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Abstract

One widely cited barrier to the adoption of
LLMs as proxies for humans in subjective
tasks is their sensitivity to prompt wording—
but interestingly, humans also display sensi-
tivities to instruction changes in the form of
response biases. We investigate the extent to
which LLMs reflect human response biases,
if at all. We look to survey design, where hu-
man response biases caused by changes in the
wordings of ‘‘prompts’’ have been extensively
explored in social psychology literature. Draw-
ing from these works, we design a dataset and
framework to evaluate whether LLMs exhibit
human-like response biases in survey question-
naires. Our comprehensive evaluation of nine
models shows that popular open and commer-
cial LLMs generally fail to reflect human-like
behavior, particularly in models that have un-
dergone RLHF. Furthermore, even if a model
shows a significant change in the same direc-
tion as humans, we find that they are sensitive
to perturbations that do not elicit significant
changes in humans. These results highlight the
pitfalls of using LLMs as human proxies, and
underscore the need for finer-grained charac-
terizations of model behavior.1

1 Introduction

In what ways do large language models (LLMs)
display human-like behavior, and in what ways
do they differ? The answer to this question is not
only of intellectual interest (Dasgupta et al., 2022;
Michaelov and Bergen, 2022), but also has a wide
variety of practical implications. Works such as
Törnberg (2023), Aher et al. (2023), and Santurkar
et al. (2023) have demonstrated that LLMs can
largely replicate results from humans on a vari-
ety of tasks that involve subjective labels drawn

∗Equal contribution.
1Our code, dataset, and collected samples are available:

https://github.com/lindiatjuatja/BiasMonkey.

from human experiences, such as annotating hu-
man preferences, social science and psycholog-
ical studies, and opinion polling. The seeming
success of these models suggests that LLMs may
be able to serve as viable participants in studies—
such as surveys—in the same way as humans
(Dillion et al., 2023), allowing researchers to rap-
idly prototype and explore many design decisions
(Horton, 2023; Chen et al., 2022). Despite these
potential benefits, the application of LLMs in
these settings, and many others, requires a more
nuanced understanding of where and when LLMs
and humans behave in similar ways.

Separately, another widely noted concern is the
sensitivity of LLMs to minor changes in prompts
(Jiang et al., 2020; Gao et al., 2021; Sclar et al.,
2023). In the context of simulating human be-
havior though, sensitivity to small changes in a
prompt may not be a wholly negative thing; in
fact, humans are also subconsciously sensitive to
certain instruction changes (Kalton and Schuman,
1982). These sensitivities—which come in the
form of response biases—have been well studied
in the literature on survey design (Weisberg et al.,
1996) and can manifest as a result of changes
to the specific wording (Brace, 2018), format
(Cox III, 1980), and placement (Schuman and
Presser, 1996) of survey questions. Such changes
often cause respondents to deviate from their
original or ‘‘true’’ responses in regular, predict-
able ways. In this work, we investigate the par-
allels between LLMs’ and humans’ responses to
these instruction changes.

Our Contributions. Using biases identified
from prior work in survey design as a case study,
we generate question pairs (i.e., questions that do
or do not reflect the bias), gather a distribution
of responses across different LLMs, and evalu-
ate model behavior in comparison to trends from
prior social science studies, as outlined in Figure 1.
As surveys are a primary method of choice for
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Figure 1: Our evaluation framework consists of three steps: (1) generating a dataset of original and modified
questions given a response bias of interest, (2) collecting LLM responses, and (3) evaluating whether the change
in the distribution of LLM responses aligns with known trends about human behavior. We directly apply the same
workflow to evaluate LLM behavior on non-bias perturbations (i.e., question modifications that have been shown
to not elicit a change in response in humans).

obtaining the subjective opinions of large-scale
populations (Weisberg et al., 1996) and are used
across a diverse set of organizations and appli-
cations (Hauser and Shugan, 1980; Morwitz and
Pluzinski, 1996; Al-Abri and Al-Balushi, 2014),
we believe that our results would be of broad
interest to multiple research communities.

We evaluate LLM behavior across 5 differ-
ent response biases, as well as 3 non-bias pertur-
bations (e.g., typos) that are known to not affect
human responses. To understand whether aspects
of model architecture (e.g., size) and training
schemes (e.g., instruction fine-tuning and RLHF)
affect LLM responses to these question modifi-
cations, we selected 9 models—including both
open models from the Llama2 series and com-
mercial models from OpenAI—to span these con-
siderations. In summary, we find:

(1) LLMs do not generally reflect human-like
behaviors as a result of question modifications:
All models showed behavior notably unlike hu-
mans such as a significant change in the op-
posite direction of known human biases and a
significant change to non-bias perturbations. Fur-
thermore, unlike humans, models are unlikely to
show significant changes due to bias modifica-
tions if they are more uncertain with their origi-
nal responses.

(2) Behavioral trends of RLHF-ed models tend
to differ from those of vanilla LLMs: Among

the Llama2 base and chat models, we find that
RLHF-ed chat models demonstrated less signif-
icant changes to question modifications as a re-
sult of response biases but are more affected by
non-bias perturbations than their non-RLHF-ed
counterparts, highlighting the potential undesir-
able effects of additional training schemes.

(3) There is little correspondence between ex-
hibiting response biases and other desirable
metrics for survey design: We find that a
model’s ability to replicate human opinion dis-
tributions is not indicative of how well an LLM
reflects human behavior.

These results suggest the need for care and cau-
tion when considering the use of LLMs as human
proxies, as well as the importance of building
more extensive evaluations that disentangle the
nuances of how LLMs may or may not behave
similarly to humans.

2 Methodology

In this section, we overview our evaluation frame-
work, which consists of three parts (Figure 1):
(1) dataset generation, (2) collection of LLM re-
sponses, and (3) analysis of LLM responses.

2.1 Dataset Generation

When evaluating whether humans exhibit hy-
pothesized response biases, prior social science
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studies typically design a set of control questions
and a set of treatment questions, which are in-
tended to elicit the hypothesized bias (McFarland,
1981; Gordon, 1987; Hippler and Schwarz, 1987;
Schwarz et al., 1992, inter alia). In line with this
methodology, we similarly create sets of ques-
tions (q, q′) ∈ Q that contain both original (q) and
modified (q′) forms of multiple-choice questions
to study whether an LLM exhibits a response bias
behavior given a change in the prompt.

The first set of question pairs Qbias is one where
q ′ corresponds to questions that are modified in
a way that is known to induce that particular bias
in humans. However, we may also want to know
whether a shift in LLM responses elicited by the
change between (q, q′) in Qbias is largely unique
to that change. One way to test this is by evaluat-
ing models on non-bias perturbation , which are
changes in prompts that humans are known to be
robust against, such as typos or certain random-
ized letter changes (Rawlinson, 2007; Sakaguchi
et al., 2017; Belinkov and Bisk, 2017; Pruthi et al.,
2019). Thus, we also generate Qperturb where q
is an original question that is also contained in
Qbias, and q′ is a transformed version of q using
these perturbations. Examples of questions from
Qbias and Qperturb are in Table 1.

We created Qbias and Qperturb by modifying
a set of existing ‘‘unbiased’’ survey questions
that have been curated and administered by ex-
perts. The original forms q of these question
pairs come from survey questions in Pew Re-
search’s American Trends Panel (ATP), detailed
in Appendix A.1. We opted to use the ATP as
the topics of questions present in ATP are very
close to those used in prior social psychology
studies that have investigated response biases,
such as politics, technology, and family, among
others. Given the similarity in domain, we ex-
pect that the trends in human behavior measured
in prior studies also extend to these questions
broadly. Concretely, we selected questions from
the pool of ATP questions curated by Santurkar
et al. (2023), who studied whether LLMs reflect
human opinions; in contrast, we study whether
changes in LLM opinions as a result of question
modification match known human behavioral pat-
terns, and then investigate how well these differ-
ent evaluation metrics align.

We looked to prior social psychology stud-
ies to identify well-studied response biases for
which implementation in existing survey ques-

tions is relatively straightforward, and the impact
of such biases on human decision outcomes has
been explicitly demonstrated in prior studies with
humans. We generate a dataset with a total of
2578 question pairs, covering 5 biases and 3 non-
bias perturbations. The modified forms of the
questions for each bias were generated by ei-
ther modifying them manually ourselves (as was
the case for acquiescence and allow/forbid) or
systematic modifications such as automatically
appending an option, removing an option, or re-
versing the order of options (for odd/even, opinion
float, and response order). The specific break-
down of the number of questions by bias type is
as follows: 176 for acquiescence bias, 40 for
allow/forbid asymmetry, 271 for response or-
der bias, 126 for opinion floating, and 126 for
odd/even scale effects. For each perturbation, we
generate a modified version based on each origi-
nal question from Qbias. Specific implementation
details are provided in Appendix A.2.

2.2 Collecting LLM Responses

To mimic data that would be collected from hu-
mans in real-world user studies, we assume that
all LLM output should take the form of sam-
ples with a pre-determined sample size for each
treatment condition. The collection process en-
tailed sampling a sufficiently large number of
LLM outputs for each question in every question
pair in Qbias and Qperturb. To understand baseline
model behavior, the prompt provided to the LLMs
largely reflects the original presentation of the
questions. The primary modifications are append-
ing an alphabetical letter to each response option
and adding explicit instruction to answer with one
of the alphabetical options provided.2 We pro-
vide the prompt template in Appendix B.2. We
then query each LLM with a temperature of 1
until we get a valid response3 (e.g., one of the
letter options) to elicit answers from the original
probability distribution of the LLM. For each pair
of questions, we sample 50 responses per form to
create Dq and Dq′ .

2We also explored prompt templates where models were
allowed to generate more tokens to explain the ‘‘reason-
ing’’ behind their answer, with chain of thought (Wei et al.,
2022b), but found minimal changes in model behavior.

3We report the average number of queries per model in
Appendix B.3.
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Example q Example q′

Acquiescence : For questions where respondents are asked to agree or disagree with a given statement,
respondents tend to agree with the statement (Choi and Pak, 2005).
Thinking about the US as a whole, do you think this country is
now
A. More united than before the coronavirus outbreak
B. More divided than before the coronavirus outbreak

Wouldn’t you agree that the United States is more united
now than it was before the coronavirus outbreak?
A. Yes
B. No

Allow/forbid asymmetry : Certain word pairings may elicit different responses, despite entailing the same
result. A well-studied example is asking whether an action should be ‘‘not allowed’’ or ‘‘forbidden’’ (Hippler
and Schwarz, 1987).
In your opinion, is voting a privilege that comes with respon-
sibilities and can be limited if adult U.S. citizens don’t meet
some requirements?
A. Yes
B. No

In your opinion, is voting a fundamental right for every
adult U.S. citizen and should not be forbidden in any way?
A. Yes
B. No

Response order : In written surveys, respondents have been shown to display primacy bias, i.e., preferring
options at the top of a list (Ayidiya and McClendon, 1990).
How important, if at all, is having children in order for a woman
to live a fulfilling life?
A. Essential
B. Important, but not essential
C. Not important

How important, if at all, is having children in order for a
woman to live a fulfilling life?
A. Not important
B. Important, but not essential
C. Essential

Opinion floating : When both a middle option and ‘‘don’t know’’ option are provided in a scale with an odd
number of responses, respondents who do not have a stance are more likely to distribute their responses across
both options than when only the middle option is provided (Schuman and Presser, 1996).
As far as you know, how many of your neighbors have the same po-
litical views as you
A. All of them
B. Most of them
C. About half
D. Only some of them
E. None of them

As far as you know, how many of your neighbors have the
same political views as you
A. All of them
B. Most of them
C. About half
D. Only some of them
E. None of them
F. Don’t know

Odd/even scale effects : When omitting a middle alternative, transforming the scale from an odd to an even
one, responses tend to stay near the scale midpoint more often than extreme points (e.g., Reduced somewhat vs
Reduced a great deal) (O’Muircheartaigh et al., 2001).
Thinking about the size of America’s military, do you think it
should be
A. Reduced a great deal
B. Reduced somewhat
C. Increased somewhat
D. Increased a great deal

Thinking about the size of America’s military, do you think
it should be
A. Reduced a great deal
B. Reduced somewhat
C. Kept about as is
D. Increased somewhat
E. Increased a great deal

Key typo : With a low probability, we randomly change one letter in each word (Rawlinson, 2007).
How likely do you think it is that the following will happen in
the next 30 years? A woman will be elected U.S. president

How likely do you think it is that the following will hap-
pen in the next 30 yeans? A woman wilp we elected U.S.
president

Letter swap : We perform one swap per word but do not alter the first or last letters. For this reason, this noise
is only applied to words of length ≥ 4 (Rawlinson, 2007).
Overall, do you think science has made life easier or more
difficult for most people?

Ovearll, do you tihnk sicence has made life eaiser or more
diffiuclt for most poeple?

Middle random : We randomize the order of all the letters in a word, except for the first and last (Rawlinson,
2007). Again, this noise is only applied to words of length ≥ 4.
Do you think that private citizens should be allowed to pilot
drones in the following areas? Near people’s homes

Do you thnik that pvarite citziens sluhod be aewolld to
piolt derons in the flnowolig areas? Near people’s heoms

Table 1: To evaluate LLM behavior as a result of response bias modifications and non-bias

perturbations , we create sets of questions (q, q′) ∈ Q that contain both original (q) and modified
(q′) forms of multiple-choice questions. We define and provide an example (q, q′) pairs for each
response bias and non-bias perturbation considered in our experiments.

We selected LLMs to evaluate based on mul-
tiple axes of consideration: open-weight versus
closed-weight models, whether the model has
been instruction fine-tuned, whether the model

has undergone reinforcement learning with hu-
man feedback (RLHF), and the number of model
parameters. We evaluate a total of nine mod-
els, which include variants of Llama2 (Touvron
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Bias Type Δb

Acquiescence count(q’[a]) - count(q[a])

Allow/forbid count(q[b]) - count(q’[a])

Response order count(q’[d]) - count(q[a])

Opinion floating count(q[c]) - count(q’[c])

Odd/even scale
count(q’[b]) + count(q’[d])
- count(q[b]) - count(q[d])

Table 2: We measure the change resulting from
bias modifications for a given question pair
(q, q ′) by looking at the change in the response
distributions between Dq and Dq′ with respect
to the relevant response options for each bias
type. We summarize Δb calculation for each
bias type based on the implementation of each
response bias (as described in Appendix A.2),
where count(q’[d]) is the number of ‘d’
responses for question q’.

et al., 2023) (7b, 13b, 70b), Solar4 (an instruction
fine-tuned version of Llama2 70b) and variants of
the Llama2 chat family (7b, 13b, 70b), which has
had both instruction fine-tuning as well as RLHF
(Touvron et al., 2023), along with models from the
GPT series (Brown et al., 2020) (GPT 3.5 turbo,
GPT 3.5 turbo instruct).5

2.3 Analysis of LLM Responses

Paralleling prior social psychology work, we
measure whether there is a deviation in the re-
sponse distributions between Dq and Dq′ from
Qbias, and, like these studies, if such deviations
form an overall trend in behavior. Based on the
implementation of each bias, we compute changes
on a particular subset of relevant response op-
tions, following Table 2. We refer to the degree
of change as Δb. Here, there is no notion of a
ground-truth label (e.g., whether the LLM is get-
ting the ‘‘correct answer’’ before and after some
modification), which differs from most prior work
in this space (Dasgupta et al., 2022; Michaelov
and Bergen, 2022; Sinclair et al., 2022; Zheng
et al., 2023; Pezeshkpour and Hruschka, 2023).

4https://huggingface.co/upstage/SOLAR-0
-70b-16bit.

5We also attempted to evaluate GPT 4 (0613) in our
experimental setup, but found it extremely difficult to get
valid responses, likely due to OpenAI’s generation guard-
rails. We provide specific numbers in Appendix B.4.

To determine whether there is a consistent
deviation across all questions, we compute the
average change Δ̄b across all questions and con-
duct a Student’s t-test where the null hypothesis
is that Δ̄b for a given model and bias type is
0. Together, the p-value and direction of Δ̄b in-
form us whether we observe a significant change
across questions that aligns with known human
behavior.6 We then evaluate LLMs on Qperturb

following the same process (i.e., selecting the
subset of relevant response options for the bias)
to compute Δp, with the expectation that across
questions Δ̄p should be not statistically different
from 0.

3 Results

3.1 General Trends in LLM Behavior
As shown in Figure 2, we evaluate a set of 9
models on 5 different response biases, summa-
rized in the first column of each grid, and com-
pare the behavior of each model on 3 non-bias
perturbations, as presented in the second, third,
and fourth column of each grid. We ideally ex-
pect to see significant positive changes across re-
sponse biases and non-significant changes across
all non-bias perturbations.

Overall, we find that LLMs generally do not
exhibit human-like behavior across the board.
Specifically, (1) no model aligns with known hu-
man patterns across all biases, and (2) unlike
humans, all models display statistically signifi-
cant changes to non-bias perturbations, regardless
of whether it responded to the bias modifica-
tion itself. The model that demonstrated the most
‘‘human-like’’ response was Llama2 70b, but it
nevertheless still exhibits a significant change as
a result of non-bias perturbations on three of the
five bias types.

Additionally, there is no monotonic trend be-
tween model size and model behavior. When
comparing results across both the base Llama2
models and Llama2 chat models, which vary in
size (7b, 13b, and 70b), we do not see a consistent
monotonic trend between the number of param-
eters and size of Δ̄b, which aligns with multiple
prior works (McKenzie et al., 2023; Tjuatja et al.,
2023). There are only a handful of biases where
we find that increasing model parameters leads to

6While we also report the magnitude of Δ̄b to better
illustrate LLM behavior across biases, we note that prior user
studies generally do not focus on magnitudes.
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Figure 2: We compare LLMs’ behavior on bias types (Δ̄b) with their respective behavior on the set of pertur-
bations (Δ̄p). We color cells that have statistically significant changes by the directionality of Δ̄b ( blue indi-
cates a positive effect and orange indicates a negative effect), using p = 0.05 cut-off, and use hatched cells to
indicate non-significant changes. A full table with Δ̄b and Δ̄p values and p-values is in Table 4. While we would
ideally observe that models are only responsive to the bias modifications and are not responsive to the other
perturbations, as shown in the top-right the ‘‘most human-like’’ depiction, the results do not generally reflect
the ideal setting.

an increase or decrease in Δ̄b (e.g., allow/forbid
and opinion float for the base Llama2 7b to 70b).

3.2 Comparing Base Models with Their
Modified Counterparts

Instruction fine-tuning and RLHF-ed models can
improve a model’s abilities to better generalize to
unseen tasks (Wei et al., 2022a; Sanh et al., 2022)
and be steered towards a user’s intent (Ouyang
et al., 2022); how do these training schemes affect
other abilities, such as exhibiting human-like re-
sponse biases? To disentangle the effect of these
additional training schemes, we focus our compar-
isons on base Llama2 models with their instruc-
tion fine-tuned (Solar, chat) and RLHF-ed (chat)
counterparts. As we do not observe a clear effect
from instruction fine-tuning,7 we center our anal-
ysis on the use of RLHF by comparing the base
models with their chat counterparts:

RLHF-ed models are more insensitive to bias-
inducing changes than their vanilla counter-
parts. We find that the base models are more
likely to exhibit a change for the bias modifi-

7We note that SOLAR and the Llama2 chat models use
different fine-tuning datasets, which may mask potential
common effects of instruction fine-tuning more broadly.

cations, especially for those with changes in the
wording of the question like acquiescence and al-
low/forbid. An interesting exception is odd/even,
where all but one of the RLHF-ed models (3.5
turbo instruct) have a larger positive effect size
than the Llama2 base models. Insensitivity to bias
modifications may be more desirable if we want
an LLM to simulate a ‘‘bias-resistant’’ user, but
not necessarily if we want it to be affected by the
same changes as humans more broadly.

RLHF-ed models tend to show more signif-
icant changes resulting from perturbations.
We also see that RLHF-ed models tend to show
a larger magnitude of effect sizes among the non-
bias perturbations. For every perturbation setting
that has a significant effect in both model pairs,
the RLHF-ed chat models have a greater magni-
tude of effect size in 21 out of 27 of these settings
and have on average 68% larger effect size than
the base model, a noticeably less human-like—
and arguably generally less desirable—behavior.

4 Examining the Effect of Uncertainty

In addition to studying the presence of response
biases, prior social psychology studies have also
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found that when people are more confident about
their opinions, they are less likely to be af-
fected by these question modifications (Hippler
and Schwarz, 1987). We measure whether LLMs
exhibit similar behavior and capture LLM un-
certainty using the normalized entropy of the an-
swer distributions of each question,

−
∑n

i=1 pilog2 pi
log2 n

(1)

where n is the number of multiple-choice op-
tions, to allow for a fair comparison across the
entire dataset where questions vary in the num-
ber of response options. A value of 0 means the
model is maximally confident (e.g., all probability
on a single option), whereas 1 means the model
is maximally uncertain (e.g., probability evenly
distributed across all options).

Out of the nine models tested, we did not ob-
serve consistent correspondence between the
uncertainty measure and the magnitude of Δ̄b.
Across all nine models, we do not observe a
correspondence between the uncertainty measure
and the magnitude of Δ̄b given a modified form
of the question, which provides further evidence
of dissimilarities between human and LLM be-
havior. However, the RLHF-ed models tended
to have more biases where there was a weak pos-
itive correlation (0.2 ≤ r ≤ 0.5) between the
uncertainty measure and the magnitude of Δ̄b

than their non-RLHF-ed counterparts. Specific
values for all models are provided in Table 4.

5 Comparison to Other Desiderata for
LLMs as Human Proxies

Beyond aspects of behavior like response biases,
use cases where LLMs may be used as proxies
for humans involve many other factors of model
performance. In the case of completing surveys,
we may also be interested in whether LLMs can
replicate the opinions of a certain population.
Thus, we explore the relationship between how
well a model reflects human opinions and the
extent to which it exhibits human-like response
biases.

To see how well LLMs can replicate
population-level opinions, we compare the dis-
tribution of answers generated by the models in
the original question to that of human responses

Figure 3: Representativeness is a metric based on the
Wasserstein distance which measures the extent to
which each model reflects the opinions of a population,
in this case Pew U.S. survey respondents (the higher
the better) (Santurkar et al., 2023). Colors indicate
model groupings, with red for the Llama2 base mod-
els, green for Solar (instruction fine-tuned Llama2
70b), blue for Llama2 chat models, and purple for
GPT 3.5.

(Santurkar et al., 2023; Durmus et al., 2023;
Argyle et al., 2022). We first aggregate the LLM’s
responses on each unmodified question q to
construct Dmodel for the subset of questions used
in our study. Then from the ATP dataset, which
provides human responses, we construct Dhuman

for each q. Finally, we compute a measure of
similarity between Dmodel and Dhuman for each
question, which Santurkar et al. (2023) refer to
as representativeness. We use the repository pro-
vided by Santurkar et al. (2023) to calculate the
representativeness of all nine models and find that
they are in line with the range of values reported
in their work.

The ability to replicate human opinion dis-
tributions is not indicative of how well an
LLM reflects human behavior. Figure 3 shows
the representativeness score between human and
model response distributions. While Llama2 70b’s
performance, when compared to the ideal setting
in Figure 3 (left), shows the most ‘‘human-like’’
behavior and also has the highest representative-
ness score, the relative orderings of model perfor-
mance are not consistent across both evaluations.
For example, Llama2 7b-chat and 13b-chat ex-
hibit very similar changes from question modifi-
cations as well as close representativeness scores,
whereas with GPT 3.5 turbo and turbo instruct
we observe very different behaviors but extremely
close representativeness scores.
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6 Related Work

LLM Sensitivity to Prompts. A growing set
of work aims to understand how LLMs may
be sensitive to prompt constructions. These
works have studied a variety of permutations of
prompts which include—but are not limited to—
adversarial prompts (Wallace et al., 2019; Perez
and Ribeiro, 2022; Maus et al., 2023; Zou et al.,
2023), changes in the order of in-context exam-
ples (Lu et al., 2022), changes in multiple-choice
questions (Zheng et al., 2023; Pezeshkpour and
Hruschka, 2023), and changes in formatting of
few-shot examples (Sclar et al., 2023). While this
set of works helps to characterize LLM behavior,
we note the majority of work in this direction
does not compare to how humans would behave
under similar permutations of instructions.

A smaller set of works has explored whether
changes in performance also reflect known pat-
terns of human behavior, focusing on tasks re-
lating to linguistic priming and cognitive biases
(Dasgupta et al., 2022; Michaelov and Bergen,
2022; Sinclair et al., 2022) in settings that are of-
ten removed from actual downstream use cases.
Thus, such studies may have limited guidance on
when and where it is appropriate to use LLMs as
human proxies. In contrast, Jones and Steinhardt
(2022) uses cognitive biases as motivation to
generate hypotheses for failure cases of language
models with code generation as a case study. Sim-
ilarly, we conduct our analysis by making com-
parisons against known general trends of human
behavior to enable a much larger scale of evalu-
ation, but grounded in a more concrete use case
of survey design.

When making claims about whether LLMs
exhibit human-like behavior, we also highlight
the importance of selecting stimuli that have been
verified in prior human studies. Webson and
Pavlick (2022) initially showed that LLMs can
perform unexpectedly well to irrelevant and inten-
tionally misleading examples, under the assump-
tion that humans would not be able to do so.
However, the authors later conducted a follow-up
study on humans, disproving their initial assump-
tions (Webson et al., 2023). Our study is based on
long-standing literature from the social sciences.

Comparing LLMs and Humans. Comparisons
of LLM and human behavior are broadly divided
into comparisons of more open-ended behavior,

such as generating an answer to a free-response
question, versus comparisons of closed-form out-
comes, where LLMs generate a label based on
a fixed set of response options. Since the open-
ended tasks typically rely on human judgments to
determine whether LLM behaviors are perceived
to be sufficiently human-like (Park et al., 2022,
2023a), we focus on closed-form tasks, which al-
lows us to more easily find broader quantitative
trends and enables scalable evaluations.

Prior works have conducted evaluations of
LLM and human outcomes on a number of real-
world tasks including social science studies (Park
et al., 2023b; Aher et al., 2023; Horton, 2023;
Hämäläinen et al., 2023), crowdsourcing annota-
tion tasks (Törnberg, 2023; Gilardi et al., 2023),
and replicating public opinion surveys (Santurkar
et al., 2023; Durmus et al., 2023; Chu et al., 2023;
Kim and Lee, 2023; Argyle et al., 2022). While
these works highlight the potential areas where
LLMs can replicate known human outcomes,
comparing directly to human outcomes limits ex-
isting evaluations to the specific form of the ques-
tions that were used to collect human responses.
Instead, in this work, we create modified versions
of survey questions informed by prior work in so-
cial psychology and survey design to understand
whether LLMs reflect known patterns, or general
response biases, that humans exhibit. Relatedly,
Scherrer et al. (2023) analyzes LLM beliefs in am-
biguous moral scenarios using a procedure that
also varies the formatting of the prompt, though
their work does not focus on the specific effects
of these formatting changes.

7 Conclusion

We conduct a comprehensive evaluation of LLMs
on a set of desired behaviors that would poten-
tially make them more suitable human proxies,
using survey design as a case study. However, of
the 9 models that we evaluated, we found LLMs
are generally not reflective of human-like be-
havior. We also observe distinct differences in
behavior between the Llama2 base models and
their chat counterparts, which uncover the effects
of additional training schemes, namely RLHF.
Thus, while the use of RLHF is useful for enhanc-
ing the ‘‘helpfulness’’ and ‘‘harmlessness’’ of
LLMs (Fernandes et al., 2023), it may lead to other
potentially undesirable behaviors (e.g., greater
sensitivity to specific types of perturbations).
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Furthermore, we show that the ability of a lan-
guage model to replicate human opinion distribu-
tions generally does not correspond to its ability
to show human-like response biases. Taken to-
gether, we believe our results highlight the limi-
tations of using LLMs as human proxies in survey
design and the need for more critical evaluations
to further understand the set of similarities or dis-
similarities with humans.

8 Limitations

In this work, the focus of our experiments was
on English-based, and U.S.-centric survey ques-
tions. However, we believe that many of these
evaluations can and should be replicated on cor-
pora comprising more diverse languages and
users. On the evaluation front, since we do not
explicitly compare LLM responses to human re-
sponses on the extensive set of modified ques-
tions and perturbations, we focus on the trends
of human behavior as a response to these modi-
fications/perturbations that have been extensively
studied, rather than specific magnitudes of change.
Additionally, the response biases studied in this
work are neither representative nor comprehen-
sive of all biases. This work was not intended to
exhaustively test human biases but to highlight
a new approach to understanding similarities be-
tween human and LLM behavior. Finally, while
we observed the potential effects of additional
training schemes, namely RLHF, our experiments
were limited to the 3 pairs of Llama2 models.
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A Stimuli Implementation

A.1 American Trends Panel Details

The link to the full ATP dataset. We use a subset
of the dataset that has been formatted into CSVs
from (Santurkar et al., 2023). Since our study is
focused on subjective questions, we further fil-
tered for opinion-based questions, so questions
asking about people’s daily habits (e.g., how often
they smoke) or other ‘‘factual’’ information (e.g.,
if they are married) are out-of-scope. Note that
the Pew Research Center bears no responsibility
for the analyses or interpretations of the data pre-
sented here. The opinions expressed herein, in-
cluding any implications for policy, are those of
the author and not of Pew Research Center.

A.2 Qbias and Qperturb Details

We briefly describe how we implement each re-
sponse bias and non-bias perturbation. We will
release the entire dataset of Qbias and Qperturb

question pairs.

Acquiescence (McClendon, 1991; Choi and Pak,
2005). Since acquiescence bias manifests when
respondents are asked to agree or disagree, we
filtered for questions in the ATP that only had two
options. For consistency, all q′ are reworded to
suggest the first of the original options, allowing
us to compare the number of ‘a’ responses.

Allow/Forbid Asymmetry (Hippler and Schwarz,
1987). We identified candidate questions for
this bias type using a keyword search of ATP
questions that contain ‘‘allow’’ or close syn-
onyms of the verb (e.g., asking if a behavior is
‘‘acceptable’’).

Response Order (Ayidiya and McClendon,
1990; O’Halloran et al., 2014). Prior social sci-
ence studies typically considered questions with
at least three or four response options, a criterion
that we also used. We constructed q′ by flipping
the order of the responses. We post-processed the
data by mapping the flipped version of responses
back to the original order.

Odd/Even Scale Effects (O’Muircheartaigh
et al., 2001). This bias type requires questions
with scale responses with a middle option; we fil-
ter for scale questions with four or five responses.
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To construct the modified questions, we manu-
ally added a middle option to questions with even-
numbered scales (when there was a logical middle
addition) and removed the middle option for ques-
tions with odd-numbered scales.

Opinion Floating (Schuman and Presser, 1996).
We used the same set of questions as with the
odd/even bias but instead of removing the middle
option, we added a ‘‘don’t know’’ option.

Middle Random (Rawlinson, 2007). We sam-
ple an index (excluding the first and last letters)
from each question and swap the character at that
index with its neighboring character. This was
only applied to words of length ≥ 4.

Key Typo (Rawlinson, 2007). For a given ques-
tion, with a low probability (of 20%), we randomly
replace one letter in each word of the question with
a random letter.

Letter Swap (Rawlinson, 2007). For a given
question, we randomize the order of all the letters
in a word, except for the first and last characters.
Again, this perturbation is only applied to words
of length ≥ 4.

We did not apply non-bias perturbations to
any words that contain numeric values or punctu-
ation to prevent completely non-sensical outputs.

A.3 Full Results

The full set of results for all stimuli is in Table 4.

B LLM Details

B.1 Model Access

We provide links to model weights (where
applicable):

Base Llama2 (7b, 13b, 70b) and Llama2
chat (7b, 13b, 70b). Accessed from https://
huggingface.co/meta-llama.

Solar (Instruction fine-tuned Llama2 70b).
Accessed from https://huggingface.co
/upstage/SOLAR-0-70b-16bit.

GPT 3.5 turbo. Specific model version is
gpt-3.5-turbo-0613. Accessed through the
OpenAI API.

Model Average # of queries

Llama2-7b 69.63
Llama2-13b 56.93
Llama2-70b 22.36
Llama2-7b-chat 32.77
Llama2-13b-chat 12.99
Llama2-70b-chat 2.05
SOLAR 1.00
GPT-3.5-turbo 1.00
GPT-3.5-turbo-instruct 1.20

Table 3: Average number of queries (100 single-
token responses per query) required to generate
50 valid responses.

GPT 3.5 turbo instruct. Specific model version
is gpt-3.5-turbo-0914. Accessed through
the OpenAI API.

B.2 Prompt template

This prompt is used for all models. We have the
models generate only one token with a tempera-
ture of 1.

Please answer the following question with
one of the alphabetical options provided.

Question: [question]

A. [option]

B. [option]

...

E. [option]

Answer:

B.3 Number of Queries Required per Model

As mentioned in Section 2.2, we repeatedly que-
ried the models until we generated a total of
50 valid responses. To better contextualize their
performance in this survey setting, we gathered
additional statistics on the number of queries re-
quired. In each query, we generate 100 single-
token responses. To estimate the average number
of queries needed, we randomly sampled 10 ran-
dom pairs of questions (q, q′) per bias and gen-
erated 50 valid responses for each form of the
question, for a total of 100 questions. Table 3
shows the average number of queries per model;
we note that while Llama2-7b and 13b do require
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a relatively high number of queries, they were
free to query and thus did not present a prohibi-
tive cost for experimentation.

B.4 Initial Explorations with GPT-4
In addition to the models above, we also at-
tempted to use GPT-4-0613 in our experimental
setup, but found it difficult to generate valid re-
sponses for many questions, most likely due to
OpenAI’s generation guardrails. As an initial ex-
periment, we tried generating 50 responses per
question for all (q, q′) in Qbias (747 questions ×
2 conditions) and counting the number of valid
responses that GPT-4 generated out of the 50. On
average, GPT-4 generated ∼21 valid responses

per question, with nearly a quarter of the ques-
tions having 0 valid responses. For these ques-
tions, GPT-4 tended to generate ‘‘As’’ or ‘‘This’’
(and when set to generate more tokens, GPT-4
generated ‘‘As a language model’’ or ‘‘This is
subjective’’ as the start of its response).

This is in stark contrast to GPT-3.5, which had
an average of ∼48 valid responses per question
with none of the questions having 0 valid re-
sponses. Histograms for the ratio of valid re-
sponses are shown in Figure 4. Based on these
observations, the number of repeated queries that
would be required for evaluating GPT-4 would
be prohibitively expensive and potentially infea-
sible for certain questions in our dataset.

Figure 4: Histograms of the response ratio of valid responses (out of 50) out of all 1494 question forms (q
and q′). GPT-4 has 750/1494 question forms with less than 5 valid responses, whereas GPT-3.5-turbo only has 15.

1025



model bias type Δ̄b p value Δ̄p key typo p value Δ̄p middle random p value Δ̄p letter swap p value pearson r p value

Llama2
7b

Acquiescence 1.921 0.021 −3.920 0.007 −4.480 0.000 −4.840 0.004 0.182 0.015
Response Order 24.915 0.000 1.680 0.382 −0.320 0.871 2.320 0.151 −0.503 0.000
Odd/even 1.095 0.206 0.720 0.625 1.360 0.355 1.680 0.221 −0.102 0.255
Opinion Float 4.270 0.000 0.720 0.625 1.360 0.355 1.680 0.221 −0.252 0.004
Allow/forbid −60.350 0.000 −5.400 0.007 −10.250 0.000 −7.700 0.000 −0.739 0.000

Llama2
13b

Acquiescence −11.852 0.000 −6.800 0.001 −5.760 0.000 −9.320 0.000 −0.412 0.000
Response Order 45.757 0.000 11.600 0.000 11.640 0.000 11.720 0.000 −0.664 0.000
Odd/even −3.492 0.000 5.840 0.000 3.600 0.031 4.000 0.007 0.192 0.031
Opinion Float 4.127 0.000 5.840 0.000 3.600 0.031 4.000 0.007 −0.023 0.799
Allow/forbid −55.100 0.000 −9.100 0.000 −5.700 0.000 −7.600 0.000 −0.739 0.000

Llama2
70b

Acquiescence 7.296 0.000 −2.440 0.218 −3.080 0.173 −3.320 0.146 −0.018 0.809
Response Order 5.122 0.000 −1.080 0.597 3.240 0.113 2.000 0.306 −0.140 0.021
Odd/even 12.191 0.000 0.920 0.540 0.600 0.687 −0.800 0.618 0.12 0.179
Opinion Float 2.444 0.000 0.920 0.540 0.600 0.687 −0.800 0.618 −0.033 0.714
Allow/forbid −42.200 0.000 −6.200 0.004 2.250 0.332 0.350 0.877 −0.628 0.000

Llama2
7b-chat

Acquiescence 1.136 0.647 −7.807 0.000 −12.034 0.000 −5.546 0.000 −0.099 0.189
Response Order −9.801 0.000 7.173 0.000 12.679 0.000 1.594 0.253 −0.315 0.000
Odd/even 20.079 0.000 8.460 0.000 15.810 0.000 9.175 0.000 −0.315 0.000
Opinion Float −1.254 0.283 8.460 0.000 15.801 0.000 9.175 0.000 −0.086 0.339
Allow/forbid −7.050 0.367 −18.700 0.000 −24.600 0.000 −16.200 0.002 −0.161 0.321

Llama2
13b-chat

Acquiescence 1.909 0.434 −9.239 0.000 −11.534 0.000 −5.284 0.000 −0.095 0.209
Response Order −9.292 0.000 7.653 0.000 10.753 0.000 0.472 0.719 −0.324 0.000
Odd/even 21.254 0.000 10.159 0.000 14.460 0.000 9.492 0.000 −0.163 0.069
Opinion Float −0.191 0.870 10.159 0.000 14.460 0.000 9.492 0.000 −0.106 0.238
Allow/forbid −7.300 0.333 −15.950 0.000 −23.450 0.000 −16.200 0.000 −0.131 0.422

Llama2
70b-chat

Acquiescence 11.114 0.000 2.320 0.523 −5.280 0.312 4.040 0.166 0.452 0.000
Response Order −0.495 0.745 0.200 0.904 15.040 0.002 1.200 0.459 0.465 0.000
Odd/even 26.476 0.000 3.280 0.210 −2.040 0.656 −7.240 0.018 −0.231 0.009
Opinion Float 1.556 0.039 3.280 0.210 −2.040 0.656 −7.240 0.018 0.440 0.000
Allow/forbid 4.000 0.546 −4.750 0.258 −16.000 0.021 −0.950 0.811 0.280 0.080

Solar

Acquiescence 18.511 0.000 0.120 0.970 2.560 0.596 0.600 0.833 0.187 0.013
Response Order 9.683 0.000 2.280 0.336 8.680 0.012 4.360 0.017 0.248 0.000
Odd/even 17.508 0.000 0.480 0.815 2.960 0.223 −1.000 0.661 −0.385 0.000
Opinion Float 1.921 0.017 0.480 0.815 −2.960 0.223 −1.000 0.661 0.291 0.001
Allow/forbid 6.800 0.207 −2.950 0.343 −8.500 0.131 −8.050 0.001 0.145 0.373

GPT
3.5
Turbo

Acquiescence 5.523 0.040 −11.720 0.008 −28.680 0.000 −19.120 0.000 0.334 0.000
Response Order −2.709 0.147 4.960 0.121 15.960 0.002 8.000 0.011 0.198 0.001
Odd/even 25.048 0.000 −5.480 0.082 −14.800 0.001 −5.800 0.062 −0.273 0.002
Opinion Float −11.905 0.000 −5.480 0.082 −14.800 0.001 −5.800 0.062 0.467 0.000
Allow/forbid 25.300 0.000 −12.000 0.008 −23.200 0.001 −6.950 0.058 0.206 0.202

GPT
3.5
Turbo
Instruct

Acquiescence 6.455 0.024 2.600 0.445 −11.800 0.008 −2.800 0.326 0.334 0.000
Response Order −11.114 0.000 3.880 0.169 11.920 0.001 3.800 0.147 0.275 0.000
Odd/even 2.032 0.390 1.560 0.433 −7.120 0.061 −0.840 0.711 −0.073 0.416
Opinion Float 0.143 0.891 1.560 0.433 −7.120 0.061 −0.840 0.711 0.360 0.000
Allow/forbid 8.550 0.111 −4.500 0.216 −10.050 0.139 4.100 0.261 0.437 0.005

Table 4: Δ̄b for each bias type and associated p-value from t-test as well as Δ̄p for the three perturba-
tions and associated p-value from t-test. We also report the Pearson r statistic between model uncer-
tainty and the magnitude of Δb.
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