
Not Eliminate but Aggregate: Post-Hoc Control over Mixture-of-Experts
to Address Shortcut Shifts in Natural Language Understanding

Ukyo Honda1 Tatsushi Oka2 Peinan Zhang1 Masato Mita1

1CyberAgent, Japan 2Keio University, Japan
{honda ukyo,zhang peinan,mita masato}@cyberagent.co.jp

tatsushi.oka@keio.jp

Abstract

Recent models for natural language under-
standing are inclined to exploit simple patterns
in datasets, commonly known as shortcuts.
These shortcuts hinge on spurious corre-
lations between labels and latent features
existing in the training data. At inference time,
shortcut-dependent models are likely to gen-
erate erroneous predictions under distribution
shifts, particularly when some latent features
are no longer correlated with the labels. To
avoid this, previous studies have trained mod-
els to eliminate the reliance on shortcuts. In
this study, we explore a different direction:
pessimistically aggregating the predictions of
a mixture-of-experts, assuming each expert
captures relatively different latent features.
The experimental results demonstrate that our
post-hoc control over the experts significantly
enhances the model’s robustness to the dis-
tribution shift in shortcuts. Additionally, we
show that our approach has some practical
advantages. We also analyze our model and
provide results to support the assumption.1

1 Introduction

The datasets for natural language understanding
(NLU) often contain simple patterns correlated
with target labels, which are unintentionally
introduced by annotators’ simple heuristics, pref-
erences, etc. (Gururangan et al., 2018; Geva et al.,
2019). More fundamentally, the compositional
nature of natural language inherently introduces
tokens that correlate with target labels individually
(Gardner et al., 2021). For example, word overlap
(McCoy et al., 2019; Zhang et al., 2019) and spe-
cific vocabulary, such as negations (Gururangan
et al., 2018; Schuster et al., 2019), are known to
have such correlations. However, these correla-
tions are not guaranteed to hold in general and

1The code is available at https://github.com
/CyberAgentAILab/posthoc-control-moe.

are therefore called spurious correlations (Feder
et al., 2022). The simple patterns are easy to ex-
ploit, so recent NLU models are inclined to take
advantage of them. This exploitation or the ex-
ploited patterns themselves are called shortcuts
(Makar et al., 2022; Feder et al., 2022; Du et al.,
2021; Meissner et al., 2022).2

At inference time, shortcuts often result in in-
accurate predictions under relevant distribution
shifts. The shifts can occur, for example, when
test data are collected from annotators with dif-
ferent heuristics or preferences (Geva et al., 2019;
McCoy et al., 2019; Zhang et al., 2019; Schuster
et al., 2019). Data from the same distribution as
the training data is referred to as in-distribution
(ID) data, while data from a distribution shifted
relative to the training data is referred to as
out-of-distribution (OOD) data. Figure 1 shows
the examples of ID and OOD data.

A simple solution to this problem is to eliminate
reliance on shortcuts, which is the mainstream ap-
proach, including recent studies in NLU (Clark
et al., 2019; He et al., 2019; Mahabadi et al.,
2020). Typically, those methods up-weight train-
ing instances where some known shortcuts cannot
predict labels correctly and down-weight the oth-
ers. A practical deficiency of this approach arises
in a performance trade-off between ID and OOD
data. It deviates models from ID data by eliminat-
ing shortcuts, which are valid features in ID data.
Due to this trade-off, another practical problem
arises where the hyperparameter search has to be
made using OOD test or validation data, as noticed
as the limitation of previous work (Clark et al.,
2019; Mahabadi et al., 2020; Clark et al., 2020a;
Ghaddar et al., 2021; Liu et al., 2021; Creager
et al., 2021; Yu et al., 2022; Yang et al., 2023).

2Shortcuts are also called dataset bias. However, we avoid
using this term because it is confusing with the social bias
or bias of an estimator. Similarly, we do not use the term
debiasing in this paper.
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Figure 1: An illustrative example of shortcuts in the task of natural language inference. P and H denote the premise
and hypothesis sentence, respectively. {ai} are latent features related to x. The value on the right-hand side of ŷ
shows the confidence ∈ [0.0, 1.0] of the prediction. ai is correctly predictive of label y in the training and ID data
but not in the OOD data where the association between ai and y changed. a∗ is an ideal latent feature predictive
of y across distributions. However, such a∗ is generally difficult for models to rely on. This figure illustrates the
common case where predictions are not based on a∗.

Even when using OOD validation data, its dis-
tribution is the same as that of test data. Thus,
in other words, the approach requires knowing
the test-time distribution to tune hyperparameters,
which is impractical in testing OOD robustness.

In this paper, we opt not to pursue training to
eliminate shortcuts. Instead, we propose to ag-
gregate predictions of a mixture model during
inference. The problem with shifts in shortcuts is
that some latent features in the training data are
no longer associated with the labels. We hypoth-
esize that this OOD situation can be addressed by
effectively aggregating predictions, assuming that
the predictions are based on relatively different
latent features. We propose a mixture model and
its training strategy to encourage such modeling
of latent features. At inference time, we perform
theoretically grounded risk minimization strate-
gies through post-hoc control for the predictions
in the event of potential shifts in shortcuts.

The experimental results demonstrate that our
method significantly enhances the model’s ro-
bustness when faced with shifts in shortcuts.
Moreover, our method shows two other practi-
cal benefits that address the problems of previous
methods. First, the mixture weights of our model
can be used to detect shifts in latent features during

inference. This opens up the possibility of adap-
tive post-hoc control to address the performance
trade-off between ID and OOD data. Second, hy-
perparameters can be tuned with ID data only,
removing the need to tune hyperparameters with
OOD data. We also analyze our mixture model
and provide results supporting the assumption of
modeling latent features.

2 Background

This section first overviews shortcuts. Then, we
describe how previous approaches have addressed
shortcuts and outline how we approach them.
Below, X and Y denote the input instance space
and the entire class of target labels, respectively.

2.1 Shortcuts in Detail

Shortcuts or spurious correlations arise when (1)
some feature a related to input x ∈ X is pre-
dictive of label y ∈ Y in training data, (2) but
this association between a and y changes under
relevant distribution shifts (Makar et al., 2022;
Feder et al., 2022). Often, those features are la-
tent, that is, difficult to identify a priori. Among
those latent features, shortcuts refer to those that
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are easy to represent; sometimes, they refer to
the exploitation of such latent features (Makar
et al., 2022; Feder et al., 2022; Du et al., 2021;
Meissner et al., 2022). Following Makar et al.
(2022), we emphasize that the ease of modeling
is an important characteristic of shortcuts. It en-
ables models to capture and depend on the latent
features, thereby posing a serious threat when the
relevant distribution shifts.

Shortcuts are pervasive in NLU datasets due to
the simple heuristics, preferences, etc., possessed
by annotators (Gururangan et al., 2018; Geva
et al., 2019). Shortcut-dependent models severely
degrade performance on datasets collected with
different heuristics and preferences (Geva et al.,
2019; McCoy et al., 2019; Zhang et al., 2019;
Schuster et al., 2019). Moreover, there is a more
fundamental discussion that the compositional na-
ture of natural language produces many simple
features (e.g., words and phrases) that can robustly
predict labels when the entire context is considered
but are only spuriously correlated when consid-
ered individually (Gardner et al., 2021; Eisenstein,
2022). Figure 1 shows an illustrative example
where simple word-overlap features and length
features are associated with labels in training and
ID data, but the association drastically changes in
OOD data.

While pervasive, note that shortcuts are only
part of the distribution-shift problem. For exam-
ple, shortcuts can be viewed as a special case of
domain shift (Feder et al., 2022) and can arise
independently from the shift in label distribution
p(y) (Yang et al., 2023). Also, the problem of
shortcuts is one of the consequences of under-
specification, where distinct solutions can solve
the problem equivalently well (D’Amour et al.,
2022). Following Makar et al. (2022), we address
distribution shifts exclusively in terms of short-
cuts. Consequently, the OOD data we address
involve shifts in the association between a and y.

2.2 Overview of Previous Approaches

To improve the OOD performance, previous stud-
ies have tried to remove the reliance on shortcuts.
In the study of NLU, a widely used approach is
reweighting (Clark et al., 2019; He et al., 2019;
Mahabadi et al., 2020). This approach reweights
instances to reduce learning on shortcut-inducing
instances and increase learning on the others. The
weights are computed based on how accurately

shortcuts predict labels. During training, instances
where shortcuts are predictive are down-weighted,
and the others are up-weighted.

In the machine learning (ML) literature, train-
ing data is first partitioned into groups (also called
environments) based on the spuriously correlated
features. The training data is assumed to be a
mixture of the groups divided by the features. Pre-
vious approaches avoid relying on shortcuts, that
is, the group-specific spurious correlations. There
are two principal approaches in the ML literature.
Invariant risk minimization (IRM; Arjovsky et al.,
2019) trains a classifier that is simultaneously
optimal for all groups. Group distributionally ro-
bust optimization (GroupDRO; Sagawa et al.,
2020) learns to minimize the worst-group risk by
up-weighting the loss of the worst-case group.

2.3 Problems of Previous Approaches
These approaches share one common idea: train-
ing models while minimizing reliance on shortcuts
to achieve robust predictions. In practice, how-
ever, daring to eliminate predictive features in the
training data and its ID data causes deviations from
the ID data, resulting in a performance trade-off
between the ID and OOD data. See, for exam-
ple, the aforementioned work on reweighting,
IRM, and GroupDRO for empirical results. This
trade-off raises the following practical problems.

(a) Overfitting to OOD Data. The degraded
performance on ID data is a direct consequence
of this trade-off (Utama et al., 2020a). Evaluat-
ing worst-case performance or performance on
adversarial OOD data is essential for assess-
ing generalization, and this study also aims to
improve on these evaluations. However, such ex-
treme distribution shifts do not always occur after
model deployment, so it is desirable for practical
purposes to be able to deal with ID data as well.

(b) Hyperparameter Tuning with OOD Data.
An indirect but more fundamental problem is the
need for OOD test or validation data to tune
hyperparameters. This problem arises because the
trade-off makes it difficult to predict performance
on OOD data simply by looking at performance on
ID data. Obtaining OOD test data (in the context
of ML, worst-group) requires pre-identification
of shortcuts and their test-time distribution. Even
when using OOD validation data, its distribution
needs to be the same as test data’s. In testing OOD
robustness, this requirement is clearly impractical.
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Initial studies used training data where short-
cuts are pre-identified, in addition to OOD test
or validation data (Clark et al., 2019; Arjovsky
et al., 2019; Sagawa et al., 2020, inter alia).
Pre-identification of shortcuts is costly as it re-
quires careful analysis of given data. Seeking
more practical solutions, subsequent approaches
followed that did not require pre-identification of
shortcuts in training data (Clark et al., 2020a; Liu
et al., 2021; Creager et al., 2021, inter alia).
However, they still need OOD test or valida-
tion data related to the pre-identified shortcuts
to tune hyperparameters. This requirement has
been discussed as a serious limitation for practical
use (Clark et al., 2019; Mahabadi et al., 2020;
Clark et al., 2020a; Ghaddar et al., 2021; Liu
et al., 2021; Creager et al., 2021; Yu et al., 2022).
Moreover, the performance of those approaches
on OOD data is considerably low without the hy-
perparameter tuning on OOD data (Yang et al.,
2023).

2.4 Overview of Our Approach

In this study, we explore a different direction from
previous approaches: We aggregate predictions of
a mixture model. Our hypothesis is that effective
aggregation of predictions enables addressing po-
tential shifts in shortcuts, suppose the predictions
are based on relatively different latent features.

Let a be a discrete random variable defined
over the spaceA = {a1, . . . , aK}. As described in
Section 2.1, NLU data are likely to have multiple
latent features associated with labels. Considering
the existence of those latent features, the condi-
tional probability of y given x, p(y|x), can be
rewritten as a finite mixture model as follows:3

3We assume that it is reasonable to consider the finite
latent features. Generally speaking, model predictions are
likely to depend on simple latent features strongly associ-
ated with labels, not evenly dependent on infinite possible
latent features. In addition, it is empirically established that
finite mixture models can approximate a wide variety of
distributions, as long as a sufficient number of mixture com-
ponents are included (Titterington et al., 1985; Walker and
Ben-Akiva, 2011; Nguyen et al., 2020).

Therefore, the mixture model naturally aligns with
the data structure. The mixture weights p(a|x) are
expected to estimate the distribution of the latent
features, and p(y|a, x) to predict based on each a.
If this assumption holds, pessimistic aggregation
of p(y|a, x) can minimize the risk under OOD
circumstances at inference time, where it is not
known which latent features to rely on.

In addition, this approach allows us to address
the problems described in Section 2.3 as follows.
(a′) We have the flexibility to address both ID

and OOD data scenarios through the adaptable
application or omission of post-hoc control tech-
niques.4 This adaptability sets our approach apart
from the existing methods, which typically rely on
fitting a single model exclusively for either the ID
or OOD case. (b′) Since our method focuses on
fitting ID data during training, it does not require
OOD data for training or tuning hyperparameters.

3 Methods

The proposed method consists of two parts. The
first part is a training method using a mixture
model. The second part is a test-time operation,
which aggregates the mixture model’s predictions
to make robust predictions when facing distribu-
tion shifts. Figure 3 in Appendix A shows the
overview of our method.

3.1 Training Phase: Mixture Model to
Capture Latent Features

To model latent features, we employ a mixture
model, as seen in Eq (3). A typical implementa-
tion of the mixture model is mixture-of-experts
(MoE) (Jacobs et al., 1991). Shazeer et al. (2017)
showed that MoE improves performance and
efficiency in large-scale deep-learning models.
Following these studies’ success, we employ a
variant of MoE in this study.

Our Implementation of MoE. MoE consists
of K expert networks (experts) and a router net-
work (router) responsible for assigning inputs to
the expert networks. Hereafter, we use the terms
mixture weights and output distribution of a
router interchangeably because they have the same

4While this adaptive use of post-hoc control necessitates
determining whether the test data falls under the ID or OOD
category, the results presented in Table 3 suggest that changes
in the mixture weights can effectively discern this distinction
at inference time. We revisit this point in Section 4.3.
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function. The MoE given an input x is defined
as follows:

where Ek(x) is the output of the k-th expert and
πk(x) is the k-th element of the router output
π(x) = [π1(x), . . . , πk(x)]

� ∈ P , where P is a
(K − 1)-dimensional simplex. The structure of
the expert and router networks can be arbitrarily
determined. For example, the MoE modules can be
stacked layer by layer while sparsifying the output
of the router network (Shazeer et al., 2017).

Our goal in employing the mixture model is
to enable the aggregation of predictions based on
relatively different latent features. To this end, the
parameters capturing latent features should be in
one place. Therefore, we decided to employ the
MoE module only in the final layer of classifica-
tion. This is consistent with mixture-of-softmax
(MoS), a particular instantiation of MoE (Yang
et al., 2018). Similar to MoE, MoS consists of the
experts and the router. Both the expert and router
receive the same encoded vector from an encoder.
Then, the experts predict target labels, while the
router determines the weights over the experts.
Our implementation of MoS is defined as follows:

where we specify

pk(y|x) =
exp

(
fk(h)�wk

y + bky
)

∑
y′∈Y exp

(
fk(h)�wk

y′ + bky′

) , (5)

πk(x) =
exp

(
f r(h)�vk

)
∑K

j=1 exp (f
r(h)�vj)

, (6)

h = gφ(x). (7)

Here, gφ : X → R
d is the encoder and its

d-dimensional output is denoted by h. wk
y and

vk are the d × 1 weighting vector related to
the k-th expert prediction for y and the k-th
element of the router output, respectively. The
functions fk and f r respectively transform the
encoder outcome to R

d for the k-th expert and

the router. Both functions have the same struc-
ture and size of parameters, but the parameters
are initialized and updated separately. We employ
BERT for gφ and set f ∗ to the prediction head of
BERT (Devlin et al., 2019; Zhang et al., 2022):
f ∗(h) = LayerNorm◦ReLU◦Linear(h), where ◦
represents composite functions that applied from
right to left. θ denotes the entire parameters above.

We use the cross-entropy loss to train the pa-
rameters. Given a mini-batch of M instances with
one-hot encoding of labels, the loss is as follows:

LC(θ) = − 1

M

M∑
m=1

log pθ(ym|xm). (8)

Penalty Term for π: Different Experts for Dif-
ferent Latent Features. Comparing Eq. (2) and
(4), we see that different experts are expected to
capture different latent features that predict labels.
However, this expectation does not hold when
the mixture weights are consistently uniform or
dominated by the same few experts across all the
training instances. In those cases, all the experts
or the few experts capture the latent features indis-
tinguishably. To facilitate capturing the mixture
of latent features at the mixture architecture, we
propose a penalty term that constrains the router
π. Intuitively, it encourages the router to assign
different inputs to different experts, assuming that
different inputs have differences in their latent
features to some extent.

Given a mini-batch of size M , define a K ×M
matrix of the router outputs as follows:

Π =
[
π(x1), π(x2), . . . , π(xM )

]
. (9)

Our goal is to encourage the columns of Π
to be distinct distributions from each other.
Hinted by Lin et al. (2017), we accomplish this
by minimizing the Frobenius norm of Π�Π,
where the (m,m′)-th element is the dot product
π(xm)�π(xm′) ∈ [0, 1] and represents the similar-
ity of the two distributions. Each element of Π�Π
takes a maximum value of 1 when the two distri-
butions are identical one-hot distributions and a
minimum value of 0 when they have no overlap.
Therefore, the Frobenius norm ‖Π�Π‖F takes a
large value when the similarity of the distribu-
tions in a mini-batch is high, whereas it takes a
small value when the similarity is low. Using this
property, Lin et al. (2017) proposed to minimize
‖Π�Π − I‖F as a penalty term to reduce the
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Algorithm 1: Row-wise top-� dropout

Input: Square matrix M ∈ R
M×M and �

Output: Square matrix M ∈ R
M×M

1 for i = 1, · · · ,M do
2 m ← Mi � Mi ∈ R

M is the i-th row
vector of M

3 Sort(m) � Sort in descending order
4 m[: �] ← 0 � 0 ∈ R

�, drop out top-�
5 Mi ← m

6 end
7 return M

similarity of self-attention maps. I ∈ R
M×M is an

identity matrix to encourage π(xm) to be one-hot.
We use this penalty term with the following

modifications. First, the penalty cannot be mini-
mized to zero when the mini-batch sizeM exceeds
the number of experts K. During joint minimiza-
tion with the classification loss LC , forcing the
minimization of the never-zero penalty could lead
models too far away from the optimal solution
for LC . To avoid this, we consider that in the
m-th row, its corresponding expert for xm cap-
tures the same latent features among the top-�
elements (instances). We then exclude those ele-
ments to allow such multi-instance assignments.
Let d� : R

M×M → R
M×M be a function to

drop out the elements with the top-� values
in each row to 0 (Algorithm 1). We minimize
‖d�(Π�Π− I)‖F .

Second, the penalty varies highly depending on
the batch size M , as the Frobenius norm takes the
sum, not the mean, of the squares of the matrix el-
ements. To search for weighting hyperparameters
robust to changes in M , we normalize the penalty
into [0, 1]. We divide the penalty by ‖d�(J−I)‖F ,
where J ∈ R

M×M is a matrix of ones.
Taking all of these together, we define our

penalty term as follows:

LR(θ) =
‖d�(Π�Π− I)‖F
‖d�(J− I)‖F

. (10)

The final loss is defined using the weighting hy-
perparameters λ as follows:

L(θ) = LC(θ) + λLR(θ). (11)

Previous studies on MoE observed that assign-
ment was concentrated on the same few experts

and proposed penalty terms to balance the as-
signment among experts (Shazeer et al., 2017;
Lepikhin et al., 2021; Fedus et al., 2022b,a).
However, these penalty terms were proposed for
text generation models and cannot be applied di-
rectly to the classification model in consideration.
Notably, the penalty terms encourage balanced,
uniform assignments but do not encourage diverse
assignments that vary among groups of instances.

3.2 Inference Phase: Post-Hoc Control for
Risk Minimization under Uncertainty

The problem of shortcuts emerges upon the dis-
tribution shifts where some latent features are no
longer associated with labels. In this subsection,
we consider controlling the mixture weights to
minimize the risk under the OOD circumstances
where we do not know which latent features to rely
on during inference. For this control, we suppose
that different experts capture those latent features
with small overlaps, as encouraged in the training
(see Section 3.1: penalty term). However, note
that this is not a strict requirement, and moderate
differences may be sufficient. The point is that
not all experts depend on the same latent features.
We introduce two post-hoc operations on π to
ensure predictions remain robust to such shifts.
The operations replace the estimated π with π∗

according to the theory of risk minimization under
uncertainty.

Uniform Weighting. The simplest way to ob-
tain robustness to variation is to use a uniform
distribution. Assuming that all experts are equally
good, a simple way to obtain robustness to the
unknown shifts is to consider the expert’s predic-
tions equally. We replace the estimated π with a
uniform distribution as follows:

This operation is equivalent to taking the mean of
pk(y|x) across K experts.

Argmin Weighting. In the worst-case scenario,
the assumption that all experts are equally good
does not hold. An alternative approach to mini-
mize the risk of erroneous predictions in this case
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is to determine the mixture weights by considering
the expert model’s predictions, as follows:

whereK = {1, 2, . . . ,K} and 1{·} is the indicator
function. This operation first selects the expert that
minimizes the probability pk(y|x) over a set of
K experts for each label, and then chooses the
label that maximizes the resulting probability. See
Figure 4 in Appendix A for an example.

Derivation of the Operations. The remainder
of this subsection further explains the principles
behind the prediction rules introduced earlier, with
a focus on risk minimization. This perspective is
rooted in the classical statistical decision-making
framework (see Wald, 1950; Berger, 1985).

We consider a prediction function δ : X → Y
and define D as a collection of such measurable
prediction functions. To evaluate the prediction,
we employ the 0–1 loss L : Y × Y → {0, 1},
which measures classification error as follows:

L (y, δ(x)) = 1− 1{y = δ(x)}. (15)

Since x and y are random variables, the value of
the loss is a random quantity.

We consider the expected value of the loss
L (y, δ(x)) and call it the risk. Given that the
mixture weights π are the essential elements for
our analysis, we explicitly state the dependency
of the risk on the weights. We denote the risk
function R : P ×D → R, given by

R(π, δ) = 1− Ex

[
K∑
k=1

pk (δ(x)|x)πk(x)
]
,

(16)
where Ex[·] represents the expectation operator
over the outcomes of the random variable x.

If the mixture weights π are known, then it can
be easily shown that the risk R(π, δ) is minimized
by

δ∗π(x) = argmax
y∈Y

K∑
k=1

pk (y|x)πk(x). (17)

That is, the optimal prediction selects an element
of Y corresponding to the maximum conditional

probability. When the training and evaluation data
share the same joint distributions of y and x, we
can apply the above classification rule with the
estimated mixture weights. However, this does not
hold for OOD data.

We propose two approaches to deal with the
case of unknown mixture weights. First, we as-
sume that while we do not know the correct
mixture weights, all experts are equally good.
Then, we can take uniform weights for the mixture
weights and minimize the risk by

δ∗u(x) = argmax
y∈Y

1

K

K∑
k=1

pk (y|x) . (18)

Another approach takes a strategy of prudence,
focusing on the worst-case scenario to guarantee
the most favorable outcome among these least
desirable possibilities. Consequently, the predic-
tion performs uniformly well across the mixture
set P , aligning with the minimax principle. More
precisely, the minimax problem is written as

min
δ∈D

max
π∈P

R(π, δ) (19)

which is solved by the following prediction rule

δ∗(x) = argmax
y∈Y

min
k∈K

pk (y|x) . (20)

The above prediction rule is a maximin criterion
where one selects the element ofY that maximizes
the minimum conditional probability.

4 Experiments

Our goal is to achieve predictions robust to distri-
bution shifts related to shortcuts. In this section,
we test whether the proposed post-hoc control
improves performance on those OOD tests and
analyze the mechanism based on our assumption.

4.1 Setup

This subsection describes the experimental setup.
Please refer to Appendix B for further details.

Datasets. In accordance with previous research
on shortcut mitigation, we experimented with
three NLU datasets. These are popular datasets
but are all reported to induce shortcuts, and OOD
test data were later created that cannot be correctly
classified by the shortcuts. Each dataset consists of
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Fix Search
MNLI QQP FEVER

LC LR LC + LR LC LR LC + LR LC LR LC + LR

1st : λ = 0.0
K = 5 0.706 0.379 1.084 0.378 0.299 0.677 0.440 0.674 1.114
K = 10 0.433 0.127 0.560 0.415 0.505 0.920 0.392 0.417 0.809
K = 15 0.501 0.301 0.802 0.253 0.245 0.498 0.466 0.367 0.832

K∗ = 10 K∗ = 15 K∗ = 10

2nd : K = K∗
λ = 0.0 0.433 0.127 0.560 0.253 0.245 0.498 0.392 0.417 0.809
λ = 0.5 0.437 0.022 0.459 0.333 0.010 0.343 0.523 0.128 0.651
λ = 1.0 0.666 0.005 0.671 0.332 0.003 0.335 0.416 0.132 0.548

λ∗ = 0.5 λ∗ = 1.0 λ∗ = 1.0

Table 1: Results of the two-stage hyperparameter search for the number of experts K and the
loss-weighting value λ. K∗ and λ∗ are the optimal values that minimize LC +LR on ID dev. All results
are the average of two runs with different seeds.

training data, validation data drawn from the same
distribution as the training data (ID dev), and test
data where the correlation between some latent
features and labels changed adversarially (OOD
test). Following previous studies in comparison,
we evaluate the accuracy.

MNLI (Williams et al., 2018) is a dataset for
natural language inference (NLI) across multiple
genres. Given a pair of premise and hypothesis
sentences, the task is to classify the relationship
between the two sentences into one of three labels:
entailment, contradiction, or neutral. In MNLI, a
shortcut arises from a spurious correlation between
the word overlap of input sentences and target
labels. We used its matched development set as ID
dev and HANS (McCoy et al., 2019) as OOD test.
QQP is a dataset for paraphrase identification.
The task is to classify whether two sentences
are paraphrases or not. A shortcut also arises
from a spurious correlation in the word overlap
of input sentences. We used its development set
as ID dev and PAWS (Zhang et al., 2019) as
OOD test. FEVER (Thorne et al., 2018) is a
dataset for fact verification. Given two sentences
of claim and evidence, the task is to classify
the relation of the evidence toward the claim
into either Supports, Refutes, or Not-enough-info.
Some negative phrases in the claim sentences
spuriously correlate with target labels, causing a
shortcut that allows classification using only the
claim sentences. We used its development set
as ID dev and FEVER Symmetric v1 and v2
(Schuster et al., 2019) as OOD tests.

Baseline and Principal Methods. We used
BERT (bert-base-uncased) (Devlin et al.,

2019) as the baseline and backbone for a fair com-
parison with previous studies. We used the last
layer in the position of [CLS] for h in Eq. (7).

To compare in a practical setting where only ID
data are available for training and tuning (Yang
et al., 2023), we reran principal methods in that
setting using their publicly available code.

Conf-reg ♠ self-debias (Utama et al., 2020b) and
JTT (Liu et al., 2021) use heuristics that weak
models are likely to exploit shortcuts. Conf-reg
♠ self-debias reweights the loss according to pre-
dictions of a weak model while balancing the
weights using predictions of a teacher model.
JTT up-weights the loss of training instances
that a weak model misclassified. RISK (Wu
and Gui, 2022) considers shortcuts to be re-
dundant features and applies feature reduction.
EIIL (Creager et al., 2021) first estimates the
groups of training instances where some short-
cuts are in common and then applies IRM (see
Section 2.2) using the estimated groups. BAI (Yu
et al., 2022) extends EIIL to estimate multiple
levels of groups and apply IRM multiple times
accordingly. GroupDROlabel-group (Sagawa et al.,
2020) and ReWeightCRT (Kang et al., 2020) are
reported to perform well on OOD data when the
label distribution p(y) is imbalanced in ID data
but is uniform in OOD data (Yang et al., 2023),
while they do not aimed at addressing the shift in
shortcuts. GroupDROlabel-group minimizes the loss
on the worst-case class label given groups divided
only by class labels, and ReWeightCRT reweights
the loss with the relative frequency of class labels.

Hyperparameters. As Eq. (11) shows, the op-
timal model for the proposed method is one that
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Main Results: Tuning with ID Dev

MNLI QQP FEVER

ID OOD ID OOD ID OOD
Dev HANS Dev PAWS Dev Symm. v1 Symm. v2

BERT 84.4±0.2 55.2±4.2 91.5±0.1 36.7±3.1 86.7±0.2 58.5±1.4 65.1±1.5

+ MoS 84.4±0.1 59.4±5.5 91.4±0.1 34.9±1.6 87.0±0.5 58.9±1.2 65.5±1.0

→ Uniform 83.0±1.0 63.6±5.7 89.1±2.4 47.0±8.6 87.6±1.2 62.2±0.7 68.2±1.0

→ Argmin 81.0±3.1 67.2±4.6 83.8±7.3 55.7±8.5 85.3±6.8 61.8±1.2 67.4±2.2

Conf-reg ♠ self-debias 84.5±0.2 63.7±2.4 90.5±0.2 31.0±1.7 87.1±0.7 59.7±1.3 66.5±1.1

Conf-reg ♠ last
self-debias 84.5±0.2 63.7±2.4 90.5±0.2 31.0±1.7 86.7±0.4 59.3±1.2 65.9±1.1

JTT 80.7±0.3 57.3±2.2 89.4±0.2 36.0±0.6 82.7±1.1 53.0±2.6 60.3±2.6

RISK 83.9±0.3 56.3±4.2 90.5±0.1 34.8±3.2 87.6±0.8 58.9±2.6 65.9±1.6

EIIL 83.9±0.2 61.5±2.4 91.1±0.2 31.0±0.6 86.8±1.1 56.2±1.9 63.8±1.7

+ BAI 83.7±0.2 62.0±2.1 91.2±0.2 31.2±0.3 86.3±1.2 56.0±2.1 63.6±1.9

GroupDROlabel-group 84.3±0.3 57.7±2.9 91.6±0.1 34.6±3.7 89.3±0.2 62.1±1.1 67.9±1.3

ReWeightCRT 84.6±0.1 55.8±0.3 91.5±0.0 32.0±0.3 88.5±0.0 61.3±0.4 66.9±0.2

Table 2: Main results. The results of our method are colored in the background . All the scores are
shown in the mean and standard deviation of five runs with different seeds. The highest mean scores
are shown in bold, and the highest mean scores within the baseline and our method are underlined.

can accurately classify x and output diverse π(x).
Therefore, we define the optimal hyperparameters
for the proposed method as those that minimize
the sum of the two losses (LC + LR) on ID dev.

In the proposed method, the number of experts
K in Eq. (4), the number of row-wise dropouts
� in Eq. (10), and the loss-weighting value λ
in Eq. (11) are model-specific hyperparameters.
We explored the values of K ∈ {5, 10, 15} and
λ ∈ {0.0, 0.5, 1.0}. For an efficient search, we
conducted a two-stage search. At the first stage,
we fixed λ = 0 and determined K∗ that naturally
fit the data. Then, we searched for the optimal
balance of losses λ under K∗. Table 1 shows
the results of the hyperparameter search. Across
settings, the value of � was set to be the smallest
value in 2n that satisfies min(K) · � ≥ M . This
ensures that LR in each mini-batch of size M can
be zero in all settings whenπ is maximally diverse:
when a different expert is allocated to every �
instances with probability one. We used parallel
processing of two mini-batches of M = 32 each
and min(K) = 5, so we set � = 8 to satisfy the
condition. Regarding epochs, we set the training
epoch to 10 and the learning rate to 2e-5 for all
datasets and select the best epoch on ID dev scores
without applying post-hoc control.

When rerunning the comparison methods, we
set all hyperparameters to the values specified in
the papers or the official implementation, except

for an annealing hyperparameter α of Conf-reg
♠ self-debias, as it was tuned on OOD tests. We took
the best epoch on ID dev for all the methods and
the best α on ID dev for Conf-reg ♠ self-debias.

4.2 Results

As the main results, we demonstrate that our
post-hoc control over the experts achieves robust
predictions on OOD test data. Table 2 shows
the results in the setting where no shortcut is
pre-identified. BERT is the baseline, + MoS is our
mixture model, and → Uniform / Argmin per-
forms the post-hoc control on the mixture model.
Since scores on the OOD tests have been reported
to have high variance, all the results are shown in
the mean and standard deviation of five runs with
different seeds in accordance with previous stud-
ies. We observe that in all datasets, our post-hoc
control significantly improves performance on the
OOD tests from the baseline and MoS.

The comparison methods do not improve per-
formance on the OOD tests much when tuned
solely with ID data,5 which is consistent with the

5Conf-reg ♠ self-debias reported taking the last epoch of
arbitrarily determined epochs rather than ID dev best epoch.
We also reported the performance of the last-epoch models
(Conf-reg ♠ last

self-debias), but we found that this practice did
not work well when its annealing hyperparameter α (see
Section 4.1) was tuned solely with ID data.
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observation in Yang et al. (2023). As an exception,
GroupDROlabel-group and ReWeightCRT perform
well on FEVER, where the difference from our
method is marginal considering the standard de-
viation. This is because the label distribution of
FEVER shifts as these methods suppose,6 which
is also consistent with the observation in Yang
et al. (2023). However, they do not improve the
OOD performance on MNLI and QQP, which
have no such label distribution shift. In contrast,
our method does not exploit assumptions on label
distribution shifts but consistently improves the
OOD performance across all the datasets.

4.3 Analyses

Now, we turn to the mechanism behind our
method’s robust performance and analyze the
mixture model based on our assumption.

Analysis 1: Penalty Term LR in ID and OOD
Data. We first analyze the penalty term LR, the
essential statistic of our mixture model. Recall
that LR encourages the router to assign different
inputs to different experts, assuming different in-
puts have some difference in their latent features.7

In other words, LR measures the sensitivity to the
difference in inputs. Drawing an inference from
this, we expect that the value of LR differs in
the shifts related to latent features, that is, shifts
between ID and OOD data we address.

Table 3 shows the value of LR on the ID and
OOD datasets.8 In all the datasets, the values of
LR differ significantly between ID and OOD data,
indicating that LR is sensitive to the distribution
shifts in these data.

From a practical perspective, this sensitivity
may provide an advantage. We can compute
LR during inference since its computation does
not require annotated labels either in training or
inference. Therefore, during inference, we can

6The label distribution of FEVER is approximately
Supports:Refutes:Not-enough-info = 2:1:2 in the training
data but Supports:Refutes:Not-enough-info = 1:1:0 in both
ID dev and OOD test. Thus, supposing the flat label distribu-
tion for Supports and Refutes improves the OOD performance
even without addressing shortcuts.

7While not an inevitable consequence of this objective
nor a requirement for our method, we analyzed how different
experts output different predictions. Figure 5 in Appendix A
shows a significant variance between experts’ predictions.

8HANS is sorted by the type of shortcuts, so we shuffled
the order before computing LR. We did not observe this kind
of sorted pattern in the other datasets.

LR ΔMoS→Argmin

MNLI
Train 0.020±0.014 –
Dev 0.017±0.009 −3.4 (84.4→81.1)

HANS 0.633±0.075 +7.8 (59.4→67.2)

QQP
Train 0.002±0.001 –
Dev 0.003±0.001 −7.6 (91.4→83.8)

PAWS 0.329±0.133 +20.8 (34.9→55.7)

FEVER
Train 0.010±0.001 –
Dev 0.136±0.027 −1.7 (87.0→85.3)

Symm. v1 0.082±0.016 +2.9 (58.9→61.8)

Symm. v2 0.087±0.028 +1.9 (65.5→67.4)

Table 3: The value of LR and difference in be-
fore and after performing the post-hoc control
(ΔMoS→Min). The scores were obtained with five
runs of different seeds. We bold the worst mean
score of LR and the best gain in ΔMoS→Min.

determine which data to perform the post-hoc
control on by looking at how different LR is from
that on ID data. While the post-hoc control de-
creases the ID dev scores, MoS performs the same
as the baseline on the ID dev, regardless of the
training with the penalty term (Table 2). Thus,
adaptively applying the post-hoc control enables
handling both ID and OOD data. This adaptive
use is an advantage over previous methods, which
only obtain a single model fitted to either OOD
or ID data. However, note that it is limited to
when involving a major shift in the distribution
of latent features. Since we do not precisely know
the threshold for how much difference should be
regarded as a threatening shift, it may be difficult
to determine in data such as FEVER, where the
difference is significant but relatively small.

Interestingly, FEVER differs from the others
in how LR changes between ID and OOD data.
While the others have lower LR on ID data and
higher LR on OOD data, the opposite is true on
FEVER. This suggests that the mixture model does
not model latent features well on FEVER, and in
fact, the performance improvement by performing
the post-hoc control is relatively small on FEVER
(ΔMoS→Argmin). Shortcuts in FEVER depend on
very local patterns: particular phrases contained
only in claim sentences. Our method uses the
highly abstracted final-layer features of BERT
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Figure 2: The mixture weights averaged on each split of the datasets. Each split, excluding the ID dev (Dev),
has its own dominant feature. For FEVER, Devlabel

bigram consists of the instances in ID dev that contain the bigram
reported to strongly correlate with the label (Schuster et al., 2019). Here, no post-hoc control is performed on the
mixture weights.

and may not be good at successfully isolating the
effects of the local patterns. The features h in
Eq. (7) can be modified arbitrarily, so we leave
more effective encoding methods for future work.

Analysis 2: Captured Latent Features and their
Interpretability. Our post-hoc control supposes
that different experts capture different latent fea-
tures to some extent. The robust performance of
our post-hoc control supports this assumption but
not directly. Toward direct validation, we analyze
which experts a particular feature is assigned to.

To this end, we use some data splits in which a
specific feature, known as a shortcut, is dominant.
For MNLI and QQP, high word overlap is a dom-
inant feature in HANS and PAWS, while their
creation process is different. The sentence pairs in
HANS were created by replacing or partially delet-
ing some parts of premise sentences, while those
in PAWS by word swapping, back translation, and
human post-processing. However, FEVER has no
such split where a single feature is dominant.
To obtain such splits in FEVER, we extracted
instances that contain frequent bigrams that are
reported to strongly correlate with labels. The bi-
grams ‘‘at least’’, ‘‘person who’’, and ‘‘united
states’’ strongly correlate with the Supports label
and ‘‘did not’’, ‘‘does not’’, and ‘‘to be’’ with the
Refutes label (Schuster et al., 2019).9 We created
six splits from FEVER ID dev. All the features
above are known to be shortcuts.

Figure 2 shows the mixture weights averaged
on each split of the datasets. Note that no post-hoc
control is performed on the mixture weights here.

9We omitted Not-Enough-Info labels since the FEVER
ID dev and OOD tests have no instances with this gold label.

Overall, a single or a few experts dominate the
mixture weights in the splits where specific fea-
tures are dominant: HANS, PAWS, and the newly
created FEVER splits. We also observe that the
dominant experts differ among the FEVER splits.
Although the features under analysis are limited,
this behavior of the mixture weights aligns with
our assumption that different experts capture dif-
ferent latent features. As an exception, there are
no dominant experts in the data split of ‘‘united
states’’, and the same expert is dominant in the
data splits of ‘‘did not’’, ‘‘does not’’, and ‘‘to
be.’’ However, note that the assumption does not
need to hold completely (see Section 3.2), and
such local bigram features may be exceptionally
difficult to capture in the current encoding (see
Section 4.3). Taking these points into account, we
consider that the results as a whole support the
assumption.

Figure 2 also suggests that the mixture weights
provide some degree of interpretability: Instances
assigned to the same expert are likely to have the
same features in common. Although our mixture
model does not specify captured features by itself,
the suggested interpretability may allow us to dis-
cover new prominent features in data by analyzing
the commonalities of the instances assigned to the
same expert. The discovery of commonalities in
each expert will serve to support the assumption
further. We leave this direction as our future work.

Analysis 3: Ablation Study on Mixture Model.
We analyzed the contribution to the performance
with respect to the hyperparameters of our mixture
model: the number of experts K, the number of
row-wise dropouts �, and the loss-weighting value
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MoS → Uniform → Argmin

Dev HANS HANS HANS

K = 10 84.4±0.1 59.4±5.5 63.6±5.7 67.2±4.6

K = 5 84.3±0.2 58.8±5.9 59.7±5.9 60.9±4.3

K = 15 84.4±0.2 61.1±5.9 64.5±10.0 65.2±6.4

λ = 0.5 84.4±0.1 59.4±5.5 63.6±5.7 67.2±4.6

λ = 0.0 84.5±0.0 57.6±4.8 60.0±4.2 60.7±4.4

λ = 1.0 84.1±0.3 60.3±4.1 57.0±4.0 65.0±3.9

� = 8 84.4±0.1 59.4±5.5 63.6±5.7 67.2±4.6

� = 0 84.5±0.1 58.1±5.2 57.6±4.7 58.1±4.6

� = 16 84.5±0.1 59.8±2.7 61.0±2.5 61.4±3.5

DeBERTav3-large 91.8±0.0 66.3±1.8 60.8±10.3 74.4±8.4

Table 4: Ablation study on MNLI. The results
of the best hyperparameters on the ID dev are
colored in the background . The scores were ob-

tained with five runs of different seeds. The highest
mean scores are shown in bold.

λ. Table 4 shows the ablation study on MNLI.
This table shows how performance changes by
varying one of the hyperparameters from the val-
ues determined to be optimal on the ID dev.
There is little to no difference in performance on
the ID dev for any given value, but the OOD
performance with post-hoc control is best for
nearly all the values determined to be best on
the ID dev. It is also worth noting that using
our LR and top-� dropout consistently improves
OOD performance better than without using them
(when λ or � is zero). These results indicate the
effectiveness of the proposed training strategy
and hyperparameter search.

We also tested DeBERTav3-large (He et al.,
2023) for the encoder gφ. It has around three
times larger parameters than the BERT we used
and performs better than BERTlarge, RoBERTalarge

(Liu et al., 2019), XLNetlarge (Yang et al., 2019),
ELECTRAlarge (Clark et al., 2020b), etc., on MNLI
(He et al., 2023). We conducted the same hyper-
parameter search for DeBERTav3-large and found
the best hyperparameters were exactly the same
as BERT’s. The results show that the larger model
significantly improves not only ID performance
but also OOD performance. However, there is
still a gap between ID and OOD performance,
and applying the proposed method further im-
proves OOD performance. These results indicate
that even for large models, our method is effective
in improving OOD performance.

Analysis 4: Identifiability of Finite Mixture.
The empirical results clearly demonstrate the ef-

fectiveness of our approach. Nevertheless, another
limitation of this work is that we do not provide
a theoretical guarantee for our mixture model to
capture latent features within the data. This is-
sue has previously been studied in the statistical
literature and is referred to as the identification
problem of finite mixtures. See Huang and Yao
(2012), Compiani and Kitamura (2016), and Xiang
et al. (2019) for the recent development of finite
mixture models. As explained by Compiani and
Kitamura (2016) among others, the identification
of a finite mixture model is accomplished when
predictors have a distinct influence on both the
outcome prediction and mixture weights. Consis-
tent with this, our penalty term LR is designed to
ensure the experts and router play distinct roles in
determining the conditional outcome probabilities
and the mixture weights. This approach allows
our model to effectively capture and reflect the
significant variations found within the data. From
our empirical Analyses 1 and 3, the penalty term
LR is indeed understood as an important source of
identifying mixture weights. Since our main focus
is the excellent performance of our approach in
NLU applications, we plan to leave the theoretical
analysis of identification for future work.

5 Related Work

As seen in Section 2.1, datasets for NLU tasks
are known to have multiple shortcuts due to the
simple heuristics, preferences, etc., possessed by
annotators (Gururangan et al., 2018; Geva et al.,
2019), or more fundamentally, the compositional
nature of natural language (Gardner et al., 2021).
A number of studies have addressed the problem
of shortcuts in NLU, but their primary difference
lies in prior knowledge of shortcuts.

Known Shortcut Setting. This setting allows
models to know the existence and details of short-
cuts in advance. Previous studies used this prior
knowledge to mitigate the identified shortcuts.

Reweighting is the basic strategy of previous
methods. They used shortcut-dependent models
that only take shortcut features as input, e.g.,
word overlap (Clark et al., 2019; He et al., 2019;
Mahabadi et al., 2020). These shortcut-dependent
models let main models know which training in-
stances cannot be predicted correctly via shortcuts
and thus should be up-weighted. Xiong et al.
(2021) showed that the performance of these
methods was further enhanced by calibrating
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the uncertainty of the shortcut-dependent mod-
els. Utama et al. (2020a) additionally employed a
teacher model to adjust the weights so that a main
model would not deviate too much from the dis-
tribution of training data. Belinkov et al. (2019)
and Stacey et al. (2020) trained a main model
adversarially to a shortcut-dependent classifier.

Izmailov et al. (2022) and Kirichenko et al.
(2023) first trained a model on ID data and then
re-trained its last classification layer on a small
amount of OOD data, showing that this small
parameter update for the ID-fitted model is enough
to improve OOD performance.

Several approaches used the counterfactual
framework of causal inference. To make coun-
terfactual predictions unaffected by shortcuts,
Tian et al. (2022) and Niu et al. (2021) com-
bined predictions of a main model and a
shortcut-dependent model. Wang and Culotta
(2020) classified features into genuine or spuri-
ous and selected genuine features for predictions.
Others utilized identified spurious features to
train model predictions to be invariant to in-
terventions on the spurious features (Veitch
et al., 2021; Makar et al., 2022; Puli et al., 2022b).

The above methods effectively mitigate short-
cuts but require the significant cost of careful
analysis to achieve the prior knowledge of
shortcuts.

Unknown Shortcut Setting. The existence and
details of shortcuts are generally unknown. An-
other line of studies has sought a way to mitigate
shortcuts without the cost of manual identification.

The basic strategy is reweighting, just as in the
known shortcut setting. To estimate the weights,
previous methods have utilized the heuristics that
weak models are likely to exploit shortcuts. The
weak models include models with limited capacity
(Clark et al., 2020a; Sanh et al., 2021), models
trained with a limited number of data (Utama
et al., 2020b), a single epoch (Du et al., 2021),
or shallow layers (Ghaddar et al., 2021; Wang
et al., 2022). While these methods used continuous
weights, Yaghoobzadeh et al. (2021) used binary
weights that take the value of 1 only for training
instances that a weak model misclassified. Other
approaches applied reweighting when learning to
prune fully trained models (Meissner et al., 2022;
Du et al., 2023; Liu et al., 2022).

Some studies addressed shortcuts in the feature
space by removing redundancy (Wu and Gui,

2022) or correlations (Dou et al., 2022; Gao et al.,
2022) in the space. These studies reported the
best scores at different epochs for each of the ID
validation data and OOD test data, so their results
are not directly comparable to the other studies.

The above methods still require OOD test data
related to pre-identified shortcuts to tune hyperpa-
rameters, as described in Section 2.3. Our method
is different from them in that the training and
tuning can be conducted solely on ID data. In
Section 4.2, we demonstrated that in the setting of
fully unknown shortcuts where only ID data are
available, our method improves the performance
on OOD data significantly better than the previous
methods.

Additional Data. Other studies make use of ad-
ditional data to mitigate shortcuts. Counterfactual
data augmentation is one such study. Counterfac-
tual data were generated using manual annotation
(Kaushik et al., 2021), known shortcuts (Wu et al.,
2022), or large language models (Wen et al.,
2022; Chen et al., 2023). Other studies used hu-
man explanation (Stacey et al., 2022a,b) or human
gaze signals (Ren and Xiong, 2023) as additional
supervision to guide models during training. Al-
though effective, collecting these external data is
cost-intensive and requires additional training.

Literature Outside of NLU. Outside of NLU,
shortcuts have been addressed in the ML literature
as one of the broader OOD problems (Krueger
et al., 2021; Yang et al., 2023). Still, many meth-
ods used in ML and NLU tasks have the same
concepts in common, such as reweighting (Nam
et al., 2020; Liu et al., 2021; Clark et al., 2020a;
Utama et al., 2020b), IRM (Creager et al., 2021;
Yu et al., 2022), counterfactual invariance (Veitch
et al., 2021; Makar et al., 2022; Puli et al., 2022b),
and data augmentation (Yao et al., 2022; Puli
et al., 2022a; Wu et al., 2022). As described in
Section 2.2, IRM (Arjovsky et al., 2019) and
GroupDRO (Sagawa et al., 2020) are the two prin-
cipal approaches. These approaches considered
the known shortcut setting, and similar to NLU
literature, their follow-up approaches have sought
to address shortcuts in the unknown shortcut set-
ting (Nam et al., 2020; Liu et al., 2021; Creager
et al., 2021; Yao et al., 2022; Puli et al., 2022a;
Izmailov et al., 2022; Kirichenko et al., 2023).
However, also similar to NLU literature, those
follow-up approaches still require the shortcuts
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that shift in test data to be pre-identified in val-
idation data (Yang et al., 2023).

6 Conclusion

This study proposed a conceptually novel ap-
proach to address the shortcuts problem by
pessimistically aggregating the mixture model’s
predictions at inference time. We introduced the
MoE-based model, a penalty term to encourage
different experts to capture different latent fea-
tures, and post-hoc control for the mixture weights
that is theoretically grounded in risk minimization.
The experimental results show that our method
not only significantly enhances the model’s ro-
bustness to shifts in shortcuts but also provides
additional benefits to address the previous meth-
ods’ problems: the performance trade-off between
ID and OOD data and the need for OOD test or
validation data to tune hyperparameters.

Our analyses provided results supporting the
assumption: Different experts capture different la-
tent features to some extent. However, we also
noted the limitations in the encoding method
(Analysis 1), the tested features and interpretabil-
ity (Analysis 2), and the theoretical guarantee of
identifiability (Analysis 4). Future work includes
improving the encoding method to capture latent
features more accurately, analyzing the instances
assigned to the same expert to interpret what it
captures and further support the assumption, and
theoretically accounting for how the penalty term
enhances identifiability. While the focus of this
study is on shortcuts, another future direction is
extending our method to address a broader range
of OOD problems (see Section 2.1). We believe
these are interesting future research departing from
this study.
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Figure 3: Overview of our method. We fit training data
using a mixture model consisting of K expert networks
{Ek}Kk=1 and a router network π (Section 3.1). During
inference, the model is used as is for ID data, and π is
replaced with π∗ for OOD data (Section 3.2).

Figure 4: An example of decision-making with argmin
weighting, whereK = 2 and |Y| = 3. After performing
argmin weighting, label 2 achieves the highest score
(starred) and is thus chosen as the answer.

A Additional Figures

Figure 3 shows an overview of our method
(Section 3), and Figure 4 illustrates an example of
our Argmin weighting (Section 3.2).

Figure 5 shows the average prediction of
each expert, calculated across MNLI ID dev

Figure 5: The average prediction of each expert Ek

across MNLI ID dev.

(Section 4.3). We observe a significant vari-
ance between experts’ predictions, which indicates
that different experts tend to make different
predictions.

B Further Setup Details

Table 5 specifies the URLs of the datasets,
pre-trained models, and code of the previous
methods we introduced in Section 4.1.

Following the fine-tuning hyperparameters of
DeBERTav3-large (He et al., 2023), we set the
learning rate to 5e-6 and used gradient clipping
with the maximum gradient norm of 1.0 in the
ablation study with DeBERTav3-large (Section 4.3).

1288



Datasets

MNLI https://cims.nyu.edu/˜sbowman/multinli/
HANS https://github.com/tommccoy1/hans
QQP and PAWS https://github.com/google-research-datasets/paws
FEVER and Symm. v1/v2 https://github.com/TalSchuster/FeverSymmetric

Pre-Trained Models

BERT https://huggingface.co/bert-base-uncased
DeBERTav3-large https://huggingface.co/microsoft/deberta-v3-large

Code

Conf-reg ♠ ∗
self-debias https://github.com/UKPLab/emnlp2020-debiasing-unknown

JTT∗ https://github.com/YyzHarry/SubpopBench
RISK https://github.com/CuteyThyme/RISK
EIIL https://github.com/PluviophileYU/BAI
BAI https://github.com/PluviophileYU/BAI
GroupDRO∗

label-group https://github.com/YyzHarry/SubpopBench

ReWeightCRT∗ https://github.com/YyzHarry/SubpopBench

Table 5: URLs of the datasets, pre-trained models, and code of the previous methods we used in the
experiments. The methods with ∗ needed modification on the codes to cover all the datasets we used.
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