
xCOMET: Transparent Machine Translation Evaluation through
Fine-grained Error Detection

Nuno M. Guerreiro∗1,3,4,5, Ricardo Rei∗1,2,5, Daan van Stigt1, Luisa Coheur2,5,
Pierre Colombo4, André F. T. Martins1,3,5
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Abstract

Widely used learned metrics for machine trans-
lation evaluation, such as COMET and BLEURT,
estimate the quality of a translation hypothesis
by providing a single sentence-level score. As
such, they offer little insight into translation
errors (e.g., what are the errors and what is
their severity). On the other hand, generative
large language models (LLMs) are amplify-
ing the adoption of more granular strategies
to evaluation, attempting to detail and cat-
egorize translation errors. In this work, we
introduce xCOMET, an open-source learned
metric designed to bridge the gap between
these approaches. xCOMET integrates both
sentence-level evaluation and error span de-
tection capabilities, exhibiting state-of-the-art
performance across all types of evaluation
(sentence-level, system-level, and error span
detection). Moreover, it does so while high-
lighting and categorizing error spans, thus
enriching the quality assessment. We also pro-
vide a robustness analysis with stress tests,
and show that xCOMET is largely capable
of identifying localized critical errors and
hallucinations.

1 Introduction

Automatic metrics for machine translation eval-
uation are widely used by researchers and
practitioners to evaluate the quality of transla-
tions and the systems generating them. Notably,
learned neural metrics, such as COMET (Rei et al.,
2020) and BLEURT (Sellam et al., 2020), have
demonstrated significant improvements in terms
of correlation with human judgments when com-
pared to traditional metrics like BLEU (Papineni
et al., 2002; Freitag et al., 2021b, 2022).

∗Equal contribution. Corresponding authors:
nuno.guerreiro, ricardo.rei@unbabel.com.

These metrics are trained to regress on scores
obtained through human annotations, by predict-
ing a single sentence-level score representing the
quality of the translation hypothesis. However,
these single scores do not offer a detailed view
into translation errors (e.g., it is not immediate
which words or spans of words are wrongly trans-
lated). Moreover, as they are obtained by making
use of highly complex pre-trained models, they
can be difficult to interpret (Rei et al., 2023b;
Leiter et al., 2023). One appealing strategy to
bring a more detailed view into translation er-
rors is to obtain finer-grained information on error
spans through highlighting them and indicating
their severity (Fonseca et al., 2019; Perrella et al.,
2022; Bao et al., 2023). In fact, this is the strat-
egy adopted in recent work that has employed
generative large language models (LLMs) for ma-
chine translation evaluation: (i) identify errors
within a given translation, subsequently (ii) cat-
egorize these errors according to their severity,
and finally (iii) infer a sentence-level score from
the predicted errors (Fernandes et al., 2023; Xu
et al., 2023). However, these methods still lag be-
hind dedicated learned metrics when using open
LLMs, such as the LLaMA models (Touvron et al.,
2023; Xu et al., 2023). As it stands, competitive
performance with generative strategies remains
contingent on utilizing large proprietary, closed
LLMs such as PaLM-2 and GPT-4 (Fernandes
et al., 2023; Kocmi and Federmann, 2023a).

In this work, we bridge the gap between these
two approaches to machine translation evaluation
by introducing xCOMET: a learned metric that si-
multaneously performs sentence-level evaluation
and error span detection. Through extensive ex-
periments, we show that our metrics leverage
the strengths of both paradigms: They achieve
state-of-the-art performance in all relevant vectors
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of evaluation (sentence-level, system-level, and
error span prediction), while offering, via the
predicted error spans, a lens through which we
can analyze translation errors and better inter-
pret the sentence-level scores. We achieve this
by employing a curriculum during training that is
focused on leveraging high-quality publicly avail-
able data at both the sentence- and error span level,
complemented by synthetic data constructed to en-
hance the metric’s robustness. Moreover, xCOMET

is a unified metric (Wan et al., 2022b), sup-
porting all modes of evaluation within a single
model. This enables the metric to be used for
quality estimation (when no reference is avail-
able), or for reference-only evaluation, similarly
to BLEURT (when a source is not provided). Cru-
cially, xCOMET also provides sentence-level scores
that are directly inferred from the predicted error
spans, in the style of AUTOMQM (Fernandes et al.,
2023) and INSTRUCTSCORE (Xu et al., 2023).

Our contributions can be summarized as
follows:

1. We introduce xCOMET, a novel evaluation
metric that leverages the advantages of
regression-based metrics and error span de-
tection to offer a more detailed view of
translation errors.

2. We show that xCOMET is a state-of-the-art
metric at all relevant vectors of evaluation—
sentence-level, system-level, and error
span prediction—generally outperforming
widely used neural metrics and generative
LLM-based machine translation evaluation.

3. We provide a comprehensive robustness
analysis of xCOMET, showing that this new
suite of metrics identifies the vast majority of
localized critical errors and hallucinations.

4. We release two evaluation models: xCOMET-
XL, with 3.5B parameters, and xCOMET-XXL,
featuring 10.7B parameters.1

2 Background

Methodologies for Human Assessment of
Translation Quality. Human evaluation of ma-
chine translation is primarily conducted through
three distinct approaches: post-edits (PE), di-
rect assessments (DA), and the Multidimensional
Quality Metrics (MQM) framework.

1https://github.com/Unbabel/COMET/.

In post-edits (PE), professional translators are
tasked with ‘‘fixing’’ a given translation, making
minimal edits to improve its quality. Using this
edited translation—often termed post-edit—we
can evaluate the machine translation output by
quantifying the number of edits, thus gauging the
initial translation’s quality (Snover et al., 2006).

Direct assessments (DA) (Graham et al., 2013)
are a simple and widely-used evaluation method.
Annotators—non-expert bilingual speakers or
professional translators—are asked to annotate
each translation with a score ranging from 0 to
100 to reflect its adequacy and fluency, where a
score of 100 corresponds to a perfect translation,
and 0 corresponds to a completely inadequate one.

The Multidimensional Quality Metrics (MQM)
framework (Lommel et al., 2014), on the other
hand, offers a more comprehensive and systematic
approach to MT evaluation. Professional transla-
tors highlight errors—typically in the form of
error spans—within translations, attributing them
severity ratings (e.g., minor, major, or critical)
and categorical labels (e.g., fluency, accuracy).
Figure 1 illustrates one such annotation. MQM an-
notations have gained prominence in recent years
due to their capacity to offer detailed insights into
translation errors, facilitating more fine-grained
and accurate comparisons between translation sys-
tems (Freitag et al., 2021a). As such, the field of
Automatic Evaluation of MT has increasingly fa-
vored comparisons using MQM annotations over
traditional DA and PE methodologies (Freitag
et al., 2021b, 2022; Zerva et al., 2022).

Automatic Metrics for Translation Evaluation.
Conventional automatic metrics for machine
translation (MT) evaluation rely on lexical-based
approaches, where the evaluation score is com-
puted through statistics related to lexical overlap
between a machine translation and a reference
translation. Despite evidence indicating that these
lexical metrics (e.g., BLEU [Papineni et al., 2002]
and CHRF [Popović, 2015]) do not consistently
align with human judgments, particularly when
these are obtained through the MQM framework
(Freitag et al., 2021b, 2022), they remain very
popular. In fact, BLEU remains the most widely
employed evaluation metric in machine transla-
tion to this day (Marie et al., 2021). On the other
hand, neural metrics (e.g., COMET [Rei et al., 2020]
and BLEURT [Sellam et al., 2020]) that rely on com-
plex neural networks to estimate the quality of MT
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Figure 1: The xCOMET framework illustrated through a real example from the WMT22 News test set: The metric
not only provides a sentence-level score, but also predicts translation error spans along with their respective
severity. From these spans, we can infer MQM score (following the MQM typology), which informs and highly
correlates with the sentence-level score (see Section 6). These spans complement the sentence-level score by
providing a detailed view into the translation errors.

outputs are consistently among the best metrics
for MT evaluation according to correlations with
human judgments (Freitag et al., 2021b, 2022).

However, contrary to lexical metrics, which
offer a straightforward interpretation, it can often
prove challenging to explain the score predicted
by a neural metric to a given translation output.
As such, there have been a series of efforts to
bring interpretability to neural metrics by focusing
on understanding the inner workings of neural
metrics (Rei et al., 2023b; Leiter et al., 2023),
or on constructing inherently interpretable neural
metrics (e.g., MATESE [Perrella et al., 2022] and
FG-TED [Bao et al., 2023]) by assigning a central
role to the task of predicting word-level errors
in a given translation, instead of just a sentence-
level score.

More recently, with the rise of generative
LLMs, some studies have tried to frame the
MT evaluation problem as a generative problem.
This offers great flexibility, as the LLM can be
prompted to either score the translation directly
(Kocmi and Federmann, 2023b), or to identify er-
rors in the translation (e.g., in line with the MQM
framework) (Fernandes et al., 2023; Xu et al.,
2023).

3 Problem Statement

An automatic metric for translation evaluation
aims at predicting the quality of a translated sen-
tence, t, in light of a reference translation, r,
for a given source sentence, s. Here, we focus
specifically on neural metrics that make use of a
neural model, and typically operate under one of
the following evaluation scenarios:

• reference-only (REF): The model evaluates
the translation by processing it alongside a

ground-truth reference sentence (BLEURT is
an example of such a metric);

• source-reference combined input (SRC+REF):
The model evaluates the translation by jointly
processing it with both the source and the
reference (COMET is an example of such a
metric);

• source-only (SRC): The model evaluates
the translation using only its correspond-
ing source sequence (COMETKIWI (Rei et al.,
2022b) is an example of such a model). This
mode is commonly termed as quality es-
timation (QE) or reference-free evaluation
(Specia et al., 2010).

In essence, the model’s input sequence consists
of the translation t paired with some addi-
tional input—either r, [r, s], or s—derived
from the scenarios above. Given this input, the
model may predict the quality of the translation
at different granularities, e.g., sentence-level or
word(span)-level.

Sentence-level Prediction. The model is tasked
to predict a single global score (typically between
0 and 1) for the translation that represents how
well it aligns with its context (i.e., source and/or
reference sentence). These scores can be used
for a broad range of tasks, such as gauging the
quality of different translation systems (Freitag
et al., 2022), identifying pathological translations
(Guerreiro et al., 2023), assisting the generation
of translations by MT systems (Fernandes et al.,
2022), or even acting as reward models for human
alignment of language models (Gulcehre et al.,
2023).

Word(span)-level Prediction. In contrast,
word-level (or span-level) predictions are more
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fine-grained, identifying individual words or
phrases in the translation that may have errors
or discrepancies—typically identifying them
as OK/BAD or according to their severity, e.g.,
MINOR/MAJOR. These granular evaluations are more
interpretable and assist in pinpointing specific
issues, which can be particularly valuable for
feedback and iterative translation improvements.

Our metric, xCOMET, emerges in a unique po-
sition in the landscape of MT evaluation metrics.
It can simultaneously perform evaluation under
all three of the scenarios (SRC, REF, SRC+REF) pre-
sented, and provide sentence-level scores and error
span annotations that are in line with the MQM
framework, thus bringing further transparency to
the evaluation (see Figure 1 for an illustration). In
the next section, we detail the design choices and
methodology of xCOMET.

4 Design and Methodology of xCOMET

In this section, we describe the methodology be-
hind xCOMET, outlining its model architecture,
training settings and corpora, and learning cur-
riculum. We detail how the model is designed
to perform both regression and error span detec-
tion while adopting a unified input approach for
enhanced flexibility and performance.

4.1 Model Architecture

xCOMET is built upon insights from contributions
to the WMT22 Metrics and QE shared tasks
(Rei et al., 2022a,b). It is designed to concur-
rently handle two tasks: sentence-level regression
and error span detection. Figure 2 illustrates
its architecture. We follow the same architec-
ture of the scaled-up version of COMETKIWI

detailed in Rei et al. (2023a), which uses a large
pre-trained encoder model as its backbone en-
coder model. Importantly, following from our
multi-task setup, the model has two prediction
heads: (i) a sentence-level regression head, which
employs a feed-forward network to generate a sen-
tence score, and (ii) a word-level sequence tagger,
which applies a linear layer to assign labels to
each translation token.

We train two xCOMET versions—xCOMET-XL

and xCOMET-XXL—using the XL (3.5B parame-
ters) and XXL (10.7B parameters) versions of
XLM-R (Goyal et al., 2021).2

2To the best of our knowledge, these represent the two
largest open-source encoder-only models.

Figure 2: Architecture of xCOMET. The input to the
model starts with a [cls] token followed by a
translation and an additional input that
will have the source, reference or both. After the pool-
ing layer the [cls] token is passed to a feed-forward
network to produce a quality score while all subword
pieces corresponding to the translation are passed
to a linear layer that will classify them according to
their severity levels, YWL = {OK,MIN,MAJ, CRIT}.

4.2 Fully Unified Evaluation

xCOMET adopts a unified input approach (Wan
et al., 2022b), allowing for all the evaluation
scenarios described in Section 3—REF, SRC+REF,
and SRC evaluation—under a single model. Thus,
the input sequence consists of two parts: (i) the
translated sentence t = [t1, . . . , tn] of length n,
and (ii) an additional input containing informa-
tion from the source, reference, or both. To do
so, when a reference is available, we run three
distinct forward passes (one for each evalua-
tion scenario), each yielding sentence-level and
word-level predictions.

4.2.1 Training Time

For each step, we collect the sentence-level predic-
tions and the word-level logits for each input for-
mat: {ŷSRC

SL , ŷREF
SL , ŷSRC+REF

SL } and {ŷSRC
WL , ŷ

REF
WL , ŷ

SRC+REF
WL }.3

As we have mentioned before, xCOMET mod-
els are trained with supervision from both
sentence-level quality assessments, ySL, and
word-level severity tags, yWL = [y1, . . . , yn], with
yi ∈ YWL = {OK,MIN, MAJ, CRIT}. In the multi-task

3Here, for each INPUT ,∈{SRC, REF, SRC+REF}, we define
ŷINPUT

WL = [ŷINPUT
1 , . . . , ŷINPUT

n ].
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setting, we use the following loss L for each input
type (INPUT ,∈{SRC, REF, SRC+REF}):

LINPUT
SL = (ySL − ŷINPUT

SL )2 (1)

LINPUT
WL = − 1

n

n∑
i=1

αyi log p(y
INPUT
i ) (2)

LINPUT = (1− λ)LINPUT
SL + λLINPUT

WL (3)

α ∈ R
|YWL| represents the class weights given

for each severity label and λ is used to weigh
the combination of the sentence and word-level
losses.

The final learning objective is the summation
of the losses for each input type:

L = LSRC + LREF + LSRC+REF (4)

Furthermore, in line with preceding metrics
constructed upon the COMET framework, our mod-
els use features such as gradual unfreezing, and
discriminative learning rates.

4.2.2 Inference Time
Error Span Prediction. For each subword in
the translation, we average the output distribution
of the word-level linear layer obtained for each
forward pass. Using this distribution, we predict
a set of word-level tags ŷWL = [ŷ1, . . . , ŷn] by
taking the most likely class for each token. From
these tags, we construct a list of error spans, S, by
grouping adjacent subwords identified as errors.
The severity of each span inS is defined according
to the most severe error tag found within the span.

Sentence-level Prediction. For each forward
pass, we obtain the corresponding sentence-level
scores: ŷSRC, ŷREF, and ŷSRC+REF.4 Additionally, we
leverage the information coming from the pre-
dicted list of error spans, S, to infer an automated
MQM score. To do so, we follow the MQM
framework: we obtain the error counts for each
severity level—cMIN, cMAJ, cCRIT—and apply the pre-
determined severity penalty multipliers to define
the error type penalty total, e(S). Formally:

e(S) = cMIN + 5× cMAJ + 10× cCRIT (5)

Finally, we obtain ŷMQM by capping and flipping
the sign of e(S):

ŷMQM =

{
25−e(S)

25 , if e(S) < 25

0, otherwise
(6)

4Here, for ease of notation, we use ŷSRC, ŷREF, and ŷSRC+REF

to represent the sentence-level score for each input type.

Figure 3: Histogram of the sentence-level scores from
each partition of the MQM data. We aggregate the data
from IndicMT, DEMETR under ‘‘Other MQM Data’’.

Note that the predicted score ŷMQM is bounded
between 0 and 1, with a score of 1 corresponding
to a perfect translation.

We aggregate the scores to compute the fi-
nal sentence-level score, ŷSL, through a weighted
sum of the different sentence-level scores (see
Figure 3). Importantly, we also include the in-
ferred MQM score ŷMQM to directly inform the
final sentence-level prediction. Formally, given
ŷ = [ŷSRC, ŷREF, ŷSRC+REF, ŷMQM]:

ŷSL = w�ŷ (7)

where w is set to [1/9, 1/3, 1/3, 2/9].

4.3 Corpora
Our models are exclusively trained on publicly
available DA and MQM annotations, most of
which have been collected by WMT over the
recent years.

DA Data. We use DA annotations collected
by WMT from 2017 to 2020, and the MLQE-PE
dataset (Fomicheva et al., 2022). As the MLQE-PE
dataset does not contain reference translations,
we used the post-edit translations as reference
translations. Overall, the corpus consists of around
1 million samples, spanning 36 language pairs.

MQM Data. We collected the MQM an-
notations from WMT from 2020 to 2022.5

We also used annotations sourced from other
MQM-annotated datasets: (i) IndicMT (Sai B.
et al., 2023), which contains MQM annotations
spanning 5 Indian languages, and (ii) DEMETR
(Karpinska et al., 2022), a diagnostic dataset with
perturbations spanning semantic, syntactic, and
morphological errors.

5Here, we exclude the 2022 News domain annotations,
which we reserved for testing.
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DATASET No. Samples Error Statistics

WMT Data 147K (76%) 63%; [57, 42, 1]
IndicMT 7K (4%) 80%; [19, 52, 29]
DEMETR 22K (11%) 47%; [38, 19, 43]
MLQE-PE Hall. 1.7K (1%) All set to CRIT
Synthetic Hall. 16K (8%) All set to CRIT

Table 1: Number of samples, as well as error
statistics (overall percentage of non-correct trans-
lations; rates of error type [MIN, MAJ, CRIT]), of
each MQM data source used for training xCOMET.

Corpora with MQM annotations are usually
extremely unbalanced with critical errors being
underrepresented (see stats for WMT in Table 1).
As a result, metrics might struggle to effectively
detect translations with critical errors and hallu-
cinations. (Amrhein and Sennrich, 2022; Raunak
et al., 2022; Guerreiro et al., 2023). As such,
we augment the MQM corpus with hallucinations
from the MLQE-PE corpus and synthetic critical
errors. We create detached and oscillatory hallu-
cinations (Raunak et al., 2021; Guerreiro et al.,
2023): (i) detached hallucinations, replacing the
translation with a random sentence or an unrelated
one semantically similar to the source sentence;6

and (ii) oscillatory hallucinations, where we ran-
domly sample a n-gram from the translation (with
n in {2, 3, 4}) and repeat it between 1 and 10 times.
We set the sentence-level scores of these halluci-
nations to 0. Overall, our MQM corpus consists
of 194K samples across 14 language pairs.

Scaling of Sentence-level Scores. While the
sentence-level scores inferred from MQM anno-
tations (through the procedure in Equation 6) are
bounded between 0 and 1, DA annotations usu-
ally require z-normalization in order to mitigate
variations in scoring strategies by different anno-
tators (Bojar et al., 2017).7 Thus, as z-scores are
inherently centered at 0 and unbounded, there is a
scaling mismatch between the data samples.

Consequently, to circumvent this limitation, we
employ min-max scaling on our DA corpus to
set its range of scores to [0, 1]. To do so, we
set a practical minimum and maximum z-score
value. We obtain the minimum score by averaging

6We measure cross-lingual similarity using sentence em-
beddings obtained with the LaBSE encoder (Feng et al.,
2022).

7This is particularly relevant for DA annotations, since
these judgments typically come from non-expert annotators.

the z-scores for translations with over 1 annota-
tion, wherein all annotators unanimously scored
them with an unnormalized 0 DA score, i.e., they
deemed the translation as ‘‘random’’. For deter-
mining a maximum value, we applied the same
process for perfect translations, i.e., unnormalized
100 DA score.8

4.4 Training Curriculum

xCOMET models undergo a 3-phase curriculum
training. Throughout these phases, the training
emphasis alternates between sentence-level pre-
diction and error span prediction by tweaking the
parameter λ in Equation 3. The curriculum phases
can be described as follows:

Phase I: The model is trained exclusively us-
ing the DA data. In this phase, the focus is
exclusively set on sentence-level regression.

Phase II: In this stage, we introduce word-level
supervision. To achieve this, the model is
fine-tuned on our diverse MQM corpus, with
most emphasis placed on the word-level task.

Phase III: The last training phase is aimed at
unifying both tasks. The model is further
fine-tuned using high-quality MQM data
from (Freitag et al., 2021a), with a bigger
emphasis set to sentence-level prediction.9

Interpretation of the Curriculum. We start
by training a sentence-level metric—similar to
UNITE (Wan et al., 2022a)—on the vastly avail-
able DA annotations. Phase I acts as a warm-up
for subsequent stages. In fact, prior research has
shown that models trained on DA annotations
leverage token-level information that aligns with
MQM error annotations (Rei et al., 2023b). Mov-
ing to Phase II, we assume we have a metric
that can perform sentence-level regression. Thus,
the aim here shifts to integrating word-level
supervision without compromising the previ-
ously acquired sentence-level prediction skills.
To do so, we use the highly diverse corpora of
MQM annotations and set most emphasis on the
word-level task. Finally, we exclusively lever-
age a small corpus (around 25k samples) of
very high-quality MQM annotations from (Freitag
et al., 2021a)—each sample has three annotations

8This was initially introduced in BLEURT-20 (Pu et al.,
2021).

9The achieved λ weights for Phases II and III were
λ = 0.983 and λ = 0.055, respectively.
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from separate annotators—with additional syn-
thetic hallucinations. Our focus here is to mitigate
any potential decline in sentence-level regression
capabilities during Phase II.

5 Experimental Setting

5.1 Evaluation

We evaluate the performance of our metrics us-
ing two datasets: (i) the MQM annotations from
the News domain of the WMT 2022 Metrics
shared task, and (ii) the WMT 2023 Met-
rics shared task evaluation suite. The WMT22
annotations encompass three language pairs:
Chinese→English (zh-en), English→German
(en-de), and English→Russian (en-ru). On
the other hand, the WMT23 annotations cover
Chinese→English (zh-en), English→German
(en-de), and Hebrew→English (he-en). We
evaluate the metrics in terms of sentence-level,
system-level, and error span prediction perfor-
mance.

At the sentence-level, we report Kendall’s
Tau (τ ) using the Perm-Both hypothesis test
(Deutsch et al., 2021). We also evaluate the met-
rics on System-level Pairwise Accuracy (Kocmi
et al., 2021). We base these evaluations on 200
re-sampling runs, with a significance level (p)
set to 0.05. For error span prediction, we adopt
the WMT23 Quality Estimation shared task
evaluation methodology and compute F1 scores
calculated at the character level, taking into ac-
count partial matches for both minor and major
errors.10 For WMT23, we follow the evaluation
setup from the shared task (Freitag et al., 2023)
and report the aggregated System-level Pairwise
Accuracy pooled across all language pairs, and
the primary metric Average Correlation, which
encompasses ten tasks, spanning system- and
sentence-level metrics.11

5.2 Baselines

Sentence and System-level. We test our met-
rics against widely used open neural metrics:
COMET-22 (Rei et al., 2022a) and BLEURT-20 (Pu

10We convert all critical errors into major errors, in order
to match the guidelines described in Freitag et al. (2021a) that
were used for annotating the zh-en and de-en test sets.

11The ten tasks consist of the System-level Pairwise
Accuracy pooled across the language pairs, as well as
segment-level pairwise ranking accuracy with tie calibra-
tion (Deutsch et al., 2023a), and system- and segment-level
Pearson correlation for each of the individual language pairs.

et al., 2021). Additionally, we include METRICX,
the best performing metric from the WMT22 Met-
rics shared task (Freitag et al., 2022),12 and GEMBA

(Kocmi and Federmann, 2023b), which employs
GPT4 (OpenAI, 2023) to evaluate translations fol-
lowing DA guidelines. For WMT23, we report the
same metrics but update them, when needed (for
METRICX-23 [Juraska et al., 2023] and GEMBA-MQM

[Kocmi and Federmann, 2023a]), with the versions
submitted to the official competition.13

Error Span Prediction. We report results using
GPT3.5 and GPT4 models, by prompting it in the
style of AUTOMQM (Fernandes et al., 2023).14 We
carefully select 5 shots that are held constant for
all samples. This way, we can directly compare
our results with state-of-the-art LLMs, which have
been shown to be able to perform the task of error
detection (Fernandes et al., 2023; Xu et al., 2023).

6 Correlations with Human Judgments

In this section, we present a standard performance
analysis of our metrics in terms of correlations
with human judgments. Overall, we find xCOMET

to be a state-of-the-art in sentence-level and error
span prediction, being competitive with generative
LLMs in terms of system-level evaluation.

Sentence-level Evaluation. Table 2a shows that
both xCOMET metrics outperform other strong per-
forming neural metrics, including the generative
approach leveraging GPT4 of GEMBA. In partic-
ular, xCOMET-XXL sets a new state-of-the-art for
en-de and en-ru. Interestingly, we can see
that, while scaling up the encoder model of the
xCOMET metrics (from XL to XXL) holds better re-
sults, xCOMET-XL is very competitive. In fact, it
outperforms METRICX, which runs at even a larger
size than xCOMET-XXL. Finally, we can also ob-
serve that the MQM scores inferred exclusively
from the predicted error spans also exhibit strong
performance, outperforming widely used metrics
BLEURT-20 and COMET-22. This is particularly rel-
evant: the predicted error spans bring not only a

12Specifically, we employ the metricx xxl MQM 2020
submission scores from the mt-metrics-eval package.
Although the metric has not been released publicly, it is
public that it is built upon the mT5-XXL (Xue et al., 2021)
and has 13B parameters (Deutsch et al., 2023b).

13For all baselines, we report the official numbers from the
WMT23 Metrics Shared Task (Freitag et al., 2023).

14We use the models from the OpenAI
API (gpt-3.5-turbo and gpt-4) in October 2023.
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METRIC zh-en en-de en-ru Avg. METRIC zh-en en-de en-ru Avg.

BLEURT-20 0.336 0.380 0.379 0.365 BLEURT-20 0.762 0.771 0.743 0.759
COMET-22 0.335 0.369 0.391 0.361 COMET-22 0.705 0.800 0.733 0.746
METRICX 0.415 0.405 0.444 0.421 METRICX 0.762 0.781 0.724 0.756
GEMBA-GPT4-DA 0.292 0.387 0.354 0.354 GEMBA-GPT4-DA 0.752 0.848 0.876 0.825

xCOMET-XL 0.399 0.414 0.448 0.421 xCOMET-XL 0.800 0.743 0.790 0.778
xCOMET-XXL 0.390 0.435 0.470 0.432 xCOMET-XXL 0.800 0.829 0.829 0.819

MQM scores from the error spans (ŷ = ŷMQM) MQM scores from the error spans (ŷ = ŷMQM)
xCOMET-XL (MQM) 0.374 0.389 0.445 0.402 xCOMET-XL (MQM) 0.781 0.762 0.762 0.768
xCOMET-XXL (MQM) 0.332 0.415 0.439 0.395 xCOMET-XXL (MQM) 0.781 0.838 0.810 0.810

(a) Sentence-level evaluation. (b) System-level evaluation.

Table 2: Segment-level Kendall-Tau (↑) in (a), and System-level Pairwise Accuracy (↑) in (b) using the
Perm-Both hypothesis test (Deutsch et al., 2021) on the WMT22 Shared Task News domain test set.
Numbers in bold belong to the top-performing cluster according to statistical significance (p < 0.05).

more detailed view into translation errors but also
provide high-quality sentence-level scores.

System-level Evaluation. Table 2b and Table 3
show results for system-level for both WMT22 and
WMT23 test sets. Similarly to what we observed
at the sentence-level, our metrics show consis-
tently superior performance when compared to
other dedicated neural metrics. Notably, although
generative approaches typically do much better at
system-level evaluation when compared to ded-
icated models (Kocmi and Federmann, 2023b;
Fernandes et al., 2023), xCOMET-XXL remains com-
petitive in all language pairs with GEMBA using
GPT4. Finally, building on the findings at the
sentence-level, Table 2b reveals that the MQM
scores inferred directly and exclusively from the
predicted error spans also exhibit very competitive
performance in terms of system-level accuracy.

Aggregated Evaluation. Table 3 shows ag-
gregated results for the WMT23 Metrics Shared
Task. Our metrics, at both scales, would win the
shared task, outperforming both the newest ver-
sion of METRICX and GEMBA-MQM. Following the
trend presented at sentence-level evaluation, we
note that xCOMET-XL is indeed competitive with
xCOMET-XXL although running at a smaller scale.

Error Span Prediction. While we have high-
lighted the utility of the predicted error spans
through the inferred sentence-level MQM scores,
here we turn to evaluating them directly.
Table 4 shows that the error spans predicted via
xCOMET metrics outperform those obtained with
both GPT3.5 and GPT4 despite being smaller in
capacity relative to these models. In fact, our met-
rics achieve close performance to that of GPT4,
even when a reference is not provided.

METRIC system-level acc. avg-corr.

BLEURT-20 0.892 0.776
COMET-22 0.900 0.779
METRICX-23 0.908 0.808
GEMBA-MQM 0.944 0.802

xCOMET-XL 0.912 0.813
xCOMET-XXL 0.920 0.812

Table 3: System-level pairwise accuracy (↑)
(Kocmi et al., 2021) computed over data pooled
across all three WMT23 language pairs, and
primary metric Average Correlation (↑).

METRIC zh-en en-de en-ru Avg.

• AutoMQM (GPT3.5) 0.143 0.160 0.166 0.156
• AutoMQM (GPT4) 0.248 0.257 0.281 0.262

• xCOMET-XL 0.237 0.290 0.281 0.269
• xCOMET-XXL 0.257 0.320 0.262 0.280

Error spans detected with source-only input
• xCOMET-XL (SRC) 0.208 0.264 0.252 0.242
• xCOMET-XXL (SRC) 0.229 0.298 0.238 0.255

Table 4: F1 scores (↑) for error span detection:
reference-free (•), reference-based (•) evaluation.

Interplay of Error Spans and Sentence-level
Scores. Table 5 shows a strong correlation
between the different score types predicted by
xCOMET and the MQM inferred score derived
exclusively from error spans. This interplay is
highly important: the predicted error spans may
be valuable, not just for the sake of accuracy but
also for interpretability. Interestingly, these high
correlations with the predicted scores from each
forward pass (ŷSRC, ŷREF, ŷSRC+REF) are obtained de-
spite no explicit alignment mechanism governing
the relationship between the predictions of the
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SCORE zh-en en-de en-ru All

ŷSRC 0.73 0.75 0.79 0.78
ŷREF 0.75 0.74 0.75 0.77
ŷSRC+REF 0.78 0.79 0.82 0.82
ŷ†SL 0.90 0.92 0.92 0.92

Table 5: Pearson correlations between the re-
gression scores produced by xCOMET-XXL (ŷSRC,
ŷREF, ŷSRC+REF, ŷSL) and the MQM inferred score,
ŷMQM, computed from the identified error spans.
†The computation of ŷSL, contrary to the other
scores, makes direct use of ŷMQM (see Eq. 7).

sentence-level and word-level heads. We hypoth-
esize that it is thus the shared encoder that, during
the multi-task training, aligns the representations
between the two tasks. As such, xCOMET provides,
through its predicted error spans, a potential lens
through which we can better understand, contex-
tualize, and even debug its own sentence-level
predictions.

7 Robustness of xCOMET to Pathological
Translations

We have shown that xCOMET metrics exhibit
state-of-the-art correlations with human judge-
ments when evaluating on high-quality MQM
annotations. However, these MQM annotations
are often highly unbalanced and contain little to
no major or critical errors. As such, they may
not offer a full picture of the metrics’ perfor-
mance. In this section, we shift our focus to
studying how xCOMET metrics behave when eval-
uating translations with localized major or critical
errors, and highly pathological translations, such
as hallucinations.

7.1 Localized Errors

We employ SMAUG (Alves et al., 2022),15

a tool designed to generate synthetic data for
stress-testing metrics, to create corrupted trans-
lations that contain major or critical errors. We
generate translations with the following patholo-
gies: addition of text, negation errors, mask
in-filling, named entity errors, and errors in num-
bers. For this evaluation, we use data from the
WMT 2023 Metrics shared task. Specifically,
we corrupt the released synthetic references for

15https://github.com/Unbabel/smaug.

zh-en he-en

ERROR XL XXL XL XXL

Add. of text 3.66 10.7 6.15 7.35
Negation 0.20 0.20 3.89 4.90
Mask in-fill 5.01 17.0 4.78 3.92
Swap NUM 3.19 2.88 0.16 0.00
Swap NE 3.66 6.94 9.81 7.01
All 2.24 10.7 9.81 7.00

Table 6: Percentage (%) of translations, segmented
by perturbation type, that are predicted to have no
errors (↓). We show results for both zh-en and
he-en language pairs across xCOMET sizes.

which the xCOMET metrics found no errors.16

Moreover, as the full suite of SMAUG trans-
formations can only be applied to English text,
we focus on Chinese→English (zh-en) and
Hebrew→English (he-en) translations.

xCOMET Predicts most Localized Errors as Ma-
jor or Critical Errors. Table 6 shows that
xCOMET metrics identify errors in the vast major-
ity of the perturbed samples, with trends varying
across scale and language pair. We found that
the errors predicted by xCOMET-XL and xCOMET-XXL

overlap with the artificially induced perturbations
in over 90% of the perturbed samples (98% for
XL and 90.9% for XXL). However, upon further
analysis of xCOMET’s predicted error spans, we ob-
served that the model tends to identify additional
spans in the perturbed sentence as erroneous, be-
yond the induced perturbations. This behavior is
more prominent for perturbations involving the
addition of text, which are not as localized as
perturbations like swapping numbers or named
entities. Furthermore, we noticed that the model
has a propensity to assign the same error category
to all predicted spans within a single sentence.
When the metric predicts multiple error spans
in a sentence, it assigns different severity levels
to those spans only about 35% of the time. Im-
proving the model’s ability to differentiate error
categories among multiple errors within a sen-
tence is an interesting avenue for future research

16This allows us to isolate the effect of the perturbations.
In case there are predicted error spans for the transformed
translations, these are a result of the perturbation induced.
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Table 7: Predictions of xCOMET-XL for perturbed
translations. We highlight minor (MIN), ma-
jor (MAJ ), and critical (CRIT) error spans.

and development. We show several examples of
predictions of xCOMET in Table 7.

We also found that negation errors and mis-
matches in numbers are the most easily identified
by the metrics. This is interesting: Localized
errors, such as mismatches in numbers and
named-entity errors, had been pinpointed as weak-
nesses of previous COMET metrics (Amrhein and
Sennrich, 2022; Raunak et al., 2022). This earlier
limitation seems to now have been addressed suc-
cessfully. In fact, the results in Figure 4a show that
most of these errors are predicted as critical errors.
One plausible hypothesis for these improvements
is the incorporation of datasets that contain nega-
tive translations and synthetic hallucinations into
our training set.

xCOMET Sentence-level Scores Are Sensitive
to Localized Perturbations. Figure 4b shows
that localized errors can lead to significant de-

creases in the predicted sentence-level scores,
with perturbation-wise trends mirroring those of
the error span predictions: the most pronounced
decreases are found for negation errors and mis-
matches in numbers and named-entities (median
decreases of around 20 points). The distribution
of the decreases in quality also reveals two rele-
vant trends: (i) localized perturbations can cause
xCOMET-XXL to shift from a score of a perfect
translation to that of an unrelated translation, and
(ii) the behavior of xCOMET-XXL is not perfect and
can be further improved: In rare cases, pertur-
bations may actually lead to an increase in the
score. Nevertheless, upon closer inspection, for
over 90% of cases, the increase is smaller than 1
point.

7.2 Hallucinations

Hallucinations lie at the extreme-end of machine
translation pathologies (Raunak et al., 2021),
and can have devastating impact when models
are deployed in the wild. Yet, these transla-
tions are often overlooked when assessing the
performance of translation systems. Their rarity
means that performance, usually judged accord-
ing to an aggregated corpus-level score, may
remain largely unperturbed by a very small num-
ber of hallucinations. Here, we assess how the
xCOMET metrics rank hallucinations among other
translations. We will use the German→English
hallucination benchmark introduced in Guerreiro
et al. (2023). This benchmark involves over
3.4k translations—produced by an actual ma-
chine translation system—of different error types,
including omissions, named-entity errors, and
hallucinations (oscillatory, fully, and strongly de-
tached). For a metric that has not been trained
explicitly to rank translations, the benchmark
is quite challenging: Hallucinations should be
ranked below other severe errors and incorrect
translations.

xCOMET Metrics Can Distinguish Hallucina-
tions from Other Translations. The results in
Table 8 show that both xCOMET metrics largely
rank hallucinations lower than other errors. This
is especially true for the most severe type of hallu-
cination (fully detached), for which the AUROC
exceeds 95 for the XXL metric. In fact, Figure 5
reveals that xCOMET-XXL assigns over 90% of
these fully detached hallucinations a score under
10. We show examples of error spans predicted
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Figure 4: Analysis of xCOMET-XXL for data with localized critical errors in terms of (a) distribution of error severities
for the predicted error spans, and (b) sensitivity of the sentence-level scores.

METRIC All Full Det. Osc.

• BLEURT-20 0.824 0.892 0.799
• COMET-22 0.829 0.878 0.883
• COMETKIWI-XXL 0.839 0.834 0.902

• xCOMET-XL 0.865 0.907 0.922
• xCOMET-XXL 0.890 0.964 0.844

QE scores from the error spans (ŷ = ŷSRC)
• xCOMET-XL (SRC) 0.885 0.924 0.944
• xCOMET-XXL (SRC) 0.902 0.959 0.866

Table 8: Hallucination detection performance
on the de-en hallucination benchmark from
Guerreiro et al. (2023) as measured by AUROC
(↑) for reference-free (•) and reference-based (•)
metrics. We report results for all the dataset,
for fully detached, and oscillatory hallucinations
separately.

by xCOMET-XXL in Table 9. Relative to previous
metrics, xCOMET achieves overall improvements.
Interestingly, we also find that SRC-based evalua-
tion (i.e., without the use of a reference) can reap
benefits in this scenario. We hypothesize that this
is due to the metric over-relying on the reference
when it is available (Rei et al., 2023b). While
hallucinations contain content that is detached
from the source, some of their text may still over-
lap (even if just lexically) the reference (e.g., in
strongly detached or oscillatory hallucinations),
leading to higher scores.

8 Ablations on Design Choices

We now address relevant questions about the de-
velopment of xCOMET through ablations on design
choices. Ablations are run with xCOMET-XL on the

Figure 5: Category-wise distribution of xCOMET-XXL

scores on the hallucination benchmark.

Source:
Das Teilabonnement für international tätige Juristen.

Translation:
The sub-sub-sub-sub-scription for international lawyers.

Reference:
Partial subscriptions for internationally active lawyers.

Oscillatory hall. with xCOMET error span predictions:
The CRIT: sub-sub-sub-sub-scription for international lawyers.

Source:
Empfehlenswert gleich mit der Zimmerreservierung zu buchen!

Translation:
The staff were very friendly and helpful. The room was clean and
comfortable.

Reference:
We recommend booking your treatments together with the hotel
booking!

Fully detached hall. with xCOMET error span predictions:
CRIT: The staff were very friendly and helpful. The room was
clean and comfortable.

Table 9: Examples of predictions of xCOMET-XXL

for the hallucination data of Guerreiro et al.
(2023). The model correctly identifies the
anomalous repeated phrase for the oscillatory hal-
lucination, and predicts the whole translation as a
single error span in the case of the fully detached
hallucination.
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zh-en en-de en-ru Avg.

STAGE τ F1 τ F1 τ F1 τ F1

Post Phase I with sentence-level only objective: λ = 0
PHASE I 0.377 NA 0.356 NA 0.425 NA 0.386 NA

PHASE II (ŷ = ŷREG) 0.372 NA 0.386 NA 0.448 NA 0.402 NA

PHASE III (ŷ = ŷREG) 0.395 NA 0.391 NA 0.457 NA 0.414 NA

Post Phase I with word-level only objective: λ = 1
PHASE II (ŷ = ŷREG) 0.333 0.293 0.357 0.332 0.415 0.229 0.368 0.285
PHASE II (ŷ = ŷMQM) 0.331 = 0.410 = 0.395 = 0.379 =

Post Phase I with multi-task only objective: λ set as described in Section 4.4
PHASE II (ŷ = ŷMQM) 0.330 0.284 0.359 0.328 0.413 0.212 0.367 0.275
PHASE II (ŷ = ŷSL) 0.368 = 0.396 = 0.420 = 0.395 =
PHASE III (ŷ = ŷMQM; xCOMET) 0.374 0.237 0.389 0.290 0.445 0.281 0.402 0.269
PHASE III (ŷ = ŷSL; xCOMET) 0.399 = 0.597 = 0.448 = 0.421 =

Table 10: Segment-level Kendall-Tau (τ ) (↑) and F1 scores (↑) for error span detection on different
curriculum choices. We represent metrics that can only perform segment-level evaluation, only perform
word-level evaluation (λ = 1), and both. When a model has no capabilities to perform error span
prediction, we write NA under its F1 score.

MQM annotations from the News domain of the
WMT 22 Metrics shared task (see Section 5).

Impact of the Training Curriculum. We
employed a curriculum to train xCOMET (see
Section 4.4) in order to balance data from different
annotation strategies (i.e., DA and MQM anno-
tations), and also to better balance the multi-task
objective. Here, we want to assess how perfor-
mance evolves throughout the different stages. We
perform ablations on Phase II and Phase III, which
correspond to the introduction of the multi-task
objective and MQM training data that contain both
sentence-level scores and error spans.

Table 10 shows that while a multi-task model
outperforms single-task models for sentence-level
evaluation,17 it does not hold true for word-level
evaluation. The best word-level model is obtained
by doing Phase II with a word-level only objective.
Note that we can still extract sentence-level scores
from such a model in two ways: (i) by lever-
aging the still existing regression head trained
during Phase I, or (ii) by converting the error
spans into a single sentence-level score. However,
notably, neither of these approaches is competi-
tive with our final xCOMET model. In fact, it turns
out, performing sentence-level evaluation via the
error spans predicted by the final model leads to
better correlations than with the word-level only

17For sentence-level only models, we present the
sentence-level score ŷ = ŷREG correspondent to setting uni-
form weights across all three individual scores (SRC, REF, and
SRC+REF).

SCORE zh-en en-de en-ru All

Individual Scores
ŷSRC 0.368 0.358 0.402 0.376
ŷREF 0.399 0.389 0.427 0.405
ŷSRC+REF 0.399 0.390 0.438 0.409
ŷMQM 0.374 0.389 0.445 0.402

Aggregated Regression Scores: see Equation 7
ŷREG 0.402 0.380 0.4401 0.408
ŷUNIF 0.398 0.402 0.448 0.416
ŷSL 0.399 0.414 0.448 0.421

Table 11: Segment-level Kendall-Tau (τ ) (↑) for
individual and aggregated sentence-level scores.

model. Moreover, aggregating the different scores
from the regression heads yields the best overall
performance for sentence-level evaluation.

Impact of the Weights on the Sentence-level
Scores from Equation (7). We studied the
impact of aggregating different sentence-level
scores by varying the weights w in Equation 7.
Besides the individual scores for each evalua-
tion mode (SRC, REF, and SRC+REF), we present
three aggregations: (i) ŷ = ŷSL used in the fi-
nal model, (ii) ŷ = ŷREG with uniform weights
across the three individual scores and not con-
sidering the inferred MQM score from the error
spans (w = [1/3, 1/3, 1/3, 0]), and (iii) ŷ = ŷUNIF

with uniform weights across all scores (w =
[1/4, 1/4, 1/4, 1/4]).

Table 11 reveals two interesting findings: (i) ag-
gregating scores does not always outperform
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individual scores (e.g., ŷREG performs similarly
to ŷSRC+REF), and (ii) including an inferred MQM
score obtained through error span prediction
boosts sentence-level performance. Notably, the
improvement of our final aggregated score over
ŷSRC+REF is not substantial. This suggests that, un-
der computational constraints, one could consider
computing a single ŷSRC+REF score without the need
for three different forward passes and error span
prediction.

9 Conclusions

We introduced xCOMET, a novel suite of metrics
for machine translation evaluation that combines
sentence-level prediction with fine-grained error
span prediction. Through extensive experiments,
we have shown that xCOMET is a state-of-the-art
metric at all relevant vectors of evaluation:
sentence-level, system-level, and error span pre-
diction. Notably, through xCOMET’s capabilities
to predict error spans, we can not only obtain
useful signals for downstream prediction (ei-
ther directly through error span prediction or by
informing sentence-level scores) but also gain
access to a lens through which we can better
understand and interpret its predictions. We also
stress-tested the metrics by assessing how they
score localized critical errors and hallucinations:
The metrics identify the vast majority of localized
errors and can appropriately penalize the severity
of hallucinations.

We hope xCOMET can serve as a step towards
more informed machine translation evaluation.
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Lavie, and André F. T. Martins. 2022. Results
of WMT22 metrics shared task: Stop using
BLEU – neural metrics are better and more ro-
bust. In Proceedings of the Seventh Conference
on Machine Translation (WMT), pages 46–68,
Abu Dhabi, United Arab Emirates (Hybrid).
Association for Computational Linguistics.

Markus Freitag, Ricardo Rei, Nitika Mathur,
Chi-kiu Lo, Craig Stewart, George Foster, Alon
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