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Abstract

Large-scale pretrained language models (LMs)
are said to ‘‘lack the ability to connect utter-
ances to the world’’ (Bender and Koller, 2020),
because they do not have ‘‘mental models of
the world’’ (Mitchell and Krakauer, 2023). If
so, one would expect LM representations to be
unrelated to representations induced by vision
models. We present an empirical evaluation
across four families of LMs (BERT, GPT-2,
OPT, and LLaMA-2) and three vision model
architectures (ResNet, SegFormer, and MAE).
Our experiments show that LMs partially con-
verge towards representations isomorphic to
those of vision models, subject to dispersion,
polysemy, and frequency. This has important
implications for both multi-modal processing
and the LM understanding debate (Mitchell
and Krakauer, 2023).1

1 Introduction

The debate around whether LMs can be said to
understand is often portrayed as a back-and-forth
between two opposing sides (Mitchell and
Krakauer, 2023), but in reality, there are many
positions. Some researchers have argued that
LMs are ‘‘all syntax, no semantics’’, i.e., that
they learn form, but not meaning (Searle, 1980;
Bender and Koller, 2020; Marcus et al., 2023).2

1Code and dataset: https://github.com
/jiaangli/VLCA.

2The idea that computers are ‘‘all syntax, no semantics’’
can be traced back to German 17th century philosopher
Leibniz’s Mill Argument (Lodge and Bobro, 1998). The Mill
Argument states that mental states cannot be reduced to phys-
ical states, so if the capacity to understand language requires
mental states, this capacity cannot be instantiated, merely
imitated, by machines. In 1980, Searle introduced an even
more popular argument against the possibility of LM under-
standing, in the form of the so-called Chinese Room thought
experiment (Searle, 1980). The Chinese Room presents an
interlocutor with no prior knowledge of a foreign language,
who receives text messages in this language and follows

Others have argued that LMs have inferential se-
mantics, but not referential semantics (Rapaport,
2002; Sahlgren and Carlsson, 2021; Piantadosi
and Hill, 2022),3 whereas some have posited
that a form of externalist referential semantics
is possible, at least for chatbots engaged in direct
conversation (Cappelen and Dever, 2021; Butlin,
2021; Mollo and Millière, 2023; Mandelkern and
Linzen, 2023). Most researchers agree, however,
that LMs ‘‘lack the ability to connect utterances
to the world’’ (Bender and Koller, 2020), because
they do not have ‘‘mental models of the world’’
(Mitchell and Krakauer, 2023).

This study provides evidence to the contrary:
Language models and computer vision models
(VMs) are trained on independent data sources (at
least for unsupervised computer vision models).
The only common source of bias is the world.
If LMs and VMs exhibit similarities, it must be
because they both model the world. We examine
the representations learned by different LMs and
VMs by measuring how similar their geometries
are. We consistently find that the better the LMs
are, the more they induce representations similar
to those induced by computer vision models. The
similarity between the two spaces is such that
from a very small set of parallel examples we
are able to linearly project VMs representations
to the language space and retrieve highly accurate
captions, as shown by the examples in Figure 1.

Contributions. We present a series of evalua-
tions of the vector spaces induced by three families
of VMs and four families of LMs, i.e., a total of
fourteen VMs and fourteen LMs. We show that

a rule book to reply to the messages. The interlocutor is
Searle’s caricature of artificial intelligence, and is obviously,
Searle claims, not endowed with meaning or understanding,
but merely symbol manipulation.

3See Marconi (1997) for this distinction.
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Figure 1: Mapping from MAEHuge (images) to OPT30B
(text). Gold labels are in green.

within each family, the larger the LMs, the more
their vector spaces become structurally similar to
those of computer vision models. This enables
retrieval of language representations of images
(referential semantics) with minimal supervision.
Retrieval precision depends on dispersion of
image and language, polysemy, and frequency,
but consistently improves with language model
size. We discuss the implications of the finding
that language and computer vision models learn
representations with similar geometries.

2 Related Work

Inspiration from Cognitive Science. Compu-
tational modeling is a cornerstone of cognitive
science in the pursuit for a better understand-
ing of how representations in the brain come
about. As such, the field has shown a growing
interest in computational representations induced
with self-supervised learning (Orhan et al., 2020;
Halvagal and Zenke, 2022). Cognitive scientists
have also noted how the objectives of supervised
language and vision models bear resemblances
to predictive processing (Schrimpf et al., 2018;
Goldstein et al., 2021; Caucheteux et al., 2022; Li
et al., 2023) (but see Antonello and Huth (2022)
for a critical discussion of such work).

Studies have looked at the alignability of neu-
ral language representations and human brain
activations, with more promising results as lan-
guage models grow better at modeling language
(Sassenhagen and Fiebach, 2020; Schrimpf et al.,
2021). In these studies, the partial alignability of
brain and model representations is interpreted as
evidence that brain and models might process lan-
guage in the same way (Caucheteux and King,
2022).

Cross-modal Alignment. The idea of
cross-modal retrieval is not new (Lazaridou et al.,
2014), but previously it has mostly been studied
with practical considerations in mind. Recently,
Merullo et al. (2023) showed that language
representations in LMs are functionally similar
to image representations in VMs, in that a linear
transformation applied to an image representation
can be used to prompt a language model into
producing a relevant caption. We dial back from
function and study whether the concept repre-
sentations converge toward structural similarity
(isomorphism). The key question we address is
whether despite the lack of explicit grounding,
the representations learned by large pretrained
language models structurally resemble properties
of the physical world as captured by vision
models. More related to our work, Huh et al.
(2024) proposes a similar hypothesis, although
studying it from a different perspective, and our
findings corroborate theirs.

3 Methodology

Our primary objective is to compare the repre-
sentations derived from VMs and LMs and assess
their alignability, i.e., the extent to which LMs
converge toward VMs’ geometries. In the fol-
lowing sections, we introduce the procedures for
obtaining the representations and aligning them,
with an illustration of our methodology provided
in Figure 2.

Vision Models. We include fourteen VMs in
our experiments, representing three model fam-
ilies: SegFormer (Xie et al., 2021), MAE (He
et al., 2022), and ResNet (He et al., 2016). For all
three types of VMs, we only employ the encoder
component as a visual feature extractor.4

4We ran experiments with CLIP (Radford et al., 2021),
but report on these separately, since CLIP does not meet the
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Figure 2: Experiments stages: During our experiments, words, sentences, and images are selected from the aliases
list (wordlist and ImageNet-21K aliases), Wikipedia and ImageNet-21K, respectively. The source and target spaces
are constructed utilizing image and word embeddings which are extracted by specialized vision and language
models.

SegFormer models consist of a Transformer-
based encoder and a light-weight feed-forward
decoder. They are pretrained on object classifi-
cation data and finetuned on scene parsing data
for scene segmentation and object classification.
We hypothesize that the reasoning necessary to
perform segmentation in context promotes rep-
resentations that are more similar to those of
LMs, which also operate in a discrete space (a
vocabulary). The SegFormer models we use are
pretrained with ImageNet-1K (Russakovsky et al.,
2015) and finetuned with ADE20K (Zhou et al.,
2017).

MAE models relies on a Transformer-based
encoder-decoder architecture, with the Vision-
Transformer (ViT) (Dosovitskiy et al., 2021) as
the encoder backbone. MAE models are trained
to reconstruct masked patches in images, i.e., a
fully unsupervised training objective, similar to
masked language modeling. The encoder takes
as input the unmasked image patches, while a
lightweight decoder reconstructs the original im-
age from the latent representation of unmasked
patches interleaved with mask tokens. The MAE
models we use are pretrained on ImageNet-1K.

ResNet models for object classification consist
of a bottleneck convolutional neural network with
residual blocks as an encoder, with a classification
head. They are pretrained on the ImageNet-1K.

Language Models. We include fourteen
Transformer-based LMs in our experiments,
representing four model families: BERT (Devlin
et al., 2019), GPT-2 (Radford et al., 2019), OPT

criteria of our study, being trained on a mixture of text and
images. CLIP results are presented in Appendix C.

(Zhang et al., 2022), and LLaMA-2 (Touvron
et al., 2023). We use six different sizes of BERT
(all uncased): BERTBase and BERTLarge, which are
pretrained on the BooksCorpus (Zhu et al., 2015)
and English Wikipedia (Foundation), and four
smaller BERT sizes, distilled from BERTLarge

(Turc et al., 2019). GPT-2, an auto-regressive
decoder-only LM, comes in three sizes, pretrained
on the WebText dataset (Radford et al., 2019).
OPT also comes in three sizes, pretrained on
the union of five datasets (Zhang et al., 2022).
LLaMA-2 was pretrained on two trillion tokens.

Vision Representations. The visual representa-
tion of a concept is obtained by embedding the
images available for the concept with a given
VM encoder and then averaging these represen-
tations. When applying SegFormer, we average
the patches’ representations from the last hidden
state as the basis for every image, whereas we use
the penultimate hidden state for MAE models.5

ResNet models generate a single vector per input
image from the average pooling layer.

Language Representations. The LMs included
here were trained on text segments, so applying
them to words in isolation could result in unpre-
dictable behavior. We therefore represent words
by embedding English Wikipedia sentences, using
the token representations that form the concept,

5We also experimented with utilizing the representations
from the last hidden state; however, the results were not as
promising as those obtained from the penultimate hidden
state. Caron et al. (2021) demonstrate the penultimate-layer
features in ViTs trained with DINO exhibit strong correlations
with saliency information in the visual input, such as object
boundaries and so on.
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decontextualizing these representations by aver-
aging across different sentences (Abdou et al.,
2021). In the case of masked language models,
we employ an averaging approach on the token
representations forming the concept; otherwise,
we choose for the last token within the concept
(Zou et al., 2023).

Linear Projection. Since we are interested in
the extent to which vision and language repre-
sentations are isomorphic, we focus on linear
projections.6 Following Conneau et al. (2018), we
use Procrustes analysis (Schönemann, 1966) to
align the representations of VMs to those of LMs,
given a bimodal dictionary (§ 4.1). Given the VM
matrix A (i.e., the visual representations of con-
cepts) and the LM matrix B (i.e., the language
representation of the concepts) we use Procrustes
analysis to find the orthogonal matrix Ω that most
closely maps source space A onto the target space
B. Given the constrain of orthogonality the opti-
mization Ω = minR ‖RA − B‖F , s.t. RTR = I
has the closed form solution Ω = UV T , UΣV =
SVD(BAT ), where SVD stands for singular value
decomposition. We induce the alignment from a
small set of dictionary pairs, evaluating it on
held-out data (§ 4.2). Given the necessity for both
the source and target space to have the same
dimensionality, we employ principal component
analysis (PCA) to reduce the dimensionality of the
larger space in cases of a mismatch.7

4 Experimental Setup

In this section, we discuss details around bimodal
dictionary compilation (§ 4.1), evaluation metrics,
as well as our baselines (§ 4.2).

4.1 Bimodal Dictionary Compilation

We build bimodal dictionaries of image-text pairs
based on the ImageNet-21K dataset (Russakovsky
et al., 2015) and the CLDI (cross-lingual dictio-
nary induction) dataset (Hartmann and Søgaard,
2018). In ImageNet, a concept class has a unique
ID and is represented by multiple images and
one or more names (which we refer to as aliases),

6For work on non-linear projection between representa-
tion spaces, see Nakashole (2018), Zhao and Gilman (2020),
and Glavaš and Vulić (2020).

7The variance is retained for most models after dimen-
sionality reduction, except for a few cases where there is some
loss of information. The cumulative of explained variance
ratios for different models are presented in Table 8.

Set Num. of classes Num. of aliases Num. of pairs
Only-1K 491 655 655
Exclude-1K 5,942 7,194 7,194
EN-CLDI 1,690 1,690 1,690

Table 1: Statistics of the bimodal dictionaries.

many of which are multi-word expressions. We fil-
ter the data from ImageNet-21K: keeping classes
with over 100 images available, aliases that ap-
pear at least five times in Wikipedia, and classes
with at least one alias. As a result, 11,338 classes
and 13,460 aliases meet the criteria. We further
filter aliases that are shared by two different class
IDs, and aliases for which their hyponyms are
already in the aliases set.8 To avoid any form
of bias, given that the VMs we experiment with
have been pretrained on ImageNet-1K, we report
results on ImageNet-21K excluding the concepts
in ImageNet-1K (Exclude-1K).

One important limitation of the Exclude-1K bi-
modal dictionary is that all concepts are nouns.
Therefore, to investigate how our results general-
ize to other parts of speech (POS), we also use
the English subset of CLDI dataset (EN-CLDI),
which contains images paired with verbs and ad-
jectives. Each word within this set is unique and
paired with at least 22 images. Final statistics of
the processed datasets are reported in Table 1.

The pairs in these bimodal dictionaries are split
70-30 for training and testing based on the class
IDs to avoid train-test leakage.9 We compute five
such splits at random and report averaged results.
See § 6 for the impact of training set size variations.

4.2 Evaluation

We induce a linear mapping Ω based on training
image-text pairs sampled from A and B, respec-
tively. We then evaluate how close AΩ is to
B by computing retrieval precision on held-out
image-text pairs. To make the retrieval task as
challenging as possible, the target space B is
expanded with 65,599 words from an English
wordlist in addition to 13,460 aliases, resulting in
a total of 79,059 aliases in the final target space.

8We obtain the aliases hypernyms and hyponyms from
the Princeton WordNet (Fellbaum, 2010).

9In the EN-CLDI set, we simply use words to mitigate
the risk of train-test leakage.
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Metrics. We evaluate alignment in terms of
precision-at-k (P@k), a well-established met-
ric employed in the evaluation of multilingual
word embeddings (Conneau et al., 2018), with
k ∈ {1, 10, 100}.10 Note that this performance
metric is much more conservative than other met-
rics used for similar problems, including pairwise
matching accuracy, percentile rank, and Pearson
correlation (Minnema and Herbelot, 2019). Pair-
wise matching accuracy and percentile rank have
random baseline scores of 0.5, and they converge
in the limit. If a has a percentile rank of p in a
list A, it will be higher than a random member
of A p percent of the time. Pearson correlation is
monotonically increasing with pairwise matching
accuracy, but P@k scores are more conservative
than any of them for reasonably small values of
k. In our case, our target space is 79,059 words,
so it is possible to have P@100 values of 0.0
and yet still have near-perfect pairwise matching
accuracy, percentile rank, and Pearson correlation
scores. P@k scores also have the advantage that
they are intuitive and practically relevant, e.g., for
decoding.

Random Retrieval Baseline. Our target space
of 79,059 words makes the random retrieval
baseline:

P@1 =
1

N

N∑

i=1

ni

U
(1)

where N represents the total number of image
classes; i iterates over each image class; ni de-
notes the number of labels for image class i; U
refers to the total number of unique aliases. From
Equation 1, we get P@1≈ 0.0015%.

Length-frequency Alignment Baseline. The
random retrieval baseline tells us how well we
can align representations across the two modal-
ities in the absence of any signal (by chance).
However, the fact that we can do better than a ran-
dom baseline, does not, strictly speaking, prove
that our models partially converge toward any so-
phisticated form of modeling the world. Maybe

10For example, we could use the mapping of the image
of an apple into the word ‘apple’, and the mapping of the
image of a banana into the word ‘banana’, as training pairs
to induce a mapping Ω. If Ω then maps the image of a lemon
onto the word ‘lemon’ as its nearest neighbor, we say that
the precision-at-one for this mapping is 100%. If two targ
et aliases were listed in the bimodal dictionary for the source
image, mapping the image onto either of them would result
in P@1 = 100%.

Baseline P@1 P@10 P@100
Random retrieval 0.0015 0.0153 0.1531
Length-frequency alignment 0.0032 0.0127 0.6053
Non-isomorphic alignment 0.0000 0.0121 0.1105

Table 2: Alignment results for our baselines. All
the Precision@k scores are reported in percentage.

they simply pick up on shallow characteristics
shared across the two spaces. One example is fre-
quency: frequent words may refer to frequently
depicted objects. Learning what is rare is learning
about the world, but more is at stake in the de-
bate around whether LMs understand. Or consider
length: word length may correlate with the struc-
tural complexity of objects (in some way), and
maybe this is what drives our alignment preci-
sion? To control for such effects, we run a second
baseline aligning representations from computer
vision models to two-dimensional word represen-
tations, representing words by their length and
frequency. We collected frequency data based
on English Wikipedia using NLTK (Bird et al.,
2009) for all aliases within our target space. We
use PCA and Procrustes Analysis or ridge re-
gression (Toneva and Wehbe, 2019) to map into
the length-frequency space and report the best of
those as a second, stronger baseline.

Non-isomorphic Alignment Baseline. The for-
mer two baselines examine the possibility of
aligning representations across two modalities
based on chance or shallow signals. While in-
formative, neither strictly demonstrates that a
linear projection cannot effectively establish a
connection between two non-isomorphic repre-
sentation spaces, potentially outperforming the
random or length-frequency baselines. To rigor-
ously explore this, we disrupt the relationship
between words and their corresponding repre-
sentations by shuffling them. This permutation
ensures that the source and target spaces become
non-isomorphic. Specifically, we shuffled OPT30B

three times at random and report the alignment
results between those and original OPT30B, we
use the same Procrustes analysis for computing
the alignment. Table 2 presents a comparison of
the three different baselines. All baselines have
P@100 well below 1%. Our mappings between
VMs and LMs score much higher (up to 64%),
showing the strength of the correlation between the
geometries induced by these models with respect
to a conservative performance metric.
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Figure 3: t-SNE plot of 5 words mapped from MAEHuge
(blue) to OPT30B (orange) using Procrustes analysis.
The green represent the mapped MAEHuge embeddings.

5 Results

Similarities between visual and textual repre-
sentations and how they are recovered through
Procrustes analysis are visualized through t-SNE
in Figure 3. Our main results for nine VMs and all
LMs are presented in Figure 4. The best P@100
scores are around 64%, with baseline scores lower
than 1% (Table 2). In general, even the small-
est language models outperform the baselines by
orders of magnitude. We focus mainly on P@10
and P@100 scores because P@1 only allows one
surface form to express a visual concept, but in
reality, an artifact such as a vehicle may be de-
noted by many lexemes (car, automobile, SUV,
etc.), each of which may have multiple inflections
and derivations (car, cars, car’s, etc.). Figure 5
shows examples where the top predictions seem
‘‘as good’’ as the gold standard. We find that a
region of 10 neighbours corresponds roughly to
grammatical forms or synonyms, and a neighbour-
hood of 100 word forms corresponds roughly to
coarse-grained semantic classes. Results of P@10
in Figure 4, show that up to one in five of all visual
concepts were mapped to the correct region of the
language space, with only a slight deviation from
the specific surface form. Considering P@100, we
see that more than two thirds of the visual con-
cepts find a semantic match in the language space
when using ResNet152 and OPT or LLaMA-2,
for example. We see that ResNet models score
highest overall, followed by SegFormers, while
MAE models rank third. We presume that this
ranking is the result, in part, of the model’s train-
ing objectives: Object classification may induce
a weak category-informed bias into the ResNet
encoders. In this sense, the performance of MAE

models, which are fully unsupervised, presents
the strongest evidence for the alignability of vi-
sion and language spaces—the signal seemingly
could not come from anywhere else but the intrin-
sic properties of the visual world encoded by the
models.

In Figures 4 and 6, we see a clear trend:
As model size increases, structural similarity to
VMs goes up. The correlation between VM size
and similarity is slightly weaker. Specifically,
ResNet152 and OPT30B obtain the best results,
with a P@100 of 64.1%, i.e., 6/10 visual con-
cepts are mapped onto a small neighborhood of
100 words—out of total set of 79,059 candidate
words. Around 1/3 images are correctly mapped
onto neighborhoods of 10 words, and about 1/20,
onto exactly the right word. The scaling effect
seems log-linear, with no observed saturation.11

6 Analysis

Here, we test whether our findings extend to dif-
ferent parts of speech, as well as how alignment
precision is influenced by factors such as disper-
sion, polysemy, and frequency, or by the size of the
seed used for Procrustes analysis. For all experi-
ments in § 6, we use the largest model per model
family for both VMs and LMs and the Exclude-1K
bimodal dictionary, unless stated otherwise.

Part of Speech. ImageNet mostly contains
nouns. To measure the generalization of the
learned mapping to other parts of speech, we train
and/or test it on adjectives, verbs, and nouns from
EN-CLDI (Hartmann and Søgaard, 2018). The
target space (language) in this dataset consists
of 1690 concepts filtered from 79,059 concepts,
which leads to a P@100 baseline below 8%. We
consider two settings: (1) to evaluate whether our
approach is robust across parts of speech we use
concepts of all POS (nouns, adjectives, and verbs)
as training and evaluation data; and (2) to evaluate
whether the mapping learned by nouns generalizes
to other POS, we use only nouns as training data
and evaluate on adjectives and verbs. The results
are in Table 3, along with bimodal pairs counts.
In the first experiment the results are strong, for
instance ResNet152 and OPT30B lead to a P@100

11We also investigate the effects of incorporating text
signals during vision pretraining by comparing pure vision
models against selected CLIP vision encoders. The findings
are unsurprising—more details are presented in Appendix C.
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Figure 4: LMs converge toward the geometry of visual models as they grow larger on Exclude-1K set.

Figure 5: Examples featuring the 100 nearest neighbors in the mapping of image classes into the language
representation space (from MAEHuge to OPT30B). The golden labels are highlighted in green.

of 81.9%. Regarding the second setting, the num-
bers are lower but still well above our baseline,
suggesting that shared concepts between VMs and
LMs extend well beyond nouns.

Image Dispersion. Image dispersion is calcu-
lated by averaging the pair-wise cosine distance

between all images associated with a concept
(Kiela et al., 2015). We partition all con-
cepts within the bimodal dictionary into three
equally-sized distributed bins (low, medium,
high) based on their dispersion. Subsequently,
we classify the held-out concepts into these
bins and present the results in Table 4. Results
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Figure 6: Illustrating the impact of scaling VMs up on Exclude-1K set. The incremental growth in P@100 for
scaled-up VMs is marginal, contrasting with the more substantial increase observed when scaling up LMs in the
same family.

Models Train Test P@1 P@10 P@100
MAEHuge Noun

1337
Adj.
157

2.5 15.9 50.9
SF-B5 3.2 19.1 53.5
ResNet152 0.6 22.9 57.3
MAEHuge Noun

1337
Verb
196

0.5 8.7 49.5
SF-B5 1.0 10.7 56.1
ResNet152 0.0 13.8 61.2
MAEHuge Mix

1337
Mix
353

6.7 45.6 77.8
SF-B5 6.9 48.8 80.1
ResNet152 4.8 51.7 81.9

Table 3: Evaluation of POS impact on OPT30B

and largest VMs across various families, by show-
ing the influence of different POS on EN-CLDI
set. ‘‘Mix’’ denotes a combination of all POS
categories.

Models Disp. Pairs BERTLarge GPT-2XL LLaMA-213B OPT30B

SF-B5
low 703.8 43.2 47.8 58.7 60.6
med. 744.4 42.2 48.7 56.9 60.4
high 714.8 43.3 47.1 53.3 57.6

MAEHuge

low 847.6 40.9 44.7 54.9 56.7
med. 683.8 37.7 43.6 53.8 55.3
high 631.6 32.7 40.1 46.7 54.3

ResNet152
low 683.0 50.6 57.6 71.3 70.5
med. 739.8 45.8 51.8 60.8 63.4
high 740.2 43.1 46.8 56.7 58.4

Table 4: Effect of image dispersion on mapping
performance of various LMs and VMs across
different levels of image dispersion in terms of
P@100 scores on the Exclude-1K set. SF =
SegFormer.

for ResNet152 and MAEHuge show concepts of
lower dispersion are easier to align, while results
for SegFormer-B5 are mixed. See Figure 7 for
the same consistent results observed across the
remaining LMs.

Polysemy. Words with multiple meanings may
have averaged-out LM representations, and as
such we would expect higher polysemy to cause
a drop in precision. We obtain polysemy counts

Figure 7: Performance of LMs and VMs across var-
ied levels of (from top to bottom) image dispersion,
language dispersion, frequency, and polysemy. Results
are presented in terms of P@100 on the Exclude-1K
dataset. Img = Image; Lang = Langauge; Disp =
Dispersion.

from BabelNet (Navigli and Ponzetto, 2012) for
the aliases in our bimodal dictionary and measure
precision over non-polysemous words, words with
two or three meanings, and words with four and
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Models Polysemy Pairs MAEHuge ResNet152 SF-B5 Frequency Rank Pairs MAEHuge ResNet152 SF-B5
1 87.0 38.3 47.3 42.5 0–10k 96.6 23.0 25.0 23.7

BERTLarge 2–3 89.0 24.4 29.7 28.1 10k–100k 700.0 34.3 44.8 40.1
4+ 106.4 17.4 23.6 19.2 100k+ 1366.4 35.3 43.3 40.6
1 87.0 42.1 52.4 48.9 0–10k 96.6 21.0 22.1 22.0

GPT-2XL 2–3 89.0 28.0 34.9 32.7 10k–100k 700.0 39.7 50.4 45.4
4+ 106.4 15.7 22.8 21.0 100k+ 1366.4 40.2 48.7 44.7
1 87.0 40.6 51.8 48.9 0–10k 96.6 18.7 21.6 18.1

LLaMA-213B 2–3 89.0 26.1 35.5 31.3 10k–100k 700.0 40.8 52.3 46.9
4+ 106.4 14.8 21.3 18.1 100k+ 1366.4 53.1 64.0 57.0
1 87.0 47.4 57.2 55.9 0–10k 96.6 24.5 24.7 25.4

OPT30B 2–3 89.0 31.8 39.6 34.4 10k–100k 700.0 47.2 56.1 52.3
4+ 106.4 19.9 25.4 25.2 100k+ 1366.4 55.2 64.0 59.0

Table 5: Comparison of different levels of alias polysemy and frequency on mapping performance in
terms of P@100 scores on the Exclude-1K set. SF = SegFormer.

more meanings. We ignore aliases not in Ba-
belNet. Precision scores for these three bins are
presented in Table 5, alongside counts of the
image-text pairs located in each bin. Unlike other
results reported in the paper, precision is com-
puted separately for each alias, i.e., if a visual
concept is associated with 4 aliases and only three
of those appear among the nearest 100 neighbors,
the P@100 for this concept will be reported as
75%. This is necessary since different aliases for
the same concept may land in different bins. The
trend, as expected, is for non-polysemous aliases
to yield higher precision scores, regardless of VM
and LM. For ResNet152 and the largest LM in
our experiments, OPT30B, P@100 is 57.2% for the
aliases with a single meaning, but only 25.4% for
aliases with four or more meanings. See Figure 7
for the same consistent results observed across the
remaining LMs.

Language Dispersion. Since many of the
aliases in our bimodal dictionary are not in
BabelNet, e.g., multi-word expressions, we also
consider ‘language dispersion’ in Wikipedia. This
is a proxy for the influence of polysemy and is
measured in the same way as image dispersion.
The definition and corresponding equation are in
Appendix B.2. As seen in Table 6 and Figure 7, we
observe a consistent trend across all four LM fam-
ilies, with lower language dispersion correlating
with higher alignment precision.

Frequency. We proceed to investigate the in-
fluence of word frequency in our study. To gauge
this influence, we collect and rank word frequency
data from the English Wikipedia for all the un-
igrams and bigrams, and split them into three

Models Dispersion Pairs MAEHuge ResNet152 SF-B5
low 1100.6 44.1 54.5 51.2

BERTLarge medium 571.8 30.7 38.4 34.1
high 490.6 16.9 21.8 19.1
low 815.2 46.3 53.9 50.3

GPT-2XL medium 768.8 42.0 52.3 47.0
high 579.0 25.2 34.3 30.7
low 702.8 58.7 68.5 62.3

LLaMA-213B medium 707.8 52.9 65.1 57.3
high 752.4 32.3 42.1 36.8
low 779.8 60.4 67.6 63.2

OPT30B medium 721.2 55.1 65.1 59.7
high 662.0 35.6 43.7 40.4

Table 6: Effect of language dispersion on mapping
performance of various LMs and VMs across
different levels of language dispersion in terms
of P@100 scores on the Exclude-1K set. SF =
SegFormer.

distinct frequency bins: the top 10,000 aliases,
aliases falling within the word frequency range
of 10,000 to 100,000, and aliases ranking be-
yond 100,000 in terms of word frequency. Then
we assess precision for the aliases within our bi-
modal dictionary across these bins. The precision
scores for these three bins are detailed in Table 5,
along with the corresponding counts of image-text
pairs found within each bin. Our findings reveal
a discernible trend where lower-frequency aliases
consistently yield higher precision scores, for all
VM and LM combinations. For instance, when
utilizing ResNet152 and the most substantial LM
in our experimentation, OPT30B, P@100 reaches
64.0% for aliases positioned beyond the 100,000
frequency mark, but decreases to 24.7% for aliases
within the top 10,000 frequency bin. The results
of other frequency experiments for the remaining
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Figure 8: Effect of training data size variation on
OPT30B, for the largest vision models from three VM
families.

VMs and the largest LM combinations are shown
in Figure 7.

Dictionary size. The training data in the
bimodal dictionary—used to induce linear pro-
jections—consist of thousands of items. Here, we
compare the impact of varying the size of the
training data, evaluating the different mappings
on the same 5,942 concept representations within
the Exclude-1K set. The P@100 baseline for these
results is below 2%. According to Figure 8, map-
pings well above this baseline are induced with as
few as 297 training pairs (5% of the Exclude-1K
dictionary).

In sum, we have found that alignability of LMs
and VMs is sensitive to image and language dis-
persion, polysemy, and frequency. Our alignment
precision is nevertheless very high, highlight-
ing the persistence of the structural similarities
between LMs and VMs.

7 Discussion

Having established that language and vision mod-
els converge towards a similar geometry, we
discuss the implications of this finding from var-
ious practical and theoretical perspectives within
AI-related fields and beyond.

Implications for the LM Understanding
Debate. Bender and Koller (2020) have been
cited for their thought experiment about an
octopus listening in on a two-way dialogue
between two humans stuck on deserted islands,
but Bender and Koller (2020) also present the
following more constrained version of their
thought experiment:

. . . imagine training an LM (again, of
any type) on English text, again with
no associated independent indications
of speaker intent. The system is also
given access to a very large collection of
unlabeled photos, but without any con-
nection between the text and the photos.
For the text data, the training task is
purely one of predicting form. For the
image data, the training task could be
anything, so long as it only involves
the images. At test time, we present the
model with inputs consisting of an utter-
ance and a photograph, like How many
dogs in the picture are jumping? or Kim
saw this picture and said ‘‘What a cute
dog’’ What is cute?

This second thought experiment highlights the
importance of relating word representations to
representations of what they refer to. It also shows
what their argument hinges on: If unsupervised
or very weakly supervised alignment of LMs and
VMs is possible, their argument fails. The question
then is whether such alignment is possible? Bender
and Koller deem LMs unable to ‘connect their ut-
terances to the world’ (or images thereof), because
they assume that their representations are unre-
lated to representations in computer vision models.
If the two representations were structurally sim-
ilar, however, it would take just a simple linear
mapping to make proxy inferences about the world
and to establish reference. Thought experiments
are, in general, fallible intuition pumps (Brendel,
2004), and we believe our results strongly suggest
that the second thought experiment of Bender and
Koller (2020) is misleading.

Implications for the Study of Emergent Prop-
erties. The literature on large-scale, pretrained
models has reported seemingly emergent proper-
ties (Søgaard et al., 2018; Manning et al., 2020;
Garneau et al., 2021; Teehan et al., 2022; Wei
et al., 2022), many of which relate to induction
of world knowledge. Some have attributed this to
memorization, e.g.:

It is also reasonable to assume that more
parameters and more training enable
better memorization that could be help-
ful for tasks requiring world knowledge.
(Wei et al., 2022)
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while others have speculated if this is an effect
of compression dynamics (Søgaard et al., 2018;
Garneau et al., 2021). The alignability of different
modalities can prove to be a very suitable test
bed in the study of emergent properties relating to
world knowledge. Our experiments above provide
initial data points for the study of such properties.

Implications for Philosophy. Our results have
direct implications for two long-standing debates
in philosophy: the debate around strong artificial
intelligence and the so-called representation wars.
Searle’s original Chinese Room argument (Searle,
1980) was an attempt to refute artificial general
intelligence, including that it was possible for a
machine to understand language. Instead, Searle
claims, the interlocutor in his experiment is not en-
dowed with meaning or understanding, but mere
symbol manipulation. Here we have showed that
an interlocutor endowed only with text converges
on inducing the same representational geometry as
computer vision models with access to visual im-
pressions of the world. In effect, our experiments
show that some level of referential semantics (in
virtue of internal models of the world) emerges
from training on text alone.

The ‘‘representation wars’’ (Williams, 2018)
refers to a controversy around the role of mental
representations in cognitive processes. Cogni-
tive scientists and philosophers aligned with
cognitive science often postulate discrete, men-
tal representations to explain observed behavior.
Neo-behaviorists, physicalist reductionists, and
proponents of embodied cognition have argued
to the contrary. To some extent, the positions have
softened a bit in recent years. Many now use the
term representation to mean a state of a cogni-
tive system, i.e., neural network, that responds
selectively to certain bodily and environmental
conditions (Shea, 2018). This is similar to how the
term is used in machine learning and is certainly
compatible with neo-behaviorism and physical re-
ductionism. This leaves us with the problem of
externalism. Proponents of embodied cognition
claim that mental representations give us at best
a partial story about how meaning is fixed, be-
cause meaning depends on external factors. The
meaning of a proper name, for example, depends
on causal factors relating the name to an initial
baptism. This has also been proposed as a possi-
ble account for referential semantics in language
models (see Butlin, 2021; Cappelen and Dever,

2021; Mollo and Millière, 2023; Mandelkern and
Linzen, 2023). We believe that our experiments
suggest a way to reconcile this dispute by
accounting for how external factors influence our
mental representations, bringing us a bit closer to
a solution to this long-standing debate.

Limitations of Our Findings. Our results show
that visual concepts can be mapped onto lan-
guage concepts with high precision when the
parameters of the mapping are learned in a su-
pervised fashion. While this experimental setup
is sufficient to uncover the structural similarities
between visual and language spaces, the argu-
ment would be even stronger if we could show
that the mapping can be induced in an unsu-
pervised fashion as well, as has been done for
cross-lingual embedding spaces (Conneau et al.,
2018). We experimented with algorithms for un-
supervised embedding alignment (Conneau et al.,
2018; Artetxe et al., 2018; Hoshen and Wolf, 2018)
and found that all suffer from the degenerate solu-
tion problem described in Hartmann et al. (2018),
i.e., that no algorithm is currently available that
can effectively map between modalities without
supervision. We also experimented with initial-
izing the linear transformation in unsupervised
algorithms from the one learned with supervi-
sion with various amounts of noise added. We
found that the unsupervised algorithms were able
to recover from the offset up to a certain point,
suggesting that with a sufficiently large number
of random restarts, unsupervised mapping would
be possible. Our experiments demonstrate linear
projections can align vision and language repre-
sentations for concrete noun concepts, as well as,
to a lesser extent, for verbs and adjectives. Future
models may enable even better linear mappings.
Whether some concept subspaces are inherently
(linearly) unalignable, remains an open question.

8 Conclusion

In this work, we have studied the question of
whether language and computer vision models
learn similar representations of the world, despite
being trained on independent data from inde-
pendent modalities. We evaluated the structural
similarity of the representations learned by these
models for different sizes and architectures. We
found that the geometries of these spaces are sur-
prisingly similar, and that similarity increases with
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model size. These results seem to challenge the
second thought experiment in Bender and Koller
(2020). In our experiments, our baseline never
goes beyond 1% at P@100, but our linear maps
exhibit P@100 scores of up to 64%—an inferen-
tial ability which, in our view, strongly suggests
the induction of internal world models, something
which many previously have deemed impossible.
We have discussed various implications, but not
all: In the past, researchers have speculated if im-
age representations could act as an interlingua for
cross-lingual knowledge transfer (Bergsma and
Van Durme, 2011; Kiela and Bottou, 2014; Vulić
et al., 2016; Hartmann and Søgaard, 2018). Our
results suggest this is viable, and that the quality
of such transfer should increase log-linearly with
model size.
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Ivan Vulić, Douwe Kiela, Stephen Clark, and
Marie-Francine Moens. 2016. Multi-modal rep-
resentations for improved bilingual lexicon
learning. In Proceedings of the 54th Annual
Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers),
pages 188–194, Berlin, Germany. Associa-
tion for Computational Linguistics. https://
doi.org/10.18653/v1/P16-2031

Jason Wei, Yi Tay, Rishi Bommasani, Colin
Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou,
Donald Metzler, Ed H. Chi, Tatsunori
Hashimoto, Oriol Vinyals, Percy Liang, Jeff
Dean, and William Fedus. 2022. Emergent
abilities of large language models. Transac-
tions on Machine Learning Research. Survey
Certification.

Daniel Williams. 2018. Predictive processing and
the representation wars. Minds and Machines,
28(1):141–172. https://doi.org/10
.1007/s11023-017-9441-6, PubMed:
31258246

Thomas Wolf, Lysandre Debut, Victor Sanh,
Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Remi Louf,
Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite,
Julien Plu, Canwen Xu, Teven Le Scao,

Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language
processing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural
Language Processing: System Demonstrations,
pages 38–45, Online. Association for Compu-
tational Linguistics.https://doi.org/10
.18653/v1/2020.emnlp-demos.6

Enze Xie, Wenhai Wang, Zhiding Yu, Anima
Anandkumar, Jose M. Alvarez, and Ping Luo.
2021. Segformer: Simple and efficient design
for semantic segmentation with transformers.
In Advances in Neural Information Process-
ing Systems, volume 34, pages 12077–12090.
Curran Associates, Inc.

Susan Zhang, Stephen Roller, Naman Goyal,
Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li,
Xi Victoria Lin, Todor Mihaylov, Myle Ott,
Sam Shleifer, Kurt Shuster, Daniel Simig,
Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models.

Jiawei Zhao and Andrew Gilman. 2020.
Non-linearity in mapping based cross-lingual
word embeddings. In Proceedings of the 12th
Language Resources and Evaluation Confer-
ence, pages 3583–3589, Marseille, France.
European Language Resources Association.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler,
Adela Barriuso, and Antonio Torralba. 2017.
Scene parsing through ade20k dataset. Com-
puter Vision and Pattern Recognition. https://
doi.org/10.1109/CVPR.2017.544

Yukun Zhu, Ryan Kiros, Richard S. Zemel,
Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015.
Aligning books and movies: Towards story-like
visual explanations by watching movies
and reading books. 2015 IEEE Inter-
national Conference on Computer Vision
(ICCV) pages 19–27. https://doi.org
/10.1109/ICCV.2015.11

Andy Zou, Long Phan, Sarah Chen, James
Campbell, Phillip Guo, Richard Ren, Alexander
Pan, Xuwang Yin, Mantas Mazeika,
Ann-Kathrin Dombrowski, et al. 2023. Repre-
sentation engineering: A top-down approach to
ai transparency. arXiv preprint arXiv:2310.01405.

1247

https://doi.org/10.18653/v1/2022.bigscience-1.11
https://doi.org/10.18653/v1/2022.bigscience-1.11
https://doi.org/10.18653/v1/P16-2031
https://doi.org/10.18653/v1/P16-2031
https://doi.org/10.1007/s11023-017-9441-6
https://doi.org/10.1007/s11023-017-9441-6
https://pubmed.ncbi.nlm.nih.gov/31258246
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1109/CVPR.2017.544
https://doi.org/10.1109/CVPR.2017.544
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11


Models Links
BERTTINY https://huggingface.co/google/bert_uncased_L-2_H-128_A-2

BERTMINI https://huggingface.co/google/bert_uncased_L-4_H-256_A-4

BERTSMALL https://huggingface.co/google/bert_uncased_L-4_H-512_A-8

BERTMEDIUM https://huggingface.co/google/bert_uncased_L-8_H-512_A-8

BERTBASE https://huggingface.co/bert-base-uncased

BERTLARGE https://huggingface.co/bert-large-uncased

GPT-2BASE https://huggingface.co/openai-community/gpt2

GPT-2LARGE https://huggingface.co/openai-community/gpt2-large

GPT-2XL https://huggingface.co/openai-community/gpt2-xl

OPT125M https://huggingface.co/facebook/opt-125m

OPT6.7B https://huggingface.co/facebook/opt-6.7b

OPT30B https://huggingface.co/facebook/opt-30b

LLaMA-27B https://huggingface.co/meta-llama/Llama-2-7b

LLaMA-213B https://huggingface.co/meta-llama/Llama-2-13b

SegFormer-B0 https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512

SegFormer-B1 https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512

SegFormer-B2 https://huggingface.co/nvidia/segformer-b2-finetuned-ade-512-512

SegFormer-B3 https://huggingface.co/nvidia/segformer-b3-finetuned-ade-512-512

SegFormer-B4 https://huggingface.co/nvidia/segformer-b4-finetuned-ade-512-512

SegFormer-B5 https://huggingface.co/nvidia/segformer-b5-finetuned-ade-640-640

MAEBASE https://huggingface.co/facebook/vit-mae-base

MAELARGE https://huggingface.co/facebook/vit-mae-large

MAEHUGE https://huggingface.co/facebook/vit-mae-huge

ResNet18
ResNet34
ResNet50 https://pypi.org/project/img2vec-pytorch/

ResNet101
ResNet152

CLIP-RN50
CLIP-RN101
CLIP-RN50*64 https://github.com/openai/CLIP

CLIP-VIT-B-32
CLIP-VIT-L-14

Table 7: Sources of models in our experiments.

A Detailed Experimental Settings

A.1 Computational Environment
Our primary software toolkits included Hugging-
Face Transformers 4.36.2 (Wolf et al., 2020),
PyTorch 2.1.2 (Paszke et al., 2019). We ran our
experiments on 2 NVIDIA A100s 40G.

A.2 Model Details
Except for the ResNet and CLIP models, all
other models used in this study are from the
HuggingFace Transformers (Table 7).

B Dispersion Details

B.1 Image Dispersion
The image dispersion d of a concept alias a is
defined as the average pairwise cosine distance
between all the image representations i1, i2...in in
the set of n images for a given alias (Kiela et al.,
2015):

d(a) =
2

n(n− 1)

∑

k<j≤n

1− ij · ik
|ij ||ik|

B.2 Language Dispersion
The language dispersion d of a concept alias a is
defined as the average pairwise cosine distance
between all the corresponding word representa-
tions w1, w2...wn in the set of n sentences for a
given alias:

d(a) =
2

n(n− 1)

∑

k<j≤n

1− wj · wk

|wj ||wk|

Model
Explained Variance Ratio (Sum)

256 512 768 1024 1280 2048 Max

MAEHuge 0.9735 0.9922 0.9975 0.9994 1.0000 – 1.0000

ResNet152 0.9795 0.9942 0.9974 0.9987 0.9993 1.0000 1.0000

SegFormer-B5 0.9685 1.0000 – – – – 1.0000

LLaMA-213B 0.5708 0.6662 0.7277 0.7725 0.8077 0.8814 1.0000

OPT30B 0.4926 0.6002 0.6664 0.7164 0.7554 0.8360 1.0000

Table 8: The cumulative of explained variance
ratios for different models and sizes.

Figure 9: Illustrating the impact of scaling CLIP mod-
els up on Exclude-1K set. The incremental growth in
P@100 for scaled-up CLIP models is marginal, con-
trasting with the more substantial increase observed
when scaling up LMs in the same family.

C More Results

Cumulative Percentage of Variance Explained.
In Table 8, we present the cumulative percentage
of variance explained by each selected component
after PCA.
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Figure 10: LMs converge toward the geometry of CLIP models as they grow larger on Exclude-1K set.

CLIP Results. We also investigate the ef-
fects of incorporating text signals during vision
pre-training by comparing pure vision models
against selected CLIP (Radford et al., 2021) vision
encoders (ResNet50, ResNet101, ResNet50×60,
ViT-Base-Patch32, and ViT-Large-Patch14). The
results align with our expectations, indicating that
the CLIP vision encoders exhibit better alignment
with LMs. The findings also support our previous
observation that larger LMs tend to demonstrate
better alignment. However, it would be unfair
to directly compare the results from CLIP with
pure vision models, as the pretraining datasets
they utilize differ significantly in scale and scope.
Detailed results are presented in Figure 9 and
Figure 10.

Models Train Test P@1 P@10 P@100
CLIP-ViT-L Noun

1337
Adj.
157

12.7 52.2 85.4
CLIP-RN50×64 7.0 45.2 84.7
CLIP-ViT-L Noun

1337
Verb.
196

12.2 55.1 93.9
CLIP-RN50×64 9.2 46.4 89.3
CLIP-ViT-L Mix

1337
Mix.
353

39.1 81.0 94.1
CLIP-RN50×64 33.7 79.9 93.8

Table 9: Evaluation of POS impact on OPT30B

and different CLIP models using EN-CLDI
set. ‘‘Mix’’ denotes a combination of all POS
categories.

POS Impact on CLIP and OPT. In Table 9,
we report the POS impact on OPT30B and two best
CLIP vision encoders in our experiments.
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