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Abstract

Large language models have been shown
to behave inconsistently in response to
meaning-preserving paraphrastic inputs. At the
same time, researchers evaluate the knowl-
edge and reasoning abilities of these models
with test evaluations that do not disaggre-
gate the effect of paraphrastic variability on
performance. We propose a metric, PC , for
evaluating the paraphrastic consistency of nat-
ural language reasoning models based on the
probability of a model achieving the same
correctness on two paraphrases of the same
problem. We mathematically connect this met-
ric to the proportion of a model’s variance in
correctness attributable to paraphrasing. To
estimate PC , we collect PARANLU, a dataset
of 7,782 human-written and validated para-
phrased reasoning problems constructed on
top of existing benchmark datasets for defeasi-
ble and abductive natural language inference.1

Using PARANLU, we measure the paraphras-
tic consistency of several model classes and
show that consistency dramatically increases
with pretraining but not fine-tuning. All mod-
els tested exhibited room for improvement
in paraphrastic consistency.

1 Introduction

The NLP community has transitioned away
from ‘‘deeper’’ abstract semantic representations
(e.g., FrameNet (Baker et al., 1998)) towards
‘‘shallower’’ representations (e.g., Universal De-
pendencies (Nivre et al., 2016)) which retain
attributes of their original surface form. The cul-
mination of this trend is to use natural language
as a semantic representation itself for evaluating a
model’s reasoning ability. This has enabled rapid
advancement across a host of tasks including NLI
(Bowman et al., 2015) and QA (Rajpurkar et al.,
2016), with the latest generation of large language

1We publicly release all data and code at https://
github.com/nehasrikn/paraphrase-nlu.

models saturating many benchmark natural lan-
guage understanding datasets. However, natural
language as a meaning representation is highly
ambiguous (Schubert, 2015). While versatile and
compact, it leaves open the possibility that sys-
tems are not robust to different ways of expressing
the same meaning in natural language.

Benchmark evaluation datasets such as SNLI
(Bowman et al., 2015) consist of a collection
of reasoning problems designed to probe partic-
ular aspects of commonsense knowledge, with
each example represented by a singular linguistic
expression. When a system gets a particular ex-
ample correct, it is only evidence that it was able
to correctly reason for the particular phrasing
used in the example, allowing for the possibility
of systems that can correctly solve one form of
a reasoning problem, but not others. Conversely,
if a model gets a question wrong, how can we
tell if the error was due to a failure in language
understanding or a failure in reasoning?

Consider the defeasible reasoning example in
Figure 1. A language model finetuned on the
δ-NLI dataset (Rudinger et al., 2020) may cor-
rectly predict that the original update sentence
strengthens a human’s belief in the hypothesis
sentence. However, different linguistic expres-
sions of that same update sentence may yield
high variance in a model’s predictions. If models
stay consistent in the face of paraphrastic vari-
ability, we may conclude that correctly reasoning
about one expression is indicative of an under-
standing of that reasoning problem, a desirable
property of teaching machines to reason entirely
in natural language.

We explore the sensitivity of natural language
reasoning models to paraphrasing as a way to
better characterize their knowledge and reasoning
ability, contextualize their performance on eval-
uation sets, and evaluate room for improvement
on the basis of consistency. Under the assumption
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Figure 1: δ-NLI instance with a set of paraphrased
update sentences. We study paraphrastic consistency,
or the probability that a model’s prediction for two
phrasings of the same problem match.

that world and linguistic knowledge are separa-
ble, our study attempts to disentangle the two by
generating examples that hold the required world
knowledge of a reasoning problem constant while
modifying its surface form, a problem formulation
with connections to causality (Stolfo et al., 2023)
and counterfactual invariance (Veitch et al., 2021;
Kaushik et al., 2020).

To study this, we build on top of two NLU
datasets—Abductive NLI (Bhagavatula et al.,
2019) and Defeasible NLI (Rudinger et al.,
2020)—by collecting paraphrases of reasoning
problems using label-preserving paraphrasing,
a functional change of traditional paraphrasing
that preserves the semantics of the core rea-
soning problem. Our dataset, PARANLU, contains
7,782 human-elicited and 7,295 model-elicited
paraphrases across 1,000 reasoning problems
spanning both datasets. We select diverse ex-
amples to paraphrase ranging in difficulty
(Sakaguchi et al., 2021) and model confi-
dence. Our dataset is entirely manually validated,
ensuring semantic equivalence while maxi-
mizing paraphrase diversity.

We measure paraphrastic consistency (PC),
or the likelihood of model’s prediction remain-
ing consistent under different phrasings, in order
to understand the types of surface-form changes
that models are sensitive to. We study the rela-
tionship between consistency and various data
conditions and modeling paradigms, exploring
factors such as data source, example difficulty,
model complexity, and training dynamics. For

their given accuracy level, we find that mod-
els still have room to improve on paraphrastic
consistency. Since no model demonstrates high
accuracy and high paraphrastic consistency, we
conclude that attempts to measure their reasoning
abilities will be confounded by inconsistencies in
their linguistic abilities.

2 Paraphrastic Consistency

In principle, natural language reasoning tasks like
abductive NLI and defeasible NLI require the
ability to linguistically decode the meaning of the
text that expresses an underlying problem, as well
as the knowledge and reasoning capabilities to
solve the underlying problem.

By analogy, consider evaluating a child’s un-
derstanding of the concept of addition. Instead
of simply presenting them with a mathematical
expression (say, 7 + 7), we write a word problem
that can be answered by (1) understanding the sit-
uation in natural language, (2) recognizing that the
answer corresponds to the mathematical reason-
ing problem 7 + 7, and finally, (3) solving 7 + 7.
If the child answers incorrectly, we must figure
out whether they did not understand the goal of
the word problem or were not able to perform
the arithmetic in order to evaluate their mathemat-
ical reasoning ability.

For models tasked with natural language rea-
soning problems, teasing apart these two failure
modes (namely, deficiencies in language under-
standing versus deficiencies in knowledge or
reasoning) requires more than reporting test set
accuracy. The design of natural language rea-
soning test sets does not facilitate this type of
analysis: If a test set contains 100 different natural
language reasoning problems, and a model cor-
rectly answers 80% of them, which failure mode
should we attribute the 20% of errors to?

For practitioners, it is useful to characterize
performance by measuring paraphrastic consis-
tency alongside accuracy: How likely is it that a
model’s prediction for a natural language reason-
ing problem will remain the same given a different
phrasing of the problem? We collect a dataset that
changes the language of NLI examples while
maintaining the underlying logic of the problem
to tease the two apart. For a test example, x, we
collect a set of paraphrases {x′

1, x
′
2, ...}, which

we call a bucket ( ). After collecting many such
buckets, we can directly estimate the probability
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Figure 2: Three scenarios, all with equivalent overall accuracy of 80%, illustrating different distributions of
variance in model predictions leading to different PC values. Buckets represent underlying commonsense
reasoning problems. Numbers within buckets represent model correctness on 5 paraphrases. Most models achieve
a mix of accuracy within and across buckets of paraphrased examples.

that a model’s prediction for any two paraphrases
belonging to the same bucket will be the same.

2.1 Measuring Paraphrastic Consistency

When authoring a test example for a natural lan-
guage reasoning task, a crowdworker has many
linguistic choices for expressing the underlying
reasoning problem. If the purpose of the resulting
test set is to evaluate a model’s ability to perform
the underlying reasoning task, then ideally the
crowdworker’s choice of phrasing would have no
effect on the model’s performance. In practice,
however, it is known that language models exhibit
some degree of sensitivity to paraphrastic varia-
tion (Verma et al., 2023; Jiang et al., 2021). To
quantify this effect, we pose the following coun-
terfactual question: If a given test question had
been written differently, what is the probability
that a model would still receive the same credit
for its prediction on the paraphrased question?

Quantitatively, we introduce a metric of
paraphrastic consistency, PC , defined as the
probability that a model’s predictions for two
paraphrases of the same problem, x′

i and x′
j , are

either both correct or both incorrect (provided
the ground truth labels of x′

i and x′
j match). To

formalize PC , we define the following terms:

• R : a discrete random binary variable in-
dicating whether a model’s prediction of a
paraphrased reasoning problem, x′, is cor-
rectly predicted (1) or incorrectly predicted
(0).

• θ : E[R ], or the average correctness
(i.e., accuracy) of the paraphrased problems
(x′

1, x
′
2, ...) in a particular bucket.

• A: Overall accuracy of model M over a set
of natural language reasoning problems. This
is equivalent to E[θ ] across all buckets.

For a binary classification task, where y ∈ 0, 1
denotes the gold label, we then define PC as:

PC = P (M(xi) = y,M(xj) = y)
︸ ︷︷ ︸

prob. of both predictions correct

+

P (M(xi) �= y,M(xj) �= y)
︸ ︷︷ ︸

prob. of both predictions incorrect

(1)

PC can be estimated from the accuracies of
paraphrase buckets, θ , as follows:

PC = E[θ2 ] + E[(1− θ )2] (2)

Informally, the paraphrastic consistency of a natu-
ral language reasoning model is its ability (or lack
thereof) to make the same predictions on para-
phrased inputs that, in principle, should yield the
same answer. We note that the metric PC cannot
be computed from a standard test set containing
only one phrasing per test example; to estimate
PC we collect paraphrases of test examples, as
described in §4.

Figure 2 illustrates the computation of PC for
different patterns of model behavior. If PC = 1,
the model is either entirely correct or incorrect
on all paraphrases of the same problem, as in the
left-most panel of Figure 2 where each bucket con-
tains only 1’s or only 0’s. In this case, no errors can
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be attributed to paraphrastic variance. The min-
imum PC occurs when every paraphrase bucket
has the same accuracy, as shown in the middle
panel; in this case all errors are likely due to para-
phrastic variability. In practice, PC lies between
these two extremes and some, but not all, errors are
due to paraphrasing, as in the right-most panel.
Modern NLP evaluation sets usually consist of
a collection of independent reasoning problems
each represented by singular natural language
expression, and practitioners often make claims
about the reasoning capabilities or world knowl-
edge given a model’s accuracy on such evaluation
sets. However, as depicted in Figure 2, accuracy
presents an incomplete picture of performance: In
all three scenarios, the overall accuracy remain
80%, but only the first scenario, in which the
model makes equivalent predictions given many
alternate phrasings of a reasoning problem, results
in a high PC .

PC in Practice. PC can be interpreted as the
probability that given two phrasings of the same
reasoning problem, the model’s two predictions
are either both correct or both incorrect. This sum-
mary metric allows us to capture the reliability of
a model’s prediction: How confident can we be
that a model’s prediction would remain correct (or
incorrect) if it had been phrased differently? While
PC is lower-bounded by a function of accuracy, we
design it as a metric complementary to accuracy
in order to better characterize model performance,
diagnose modeling errors, and benchmark the lin-
guistic reasoning capabilities. For example, when
two models achieve similar accuracies, comput-
ing their respective paraphrastic consistencies may
help as an additional point of comparison. Just as
desired model accuracy may be dependent on
the application in which it is deployed, differ-
ent settings may mandate varying appropriate PC

values and practitioners must decide on tolerable
thresholds based on their use case.

2.2 Proportion of Variance Attributable
to Paraphrasing

Decomposing the total variance in correctness
across all paraphrased examples in all buckets
gives us a clearer picture of the two failure modes
described in the opening of §2. Using the law
of total variance (Weiss et al., 2006), we de-
compose the total variance of the correctness
across all paraphrased examples (the variance of

R for all paraphrased problems in all buckets) into
two terms: the average variance of correctness
within a bucket, E[Var(R )], and the variance
in mean correctness (accuracy) across buckets,
Var(E[(R )]), or simply, Var(θ ).

Var(R) = E[Var(R )]
︸ ︷︷ ︸

variance from paraphrasing

+Var(θ ) (3)

This breakdown allows us to better identify the
source of the variance in correctness. The first
term, commonly known as unexplained variance,
measures variance attributable to paraphrasing
(henceforth denoted as VAP) within a bucket. The
second, commonly known as explained variance,
represents variance across buckets due to inherent
differences in latent characteristics (e.g., diffi-
culty) of different problems. If paraphrasing has no
effect, the variance of correctness in each bucket
(Var(R )) is zero and consequently, the VAP

should also be zero. Most evaluation paradigms
cannot directly measure VAP, since during data
collection, multiple surface forms of the same
reasoning problem are not collected. We repli-
cate the conditions under which original examples
were produced to simulate different linguistic
expressions annotators could have chosen.

Mathematical manipulation yields:

PC = 1− P (M(xi) = y,M(xj) �= y)
︸ ︷︷ ︸

prediction flips to incorrect

−P (M(xi) �= y,M(xj) = y)
︸ ︷︷ ︸

prediction flips to correct

(4)

PC = 1− E[θ · (1− θ )]
︸ ︷︷ ︸

prediction flips to incorrect

−E[(1− θ ) · θ ]
︸ ︷︷ ︸
prediction flips to correct

(5)

PC = 1− 2 · E[θ · (1− θ )] (6)

= 1− 2 · E[Var(R )]
︸ ︷︷ ︸

VAP

(7)

Although the primary metric we report throughout
the paper is PC , Equation 7 highlights the direct
negative relationship between PC and variance
attributable to paraphrasing (VAP).
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Table 1: Examples of paraphrased abductive NLI (rows 1 and 2) and defeasible NLI (rows 3 – 5) problems
in PARANLU. We show paraphrases written by crowdworkers that are admissible under our definition of
label-preserving paraphrasing, and rejected paraphrases that did not meet the label-preserving criteria.

Related to VAP is the proportion of total vari-
ance attributable to paraphrasing (PVAP), which is
simply VAP divided by the total variance:

PVAP = VAP/Var(R) (8)

Model Confidence and PC . We choose to char-
acterize paraphrastic consistency via variance in
correctness instead of variance in model confi-
dence. Confidence represents a model’s overall
estimate in the correct answer, and thus con-
flates confidence in linguistic understanding and
problem solving. A low confidence in the cor-
rect label may indicate that the model understood
what the problem was asking, but was unable to
reach the answer (or vice versa). Models trained
to optimize for accuracy are not calibrated to ex-
plicitly encode confidence in linguistic decoding
or problem-solving ability.

3 Reasoning Tasks

We study paraphrastic consistency across two
commonsense reasoning tasks: defeasible reason-
ing (§3.1) and abductive reasoning (§3.2).

3.1 Defeasible Reasoning
Defeasible reasoning is a mode of reasoning in
which inferences or conclusions may be altered or
withdrawn in light of new evidence (Reiter, 1980).
For example, given the context ‘‘A group of people
perform on a stage’’, the natural conclusion ‘‘A
group performs for an audience’’ may be weak-
ened upon learning that the group is at a rehearsal.

To study defeasible reasoning in language mod-
els, Rudinger et al. (2020) introduce the task of
defeasible natural language inference (NLI). Tra-
ditionally, NLI involves determining whether a
premise P entails, contradicts, or is neutral in
relation to a hypothesis H (Giampiccolo et al.,
2007). When the premise P and hypothesis H
are neutral in relation to one another, defeasible
NLI studies whether a third update (U ) sentence
strengthens or weakens H . Namely, a human may
determine H more likely to be true when U is a
strengthener, and less likely to be true when U
is a weakener.

Premise: A woman in shorts throwing a bowl-
ing ball down a bowling alley.
Hypothesis: A woman is getting a strike!

Update: The bowling ball falls in the gutter
first.
Update Type: Weakener

Rudinger et al. (2020) also introduce δ-NLI,
a dataset that extends three existing natu-
ral language datasets: SNLI (Bowman et al.,
2015), SOCIAL-CHEM-101 (Forbes et al., 2020),
and ATOMIC (Sap et al., 2019). For each
premise-hypothesis pair (or just hypothesis, in the
case of δ-SOCIAL), crowdworkers write multiple
strengthening and weakening updates, ensuring a
balance. Defeasible NLI is a binary classification
task that involves predicting whether the update
sentence is a strengthener or a weakener (e.g., the
original update in Row 5 of Table 1 is a weakener).
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Adopting the terminology from Srikanth and
Rudinger (2022), we distinguish between context
parts of examples, and target parts of examples,
with our study of consistency concerning target
portions of examples. For δ-NLI, we consider the
premise P and hypothesis H as context sentences,
and the update U sentence as the target (Table 1).

3.2 Abductive Reasoning

Abduction is inference to the most likely ex-
planation (Peirce, 1974). Such inferences are
hypotheses that can best fit one or more incom-
plete observations.

Observation 1: George decided to buy a TV.
Observation 2: It turned out just as he’d hoped.
Hypothesis −: The TV had a cracked screen.

Hypothesis +: Upon taking it home and un-
packing it, he placed it where he wanted it.

Given the example above, any human would most
likely infer the second hypothesis over the first to
explain the two observations. Bhagavatula et al.
(2019) introduce abductive NLI, an abductive
reasoning task formulated binary classification.
α-NLI examples consist of two observations O1

and O2 (where O2 occurs some point in time af-
ter O1), h+, a plausible hypothesis, and h−, an
implausible hypothesis. Given both observations,
the task is to determine which hypothesis is more
plausible. We treat O1 and O2 as context (C) and
h+ and h− as the target (T ) portion of the example.

4 Constructing PARANLU

We study paraphrastic consistency by paraphras-
ing the target portions (T ) of examples fromα-NLI
and all three data sources in δ-NLI (δ-SNLI,
δ-ATOMIC, and δ-SOCIAL). For an original
example x, we collect a bucket of paraphrased
examples xi such that the context portions C
and gold label l remain identical, while the tar-
get portions T are rewritten as label-preserving
paraphrases. This allows us to modify the surface
form of the example while retaining the underlying
commonsense reasoning problem.

Label-preserving Paraphrases. We construct
quasi-paraphrases (Bhagat and Hovy, 2013) of
target sentences in reasoning problems by loos-
ening the requirement of semantic equivalence.

Given a natural language reasoning task L, a tex-
tual instance x of task L with label �L(x), we say
that x′ is a label-preserving paraphrase of x if:

1. �L(x) = �L(x
′).

2. x′ does not contradict any context (C) in x.

3. x′ remains consistent with the situation
evoked by x.

Label-preserving paraphrases are functionally
equivalent: Target sentences (hypotheses inα-NLI
and updates in δ-NLI) may introduce small bits of
information as long as the same scenario is plau-
sibly described. Consider the following δ-NLI
example: P: A man stands in front of a cashier
and kiosk at a grocery store H: He is smil-
ing U: ‘‘The man got a discount.’’ While the
sentence ‘‘The man saved 10% with a coupon’’
is not semantically equivalent to the strengthen-
ing update sentence, it is a valid, label-preserving
paraphrase since it retains the logic of the problem
and the label. Table 1 shows examples of ad-
missible and inadmissible paraphrases under our
definition. Label-preserving paraphrases represent
alternative, but equivalent expressions annotators
could have chosen when writing the original prob-
lem that employ similar world knowledge. This
is different from label-altering edits proposed by
Gardner et al. (2020), where minimal human ed-
its that shift the target label were used to create
examples for measuring linguistic robustness.

We describe our example selection process for
annotation (§4.1) and crowdsourcing protocol for
collecting paraphrases and summary statistics of
our dataset (§4.2).

4.1 Original Example Selection
We adopt a stratified sampling strategy to ob-
tain diverse examples for annotation that vary in
difficulty. To obtain such examples, we leverage
AFLITE (Sakaguchi et al., 2021), an adversarial
filtering (Zellers et al., 2018) algorithm designed
to partition datasets based on difficulty using
pre-computed dense embeddings of examples fed
into an ensemble of n logistic regression classi-
fiers. At each iteration of AFLITE, members of
the ensemble are trained on random partitions
of m examples and evaluated on the remaining
validation examples. Each validation example is
assigned a score, computed by the proportion
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of correct predictions. The top-k examples with
scores above a threshold τ are subsequently added
to the easy partition of the dataset and filtered out,
and the process repeats until less than k instances
are removed in a particular iteration. Including
both types of examples, easy and hard, ensures
that PARANLU can support analysis that investi-
gates whether models are inconsistent only on
certain classes of examples (e.g., those filtered
out due to lexical artifacts).

Defeasible NLI. We use the train splits of
δ-SNLI, δ-ATOMIC, and δ-SOCIAL to source
examples for annotation, since they are large
enough to meaningfully partition using AFLITE.
We partition each train set into 3 sections: (1)
examples to finetune the ROBERTA-base mod-
els used to embed examples (ROBERTAembed),
(2) training examples for models used for con-
sistency analysis (ROBERTAanalysis), and (3) a
pool from which examples are sampled for an-
notation. We partition at the premise-hypothesis
(P -H) level to avoid leakage, since multiple
examples may contain the same P -H pair, but
different updates (U ).

For each dataset, we pre-compute example em-
beddings with the ROBERTAembed model, and run
AFLITE with then = 64 linear classifiers, τ = 0.75,
k = 500, and m = 5000.2 Examples in the an-
notation pool with τ ≤ 0.75 are added to the
easy subset, and the those with τ > 0.75 are
labeled as difficult. We then finetune a separate
ROBERTA-large model on ROBERTAanalysis and
use it to obtain predictions on examples in the
annotation pool. Based on the ROBERTAanalysis

model confidence in the gold label, we sample
125 examples from the easy subset, as determined
by AFLITE, in a round-robin fashion for each decile
between 0 and 1. We repeat this to collect 125
examples from the difficult subset.

Abductive NLI. Since the publicly released
α-NLI dataset only contains examples that sur-
vived adversarial filtering (‘‘difficult’’ examples),
we reached out to the authors to obtain easy exam-
ples that were filtered out. We source our original
examples from the test split of α-NLI. We train
a ROBERTA-large model on examples from the

2We keep all hyperparameters unchanged from Sakaguchi
et al. (2021) with the exception of m, which we reduce
from 10,000 to 5,000 to account for the smaller training set
partitions, as in Herlihy and Rudinger (2021).

train split of α-NLI and follow the same strat-
ified sampling protocol on 125 examples from
each of the easy and difficult subsets, accord-
ing to the confidence of the RoBERTaanalysis in
the correct label.

4.2 Paraphrased Example Collection
We obtain 250 examples per dataset (α-NLI,
δ-SNLI, δ-ATOMIC, δ-SOCIAL), resulting in
1,000 examples for which we collect paraphrases.

Crowdsourcing. We use Amazon Mechanical
Turk to collect paraphrases of the target portions
of each example. Workers are shown context
sentences and must write a paraphrase of the
target sentence(s) according to the definition of
label-preserving paraphrasing presented earlier.

We abstract the underlying reasoning task
away, presenting α-NLI examples as short stories
that require paraphrasing middle sentences, and
δ-NLI examples as scenarios with weakening or
strengthening evidence. In order to encourage
diversity of paraphrases, we display the Jaccard
similarity between tokens in the original sentence
and the paraphrase as workers typed. Figure 7
shows our annotation interface and instructions
for collecting paraphrases of α-NLI and δ-NLI
problems respectively.

Workers provide 3 paraphrases of both plausible
and implausible hypotheses for α-NLI examples
and 3 paraphrases of updates for δ-NLI examples.
In the case of α-NLI, we randomly pair together
plausible and implausible hypotheses written by
the same worker to construct paraphrased exam-
ples. Each example was annotated by 3 workers.
See Appendix A for more details.

Paraphrase Example Validation. Ensuring se-
mantic equivalence between paraphrased exam-
ples and original reasoning problems is essential
to our study. Inadvertent removal of the crux of the
reasoning problem while paraphrasing may result
in invalid examples. Table 3 includes an α-NLI
example with paraphrases that were both accepted
and rejected from crowdworkers based on our def-
inition of label-preserving paraphrasing. The first
and third accepted paraphrases both introduce new
pieces of information (‘‘mantelpiece’’, ‘‘mounted
it on the wall’’) but do not violate the situation
evoked by the original problem. In contrast, the
first rejected paraphrase is incompatible with the
situation and the second rejected paraphrase does
not retain the plausibility of the hypothesis.
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# # mean #
original paraphrases paraphrases/ex

α-NLI 250 2098 8.4 ± 1.2
δ-SNLI 250 1980 7.9 ± 1.4
δ-ATOMIC 250 1869 7.5 ± 1.6
δ-SOCIAL 250 1835 7.3 ± 1.8

Table 2: We sample 250 problems fromα-NLI and
δ-NLI datasets. Total number and mean number
of paraphrases depended on validation.

Table 3: An α-NLI example and paraphrases that
were accepted and rejected from crowdworkers.

We opt to have an author validate all para-
phrases, each within the context of the problem.3

A second author and two external annotators anno-
tated a sample of 100 paraphrases, again labeling
each as either valid or invalid. We obtain a Fleiss’s
Kappa (Fleiss, 1971) value of κ = 0.81 between
all validators—the two authors and two external
validators. This measures agreement on the cri-
terion of label-preservation, reflecting whether
a paraphrase written by a crowdworker was of
high enough quality to admit into our dataset, as
opposed to a measurement of agreement on the
correct label given paraphrased examples.

Dataset Overview. Our resulting dataset,
PARANLU, contains 1,000 examples uniformly
split across α-NLI, δ-SNLI, δ-ATOMIC, and
δ-SOCIAL. Table 2 shows the total number of
post-validation paraphrased examples per data
split, and the statistics of sizes of buckets.

5 Consistency on Human Paraphrases

We first examine several different models’ be-
havior on PARANLU to measure robustness to
different linguistic expressions. While language
models such as ROBERTA are trained on vast

3We explored using NLI models to automatically ensure
semantic equivalence, but found it too strict of a formulation
to capture the spirit of label-preserving paraphrasing.

amounts of text that may instill some paraphras-
tic consistency, especially given label-preserving
paraphrases that not be semantically equiva-
lent, other non-pretrained models without access
to such knowledge may falter. We character-
ize the progress of models with respect to PC

to understand whether factors such as train-
ing setups (training from scratch, supervised
finetuning, prompting) and model complexity
(ranging from bag-of-words representations to
GPT-3) affect consistency.

5.1 Model Variants
We train 5 different types of models per data
source. For all models, we use the same set
of examples that were used to finetune the
ROBERTAanalysis models introduced in §4.1.

Bag of Words. We train bag-of-words models
(BoW) using fasttext, an off-the-shelf text
classification library, with a maximum of 4-grams
(Joulin et al., 2017) for 5 epochs with the default
learning rate of 0.1.

BILSTM. We train end-to-end BiLSTM mod-
els using the architecture from Conneau et al.
(2017) and initialize them with GLOVE embed-
dings (Pennington et al., 2014). We use 3 fully
connected layers for classification with max pool-
ing. After tuning on the development sets, models
are trained for 10 epochs with early stopping and
a batch size of 64.

ROBERTA. We use the ROBERTAanalysis models
in §4.1, and add one more setting for defeasible
examples in which we finetune a ROBERTA-large
model on all combined data across the 3 data
sources in δ-NLI, which we refer to as a uni-
fied ROBERTA model. All ROBERTA-large models
were finetuned for 2 epochs with a learning rate
of 2e-5 and a batch size of 32.

DEBERTA. We finetune DEBERTA-v3-large
(He et al., 2022) for 2 epochs with a learning
rate of 5e-6 and a batch size of 16.

GPT-3. Lastly, we experiment with prompting
GPT-3 (Brown et al., 2020) using TEXT-CURIE-001
(prompts in Table 5). For α-NLI, we randomly
sample 36 examples from the training set and in-
clude instructions derived from those shown to the
crowdworkers that annotated the α-NLI dataset.
For δ-NLI, we randomly sample 12 examples per
dataset (36 in-context examples total) and include
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Table 4: Consistency across modeling architectures. AO is accuracy on original examples in PARANLU,
AT is full test set accuracy, A is accuracy on paraphrased examples (Ã is corrected), and PC

is paraphrastic consistency (P̃C is corrected). No model achieves both high Ã and P̃C (columns
highlighted in blue). Optimizing Ã may come at the cost of P̃C , or vice versa. We highlight in red the
set of Pareto-optimal points, or those that are not strictly dominated in Ã or P̃C by any other model.

Table 5: Few-shot prompts for α-NLI and δ-NLI
tasks. Both prompts were presented to GPT-3
along with 36 in-context examples.

the task definition from Rudinger et al. (2020)
in the prompt. Since we cannot reliably extract a
softmax distribution over binary classes for our
tasks (GPT-3 is not a classification model), we
calculate model confidence in a particular class
by extracting log probabilities associated with the
tokens for both labels and normalize them.

5.2 Results

For all models, we compute PC (Equation 2).
In addition, we undo the biasing effects of the
stratified sampling according to model confidence
(§4.1) and report a corrected version of paraphras-
tic consistency, P̃C , by weighting the expectations
in Equation 2 according to the distribution of
model confidences in the correct label of the cor-
responding test set. We compute four accuracy
metrics: (1) accuracy on original examples in the
PARANLU (AO), (2) accuracy on the test set of the
original dataset (AT), (3) accuracy on all para-
phrases across all buckets (A ), and (4) corrected
accuracy on all paraphrases across all buckets

(Ã ) which is weighted in the same manner as
P̃C to undo stratification effects.

Table 4 shows these accuracy metrics along
with PC and P̃C for all models across all data
sources. We highlight Ã and P̃C , as they are
complementary metrics meant to jointly assess
model performance. Some models optimize Ã

at the cost of P̃C , or vice versa. To capture mod-
els that balance both, we highlight (Ã , P̃C)
points that are Pareto-optimal for each dataset.
The highest performing model according to Ã ,
ROBERTA, earns a P̃C of around 0.9, indicating
room to improve on its paraphrastic consis-
tency for its accuracy level. We observe that
a GPT-3-CURIE model with minimal prompt engi-
neering (we simply use the definition of defeasible
inference directly from Rudinger et al. (2020))
along with a handful of in-context examples has
a P̃C value competitive with a ROBERTA model
finetuned on thousands of examples. A stronger
GPT-3 variant may better perform defeasible
reasoning while maintaining a competitive PC .

Figure 3 visualizes the relationship between ac-
curacy and P̃C for models on δ-SNLI examples
(Figure 8 shows similar plots for δ-ATOMIC and
δ-SOCIAL examples). For each model, we plot
Ã on the x-axis and P̃C on the y-axis along with
two types of supporting curves for the δ-SNLI
split of PARANLU. The curve with the lowest min-
ima (labeled Min PC) indicates the theoretical
lower bound for PC given a particular accu-
racy level: if all the variance in model correctness
(Equation 3) is attributable to the paraphrasing
variance term present in Equation 7, then the mini-
mum possible value forPC is 1−2∗(Acc∗1−Acc),
whereAcc∗(1−Acc) is the variance of a Bernoulli
random variable with probability Acc. In addition
to this theoretical lower bound, we plot curves
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Figure 3: Paraphrastic consistency (P̃C) of different
models on δ-SNLI paraphrased examples. All models
still have room for improvement in P̃C for their ac-
curacy level. Here, we add supporting lines to denote
varying levels of the proportion of variance attributable
to paraphrasing, or PVAP.

indicating the proportion of total variance at-
tributed to paraphrasing (labeled %PVAP). As PC

increases, less variance is attributed to variance
within buckets due to phrasing. Visualizing this
relationship makes it clear that accuracy alone pro-
vides an incomplete picture of model performance.
A perfect model would reside in the top right of
Figure 3, not only achieving high accuracy but
also high paraphrastic consistency. Models with
similar accuracies may have largely different P̃C

values, indicating to practitioners how sensitive
they are to problem phrasing.

We now turn to a series of experiments to better
characterize paraphrases in PARANLU as well as
contributing factors to model’s PC value using
our best performing model, ROBERTA.

6 Paraphrase Source

Human-written paraphrases in PARANLU span all
of the transformations delineated by Bhagat and
Hovy (2013), sometimes involving more com-
plex reasoning that falls between linguistic and
world knowledge. Such paraphrases were elicited
by providing humans the entire example, encour-
aging them to engage with both the reasoning
problem itself and the wide scope of possible
meaning-preserving transformations. To under-
stand the utility of label-preserving paraphrases,
we compare a ROBERTA model’s behavior on
our human-written paraphrases with paraphrases

generated automatically, as previous studies have
explored (Verma et al., 2023).

Using our ROBERTA models (§5.1), we probe
the relationship between paraphrastic consistency
(P̃C) and the source of paraphrased examples.
Are models more robust to the paraphrastic
transformations produced by automatic para-
phrase generation models, or do they only
struggle with the more complex, example-aware
transformations made by humans?

Since human paraphrases and model para-
phrases are generated by different processes,
and are thus drawn from different distribu-
tions, they may exhibit different properties.
Paraphrase generation models are predisposed to
biases arising from n-gram frequency effects.4

However, reasoning models should exhibit con-
sistency regardless of whether correct answers
are phrased as high-probability sentences under
a language model.

We use two models (§6.2) to automatically
paraphrase target sentences in original exam-
ples and compare model PC on automatic and
human paraphrases.

6.1 Experimental Setup
For each original example in PARANLU, we sample
paraphrases of targets from generation models.
As with humans, we elicit paraphrases of target
sentences: update sentences for δ-NLI and both
hypothesis sentences for α-NLI. In contrast to
the human elicitation process, however, we do
not provide any context sentences to generation
models. While this limits the scope of possible
paraphrases, it allows us to gauge the value of
exposure to context during paraphrasing.

We adopt a generate-then-validate scheme and
have an author again validate all target paraphrases
to ensure that their consistency with our definition
of label-preserving paraphrasing. In the case of
α-NLI examples, where there are multiple target
sentences, we randomly pair valid paraphrases
together, resampling where necessary when num-
bers of valid generated hypotheses are unequal.

6.2 Paraphrase Generation Models
Quality-Controlled Paraphrase Generation.
We use a QCPG model (Bandel et al., 2022),

4For example, a generation model is less likely to para-
phrase ‘‘The camera zooms out to show the man spraying
the car with soap’’ to ‘‘The camera zooms out to servicemen
sprinkling the automobile with soap’’.
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Figure 4: ROBERTA-large model on automatic versus
human paraphrases. Models are more consistent on au-
tomatic than human paraphrases. Dashed lines indicate
varying levels of PVAP.

a controllable paraphrase generation system that
conditions on a 3-dimensional vector encoding
semantic similarity and lexical and syntactic
distances. We pool all paraphrases from a
per-example sweep of these hyperparameters.

GPT-3. In addition to a supervised, explic-
itly controllable paraphrase generation model, we
elicit paraphrases from GPT-3 using 10 in-context
examples of paraphrases randomly sampled from
PARANLU. Setting temperature to 0.7, we sample
9 paraphrases from TEXT-DAVINCI-002 per target
sentence from original examples and similarly
validate them to ensure label preservation.

6.3 Results

In total, we generate 7,295 valid paraphrased
examples across 1,000 examples by pooling
together all valid examples from both QCPG
and GPT-3 and evaluate our ROBERTA models
on these examples. Figure 4 plots Ã on the
x-axis and P̃C on the y-axis for human-generated
and automatically-generated paraphrased exam-
ples for each dataset. On all datasets with the
exception of δ-SOCIAL, we observe that models
have a higher P̃C value on automatically gener-
ated paraphrased examples than on human-elicited
paraphrases. We hypothesize that this pattern may
not hold for δ-SOCIAL due to the fact that the
dataset does not contain premise sentences, and
hence has a smaller scope for more complex trans-
formations involving context. This result suggests
that reasoning models may be more robust to
the simpler, in-distribution types of paraphrase

lex syn sem

α-NLI automatic 25.0 20.3 74.3
human 35.3 26.8 64.0

δ-SNLI automatic 24.1 18.5 76.3
human 34.4 24.6 67.4

δ-ATOMIC automatic 30.4 19.2 66.7
human 36.9 22.4 58.7

δ-SOCIAL automatic 30.8 22.2 70.1
human 40.0 24.5 60.1

Table 6: Lexical (lex) and syntactic (syn) diversity
of human and automatic paraphrases and seman-
tic similarity (sem) as compared to original target
sentences. Human paraphrases are more diverse
than automatic ones: They exhibit higher lexi-
cal and syntactic diversity and lower semantic
similarity on all datasets (bolded).

transformations that automatic paraphrase gener-
ation models produce than to those written by
human annotators, indicating that over-reliance
on evaluation using synthetically generated data
may be misleading.

Paraphrase Diversity. To dissect this result
further, we measure lexical diversity, syntactic
diversity, and semantic similarity (Bandel et al.,
2022) of target paraphrases and original tar-
get sentences. Lexical distance is measured by
the normalized character-level minimal edit dis-
tance between the bag of words (Bandel et al.,
2022), and syntactic distance is computed as
the normalized tree edit distance between the
third level constituency parse trees of the original
target and the paraphrased target (Iyyer et al.,
2018). We measure semantic similarity using
BLEURT (Sellam et al., 2020) as in Bandel
et al. (2022). Across all four data splits in
PARANLU, human-elicited paraphrases are more
lexically and syntactically diverse, as well as less
semantically similar to original examples, than
automatically generated paraphrases (Table 6).
In addition, we find that automatically generated
paraphrases are 3–4% more likely to be bidirec-
tionally entailed than human-written paraphrases,
as detected by a ROBERTA-large model finetuned
on SNLI (Bowman et al., 2015), MNLI (Williams
et al., 2018), ANLI (Nie et al., 2020), and FEVER
(Thorne et al., 2018).

Taken together, these results underscore the
benefit of our human annotation to generate
PARANLU—evaluation solely on automatically
generated paraphrases, as others have done, is
insufficient to fully characterize their robustness.
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7 Do Artifacts Explain Inconsistency?

Many NLP datasets are constructed by crowd-
workers writing most or all parts of a natural
language reasoning problem. While efficient and
scalable, this paradigm can give rise to annotation
artifacts (Gururangan et al., 2018), or statistical
biases in parts of examples that correlate with
the correct label (McCoy et al., 2019). For exam-
ple, Gururangan et al. (2018) found that negation
words (‘‘no’’, ‘‘nothing’’, etc.) in NLI examples
are strong indicators of the contradiction label.

One way to detect artifacts in datasets is through
a partial-input baseline (Poliak et al., 2018; Feng
et al., 2019), a setting in which only the target
portion of an NLI instance (i.e., the hypothesis
in a traditional NLI setup) is used to train a
model to predict entailment. When partial-input
models achieve high accuracy, it is often indicative
of annotation artifacts.

Full-input models that are trained on datasets
with annotation artifacts may learn to rely on such
shallow signals instead of performing true inferen-
tial reasoning. This may lead to lower paraphrastic
consistency in the face of alternative phrasings of
examples, since they may no longer contain the
annotation artifact the model leveraged. Can we
attribute a model’s issues with paraphrastic con-
sistency on PARANLU entirely to the presence of
annotation artifacts? That is, are models only in-
consistent on examples with artifacts, since they
are relying on spurious correlations? Or, are they
inconsistent even when no artifacts are present?

7.1 Experimental Setup

Rudinger et al. (2020) find that partial-input base-
lines trained on δ-NLI perform at least 10% better
than random chance, indicating the presence of
annotation artifacts in their dataset. As such, we
focus on δ-NLI for our experiments.5 For each
split of δ-NLI, we train a ROBERTA-large model
using only the update sentence as input, keep-
ing the training hyperparameters identical to the
full-input ROBERTA models from §5.1. Then, we
use these partial-input models to partition buckets
in PARANLU into two subsets: those on which the
partial-input model correctly predicted the label
from the update sentence of the original example,
indicating that an artifact is likely present in the

5We choose δ-NLI instead of α-NLI for this experiment,
since the authors ofα-NLI released their dataset after running
adversarial filtering.

partial-input full-input
artifacts. . . AO A ˜A AO A ˜A PC

˜PC

δ-SNLI
likely 100 81.8 54.6 54.3 56.6 85.8 74.7 91.4
unlikely 0 20.7 6.9 45.5 48.8 79.6 75.1 84.0

δ-ATOMIC
likely 100 77.6 53.9 55.6 58.3 78.0 76.4 87.4
unlikely 0 21.3 8.3 50.9 49.9 79.2 75.9 86.5

δ-SOCIAL
likely 100 77.2 58.9 52.9 55.5 85.8 73.9 90.9
unlikely 0 28.8 8.4 50 58.7 90.7 74.7 93.5

Table 7: Paraphrastic consistency on examples
which are likely and unlikely to contain artifacts,
as predicted by a partial-input baseline. Inconsis-
tency on both types of examples indicates PC is
attributable to factors beyond artifacts.

original example, and those incorrectly predicted.
Using the full-input ROBERTA models from §5.1,
we then compute P̃C on both example subsets,
and the accuracy of partial-input and full-input
models on paraphrased and original examples.

7.2 Results

Table 7 shows the accuracy metrics for both
partial-input and full-input models on original and
paraphrased examples in PARANLU, as well as para-
phrastic consistency metrics on both examples that
are likely (+) and unlikely (−) to contain artifacts.
While not all original examples that a partial-input
model predicts correctly necessarily have artifacts,
we expect that (1) examples with particularly
strong artifacts are grouped in the likely (+) cat-
egory, and (2) the unlikely (−) category contains
a significantly smaller number of examples with
strong artifacts. We observe a dramatic drop in
the accuracy of a partial-input baseline on original
examples (AO) and paraphrased examples (Ã ),
indicating that most artifacts detectable with a
partial-input model do not project through our
label-preserving paraphrase process.

Even on examples unlikely (−) to contain ar-
tifacts, where a full-input model cannot rely on
shallow signals, models do still have room to im-
prove their paraphrastic consistency. These results
indicate that issues with paraphrastic consistency
are attributable to factors beyond the presence of
artifacts in examples.

8 Training Dynamics and
Paraphrastic Consistency

Lastly, we explore the relationship between dif-
ferent parts of the model training pipeline (e.g.,
pretraining and finetuning) and paraphrastic con-
sistency. How does consistency change as these
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Figure 5: Paraphrastic consistency monotonically in-
creases as a model sees more pretraining tokens, but
grows rapidly during early pretraining.

training processes progress, and does it change in
a similar manner as accuracy? Is it the case that
simply increasing the volume of pretraining or
finetuning data linearly impacts paraphrastic con-
sistency? We train a series of ROBERTA models
and adjust the number of pretraining tokens (§8.1)
and finetuning examples (§8.2) to explore how
they impact a model’s consistency.

8.1 Pretraining and PC

Experimental Setup. Using the MINIBERTAs
(Warstadt et al., 2020), a series of ROBERTA mod-
els pretrained from scratch on varying numbers of
tokens, we compare models trained on 1M, 10M,
100M, and 1B tokens along with ROBERTA-base,
which is pretrained on approximately 30B tokens.
All models have the same number of parameters as
ROBERTA-base (125M), with the exception of the
model trained on 1M pretraining tokens which was
scaled down in accordance with the smaller vol-
ume of pretraining data, and has 45M parameters.
We finetune all models on the same data (§4.1)
and keep all hyperparameters constant (batch size
of 64, 2 finetuning epochs, and a learning rate of
5e-6), ensuring direct measurement of the impact
of pretraining words on paraphrastic consistency
without other confounds.

Results. Figure 5 plots model accuracy on para-
phrases (Ã ) against paraphrastic consistency
(P̃C), along with the same supporting curves
as in Figure 3 corresponding to decreasing pro-
portions of variance attributable to paraphrasing
(PVAP). As expected, pretraining on increasing

Figure 6: Paraphrastic consistency decreases as a model
learns increasingly complex decisions boundaries by
seeing more finetuning examples.

amounts of data yields both monotonically in-
creasing accuracy and paraphrastic consistency.
However, paraphrastic consistency grows more
rapidly in the beginning (1M - 100M tokens)
as the plots climb steeply between supporting
curves and eventually hugs a single PVAP curve
past 100M tokens, indicating a slower payoff of
more pretraining tokens.

8.2 Finetuning and PC

After pretraining, models are endowed with the
ability to represent natural language inputs but do
not know how to perform a particular reasoning
task. As such, we expect monotonically increasing
accuracy as the model is shown a larger volume of
finetuning examples. However, it is unclear how
paraphrastic consistency changes as the model is
exposed to more task-specific examples.

Experimental Setup. For each dataset, we fine-
tune a series of fully pretrained ROBERTA-large
models on 1%, 5%, 10%, 50%, and 100% of
examples from the training split, sampled at ran-
dom. δ-ATOMIC has 28.3K training examples,
δ-SNLI has 75.2K training examples examples
and δ-SOCIAL has 65.3K examples. We sam-
ple at the premise-hypothesis level and include
all examples that share the same premise and
hypothesis to prevent data leakage during eval-
uation. We hold all training hyperparameters
constant, keeping the same configuration as the
finetuning in §8.1.

Results. Figure 6 plots corrected paraphrase
accuracy (Ã ) against corrected paraphrastic
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consistency (P̃C) for models trained on increasing
numbers of finetuning examples across all
three datasets in δ-NLI. We observe that as the
model starts to learn the task at hand and draw
increasingly complex decision boundaries, it is
more likely to be inconsistent. Models trained on
≤5% of the available training examples are highly
consistent since they make the same prediction for
all examples (thus earning an accuracy of around
50%). As the the model is shown more examples,
it makes finer-grained distinctions between
examples, in turn impacting its paraphrastic con-
sistency. Though our results show this decrease,
it is possible that with even more finetuning data,
a model’s paraphrastic consistency will start to
increase again. This relationship may also be
altered if, during finetuning, models are shown
increasing amounts of automatically-generated
paraphrased examples in order to learn both the
task and paraphrastic consistency.

9 Related Work

Natural language understanding models may pro-
duce different predictions in the face of varying
expressions of reasoning problems. A wide range
of data generation frameworks have been proposed
to study these behaviors in NLP systems. Iyyer
et al. (2018) automatically generate paraphrases
with specified syntactic templates and measure
accuracy on these adversarial examples. Verma
et al. (2023) introduce a test set of paraphrases
generated with a finetuned T5 model (Raffel et al.,
2020) and measure the accuracy of several models.
Hu et al. (2019) generate paraphrases of MNLI
examples using lexical constraints and evaluate
an NLI model on the paraphrased inputs, find-
ing that paraphrasing leads to degraded accuracy.
Arakelyan et al. (2024) measure the semantic
sensitivity of NLI models by automatically gen-
erating examples with FLAN-T5 (Chung et al.,
2022) and verifying the generations with bidi-
rectional entailment predicted by pretrained NLI
models. While scalable, our findings illustrate that
it is insufficient to evaluate models on automatic
paraphrases alone, as human-written paraphrases
introduce more semantic and pragmatic diversity
(Section 6). Moreover, we show that bidirectional
entailment as a verification method for gener-
ated paraphrases is extremely stringent, precluding
us from testing consistency in the face of more
challenging label-preserving transformations.

Another body of research studies the creation
of adversarial examples to improve model ro-
bustness. Nie et al. (2020) construct an NLI
benchmark, Adversarial NLI, by developing a
model-in-the-loop framework to iteratively pro-
duce examples that models cannot correctly solve.
Naik et al. (2018) develop a suite of adversarial
examples to ‘‘stress test’’ common failure modes
of NLI models, such as phenomena word overlap
or negation. In contrast with these studies, our
goal is not to generate a test suite of difficult
examples that ‘‘break’’ models (Glockner et al.,
2018), but rather to carefully measure the role of
paraphrastic variability in model performance.

Other approaches to measuring robustness
also include counterfactual example generation
(Srikanth and Rudinger, 2022; Kaushik et al.,
2020). Kaushik et al. (2020) recruit humans to
create counterfactual examples by minimally edit-
ing example text in order to flip the gold label and
show that models trained on the original datasets
perform poorly on counterfactually-manipulated
data. Similarly, Gardner et al. (2020) argue for
the creation of evaluative contrast sets, or manual
minimal perturbations of dataset examples that
change the gold label, in order to probe the deci-
sion boundary of models. Our work has a related,
but distinct, counterfactual flavor: if an original
annotator had chosen to phrase the question dif-
ferently with the same target label, what is the
probability that a model’s prediction would stay
consistent? We aim to estimate, in expectation,
the reliability of models when they are faced with
different phrasings of the same problem.

Most of these studies measure accuracy on ad-
versarial examples as the main determination of
robustness. Elazar et al. (2021) instead measure
the consistency of models with respect to factual
knowledge, evaluating whether extracted infor-
mation from masked language models is invariant
to paraphrasing using an agreement-based con-
sistency metric. Our study is similarly concerned
with consistency, however we make precise the
relationship between accuracy and consistency on
natural language reasoning tasks.

10 Conclusion

As more studies investigate the capabilities of
LLMs, the ability to disentangle the effects of
paraphrastic variability from other target attributes
will be an important analytical tool.
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This work introduces a new methodology and
dataset for measuring paraphrastic consistency,
or PC , of models on natural language reasoning
tasks.PC captures the probability that a model will
remain consistent in its prediction given different
phrasings of the same underlying reasoning prob-
lem. We design PC as a metric complementary to
accuracy, and propose practitioners use it along-
side accuracy when diagnosing modeling errors,
summarizing a model’s performance, or deciding
when a model is ready for deployment to users for
a particular application.

Our results confirm that paraphrastic sensitivity
is present in all models, but decreases with pre-
training volume. Because PC only requires model
predictions to be labeled as correct or incorrect,
our approach can generalize to any task with bi-
nary scoring (and where answers must be invariant
to paraphrases). Future work may consider adapt-
ing this approach for tasks with more complex or
open-ended evaluations.
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A Crowdsourcing PARANLU

We collect paraphrases in PARANLU using Amazon
Mechanical Turk. The instructions and annotation
interface shown to crowdworkers is shown in
Figure 7.

Workers provide 3 paraphrases of both plausible
and implausible hypotheses for α-NLI examples
and 3 paraphrases of updates for δ-NLI examples.
We include a distance widget in our interface that
computes the Jaccard similarity between the en-
tered paraphrase and the original text to encourage
lexical diversity. Each example was annotated by
3 workers. Workers were paid US$12/hour on
average and were required to be native English
speakers with a 95% or more HIT acceptance rate
on at least 100 HITs.

B Paraphrastic Consistency

Figure 8 shows model accuracy plotted against
corrected paraphrastic consistency of all mod-
els tested for the δ-ATOMIC and δ-SOCIAL
splits of PARANLU.

1161

https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/D18-1009


Figure 7: Annotation instructions and interface for collecting paraphrases of α-NLI (top) and δ-NLI (bottom)
reasoning problems. Workers must write three label-preserving paraphrases.

Figure 8: Paraphrastic consistency (P̃C) of different
models on δ-ATOMIC and δ-SOCIAL paraphrased
examples.
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