sc Smatch # Tok.
Chinese → English

MT-zs† 5.3 29.1 22.4 59.4 30.6 77.5
MT-ft 28.0 42.5 19.6 59.9 28.1 103.6
mT5 14.0 31.6 17.8 59.5 25.5 87.4
mBART50 10.2 33.9 19.7 60.5 27.3 93.2
BLOOM† 22.3 48.3 29.5 62.5 33.7 110.0
ChatGLM2 18.3 41.8 26.8 61.9 28.8 174.3
GPT-4† 28.0 50.3 30.8 66.5 33.4 216.6
Retrieval† 16.8 37.8 20.5 61.7 26.6 150.7

English → Chinese
MT-zs† 10.6 6.9 60.8 69.8 29.4 108.0
MT-ft 13.6 28.3 53.8 70.5 24.5 88.5
mT5 16.6 28.1 53.4 70.7 25.3 78.6
mBART50 11.8 25.4 54.8 69.7 23.5 100.3
BLOOM† 20.0 11.5 50.8 66.4 28.6 154.7
ChatGLM2 22.4 11.0 54.3 75.2 28.8 153.2
GPT-4† 21.1 21.9 61.0 77.8 29.6 213.3
Retrieval† 32.8 33.6 52.9 68.4 25.0 130.3

Table 4: Automatic reference-based evaluation
results on the gold-standard human test sets.
† indicates methods without training for the task
(zero-shot).

Automatic Evaluation on the Gold Test Sets.
Moving to the gold-standard test set results in
Table 4, we gain further intriguing insights. The
significant performance gap between MT-zs and
MT-ft reemphasizes that the recipe pairs in our
dataset are not merely translations of each other.
Moreover, it underscores the systematic patterns
in the matched pairs within our training corpus
(reflecting the cultural adaptation of recipes) can
indeed be learned via finetuning on retrieved
recipes. In this scenario, the LLMs BLOOM,
ChatGLM2, and GPT-4 outperform the finetuned
methods. Particularly in the Chinese→English
direction, LLMs consistently match or surpass
the performance of the next best finetuned ap-
proach. Notably, a comparison of the average
length of model predictions shows a tendency of
LLMs to produce longer predictions than their
counterparts, with GPT-4 generating double the
number of tokens compared to other methods.
Interestingly, the retrieval method scores are com-
parable to the finetuned models in both directions
and sometimes even surpass them. Despite this,
LLMs continue to prove more effective overall.
Smatch scores show performance differences con-
sistent with BERTScore across models for both
silver and gold-standard test sets, with the excep-
tion that BLOOM slightly outperforms GPT-4 in
Chinese→English.
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Method GRA CON PRE CUL
Chinese → English (n = 25)

MT-zs 2.6 ±1.5 2.4 ±1.7 2.3 ±1.4 2.7 ±1.6

MT-ft 4.5 ±1.8 3.7 ±2.0 3.0 ±2.1 4.3 ±2.1

mT5 4.1 ±2.1 3.8 ±2.1 3.2 ±2.2 3.7 ±2.2

BLOOM 3.3 ±2.0 3.3 ±2.0 3.4 ±2.0 2.8 ±1.8

ChatGLM2 4.1 ±2.4 4.3 ±2.2 4.6 ±2.1 4.0 ±2.3

GPT-4 6.0 ±1.2 6.1 ±1.3 5.9 ±1.0 6.0 ±1.2

Human 4.2 ±2.1 4.4 ±1.9 4.5 ±1.9 4.6 ±1.9

Retrieval 5.1 ±1.7 4.9 ±2.0 4.3 ±2.3 3.8 ±2.0

English → Chinese (n = 41)
MT-zs 2.3 ±1.6 2.7 ±2.0 3.5 ±2.2 2.3 ±1.7

MT-ft 4.8 ±2.2 3.1 ±2.2 2.5 ±1.9 3.2 ±2.0

mT5 4.3 ±2.0 3.4 ±2.1 2.8 ±2.0 3.5 ±1.9

BLOOM 3.8 ±2.1 4.2 ±2.1 4.6 ±1.9 3.0 ±1.6

ChatGLM2 5.4 ±1.7 5.3 ±1.7 5.7 ±1.6 4.1 ±2.3

GPT-4 5.3 ±2.0 5.1 ±2.0 5.2 ±1.9 4.4 ±2.0

Human 5.8 ±1.1 5.1 ±1.9 5.5 ±1.6 4.3 ±1.8

Retrieval 4.5 ±1.9 3.9 ±2.0 3.3 ±2.0 3.5 ±1.7

Table 5: Human evaluation results on the gold-
standard test sets: average and standard deviation
across recipes for each method and metric, rang-
ing from 1 to 7. Note that different participants
manually adapted (‘‘Human’’) and evaluated the
recipes.

Human Evaluation. Table 5 showcases the
results of human evaluation, with abbrevia-
tions GRA, CON, PRE, and CUL representing
Grammar, Consistency, Preservation, and Cul-
tural Appropriateness, respectively.26 GPT-4
excels significantly across all metrics in the
Chinese→English direction, even surpassing ex-
plicit human adaptation. Recipes retrieved from
popular websites are a close second in GRA and
CON, reflecting their high quality. However, the
targeted adaptations written by humans who were
explicitly instructed to adapt the source recipe
to the target culture, perform better in PRE and
CUL. For English→Chinese, GPT-4 remains the
top performer only in CUL, while mT5 parallels
the retrieved recipes in this metric. Notably, Chat-
GLM2 surpasses even human writers in CON and
PRE, but not in GRA.

Correlation of Automatic Metrics with Hu-
mans. To determine the reliability of automatic
metrics in assessing the quality of recipe adapta-
tions, we examine their correlation with human

26We exclude mBART50 due to its architectural and
performance similarity to mT5.

BLEU ChrF R-L B-Sc Smatch
Chinese → English

GRA 0.135 0.250* 0.135 0.257* 0.021

COR 0.151 0.268* 0.180 0.294* 0.065

PRE 0.174 0.312* 0.261* 0.260* 0.176

CUL 0.120 0.216* 0.189 0.237* 0.071

avg. 0.153 0.255* 0.202* 0.277* 0.079

English → Chinese
GRA 0.286* 0.353* 0.201* 0.278* 0.070

COR 0.227* 0.232* 0.183* 0.217* 0.116

PRE 0.268* 0.180* 0.218* 0.247* 0.124

CUL 0.216* 0.268* 0.155 0.219* 0.081

avg. 0.290* 0.295* 0.221* 0.272* 0.117

Table 6: Kendall correlation of human evalua-
tion results with automatic metrics. Statistically
significant correlations are marked with *, with
a confidence level of α = 0.05 before adjust-
ing for multiple comparisons using the Bonferroni
correction (Bonferroni, 1936).

evaluations across the four metrics and their av-
erage. We use Kendall correlation, which is the
official meta-evaluation metric used by WMT22
metric shared task (Freitag et al., 2022).

As illustrated in Table 6, all cases exhibit a
positive correlation, albeit with varying strengths
from weak to moderate, and with inconsistent per-
formance between the two adaptation directions.
For Chinese→English, ChrF and BERTScore in-
dicate the strongest correlation with the average
of all criteria. BERTScore further stands out
by demonstrating the highest correlation with
each individual criterion. On the other hand, for
English→Chinese, BLEU performs comparably
well, thus highlighting that the effectiveness of
these metrics can vary based on the direction
of adaptation. ROUGE-L, however, displays a
significantly lower correlation, suggesting its lim-
itations in evaluating recipe adaptations. Finally,
we observe that Smatch is not significantly corre-
lated with human judgments, possibly due to noise
introduced by parsing errors.27

CUL presents the weakest correlation with most
automatic metrics, underscoring the current limi-
tations of automated evaluations in assessing the

27Inspecting XAMR outputs, we notice recurrent errors in
both languages, likely attributable to the unique recipe genre.
Common culinary actions are often incorrectly represented
or overlooked: in English, actions like ‘oil’ or ‘grease’ are
treated as objects. Similarly in Chinese, many actions are
often omitted or associated with unrelated concepts.
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cultural alignment of recipes, and highlighting the
essential role of human evaluators. Notably, cor-
relations for English→Chinese generally exhibit
greater strength than Chinese→English. This dis-
crepancy is likely due to the variation in sample
sizes between the two directions.

7 Analysis and Discussion

Our findings reinforce previous research as-
serting the cultural bias of LLMs—specifically
GPT-4—towards Western, English-speaking,
U.S. culture, as exemplified in the food domain
(Cao et al., 2023; Naous et al., 2023; Keleg
and Magdy, 2023; Palta and Rudinger, 2023).
However, our results also offer a more nuanced
perspective. While GPT-4 demonstrates an
exceptional ability to adapt to Chinese cuisine,
its linguistic and semantic capabilities are out-
performed by ChatGLM2 in English→Chinese.
To delve deeper into these intriguing results,
this section examines the strategies these models
employ in the adaptation task.

Quantitative Analysis. Referring back to the
analysis from §4, we choose a subset of six words
and examine how they are handled by four models
(MT-zs, MT-ft, and mT5, and GPT-4). Specifi-
cally, we measure the rate of literal translation
of these concepts by each model, in the context
of the recipes from the silver-standard test set of
CulturalRecipes.28 For instance, in adapting from
English to Chinese, we identify baking as an
English-specific concept. We count the appear-
ances of related terms such as ‘bake’, ‘roast’,
‘broil’, and ‘oven’ in English source recipes, de-
noted as csource. For each instance, we tally the

occurrences of the direct translation, , in the
corresponding Chinese recipes, denoted as ctarget,
from either model predictions or retrieved refer-
ences. We calculate the literal translation rate
as ctarget

csource
. Figure 4 visualizes the results for

five culturally specific concepts and a universally
applicable concept, ‘oil’.

We include ‘oil’ as a sanity check and indeed
see that the literal rate of translation is high in both
the references and in all model predictions.

The references show a low to medium rate of
literal translations for the remaining five concepts,
confirming their cultural specificity. MT-zs often

28We use the silver-standard test set rather than the
gold-standard test set for its comparatively larger size.

Figure 4: Analysis of the translation of specific concepts
by the different models on the silver-standard test data.
Ref = retrieved reference. In brackets, we show the
number of occurrences of each concept.

translates these concepts literally, as could be ex-
pected from a machine translation model designed
for near-literal translation—the difference is es-
pecially noticeable for the concepts ‘steam’ and
‘cheese’. The finetuned models MT-ft and mT5,
on the other hand, learn to avoid literal transla-
tion, presumably opting for culturally appropriate
alternatives instead—for ‘steam’, for example,
none of the 12 occurrences of the concept in the
source Chinese recipe are literally translated in the
predictions of MT-ft and mT5.

An interesting trend emerges in GPT-4 predic-
tions, where literal translations are found at a high
rate for all concepts, often close to 100%. While
this seems counter-intuitive considering the goal
of adapting the culturally specific ingredients and
cooking methods, in the next section we find that
GPT-4 employs a slightly different strategy than
just substituting these ingredients and methods.

Qualitative Analysis. We present a qualitative
analysis highlighting the adaptation strategies
adopted by models, specifically MT-zs, MT-ft,
and GPT-4. The analysis centers on the Chinese
recipe shown in Figure 1, with model predictions
shown in Table 7. The translation from MT-zs
directly incorporates Chinese ingredients not com-
mon in English recipes, accompanied by numerous
spelling and grammatical errors. The prevalence
of errors can be attributed to a dearth of recipe
domain representations in the machine translation
training data of MT-zs. In contrast, MT-ft of-
fers a notably improved recipe rendition, albeit a
wholly different red bean soup from the source
recipe. Although this results in minimal content
retention, it can be viewed as an extreme cul-
tural adaptation, given the infrequent appearance
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Table 7: Case study: English adaptations of the
Chinese recipe from Figure 1, with manually high-
lighted

��������
(spelling,

���������
grammar

���
or

����������
semantic)

������
errors,

adaptations to cultural differences, and failures to
account for such.

of sweet red bean soup in Western cuisine. How-
ever, MT-ft sporadically manifests consistency
errors, exemplified in this case by duplicating
beans in the ingredient list and parsley in the
steps. These findings confirm that the generation
of coherent recipes continues to be a challenging
endeavor for sequence-to-sequence models, cor-
roborating the findings of prior work (Li et al.,
2022).29 GPT-4, on the other hand, generates a
recipe more closely aligned with the source than
the human-generated reference (refer to Figure 1).
This model also incorporates thoughtful cultural
adaptations: It quantifies ingredient amounts, un-

like the source which vaguely indicates ‘‘ ’’
(moderate amount), and it provides alternative
names or substitutions for uniquely Chinese ingre-
dients. The recipe instructions retain the crucial
details from the source recipe, whilst maintain-
ing fluency and appropriateness for Western-style
recipes.

8 Related Work

Cultural Adaptation of Text. Cultural adapta-
tion overlaps with style transfer, where the goal

29Similar behavior is observed in the other sequence-to-
sequence models trained on our training set and in the
automatically matched (retrieved) recipe.

is to change the style of text while preserving
the meaning (Jin et al., 2022). In addition to
style, cultural adaptation also concerns common
ground, values and topics of interest (Hershcovich
et al., 2022). Particularly in culture-loaded tasks,
it becomes crucial to consider cultural differences
(Zhou et al., 2023a,b). While semantic diver-
gences are usually treated as errors in machine
translation (Briakou and Carpuat, 2021), cross-
cultural translation often requires adaptations that
change the meaning, e.g., by adapting entities
(Peskov et al., 2021) or by adding explanations
(Kementchedjhieva et al., 2020). We share the
motivation of this line of work, but for the first
time focus on recipes, where cultural adaptation is
grounded in clear goals (accessibility to the cook
and quality of the resulting dish).

Recipe Generation. van Erp et al. (2021)
outline potential cross-disciplinary approaches in-
volving NLP and food science, claiming that the
analysis of digital recipes is a promising but chal-
lenging task. Marin et al. (2019) introduce the
Recipe1M dataset (see §3) and Lee et al. (2020)
finetune GPT-2 (Radford et al., 2019) on it to cre-
ate a large English language model, RecipeGPT,
capable of generating cooking instructions from
titles and ingredients or ingredients from instruc-
tions and titles. Majumder et al. (2019) introduce a
dataset of 180K English recipes from the website
Food.com and a neural model to generate recipes
according to user preferences inferred from his-
torical interactions. Contrary to these, we focus on
recipe adaptation, where generation is conditioned
on a source recipe.

Recipe Adaptation. Donatelli et al. (2021)
align recipes for the same dish on the action level
using recipe graphs (Yamakata et al., 2016), aim-
ing to adapt recipes to users of different levels of
expertise. Morales-Garzón et al. (2021a,b, 2022)
propose an unsupervised method to adapt recipes
according to dietary preferences by proposing in-
gredient substitutions using domain-specific word
and sentence embeddings. However, they do not
modify the recipe steps beyond simple ingredient
substitution. Li et al. (2022) build a dataset of
83K automatically-matched recipe pairs for the
task of editing recipes to satisfy dietary restric-
tions. They train a supervised model to perform
controlled generation, outperforming RecipeGPT.

91



They identify the remaining challenge of ‘‘con-
trollable recipe editing using more subtle traits
such as cuisines (e.g., making a Chinese version
of meatloaf)’’, which we address here. Antognini
et al. (2023), in contrast, propose addressing
the same task without paired data, utilizing an
unsupervised critiquing module and also outper-
forming RecipeGPT in both automatic and human
evaluation. Liu et al. (2022) present a dataset
of 1.5M Chinese recipes and evaluate composi-
tional generalization in neural models in the task
of counterfactual generation of recipes with sub-
stituted ingredients. They find recipe adaptation
to be a challenging task: language models often
generate incoherent recipes or fail to satisfy the
stated constraints. In contrast, we find that after
finetuning pre-trained models on our dataset, the
models succeed in the task of cultural adaptation.

9 Conclusion and Future Work

In this work, we studied the task of adapting
cooking recipes across cultures. We identi-
fied dimensions relevant to this task through
a data-driven analysis, including differences in
ingredients, tools, methods, and measurement
units. We introduced CulturalRecipes, a dataset
of paired Chinese and English recipes, and eval-
uated various adaptation methods. Through our
experiments and analysis, we show that models
can learn to consider cultural aspects, including
style, when adapting recipes across cultures, with
some challenges remaining in the level of detail
and consistency between the different components
of a recipe.

We envision our dataset and baselines will
be useful for both downstream applications and
further studies of cultural adaptation within and
beyond NLP. Automatically adapting recipes
from one culture to another could facilitate
cross-cultural cross-pollination and broaden the
horizons of potential users, serving as a bridge
between people through food, and being useful
to both novice and experienced cooks. Further-
more, our dataset is a challenging benchmark for
language models: Besides the complex compo-
sitional generalization ability required for recipe
adaptation (Liu et al., 2022), it assesses the abil-
ity of multilingual language models to adapt
to target cultural characteristics, and to con-
struct well-formed and faithful recipes. Lastly,
our cross-cultural comparative analysis can be

extended to sociological and anthropological
research.

Future Work. As acknowledged in §2, the
cultural categories we assume are highly sim-
plistic. Future work will expand our datasets
to treat finer-grained differences, as well as
broaden it to more languages and cultures. It
will further investigate the factors that impact
recipe adaptation and develop more sophisticated
modeling approaches to consider them, beyond
the sequence-to-sequence approaches we experi-
mented with here. Finally, our dataset can provide
a starting point for related tasks, including recipe
classification and retrieval.

Cultural categorization can be a sensitive topic
so we have been careful to approach it with re-
spect for the communities involved; we encourage
future research in the area to maintain this prac-
tice. We hope that our research can contribute to a
greater understanding and appreciation of diverse
cultural traditions and practices related to food
and cooking.
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92



Flavor network and the principles of food pair-
ing. Scientific Reports, 1(1):196. https://
doi.org/10.1038/srep00196, PubMed:
22355711

Ken Albala. 2012. Three World Cuisines: Italian,
Mexican, Chinese. Rowman Altamira.

Diego Antognini, Shuyang Li, Boi Faltings,
and Julian McAuley. 2023. Assistive recipe
editing through critiquing. In Proceedings of
the 17th Conference of the European Chap-
ter of the Association for Computational
Linguistics, pages 375–384, Dubrovnik, Croa-
tia. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2023.eacl-main.28

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2017. Learning bilingual word embeddings
with (almost) no bilingual data. In Proceedings
of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1:
Long Papers), pages 451–462. https://doi
.org/10.18653/v1/P17-1042

Laura Banarescu, Claire Bonial, Shu Cai,
Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn,
Martha Palmer, and Nathan Schneider. 2013.
Abstract meaning representation for sembank-
ing. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with
Discourse, pages 178–186.

Susan Bassnett. 2007. Culture and transla-
tion. A Companion to Translation Stud-
ies, pages 13–23. https://doi.org/10
.21832/9781853599583-003
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Maja Popović. 2015. chrF: character n-gram
F-score for automatic MT evaluation. In
Proceedings of the Tenth Workshop on Sta-
tistical Machine Translation, pages 392–395,
Lisbon, Portugal. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/W15-3049

96

https://doi.org/10.18653/v1/2021.eacl-srw.20
https://doi.org/10.18653/v1/2021.eacl-srw.20
https://doi.org/10.1007/978-3-031-08974-9_24
https://doi.org/10.1007/978-3-031-08974-9_24
https://doi.org/10.1109/ACCESS.2021.3058559
https://doi.org/10.1109/ACCESS.2021.3058559
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2023.acl-long.891
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2023.findings-acl.631
https://doi.org/10.18653/v1/2023.findings-acl.631
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2021.findings-emnlp.315
https://doi.org/10.18653/v1/2021.findings-emnlp.315
https://doi.org/10.18653/v1/2023.acl-demo.29
https://doi.org/10.18653/v1/2023.acl-demo.29
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049


Matt Post. 2018. A call for clarity in re-
porting BLEU scores. In Proceedings of
the Third Conference on Machine Trans-
lation: Research Papers, pages 186–191,
Brussels, Belgium. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/W18-6319

Alec Radford, Jeff Wu, Rewon Child, David
Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language models are unsupervised multitask
learners.

Rozane Rodrigues Rebechi and Márcia Moura da
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