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Abstract
Recent advances in LLMs have led to an
abundance of evaluation benchmarks, which
typically rely on a single instruction template
per task. We create a large-scale collection of
instruction paraphrases and comprehensively
analyze the brittleness introduced by single-
prompt evaluations across 6.5M instances, in-
volving 20 different LLMs and 39 tasks from
3 benchmarks. We find that different instruc-
tion templates lead to very different perfor-
mance, both absolute and relative. Instead, we
propose a set of diverse metrics on multiple
instruction paraphrases, specifically tailored
for different use cases (e.g., LLM vs. down-
stream development), ensuring a more reliable
and meaningful assessment of LLM capabil-
ities. We show that our metrics provide new
insights into the strengths and limitations of
current LLMs.

1 Introduction

Recent years have seen an explosion of large
language models (LLMs), which generalize to
unseen tasks via natural language instructions.
Various LLM evaluation benchmarks, such as
BIG-bench and HELM, use a single instruction
template per task, evaluating all models against
it (Srivastava et al., 2023; Liang et al., 2023).
However, there could be a myriad of ways to
phrase an instruction template for a given task;
see Figure 1 for examples of different templates
for the task of recognizing homophones. Natu-
rally, LLM performance depends on the chosen
template.

We explore the question of robustly comparing
different models on a given task. We first create
a dataset of paraphrased instructions, employing
three automatic paraphrasing methods based on

recent techniques such as chain-of-thought. We
manually verify and filter a large collection of
more than 175 paraphrases for different tasks (5K
instruction paraphrases in total), which we make
publicly available for future research.1

Next, we use our dataset to perform a large-scale
statistical evaluation of over 6.5M instances, in-
volving 20 different LLMs and 39 tasks from 3
benchmarks. We find that models perform very
differently on different instruction paraphrases.
For example, Figure 1 shows four models eval-
uated on four semantically equivalent prompts,
with both absolute and relative performance vary-
ing widely; one can even observe cases where
the same model performs the best on one instruc-
tion and the worst on a semantically equivalent
instruction (e.g., GPT-3.5-Turbo on P1 vs. P4).
Subsequently, we argue that very little can be
said on either absolute or relative performance
based on single-instruction evaluation. This may
also partially explain why some models seem less
accurate in practice than their formal evaluation
suggests.

Note that while the claim that evaluating against
a single instruction template leads to brittle re-
sults is not surprising per se, to the best of our
knowledge it has never been subjected to rigorous
empirical testing before.

To address the limitations of single-instruction
evaluation, we propose to take a step back and
consider multi-prompt LLM evaluation — a set of
metrics which measure aggregated performance
over a set of instruction template paraphrases.

We argue that different use cases should en-
tail different evaluation metrics. For example,
LLM developers may be interested in measuring

1github.com/SLAB-NLP/Multi-Prompt-LLM-Evaluation.
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Figure 1: Evaluation of different OpenAI models on
the homophones task from LMENTRY over four para-
phrases. Each cluster of columns corresponds to a dis-
tinct paraphrased instruction template (see respective
texts below; words in bold indicate an instantiation).
Despite all instructions being semantically equivalent,
both absolute performance and relative ranking vary
widely.

the robustness of performance across multiple
instruction templates. In contrast, developers aim-
ing to integrate an LLM into a specific down-
stream task may be interested in comparing models
according to their corresponding top-performing
instruction.

We evaluate 20 LLMs with our metrics, find-
ing that their absolute and relative performance
differ from results obtained with the benchmarks’
original instructions. We demonstrate that dif-
ferent models excel in different metrics: For in-
stance, in the LMENTRY benchmark, LLaMA-based
models are comparable to T5-based models when
looking at top-performing instructions, but lag
behind when average performance is considered,
due to poor performance on a large number of
paraphrases. We also show that our automatic
paraphrasing method is effective, and there is no
need to manually verify the paraphrases.

Our results suggest that future work should use
multi-prompt LLM evaluations and choose a met-
ric for aggregating the results according to the ex-
trinsic needs of the evaluators. We hope that our
work will help spur more consistency and com-
parability in LLM evaluation, which is strongly
tied to real-world usage of LLMs.

2 Background and Definitions

Below we survey how generalization to a new
task format is evaluated and compared between
LLMs, finding that the common practice involves
a single (or very few) task instruction templates.
In the rest of the paper, we will argue that such
practice leads to brittle, unreliable results.

Task Instruction Templates. Following Mishra
et al. (2022) and Chung et al. (2024), we sepa-
rate between task instruction, samples, and input-
output exemplars which may be provided during
in-context learning. We define an instruction tem-
plate for a given task as a string with placehold-
ers where the input samples are to be inserted. As
seen in Figure 1, the same task can be described
using different task instruction templates.

Evaluation Benchmarks. Several recent efforts
aim to standardize LLM evaluation. Notable ex-
amples include MMLU (Hendrycks et al., 2020),
BIG-bench (Srivastava et al., 2023; Suzgun et al.,
2023), and HELM (Liang et al., 2023). In all of
these, each task has a single instruction template,
against which all models are evaluated. Another
benchmark, LMENTRY (Efrat et al., 2023), reports
models’ average performance on three instruction
templates. The instruction templates are provided
with these benchmarks, allowing new models to
be tested against the same template.

We note that many notable works do not dis-
close the instruction templates used for evalua-
tion (e.g., LLaMA [Touvron et al., 2023], PALM
[Chowdhery et al., 2023], GPT-4 [Achiam et al.,
2023], Gemini [Team et al., 2023]). While there
are reasons to withhold instructions (e.g., avoid
potential leakage), this practice exacerbates the
challenge of meaningful comparative evaluation.

Prompt Robustness. Related to this study is
a line of work measuring LLMs’ robustness to
prompt (or instruction template) modifications.
Unlike our work, these typically aim to measure
model performance against adversarial paraphras-
ing approaches. PromptBench (Zhu et al., 2023)
measures performance on erroneous instructions
(e.g., instructions written by non-native English
speakers). They then compare performance on
perturbed instructions vs. the benchmark’s orig-
inal instructions, which are considered the gold-
standard reference. Gu et al. (2023) examined a
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single LLM’s robustness under various instruc-
tion perturbations, including word-, sentence-, and
instruction-level changes. Sun et al. (2023) show
that LLMs perform better on instructions they have
seen in training compared to manual paraphrases.
We later incorporate their manual paraphrases in
our evaluation of BIG-bench Lite.

In contrast to works on prompt robustness,
we analyze the impact of the choice of prompt in
terms of both absolute and relative model per-
formance, covering a wide range of models and
several different metrics.

3 Experimental Setup

3.1 Tasks

We evaluate 39 diverse tasks from three evalua-
tion benchmarks, as itemized below.

10 Tasks from LMENTRY (Efrat et al., 2023).
LMENTRY consists of simple linguistic tasks (e.g.,
‘‘write a word that doesn’t contain the letter l’’),
each accompanied by three associated instruction
templates. The tasks are designed to capture ex-
plainable and controllable linguistic phenomena.
We choose the 10 tasks that received the low-
est scores in the original paper, as these more
challenging tasks are likely to better highlight the
differences between models.

14 Tasks from BIG-bench Lite (BBL;
Srivastava et al., 2023). These cover multiple
knowledge domains, sampled from the larger BIG-
Bench benchmark (Srivastava et al., 2023). We
focus on a set of 14 tasks studied recently by Sun
et al. (2023). Each task in BBL is associated with
a single instruction template.

15 Tasks from BIG-bench Hard (BBH; Suzgun
et al., 2023). This is another curated subset of
BIG-bench, containing particularly challenging
tasks on which LLMs underperform the average
human score. We focused on a set of 15 classifi-
cation and multiple choice tasks to streamline the
evaluation process. Each task in BBH is associ-
ated with a single instruction template.

Measuring Performance. In LMENTRY we
measure performance using the official evaluation
script, while in Big-Bench we perform exact string
matching. We note that while exact matching is
somewhat strict, we believe it is also fair and
straightforward.

Model Model size Base model # Params

Flan-T5

Small

T5

80M
Base 250M
Large 780M
XL 3B
XXL 11B

T0 Small T5 3B
T0pp 11B

Alpaca Small LLaMA 7B
Big 13B

Vicuna LLaMA 13B
Airoboros LLaMA 13B
UltraLM LLaMA 13B
Nous-Hermes LLaMA 13B
Falcon-Instruct Falcon 7B
MPT MPT 7B
Minotaur StarCoder Plus 15B

Table 1: The different LLMs evaluated in this
work, grouped by model family, along with their
size, in number of parameters. All models were
instruction-tuned.

3.2 Models

We evaluate 16 instruction-tuned LLMs from 11
diverse model families (Chung et al., 2024; Sanh
et al., 2021; Taori et al., 2023; Zheng et al., 2024;
Durbin, 2023; Ding et al., 2023; NousResearch,
2023; Almazrouei et al., 2023; Team, 2023;
Collective, 2023) (see Table 1). We refrain from
including closed, API-based models (e.g., OpenAI
models) in our main evaluation for two reasons.
First, using them at scale is an expensive prospect.
For example, running our entire evaluation suite
on GPT-4 will cost thousands of dollars. Second,
and more importantly, the closed API for these
models reportedly manipulates the input prompts
in an undisclosed manner (e.g., wrapping them
with meta-prompts, or rerouting to other models)
(Rao et al., 2023) which interferes with our evalu-
ation. We do however perform a small-scale eval-
uation of OpenAI models in Section 7 to show
that they are also sensitive to prompt paraphrasing.

4 Evaluating against a Single Prompt
Leads to Instability in Results

As discussed in the previous section, LLMs are
usually evaluated against a single instruction tem-
plate. In this section, we will show that this ap-
proach is quite brittle. Indeed, a simple rephrasing
of the instruction template can lead to drastic
changes in both absolute and relative model
performance.
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In Section 4.1 we create a large number of au-
tomatically generated instruction paraphrases for
tasks from the LMENTRY and BBH benchmarks.
Paraphrases are created using an LLM and verified
by human annotators. In Section 4.2, we statisti-
cally analyze the performance of various LLMs
against these instruction templates and quantify
the variation in model performance. Finally, in
Section 4.3, we show that models exhibit similar
brittleness with manually written paraphrases for
tasks from the BBL benchmark.

4.1 Paraphrasing Instruction Templates

We use three prompting methods which were
found useful in previous works: (1) instruction
template rephrasing: asking an LLM to rephrase
a seed prompt (Lester et al., 2021; Gonen et al.,
2023; Honovich et al., 2023a); (2) Chain-of-
Thought prompting (Wei et al., 2022): we pro-
vided the model with a sequence of steps in which
the model is asked first to produce a task de-
scription, and then to generate various instruction
templates for the task; and (3) Gradual template
generation: inspired by Honovich et al. (2023b),
we split the COT approach into three LLM calls.
The first for generating a task description from a
seed instruction template, the second for gener-
ating instruction provided by input-output exam-
ples, and the third for processing the instruction
and examples into an instruction template.

In all of the above, we use GPT-3.5-Turbo for
generation, and the original instruction templates
for each of our tasks to seed these three genera-
tion methods, resulting on average in more than
200 automatically generated instruction template
paraphrases for each of our tasks (see Table 2).
We make this collection, as well as the code used
to generate it, publicly available for reproducibil-
ity and to enable future work.

Manual Validation and Filtering of Automatic
Instruction Paraphrases. All automatically
generated paraphrases were manually verified and
filtered by an annotator from our group to ensure
their coherence and relevance to the task. A por-
tion of the data involving 15 randomly selected
templates from each task, totaling in 375 instruc-
tions, was also given to a second annotator; re-
sults show reliable agreement (Table 3), indicating
our evaluation process is calibrated.

See Table 2 for a fine-grained distribution
across the different generation metrics. Overall,

Benchmark Method #Automatic #Correct Correct
Paraphrases Paraphrases Ratio

LMENTRY

All 2429 2186 90.00%
Rephrase 461 408 88.50%
CoT 1286 1234 95.96%
Gradual 652 514 78.83%

BBH

All 2615 2209 84.47%
Rephrase 734 627 85.42%
CoT 775 630 81.29%
Gradual 1091 937 85.88%

Table 2: Manual validation and filtering of au-
tomatic instruction paraphrases generated for
LMENTRY and BBH, showing percentages of valid
paraphrases.

Benchmark Correct (%) Agreement Agreement
(accuracy) (Cohen’s κ)

LMENTRY 86.0 .953 .774
BBH 86.7 .916 .491

Table 3: Human evaluation of doubly annotated
paraphrases. Out of 375 automatically generated
instructions, more than 85% were found to be
correct by both annotators. Both Cohen’s κ and
the agreement accuracy indicate varying, yet gen-
erally high levels of agreement given pronounced
label imbalance.

we found that 90% of the generated paraphrases
created for LMENTRY were correct, and roughly
84% of the paraphrases for BBH were correct.

On average, the validation process yields 240
validated instruction paraphrases per task for
LMENTRY and 175 paraphrases per task for BBH.
Next, we use these paraphrases to quantify per-
formance variability due to instruction template
paraphrasing across ∼ 6.5M instances.2

4.2 Quantifying Performance Variance due
to Instruction Paraphrasing

We leverage the collection of validated para-
phrases to assess how model performance varies
with paraphrasing. Our main finding is that the
common approach of evaluating against a single
prompt is unstable, leading to unreliable results.

Instance Sampling and Prompt Construction.
Our study involves a large number of tasks,
models, and instruction paraphrases. However,
evaluating LLMs can become prohibitively ex-
pensive with the increase of the number of

2Calculated as the number of models tested per task ×
number of paraphrased instructions per task × 100 samples,
across all tasks and benchmarks ≈ 240 × 16 × 100 × 10
(LMENTRY) +175× 11× 100× 15 (BBH).
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samples, datasets, models, and instruction tem-
plates (Perlitz et al., 2023). To make our evaluation
feasible, we chose to evaluate each instruction
template on a randomly selected subset of 100
task samples. Furthermore, we found that all mod-
els struggle on BBH, beyond the point of mean-
ingful comparison. To address this, we evaluate
11 out of the 16 models on it (the ones with the
largest number of parameters), and add an ex-
ample of the prediction format to all instruction
template paraphrases.

Examining the effect of few-shot learning is
beyond the scope of this paper; however, Sclar
et al. (2023), Weber et al. (2023) and Voronov
et al. (2024) recently observed similar perfor-
mance sensibility when introducing varying num-
ber of in-context examples.

Using a Single-instruction Template Leads
to Brittle Ranking. We compute Kendall’s
W : Nm×n �→ [0, 1] (Kendall and Smith, 1939), a
non-parametric statistic which measures the rank-
ing correlation between m judges (instruction
templates, in our case) ranking n objects (LLMs,
in our case) by calculating the squared devia-
tion between the sum of ranks of different judges
(Ri =

∑m
j=1 rij) and their mean value:

W =
12

∑n
i=1(Ri − R̄)2

m2(n3 − n)

Kendall’s W would be 1 for all tasks if model
ranking were the same among all instruction tem-
plates (in other words, they are interchangeable
for the sake of evaluation). In contrast, the more
W approaches 0, the lesser the rankings induced
by different instructions agree.

The results (Table 4) demonstrate that a single
instruction template leads to unreliable rankings
for many of the tasks, with 10 of the tasks ex-
hibiting only slight to moderate ranking agree-
ment, and only two exhibiting strong agreement.
To complement the analysis, we performed the
Friedman test with tied data (Corder and Foreman,
2011), showing that different instructions lead to
statistically significant differences in performance
for 21 out of the 25 tasks.

Examples of Differences in Model Ranking.
We illustrate the implications of ranking differ-
ences in Figure 2. In all three cases, P1 and
P2 are valid paraphrases, yet they lead to vastly

Tasks Kendall’s W Friedman p-val

LMENTRY
not containing .271 (weak) 0.0*
word before .367 (weak) 0.0*
first alphabet .436 (weak) 0.0*
less letters .485 (weak) 0.0*
rhyming word .496 (weak) 0.0*
ends with word .518 (weak) 0.0*
homophones .518 (weak) 0.0*
all words .522 (weak) 0.0*
any words .527 (weak) 0.0*
more letters .540 (weak) 0.0*

BIG-bench Hard
recommendations .628 (medium) .897
formal fallacies .704 (medium) 5.6E-13
geometric shapes .710 (medium) .167
hyperbaton .730 (medium) 1.0E-4
logical deduction 3 .740 (medium) 4.9E-16
disambiguation qa .764 (medium) 2.1E-17
ruin names .776 (medium) .366
logical deduction 7 .778 (medium) 1.4E-13
translation error .800 (medium) 6.9E-9
logical deduction 5 .818 (medium) 3.0E-9
snarks .823 (medium) .604
penguins in a table .830 (medium) 7.3E-15
navigate .838 (medium) 5.6E-10
causal judgement .851 (strong) 4.9E-7
sports .873 (strong) 8.0E-13

BIG-bench Lite
known unknown .316 (weak) 4.4E-5
play dialog .355 (weak) 4.3E-5
winowhy .520 (weak) 6.0E-4
strategic qa .529 (weak) .191
hindu knowledge .560 (weak) .569
conceptual .731 (medium) .132
strange stories .731 (medium) .431
code desc .756 (medium) .002
novel concepts .787 (medium) .620
logic grid puzzle .796 (medium) .010
lang. identification .811 (medium) .002
vitaminc .888 (strong) .772
bbq lite .890 (strong) .023
logical deduction .913 (strong) .895

Table 4: Kendall’s W ∈ [0, 1] values for all
tasks sorted in ascending order. The smaller the
value of W the more that the ranking on different
prompts is de-correlated. Most W are smaller than
0.85, indicating weak to moderate agreement. The
p-values from Friedman test indicate significant
differences between rankings of models when us-
ing different prompts. ∗p-values of 0 represent
statistical significance levels that are smaller than
1E-50.

different rankings. For example, T0pp ranks first
on the BBH task (center) according to P1 and
only 9th according to P2. Similarly, Alpaca-13B
and Alpaca-7B are in the top-performing mod-
els on the LMENTRY task P2, while they rank
last for P1.

We quantify the difference between two
rankings with Kendall’s τ : N

n × N
n �→

[−1, 1], which estimates the agreement between
two specific instruction templates which induce
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Figure 2: Model performance and ranking induced by pairs of paraphrases that exhibit the minimal Kendall τ
correlation on three different tasks (one for each benchmark). For each template pair, models are ordered ac-
cording to their performance against the first instruction template P1, enabling straightforward comparisons of
ranking changes. In other words, if the bars of P2 appear scattered rather than follow a clear descending order,
this indicates a significant reshuffling of rankings.

rankings R1, R2 over n LLMs, formally defined
as (Kendall 1945):

τb =
P −Q√

(P +Q+ T ) · (P +Q+ U)

where P is the number of concordant pairs, Q
is the number of discordant pairs, T is the num-
ber of ties in the first ranking, and U is the num-
ber of ties in the second ranking. Therefore, τ > 0
indicates that most pairs are concordant (with
τ = 1 indicating perfect agreement), and τ < 0
indicates that most pairs are discordant (with
τ = −1 indicating perfect disagreement). Over-
all, 15 tasks out of 25 have instruction template
paraphrases with negative Kendall’s τ , indicat-
ing mostly disagreeing LLM rankings.

Absolute Model Performance Varies Widely
on Single-Instruction Templates. Aside from
vastly different relative model rankings, instruc-
tion template paraphrases often result in varying
absolute model performances. To quantify this
variance, we calculated divergence, defined as
the number of standard deviations by which the
performance, as assessed using the original in-
struction templates, deviates from the model’s
average performance over all paraphrases.

Figure 3: Model and task performance divergence. For
each LMENTRY task, we show the number of standard
deviations by which performance of each model on
the original instructions deviates from averaged per-
formance. Dark cells indicate substantial divergence
values (>1 std).

The results in Figure 3 reveal noticeable di-
vergence for the LMENTRY benchmark, defined
as surpassing one standard deviation (Kazmier
et al., 2003). For instance, the performance of
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Figure 4: Average performance differences between various models for the most common minimal edits be-
tween two instruction templates (e.g., substituting ‘excludes’ with ‘lacks’) in the LMENTRY benchmark.

the Alpaca-13B with the original instruction tem-
plates outperformed its average performance by
more than one standard deviation in 7 out of 10
LMENTRY tasks. For lack of space, the figure does
not depict the BBH benchmark, but similar pat-
terns of divergence were observed there as well.

In line with Lou et al. (2023), we find that
major differences in performance can occur even
for very similar paraphrase pairs. For example,
the Flan-T5-large model demonstrated an average
performance degradation of 28% when changing
the word ‘excludes’ to ‘lacks’, while the Flan-
T5-XL model showed an average performance
improvement of 46% on that same edit. See
a comprehensive edit distance comparison in
Figure 4 and Table 5.

4.3 LLMs are Also Sensitive to
Manual Paraphrases

Inconsistencies observed in our analyses could
stem from paraphrases that leaked to the training
of the models. To address this, we extended our
analysis with instruction paraphrases which were
recently written by Sun et al. (2023) for the BBL
tasks (7–12 instruction templates per task). Im-
portantly, these human-crafted paraphrases were
written after model training.

We use these annotations to examine model per-
formance. Our analysis revealed similar inconsis-
tencies as observed with automated paraphrases,

demonstrating model sensitivity to paraphrasing
even when the potential for instruction leakage
is minimized. See Table 4 for the Kendall’s W
values for all BBL tasks, and Figure 2 for a pair
of instruction templates exhibiting the minimal
Kendall’s τ correlation across all BBL tasks.

5 Different Use Cases Merit
Different Metrics

We have shown that LLM performance is greatly
affected by paraphrasing of instruction templates.
This calls into question current evaluation prac-
tices, which typically rely on LLM performance
on a single instruction template. In this section we
explore ways to evaluate LLMs using a diverse
set of instruction templates.

Most importantly, we argue that the answer
should depend on the purpose of the evaluation,
and that different extrinsic needs should lead to
different evaluation metrics, rather than striving
for a coarse catch-all metric. We introduce a set
of metrics, each tailored to specific scenarios and
realistic user needs.

Notations. In the following, M is a pretrained
LLM, T = {(xi, yi)} denotes an evaluation
dataset for M , IT is a set of natural language task
instruction paraphrases for T (e.g., obtained via
automatic paraphrasing), and ε(M,T, i) ∈ [0, 1]
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Change Model P1 Acc. P2 Acc. Diff.

‘.’ –> ‘:’ nous-hermes Create a word that does not
include the letter ‘‘{letter}’’.

.04 Create a word that does not
include the letter ‘‘{letter}’’:

.65 +.61

alpaca-13b Create a sentence that concludes
with the term ‘‘{word}’’.

.61 Create a sentence that concludes
with the term ‘‘{word}’’:

.19 −.42

+ ‘.’ alpaca-13b Write a word that lacks the letter
‘‘letter’’

.04 Write a word that lacks the letter
‘‘letter’’.

.42 +.38

flan-t5-xl Write a word that omits the
letter ‘‘letter’’

.77 Write a word that omits the letter
‘‘letter’’.

.54 −.23

+ ‘using’ flan-t5-large Your task is to write a word
without the letter ‘‘{letter}’’

.46 Your task is to write a word with-
out using the letter ‘‘{letter}’’

.12 −.35

falcon-7b Write a word without the letter
{letter}.\nOutput word:

.12 Write a word without using the
letter {letter}.\nOutput word:

.35 +.23

omits –> lacks ultralm-13b Write a word that omits the
letter ‘‘{letter}’’.

.62 Write a word that lacks the letter
‘‘{letter}’’.

.19 −.42

flan-t5-xl Write a word that omits the
letter ‘‘{letter}’’.

.54 Write a word that lacks the letter
‘‘{letter}’’.

.81 +.27

contain –> have falcon-7b Write a word that does not
contain the letter ‘‘{letter}’’

.81 Write a word that does not have
the letter ‘‘{letter}’’

.19 −.62

flan-t5-xxl Please write a word that
does not contain the letter
‘‘{letter}’’.

.62 Please write a word that does not
have the letter ‘‘{letter}’’.

.88 +.27

include –> have falcon-7b Write a word that does not
include the letter ‘‘{letter}’’.

.81 Write a word that does not have
the letter ‘‘{letter}’’.

.19 −.62

flan-t5-xl Write a word that does not
include the letter ‘‘{letter}’’.

.42 Write a word that does not have
the letter ‘‘{letter}’’.

.73 +.31

ultralm-13b Please write a word that
does not include the letter
‘‘{letter}’’.

.46 Please write a word that does not
have the letter ‘‘{letter}’’.

.12 −.35

excludes –> lacks flan-t5-large Write a word that excludes the
letter ‘‘{letter}’’.

.54 Write a word that lacks the letter
‘‘{letter}’’.

.12 −.42

flan-t5-xl Write a word that excludes the
letter ‘‘{letter}’’.

.19 Write a word that lacks the letter
‘‘{letter}’’.

.81 +.62

Table 5: Representative examples of instruction template pairs from LMENTRY with very minor
differences but notable variations in performance (open-source models).

denotes the aggregated performance of M on
samples from T , using a single instruction tem-
plate i ∈ IT according to a standard metric, e.g.,
accuracy or F1.

5.1 Maximum Performance Metric – For
Particular Downstream Applications

We define the maximum performance (MaxP)
of a model M on task T to be the maximum
individual instruction template performance this
model achieves across all instruction templates:

MaxP (M,T, IT ) = max
i∈IT

ε(M,T, i)

Use Case: This metric is useful for developers
aiming to integrate an LLM into a specific down-

stream task and domain (e.g., sentiment analy-
sis in the news domain). In such cases, a user
input is often embedded within a fixed instruc-
tion template. As such, it makes sense to find the
best-performing instruction template for a given
model (Wei et al., 2021). To mitigate overfitting,
we advise developers to use a new sample set
for the task. This ensures the chosen prompt is
validated by its ability to maximize performance
on these held-out samples irrespective of prior
exposure during training.

5.2 Average Performance Metric – For
LLM Developers

We define the average performance (AvgP) of a
model M on task T as the mean of the individual
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instruction template performances over all instruc-
tion templates for the task:

AvgP (M,T, IT ) =
1

|IT |
·
∑

i∈IT

ε(M,T, i)

Use Case: Average prompt performance is use-
ful for assessing model robustness to paraphrases.
We believe this should be standard practice for
LLM developers when presenting the performance
of a new LLM on a range of tasks and prompt
paraphrases (Le Scao et al., 2022), as it mitigates
outliers in performance.

5.3 Combined Performance Score
In the same way that the F1 score combines
precision and recall into a single metric, we pro-
pose a Combined Performance Score (CPS) that
unites the maximum and average performance
metrics to capture both peak capability and ro-
bustness of the model across prompts. To define
CPS, we first introduce a model saturation score:

Sat(M,T, IT ) = 1− (MaxP −AvgP )

This score measures how closely the model’s
best performance aligns with its average perfor-
mance. A high saturation score indicates that the
model’s performance does not drop significantly
for non-optimal instructions. Then, the CPS is
calculated as the product of the model’s best
performance (MaxP ) and its saturation (Sat):

CPS(M,T, IT ) = Sat ·MaxP

Use Case: This metric is valuable for selecting
a model for a suite of applications or a platform
offering diverse tasks. For instance, when integrat-
ing an LLM into an application with user-visible
prompts, such as a multi-functional chatbot, it is
crucial for the model to be both effective (high
MaxP ) and robust (high Sat). CPS facilitates
identifying models that strike a balance between
top-tier performance and robust reliability across
varying instruction templates.

6 Multi-Prompt Evaluation

In Figure 6 we evaluate all our 16 models accord-
ing to the metrics we proposed in the previous
section, on sample tasks from each of the three
benchmarks (full results for all tasks are available
in our repository). We report several interesting

Figure 5: Percentage of instruction paraphrases with
accuracy higher than 5% in T5 models (blue) vs.
LLaMA models (purple) on LMENTRY tasks.

observations. First, we find that all aggregate met-
rics diverge from the performance on the original
instruction templates. For the vast majority of the
tasks in our study, the top three models deter-
mined by the original instruction templates were
different from those which ranked first according
to the average and maximum metrics.

More broadly, model ranking depended on
the metric used. For instance, see Figure 6
(top): In LMENTRY’s rhyming word task, Falcon-
Instruct-7b and Vicuna-13b rank first according
to MaxP (0.74, gray and yellow bars), but their
average performances AvgP are only 0.17 and
0.15, respectively. Similarly, across all tasks in
the LMENTRY benchmark, LLaMA-based models
were competitive with T5-based models in terms
of MaxP . However, in terms of AvgP , they
tended to lag behind, due to extremely poor per-
formance on a large number of paraphrases (see
Figure 5 for %paraphrases that achieved at least
5% accuracy).

Finally, we found that noise stemming from
automatic paraphrase generation has virtually no
impact on metric-based model rankings. We com-
pute Kendall’s τ to compare model rankings
before and after the manual filtering of para-
phrases. The results (Table 6) show near-perfect
to perfect agreement in rankings across all tasks,
except for the ‘‘ends with word’’ task in LMENTRY.
Upon examination, this seems to be mostly due
to an error in LMENTRY’s evaluation script. These
results suggest that it may be enough to compute
our metrics over range of automatically-generated
paraphrases, without having to manually verify
them.

7 Small-Scale Evaluation of OpenAI
Models on Prompt Paraphrasing

In this section we perform a small-scale evalua-
tion showing that API LLMs are also sensitive to
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Figure 6: The performance of various models accord-
ing to the metrics proposed in Section 5, evaluated on
sample tasks from each of the three benchmarks. The
name of the metric appears below each group of col-
umns; height of a column represents value in that
specific metric. The order of the columns (i.e., models)
between groups is fixed, set according to decreasing
performance on the original instruction templates to en-
able straightforward comparisons of ranking changes.

Benchmark Max perf. Average perf. Combined perf.

LMENTRY .963 .978 .948
BBH .991 .983 .966

Table 6: Averaged Kendall’s τ values compar-
ing rankings before and after filtering incorrect
paraphrases for each metric across all tasks (ex-
cluding ‘‘ends with word’’ for LMENTRY).

instruction paraphrasing. Our evaluation focuses
on four OpenAI models: davinci, text-davinci-
002, text-davinci-003, and GPT-3.5-Turbo on the
LMENTRY benchmark.

Due to budget constraints, we show that the
performance of these models diverges signifi-
cantly between the benchmark’s original instruc-
tion templates and a selection of paraphrases, in
terms of both average and maximum metrics.

Estimating Average Performance. To esti-
mate the average performance of OpenAI mod-
els on a specific task, we adopted a randomized
approach. For each task sample, we randomly

selected a paraphrase from our collection, and
evaluated the model’s response, scoring the en-
tire set of task samples. To approximate average
performance, this experiment was repeated 20
times, determined by the data from our 16 open-
source models.

Estimating Maximal Performance. To esti-
mate which of the roughly 175 instruction tem-
plates per task performs the best for each model,
we implemented a simple greedy search. Initially,
we evaluated all paraphrases on 10 task instances,
then narrowed down to the top 100 instruction
templates for another 10 instances. Finally, the
top 10 instruction templates were evaluated on the
remaining instances, and the template that per-
formed the best was chosen to estimate the maxi-
mum performance.

7.1 Results

Below we summarize the results of our evalua-
tion of OpenAI models. The full details appear in
our repository.

OpenAI Models are Also Sensitive to Minor
Prompt Variations. Minor changes in the
phrasing of the instruction could lead to dras-
tic performance changes for the OpenAI models,
similar to our findings in Section 4.2 with smaller-
scale LLMs. See representative examples in
Table 7, showing nearly identical instruction
template pairs resulting in notable variations in
performance.

Average Performance is Lower Than That Ob-
served in the Original Benchmark Instructions.
In 72.5% of the cases, the performance of the
original instructions was higher than the esti-
mated average across all paraphrases. In the
davinci model, the original prompts added on
average 21 more accuracy points.

Original Prompt Performances Fall Below
All Paraphrases’ Estimated Maximum Perfor-
mance. Figure 7 depicts maximum performance
of the original instructions for four LMENTRY tasks
in solid colors, with overlaid semi-transparent
columns indicating the estimated maximum per-
formance on all paraphrases. Notably, for text-
davinci-002, we found paraphrases that improved
its maximal accuracy performance above 90% for
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Change Model P1 Acc. P2 Acc. Diff.

{...} –> ‘‘{...}’’ td002 Which word has a greater number of
letters, {word1} or {word2}?

.50 Which word has a greater number of
letters, ‘‘{word1}’’ or ‘‘{word2}’’?

.23 −0.27

td002 Which of the words {word1} and
{word2} is alphabetically first?

.54 Which of the words ‘‘{word1}’’ and
‘‘{word2}’’ is alphabetically first?

.77 +0.23

td003 Which word has a greater number of
letters, {word1} or {word2}?

.60 Which word has a greater number of
letters, ‘‘{word1}’’ or ‘‘{word2}’’?

.14 −0.46

td003 Compare the length of {word1} and
{word2} and tell me which one is
shorter.

.39 Compare the length of ‘‘{word1}’’ and
‘‘{word2}’’ and tell me which one is
shorter.

.73 +0.34

cgpt Which word has a greater number of
letters, {word1} or {word2}?

.55 Which word has a greater number of
letters, ‘‘{word1}’’ or ‘‘{word2}’’?

.24 −0.31

cgpt Compare the length of {word1} and
{word2}. Which one is longer?

.04 Compare the length of ‘‘{word1}’’ and
‘‘{word2}’’. Which one is longer?

.70 +0.66

‘,’ –> ‘:’ td002 Which word is a rhyme for ‘‘{query}’’,
‘‘{word1}’’ or ‘‘{word2}’’?

.08 Which word is a rhyme for ‘‘{query}’’:
‘‘{word1}’’ or ‘‘{word2}’’?

.85 +0.77

td003 Which word is a rhyme for ‘‘{query}’’,
‘‘{word1}’’ or ‘‘{word2}’’?

.48 Which word is a rhyme for ‘‘{query}’’:
‘‘{word1}’’ or ‘‘{word2}’’?

.90 +0.42

‘,’ –> ‘-’ td002 Which word rhymes with ‘‘{query}’’,
‘‘{word1}’’ or ‘‘{word2}’’?

.06 Which word rhymes with ‘‘{query}’’ -
‘‘{word1}’’ or ‘‘{word2}’’?

.73 +0.67

td003 Which word rhymes with ‘‘{query}’’,
‘‘{word1}’’ or ‘‘{word2}’’?

.17 Which word rhymes with ‘‘{query}’’ -
‘‘{word1}’’ or ‘‘{word2}’’?

.60 +0.43

the –> a td002 What is the word that rhymes with
‘‘{query}’’ - ‘‘{word1}’’ or
‘‘{word2}’’?

.03 What is a word that rhymes with
‘‘{query}’’ - ‘‘{word1}’’ or
‘‘{word2}’’?

.78 +0.75

which –> what td002 Which word rhymes with ‘‘{query}’’ -
‘‘{word1}’’ or ‘‘{word2}’’?

.73 What word rhymes with ‘‘{query}’’ -
‘‘{word1}’’ or ‘‘{word2}’’?

.82 +0.09

td003 Which word rhymes with ‘‘{query}’’ -
‘‘{word1}’’ or ‘‘{word2}’’?

.60 What word rhymes with ‘‘{query}’’ -
‘‘{word1}’’ or ‘‘{word2}’’?

.15 −0.45

word –> term td002 Create a word that excludes the letter
‘‘{letter}’’.

.54 Create a term that excludes the letter
‘‘{letter}’’.

.04 −0.50

td003 Create a word that excludes the letter
‘‘{letter}’’.

.96 Create a term that excludes the letter
‘‘{letter}’’.

.58 −0.38

cgpt Create a word that excludes the letter
‘‘{letter}’’.

.81 Create a term that excludes the letter
‘‘{letter}’’.

.42 −0.39

Table 7: Minimal distance pairs from LMENTRY with large performance differences in OpenAI models.

Figure 7: Comparison of the maximum performance of
four OpenAI models using original prompts (in solid
colors) vs. all prompt paraphrases (semi-transparent).
Each group of columns corresponds to a different task
in the LMENTRY benchmark.

8 out of 10 tasks. Across all four models, 26
out of 40 differences were statistically signifi-
cant according to the McNemar test.

Model Rankings Diverge Between the Different
Metrics and Original Instruction Templates.
Similarly to our main evaluation, there were many
mismatches between ranking on the original in-
struction templates and our metrics. Agreement
was observed in only 5 out of 10 tasks for the
average metric, and in 4 out of 10 tasks for the
maximum metric.

8 Related Work

Our work is part of an emerging trend highlight-
ing the many challenges standing in the way of
meaningful, scalable, and reproducible evaluation
of large language models.

Perlitz et al. (2023) focus on the rising cost of
exhaustive evaluation of LLMs on large number
of samples. They developed methods for choosing
subsets of the test data which are expected to be
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a good representative of the whole. An interesting
avenue for future work can extend Perlitz et al.’s
(2023) approach to also include various instruc-
tion templates, thus efficiently approximating our
suggested evaluation methods.

Sclar et al. (2023) show that LLMs are sensitive
to prompt formatting. These are minor prompt
design choices, such as the addition or omission
of punctuation marks. They create a large pool of
instruction paraphrases, ensuring that paraphrases
maintain the meaning of the original prompt. We
notice a similar phenomenon, albeit more anecdo-
tally, when our automatic paraphrasing techniques
incidentally produce minor changes in formatting
(Table 7). Voronov et al. (2024) showed that
LLMs are sensitive to the format of in-context
examples. For example, they varied the manner in
which each input-output is separated, and test how
such choices interact with the phrasing of the in-
struction template, the number of demonstrations,
or the model size.

The works discussed above represent a distinct
thread within the larger field of model robustness,
which is typically defined as a measure of mod-
els’ ability to adapt to distribution shifts between
training and inference (Wang et al., 2022), or to
cope with adversarial examples (Wang et al., 2021,
2023). In contrast, these works do not change the
underlying instance to be classified (e.g., the ho-
mophone pairs in our running example), but rather
the task instruction. This challenge arises with
the introduction of LLMs which take such instruc-
tions as part of the input, rather than through ded-
icated calibration in training or finetuning.

9 Conclusions

Our research highlights the sensitivity of large
language models (LLMs) to prompt paraphras-
ing, challenging the adequacy of single-prompt
evaluations. We propose alternative evaluation
metrics that use a diverse set of instruction tem-
plates for each task, designed for more robust
and meaningful LLM evaluation. For example,
LLM developers may be interested in measur-
ing the robustness of performance across multiple
prompts, which we propose to evaluate as the
average across a large collection of prompts. In
contrast, when developing a downstream model,
different models should be compared according to
their corresponding top-performing prompt.

Evaluating based on these metrics underscores
the necessity for nuanced evaluation methods,
revealing notable differences in absolute perfor-
mance and relative model rankings compared to
traditional evaluations. We hope that our work
will help spur more consistency and comparabil-
ity in LLM evaluation which is strongly coupled
to real-world LLM uses. We believe this shift
is crucial for accurately understanding and lever-
aging the true capabilities of LLMs.
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Hedayatnia, Behnam Neyshabur, Benjamin
Inden, Benno Stein, Berk Ekmekci, Bill
Yuchen Lin, Blake Howald, Bryan Orinion,
Cameron Diao, Cameron Dour, Catherine
Stinson, Cedrick Argueta, César Ferri Ramı́rez,
Chandan Singh, Charles Rathkopf, Chenlin
Meng, Chitta Baral, Chiyu Wu, Chris
Callison-Burch, Chris Waites, Christian Voigt,

947

https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://huggingface.co/NousResearch/Nous-Hermes-13b
https://huggingface.co/NousResearch/Nous-Hermes-13b
https://huggingface.co/NousResearch/Nous-Hermes-13b


Christopher D. Manning, Christopher Potts,
Cindy Ramirez, Clara E. Rivera, Clemencia
Siro, Colin Raffel, Courtney Ashcraft, Damien
Sileo, Dan Garrette, Dan Hendrycks, Dan
Kilman, Cristina Garbacea, Dan Roth, Daniel
Freeman, Daniel Khashabi, Daniel Levy, Daniel
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