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Abstract
How do language models learn to make pre-
dictions during pre-training? To study this,
we extract learning curves from five autore-
gressive English language model pre-training
runs, for 1M unseen tokens in context. We ob-
serve that the language models generate short
repetitive phrases before learning to generate
longer and more coherent text. We also find
that individual tokens often exhibit sudden
increases or decreases in loss that are sur-
prisingly consistent across pre-training runs.
To better understand these fluctuations, we
quantify the final surprisal, within-run vari-
ability, age of acquisition, forgettability, and
cross-run variability of learning curves for
individual tokens in context. More frequent
tokens reach lower final surprisals, exhibit
less variability within and across pre-training
runs, are learned earlier, and are less likely
to be ‘‘forgotten’’ during pre-training. Higher
n-gram probabilities further accentuate these
effects. Independent of the target token, shorter
and more frequent contexts correlate with
marginally more stable and quickly acquired
predictions. Based on our results, we argue
for the existence of sequential learning depen-
dencies between different model capabilities,
and we characterize language model learn-
ing as early n-gram learning before gradual
refinement of tail n-gram predictions.

1 Introduction

Language models have received unprecedented
attention in recent years due to impressive perfor-
mance on natural language tasks (e.g., OpenAI,
2022; Google, 2023; Anthropic, 2023). However,
these models are initialized as random word (to-
ken) generators, and it remains unclear how the
models achieve complex linguistic abilities dur-
ing pre-training. Previous work has investigated
when syntactic, semantic, and reasoning abilities

emerge (Liu et al., 2021; Evanson et al., 2023),
quantified ages of acquisition for tokens aver-
aged over contexts (Chang and Bergen, 2022b),
and extracted learning curves for individual ex-
amples (Xia et al., 2023). However, features that
influence individual learning curves have yet to
be identified (e.g., n-gram probabilities and con-
text lengths). Given any token in context, it is
largely unknown when or how stably that token
would be learned.

From a scientific perspective, understanding
when examples are learned by language models
can provide insights into possible mechanisms
for language acquisition. Regardless of their sim-
ilarity to human language processing, language
models are exemplars of how learning from
language statistics alone (i.e., ‘‘distributional’’
learning) can lead to complex linguistic abili-
ties (Chang and Bergen, 2022b; Warstadt and
Bowman, 2023; Mahowald et al., 2023). Notably,
despite smoothly decreasing corpus-level loss and
independent and identically distributed (i.i.d.) data
throughout pre-training, individual text examples
exhibit learning curves with sudden decreases
and increases in loss (§5 and Xia et al., 2023).
This highlights the importance of examining in-
dividual example learning curves for pre-training
dynamics research; aggregate curves often do not
capture the fluctuations exhibited by individual
examples. Our work seeks to characterize these
fine-grained convergence patterns in terms of
simpler distributional statistics.

From a practical perspective, understanding
language model learning curves can inform the
pre-training and deployment of language mod-
els. Learning curve results might allow NLP
practitioners to determine how much pre-training
is necessary for different capabilities and what
behaviors will remain stable after additional
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pre-training (e.g., ‘‘continual learning’’ on more
recent data; Jin et al., 2022). Learning curve results
can also help identify scenarios in which to ex-
pect high levels of variability among fully-trained
models, or even develop better pre-training curric-
ula. For example, better curricula might maximize
the presence of tractable features that a language
model can learn at different pre-training steps.

Thus, our work seeks to quantify convergence
patterns for individual tokens in context dur-
ing language model pre-training. We focus on
learning curve convergence, including learning
speed, forgetting, and stability. Rather than eval-
uate model performance on downstream tasks
throughout pre-training, we study individual to-
kens in context (c.f. Liu et al., 2021; Xia et al.,
2023). Specifically, we run five English language
model pre-training runs, and we extract learn-
ing curves for 1M unseen tokens in context. We
quantify the final surprisal, variability within and
across pre-training runs, age of acquisition, and
forgettability of each example. We report general
learning curve patterns, and we assess the impact
of token frequencies, n-gram probabilities, con-
text lengths and likelihoods, and part-of-speech
tags on the speed and stability of language model
learning. Based on our results, we argue that there
exist sequential dependencies between when lan-
guage models acquire different capabilities (§7).
We then characterize language model learning as
early n-gram learning, before gradual refinement
of low probability n-gram predictions based on
longer context and more nuanced linguistic ca-
pabilities. Finally, we discuss implications of our
work for informed language model deployment.

2 Related Work

Previous work has studied the pre-training dynam-
ics of language models (Saphra and Lopez, 2019).
Choshen et al. (2022) and Evanson et al. (2023)
find that language models learn linguistic gener-
alizations in similar stages regardless of model
architecture, initialization, and data-shuffling. In
masked language models, syntactic rules are
learned early, but world knowledge and reason-
ing are learned later and less stably (Chiang
et al., 2020; Liu et al., 2021). Olsson et al.
(2022) find that copy mechanisms (‘‘induction
heads’’ for in-context learning) appear at an in-
flection point during pre-training. These results
establish when a variety of abilities emerge in

language models. Our work studies more fine-
grained learning trajectories by evaluating indi-
vidual tokens in context.

Indeed, previous work has studied how in-
dividual tokens are learned during pre-training.
For example, word learning is highly dependent
on word frequency (Chang and Bergen, 2022b).
Larger models memorize more examples during
pre-training without overfitting (Tirumala et al.,
2022), but the time step that a model sees an exam-
ple does not affect memorization (Biderman et al.,
2023). Most similar to our work, Xia et al. (2023)
collect learning curves for individual tokens in
context, finding that some examples exhibit a
‘‘double-descent’’ trend where they first increase
then decrease in surprisal. All of the studies above
collect language model learning curves during
pre-training, either for individual examples or
targeted benchmark performance. Here, we in-
troduce metrics to characterize such curves, we
identify general learning patterns, and we iso-
late text features that are predictive of learning
speed and stability.

3 Language Model Learning Curves

We extract learning curves for 1M unseen to-
kens in context from five English language model
pre-training runs. Similar learning curves are com-
puted in Xia et al. (2023); we extend their work
by defining metrics to characterize such learning
curves (§5), and we identify text features that
predict each metric (§6). In this way, we aim to
demonstrate the connection between simple distri-
butional statistics (e.g., n-gram probabilities) and
language model learning.1

3.1 Models and Dataset

We run five autoregressive Transformer language
model pre-training runs from scratch, following
the GPT-2 architecture with 124M parameters
(Radford et al., 2019). We run five pre-training
runs in order to quantify variability in learn-
ing curves across runs (§5.2). For all runs, we
use the same SentencePiece tokenizer trained
on 10M lines of our pre-training dataset with
vocabulary size 50K.

Dataset and Training. We retrieve the first
128M lines of the deduplicated OSCAR English

1Code is available at https://github.com
/tylerachang/lm-learning-curves.
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corpus (Abadji et al., 2021). We tokenize the cor-
pus, concatenating lines until each sequence has
length 128. We sample 80% of the resulting dataset
as our pre-training dataset (5.1B tokens), leaving
the remainder for evaluation and testing. Mod-
els are trained for 1M steps with batch size 256
(Devlin et al., 2019; Chang and Bergen, 2022b).
Each model is initialized with a different random
seed and uses a different shuffle of the pre-training
dataset. Pre-training details and hyperparameters
are in §A.1.

Checkpoints. Previous work studying language
models during pre-training has saved model
checkpoints at inconsistent intervals (e.g., every
100 steps or every power of two up to step 1000,
then every 1000 steps up to step 100K, etc.;
Blevins et al., 2022; Chang and Bergen, 2022b;
Sellam et al., 2022; Biderman et al., 2023; Xia
et al., 2023). To obtain smoother changes between
checkpoints, we save checkpoints such that the
number of steps between checkpoints increases
linearly as a function of the current step t. As a
result, (1) we can define the checkpoint frequen-
cies at the start and end of pre-training, (2) the
checkpoint step is an exponential function of the
checkpoint number, and (3) the number of steps
per checkpoint is an exponential function of the
checkpoint number. Checkpoint strategy details
are in §A.2. We begin pre-training with 100 steps
per checkpoint, and we end pre-training with 25K
steps per checkpoint (ending at step 1M). Includ-
ing a checkpoint at step zero, this results in 222
checkpoints per pre-training run. Sample outputs
from different checkpoints are included in §4.

3.2 Surprisal Curves

For quantitative analyses of language model learn-
ing curves, we sample 100K sequences from
the evaluation dataset in §3.1. We sample ten
tokens per sequence, and we compute the sur-
prisal −log2(P (w)) for each token w based on
its preceding context (Levy, 2008), using each
language model checkpoint. Surprisal is an es-
tablished information-theoretic metric used to
measure the ‘‘surprise’’ of a next token given
a language model (Levy, 2008; Goodkind and
Bicknell 2018; Futrell et al., 2019; Li et al., 2021;
Chang and Bergen, 2022b; Oh and Schuler, 2023;
Michaelov et al., 2024). We then have a learning
curve for each token in context (i.e., each exam-
ple) and each model, usually trending from higher

Figure 1: Learning curves for three evaluation examples
from the OSCAR dataset during one pre-training run.
Colored lines are fitted GAM curves.

surprisal (worse predictions) to lower surprisal
(better predictions; Figure 1). Surprisal is equiva-
lent to the language modeling loss function in log
base two. In total, we collect surprisal curves for
1M examples per model.

4 Overall Learning Patterns

Before considering fine-grained learning patterns
for individual surprisal curves, we observe several
overall trends during language model pre-training.
Many of these trends echo results from previous
work (e.g., n-gram learning in Chang and Bergen,
2022b; Choshen et al., 2022) or intuitive results
known by language model pre-training practi-
tioners (e.g., the slow development of the ability
to generate long coherent text), but these trends
establish basic intuitions about how language
models progress throughout pre-training.

Early in Pre-training, Models Generate Short
Repetitive Phrases. Sample outputs from dif-
ferent model checkpoints are shown in Table 1. We
manually inspect outputs from all five pre-training
runs, generating text completions to 100 randomly
sampled subsequences from the evaluation dataset
in §3.1, using sampling temperature 0.3 (Holtzman
et al., 2020). As expected, models initialize with
random token predictions at step zero. By 100
steps, they repeatedly produce frequent tokens; at
this stage, 99.8% of output tokens are ‘‘the’’, a
comma, or a period. The remaining tokens are
frequent words such as ‘‘to’’, ‘‘of ’’, and ‘‘and’’.
By 1000 steps, the models repeatedly produce
frequent short phrases such as ‘‘of the first’’ or
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Step Training Model output
tokens

0 0 ‘‘This is469 gush liqueur Defense trophies Jakarta Sale Berlin
deservingException validate jalapeno...’’

100 3.3M ‘‘This is,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, the the the the,,,,,,,......’’
1K 33M ‘‘This is a few of the first of the same of the world’s the most of the first

of the the same of the first of the world.’’
10K 330M ‘‘This is a great way to make a difference in your life.’’
100K 3.3B ‘‘This is a very important part of the process of getting your business off

the ground.’’
1M 33B ‘‘This is a great opportunity to own a beautiful home in the desirable area

of North Vancouver.’’

Table 1: Sample model outputs completing the prompt ‘‘This is...’’ at different pre-training checkpoint
steps, using sampling temperature 0.3. We also report the total number of tokens observed up to a given
step; one epoch of our pre-training dataset is 5.1B tokens.

Figure 2: Mean pairwise correlation between model
surprisals for different pre-training runs, at differ-
ent pre-training steps.2 Shaded regions indicate five
standard deviations from the mean. Vertical lines indi-
cate the pre-training steps where model surprisals are
maximally correlated with n-gram surprisals.

‘‘and the most’’; 86.5% of completions contain
the phrase ‘‘of the first’’, and 71.1% of comple-
tions include it at least twice. These observations
align with previous work finding that language
models overfit to unigram then bigram next-token
predictions early in pre-training (Chang and
Bergen, 2022b; see also Figure 2); here, we
demonstrate these findings in longer sequences
of generated text.

Models Later Generate Longer and More Co-
herent Text. By step 10K, the models generally
produce coherent sentence completions, but they
still contain repetitive phrases (10.8% of comple-
tions with a three-word phrase repeated at least
three times). By step 100K, the repetition rate

2At approximately 105.7 steps, one model exhibited a
small temporary increase in loss, leading to a dip in the
cross-run surprisal correlation.

drops to 6.0%, and completions appear more spe-
cific to the context. By step 1M, the repetition
rate is 4.7%, and the models can produce co-
herent multi-sentence completions. Still, due to
our relatively small model size (124M parame-
ters, the size of the original GPT model; Radford
et al., 2018), we do not expect our models to
exhibit text generation capabilities at the level of
larger language models.

Models Roughly Follow n-gram Learning.
We compute the correlation between n-gram
surprisals and model surprisals throughout
pre-training.3 Consistent with previous work
(Chang and Bergen, 2022b; Karpathy et al., 2016
for LSTMs), the models overfit to unigram (token
frequency) predictions then bigram predictions
early in pre-training. Extending this up to
5-grams, the models reach maximal similarity to
a unigram model around step 1K, before peaking
in similarity to 2, 3, 4, and 5-grams, in that order
(Figure 2). This is consistent with the hypothesis
that language models at some specified level
of performance make similar generalizations
regardless of architecture (Choshen et al., 2022;
Xia et al., 2023). Figure 2 demonstrates that as
the models pre-train, their individual predictions
pass through stages where they loosely match
different n-gram models.

Models Are Maximally Similar Early and Late
in Pre-training. We also compute the correla-
tion between model surprisals across pre-training
runs at different checkpoints (Figure 2). At any

3We compute n-gram probabilities directly from the
pre-training dataset, as in §6.1. For unobserved n-grams,
we use backoff to (n− 1)-grams (Katz, 1987).
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given checkpoint, the similarity between any
two pre-training runs is both high (Pearson’s
r > 0.95 after step 1K) and consistent (extremely
low standard deviations; Figure 2). The models
are maximally similar almost exactly when they
mirror the unigram distribution (i.e., predicting
based on token frequency). The models then de-
crease slowly in cross-run similarity, reaching
a local minimum as they approach the 5-gram
distribution. This suggests that there is at least
some variability in the generalizations that lan-
guage models make beyond bigrams. Still, as
demonstrated by the steady increase in similarity
throughout the remainder of pre-training, language
models eventually converge to similar solutions
as their performance improves.

5 Characterizing Learning Curves

We then consider fine-grained analyses of learning
curves for individual tokens in context. We intro-
duce five metrics to characterize language model
learning curves, each motivated by previous work.

5.1 Within-Run Metrics

First, we compute four metrics for each learning
curve within a pre-training run (§3.2): final sur-
prisal, variability across pre-training steps, age of
acquisition, and forgettability.

Final Surprisal. Surprisal quantifies the quality
of a language model’s predictions for a token in
context, with lower values corresponding to better
predictions (Levy, 2008; §3.2). For each exam-
ple, we compute the mean surprisal during the
last 25% of pre-training. This is closely (and
inversely) related to model confidence, which
Swayamdipta et al. (2020) define as the mean
probability assigned to the correct label for an
example during language model fine-tuning. We
use surprisals (i.e., negative log probabilities) in-
stead of raw probabilities because the language
modeling task has a much larger number of output
labels (50K possible next tokens) than traditional
classification tasks, leading to much lower output
probabilities. Surprisal enables distinctions among
lower probabilities, and it is commonly used for
language modeling (§3.2).

Variability (steps). We then measure how much
model performance for an example changes across
steps within a pre-training run. Specifically, we
consider variability late in pre-training, when a

language model has largely converged. Longer
term fluctuations in performance are captured by
forgettability, defined later in this section. Moti-
vated by Swayamdipta et al. (2020), who compute
the standard deviation of model probabilities dur-
ing fine-tuning, we compute the standard deviation
of surprisal during the last 25% of pre-training.

Age of Acquisition (AoA). We also measure
when each example is learned during pre-training.
Chang and Bergen (2022b) define a token’s age
of acquisition (AoA) in a language model as the
log-pre-training step when the model’s surprisal
reaches 50% between random chance surprisal
and the minimum surprisal attained by the model.
Chang and Bergen (2022b) fit a sigmoid curve
to the mean surprisal curve over all occurrences
of the token. Because surprisal curves for indi-
vidual examples are less stable than mean curves
(e.g., sometimes exhibiting both peaks and dips
in surprisal; Figures 1 and 3), we instead fit a
GAM curve to each surprisal curve (surprisal ∼
log-pre-training step).4 We define an example’s
age of acquisition as the log-pre-training step
where the fitted GAM first passes 50% between
random chance surprisal and the GAM’s minimum
surprisal.

Forgettability. Along with short-term surprisal
spikes as quantified by variability (across steps),
language models exhibit long-term increases in
surprisal for some examples during pre-training
(Xia et al., 2023). This process is described as
‘‘forgetting’’. To quantify long-term surprisal in-
creases, we measure the total surprisal increase
along the GAM curve fitted to each surprisal
curve. Equivalently, this is the total surprisal dif-
ference between each relative maximum and its
preceding relative minimum in the curve. Larger
values indicate that an example is ‘‘forgotten’’ to
a larger extent at some point during pre-training.
Example curves with high forgettability scores are
shown in Figure 3.

5.2 Across-Run Metrics

Individual Learning Curves Are Similar
Across Pre-training Runs. Each of the
metrics in §5.1 correlates across pre-training
runs (r = 0.652 to 0.978; diagonal entries in

4We fit linear GAMs with 25 splines. These are smoothed
piecewise functions with 25 linear segments (Wood, 2017;
Servén and Brummitt, 2018).
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Figure 3: Learning curves for two evaluation exam-
ples from the OSCAR dataset with high forgettability
scores, for the five pre-training runs. Purple lines are
fitted GAM curves, one per pre-training run.

Table 2). Curves for a given example even exhibit
similar peaks and dips across pre-training runs
(Figure 3). Concretely, we quantify the distance
between learning curves for two pre-training
runs using the Euclidean distance between their
fitted GAM curves. Given an example curve
in one pre-training run, the curve for the same
example in another pre-training run is on average
(median) closer than the curve for 99.93%
of other examples.5

Variability (runs). However, learning curves
are not identical across runs. To quantify the
cross-run variability of learning curves for a given
example, we compute the mean pairwise distance
(squared Euclidean distance) between the fitted
GAM curves for different pre-training runs. This
metric is correlated when computed using different

5We obtain similar results using distances between raw
surprisal curves. Raw surprisal curve distances are highly
correlated with fitted GAM curve distances (r = 0.964).
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Surprisal 0.98 0.46 0.31 0.62 0.45
Variability (steps) 0.65 0.38 0.43 0.57
AoA 0.84 0.14 0.43
Forgettability 0.79 0.51
Variability (runs) 0.80

Table 2: Pearson correlations between learning
curve metrics. Diagonal entries indicate the mean
correlation for that metric across pre-training runs.
For variability across runs, the diagonal entry is
the mean correlation between cross-run variability
scores computed from different three-run subsets
of the five pre-training runs.

three-run subsets of the five pre-training runs (r =
0.798; Table 2). Our final cross-run variability
metric is computed over all five pre-training runs.

5.3 Correlations Between Metrics

Surprisal Correlates with All Learning Curve
Metrics. Correlations between metrics are re-
ported in Table 2. All five metrics are positively
correlated with one another. High-surprisal exam-
ples exhibit more variability across pre-training
steps, are learned later, are more likely to be
forgotten during pre-training, and exhibit more
cross-run variability. Some of these correlations
are unsurprising based on our metric definitions;
for example, forgettability is quantified using sur-
prisal curve increases during pre-training, which
likely lead to higher final surprisals. However, the
correlation between final surprisal and forgetta-
bility is far from perfect (r = 0.622), suggesting
that some examples can be forgotten and then
re-learned (high forgettability, low surprisal) or
simply never learned (low forgettability, high
surprisal). Indeed, upon manual inspection, we
observe both of these types of curves. Of the 269
examples in both the top 5% of forgettability and
bottom 5% of surprisal, 92% exhibit a sudden
(greater than 2.5) surprisal increase in the fitted
GAM curve that is later recovered. Of the 32 ex-
amples in both the bottom 5% of forgettability and
top 5% of surprisal, 78% never deviate from their
starting surprisal by more than 20%.
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6 Predicting Learning Curve Metrics

In the previous section, we defined five met-
rics to characterize language model learning
curves. Next, we predict each metric from specific
features of each example, including n-gram prob-
abilities, context likelihoods, and part-of-speech
tags. We use a linear regression to quantify ef-
fects over all 1M examples, providing evidence
that simple text features can predict language
model learning patterns.

6.1 Predictors and Regressions
Each text example consists of an input context
and a target token (§3.2). We consider six pre-
dictors (text features) that may be predictive of
learning curve metrics:

• Target token log-frequency: We compute the
log-frequency (i.e., unigram log-probability)
of the target token in the pre-training dataset.

• Target token 5-gram log-probability: To
capture the likelihood of the target token
based on local context, we compute the
log-probability of the target token condi-
tioned only on the previous four tokens (i.e.,
a 5-gram model). We compute probabilities
directly from the pre-training dataset, and
we use backoff to (n − 1)-grams when an
n-gram is not observed in the dataset (Katz,
1987). Because 5-gram log-probability is
roughly linearly related to target token
log-frequency (r = 0.632), we compute
the 5-gram log-probability residuals after
regressing over target log-frequency. This
captures the 5-gram log-probability after
accounting for target token log-frequency.

• Context log-length: We compute the log of
the number of context tokens.

• Context log-probability: We also compute
the likelihood of the context, independent
of the target token. We compute the mean
log-frequency of all context tokens, equal
to the negative log-perplexity of the context
using a unigram language model. We use a
unigram model to capture context frequency
independent of word order within the context
(Blei et al., 2003); longer n-gram models
are more likely to capture probabilities of
specific local constructions, even when they
are distant from the target token.

• Target token contextual diversity: The diver-
sity of contexts in which a word appears
influences word learning in people, with
beneficial effects in adults but potentially
hindering effects in young children (Hills
et al., 2010; Johns et al., 2016; Rosa et al.,
2022; Chang and Bergen, 2022a). As in Hills
et al. (2010), we count the number of unique
tokens that appear within 30 tokens of the
target token in the pre-training dataset.6 To
remove a nonlinear effect of token frequency
on this raw diversity metric, we compute the
residuals after fitting a GAM curve predict-
ing a token’s contextual diversity from its
log-frequency (Chang and Bergen, 2022a).
These residuals serve as a frequency-adjusted
measure of a token’s contextual diversity.

• Target token part-of-speech (POS): We an-
notate each example with POS tags (e.g.,
nouns, verbs, and adjectives; §A.3) using
spaCy (Honnibal et al., 2020), and we con-
sider the POS tag of the target token. Because
words can span multiple tokens, we include a
feature indicating whether the target token is
the first token, intermediate token, last token,
or only token in a word.

We fit separate linear regressions predicting each
learning curve metric from the predictors above,
iteratively adding predictors in the order listed.7

We fit each regression to all 1M examples, pre-
dicting the mean value of each learning curve
metric over all pre-training runs. We run likeli-
hood ratio tests to assess whether each predictor
is predictive of the target metric after accounting
for all previous predictors, but we find that every
test is highly significant (p < 0.0001). This is
likely because the large number of examples (1M)
makes even small effects statistically significant.
Thus, we report adjusted R2 values that capture
the magnitude of effect of each predictor, after
accounting for previous predictors (Table 3).

6Because our language models are autoregressive, we
only consider context tokens that appear before the target
token. We restrict our counts of co-occurring tokens to the
10K most frequent tokens in the dataset (Hills et al., 2010).

7We exclude interaction terms, which we find do not sub-
stantially improve predictions. Adjusted R2 values increase
by less than 0.03 even when including an interaction term
between every pair of continuous predictors. We clip each
predictor to five standard deviations from the mean.
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Predictor Surprisal Var. (steps) AoA Forgettability Var. (runs)

Target token log-frequency R2 = 0.268 R2 = 0.248 R2 = 0.763 R2 = 0.083 R2 = 0.195
+ Target 5-gram log-prob (–) + 0.325 (–) + 0.050 (+) + 0.001 (–) + 0.149 (–) + 0.042
+ Context log-length (–) + 0.007 (+) + 0.005 (+) + 0.001 (+) + 0.002 (+) + 0.005
+ Context 1-gram log-prob (+) + 0.001 (–) + 0.006 (–) + 0.001 (–) + 0.010 (–) + 0.012
+ Target contextual diversity (+) + 0.003 (+) + 0.000 (+) + 0.000 (+) + 0.001 (+) + 0.001
+ Target part-of-speech + 0.009 + 0.006 + 0.014 + 0.028 + 0.026

Total variance accounted 61.2% 31.5% 78.1% 27.2% 28.1%

Table 3: Increases in adjusted R2 values when predicting each learning curve metric, iteratively adding
predictors to a linear regression. The (+) symbol indicates a positive coefficient for that predictor,
evaluated in three regressions (§6.1). All other coefficients are negative. Coefficients for different
part-of-speech tags are described in §6.2. In the bottom row, we report the total variance accounted for
in each learning curve metric using all six predictors.

To assess the direction of effect for each con-
tinuous predictor on each learning curve metric,
we consider the coefficient for that predictor in
(1) a regression containing all predictors, (2) a
regression containing that predictor alone, and (3)
a regression containing that predictor alone but
accounting for token log-frequency in the target
metric (i.e., predicting learning curve metric resid-
uals after the log-frequency regression). In all but
one case, we obtain the same direction of effect
in all three regressions.8 Furthermore, the Pearson
correlation between each pair of predictors is less
than r = 0.2, and the variance inflation factor
(VIF) for each predictor is less than 1.1. This indi-
cates that the signs of our regression coefficients
are safely interpretable. For effects of POS (a
categorical variable), we consider the regression
coefficient for different POS tags after accounting
for all other predictors, by predicting learn-
ing curve metric residuals after regressing over
the other predictors.

6.2 Results
The following conclusions are based on the
regression results quantifying effects over all
1M examples. Results are reported in Table 3,
including the direction of effect for each pre-
dictor and the variance accounted for in each
learning curve metric.

Target Token Log-frequency. Frequent tar-
get tokens reach lower surprisals, are acquired
faster, exhibit less variability within and across

8We obtain a negative coefficient for contextual di-
versity in one of three cases when predicting within-run
variability. All other coefficients for contextual diversity
are positive (§6.2).

pre-training runs, and are less likely to be for-
gotten during pre-training. This is consistent with
previous work showing that language models are
highly reliant on token frequencies for syntac-
tic rule learning (Wei et al., 2021), numerical
reasoning (Razeghi et al., 2022), and overall
word learning (Chang and Bergen, 2022b). Our
work indicates that this effect persists at the
individual example level.

Target 5-gram Log-probability. Unsurpris-
ingly, 5-gram log-probabilities correlate with
lower final surprisals after accounting for target
token frequency; in other words, predictions from
a 5-gram model and a Transformer model are cor-
related beyond the effects of token frequency.
More notably, higher 5-gram log-probabilities
are predictive of lower learning variability both
within and across pre-training runs, along with
lower forgettability. The added effect of 5-gram
log-probability on forgettability (+0.149 R2)
is even stronger than the effect of target to-
ken frequency alone (0.083 R2), suggesting that
conditional token probabilities play a more sig-
nificant role in language model forgetting than
raw token frequencies.

Less intuitively, higher 5-gram log-probabilities
are correlated with marginally later ages of acqui-
sition. We hypothesize that this is because 5-grams
do take time to learn (Figure 2), but low proba-
bility 5-grams are more likely to never be learned
at all, reaching their minima early in training
(e.g., during the unigram learning phase). This
could drive the small effect where low probabil-
ity 5-grams appear to be learned earlier. Indeed,
of the 122 examples in both the bottom 1% of
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5-gram log-probabilities and the earliest 1% of
AoAs, 89% reach their minimum surprisal dur-
ing the first 1K steps but then exhibit substantial
(greater than 2.5) increases and fluctuations in sur-
prisal for the remainder of pre-training. Notably,
96% never improve from random chance surprisal
by more than 5%. In other words, low 5-gram
probability examples may appear to exhibit early
AoAs, but this is primarily because they are never
learned particularly well, not due to early learning
curve convergence. This reflects the fact that sur-
prisal curves are not always accurate measures of
‘‘learning’’ (§7). An early drop in surprisal does
not always indicate that an example is ‘‘learned’’.

Context Log-length. The remaining predictors
account for far less variance in learning curve
metrics than target log-frequency and 5-gram
log-probability. Longer contexts correlate with
lower surprisals, indicating that models suc-
cessfully incorporate information from preceding
context. However, longer contexts also corre-
late with higher variability within and across
pre-training runs, higher forgettability, and later
AoAs. This may be because predictions for a
highly specific context are less generalizable
and are thus learned less robustly by the mod-
els. This instability for long-context predictions
is particularly notable as language models are
increasingly used with long contexts (e.g., full
conversations; OpenAI, 2022).

Context Log-probability. More frequent con-
texts are predictive of lower variance within and
across pre-training runs, earlier acquisition, and
lower forgettability. When models are repeatedly
exposed to a context, regardless of the target to-
ken, their predictions stabilize earlier and with less
variability. However, more frequent contexts also
correlate with higher surprisals, indicating over-
all ‘‘worse’’ predictions. This may be because
frequent contexts (e.g., descriptions of common
situations) on average impose fewer constraints
on the next token, leading to more ambiguous
ground truth distributions and thus higher sur-
prisals. If this is the case, the optimal surprisal
values are simply higher in frequent contexts,
but the models still learn faster and more stably
given these contexts.

We note that the directions of effect for context
log-probability remain stable for different win-
dow sizes of preceding context. After regressing

out target token log-frequency, every coeffi-
cient sign for context log-probability remains the
same for all window sizes in {1, 2, 4, . . . , 128}.
However, despite these consistent effects, con-
text log-probability accounts for less than 3%
of the variance in each learning curve metric in
all cases, even before accounting for other pre-
dictors. Frequent contexts consistently correlate
with faster and more stable learning, but with
only small effects.

Target Contextual Diversity. Effects of con-
textual diversity are extremely small but statis-
tically significant (§6.1). Tokens that appear in
diverse contexts have higher final surprisals, are
learned later, have greater variability within and
across pre-training runs, and are more likely to
be forgotten. This aligns with findings that con-
textual diversity hinders word learning in young
children (Chang and Bergen, 2022a), contrasting
with results in older children and adults (Johns
et al., 2016; Rosa et al., 2022). Diverse contexts
are thought to add noise to the early word learn-
ing process, introducing an excess of possible
interpretations for a word.

Target Part-of-speech (POS). After account-
ing for other predictors, the POS tag of the target
token has a small effect on each learning curve
metric. Coefficients for all POS tags are reported in
§A.3. Nouns, pronouns, and punctuation symbols
reach lower final surprisals than verbs, adjectives,
adverbs, and interjections. However, nouns are
learned slower and with more variability (within
and across pre-training runs) than adjectives, ad-
verbs, and verbs, and they are more likely to be
forgotten. Similarly, punctuation symbols exhibit
high variability and forgettability, although they
are learned early and reach low surprisals. Despite
their high surprisals, interjections are learned early
and stably. These results indicate that POS tags
with lower surprisals are not necessarily learned
more stably. Additionally, we find that differ-
ent types of function words (e.g., conjunctions,
prepositions, and determiners) have inconsistent
effects, but they overall tend to be learned with
high variability and forgettability.

The position of a token within a word also
impacts learning curve metrics. Sub-word to-
kens after the first token in a word have low
final surprisals, but they exhibit high forget-
tability and cross-run variability. Single-token
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words are the least likely to be forgotten and
have the lowest cross-run variability. Compared
to the POS tag of a word, a token’s position
within a word has only tiny effects on within-run
variability and AoA (judged by the R2 increase
from including within-word position vs. only POS
tag itself). These results underline the impor-
tance of tokenizer quality in language model
pre-training (Rust et al., 2021); sub-word to-
kens are more likely to exhibit unstable learning
despite low surprisals.

7 Discussion

In the previous sections, we report general patterns
during language model pre-training (§4), define
ways to characterize learning curves (§5), and iso-
late specific features that predict the speed and
stability of learning for individual tokens in con-
text (§6). Our results contribute to ongoing work
studying language model pre-training dynamics,
with implications for robust model deployment.

Sequential Learning. Previous work has
demonstrated that language models exhibit fine-
grained learning patterns that are not captured by
the corpus-level loss curve (related work in §2).
In particular, sudden increases and decreases in
example loss (§5 and Xia et al., 2023) may be
somewhat surprising given that the pre-training
text is i.i.d. for all pre-training steps. By dem-
onstrating that many of these sudden changes are
consistent regardless of random initialization and
data shuffling (§5.2), our work indicates that some
instances of sudden learning and ‘‘forgetting’’ are
not due to random chance or the specific exam-
ples observed in a given step.9 Rather, they reflect
some change in model processing that consis-
tently occurs partially into pre-training (roughly
step t �= 0). Because such a sudden change cannot
be attributed to the specific examples observed
(robust to random shuffling) or any change in
the pre-training distribution at time t (the data is
always i.i.d.), the primary remaining explanation
is that the models’ sudden ‘‘learning’’ at step
t �= 0 is made possible by some systematic differ-
ence between models (and their optimizers) just
before step t vs. at step 0.

9In our case, ‘‘forgetting’’ does not always indicate a
decrease in model quality, but rather that the model has
changed its output distribution such that a given ground truth
token is less likely. The model distribution might still be a
better reflection of text distributions overall.

Framed from a potentially more interest-
ing perspective, some types of language model
‘‘learning’’ appear to be dependent on previous
learning and the linguistic abilities already present
in the model. This aligns with previous work
showing that language models acquire linguistic
abilities in a systematic order during pre-training
(Liu et al., 2021; Choshen et al., 2022), although
not necessarily due to sequential dependencies.
For example, Evanson et al. (2023) show that
despite similar acquisition orders across models,
different syntactic abilities are learned in parallel;
performance for most individual abilities increases
from the onset of pre-training. Our work provides
evidence that there exist other capabilities or types
of generalizations (e.g., non-syntactic abilities or
even more fine-grained syntactic sub-abilities)
that can only be learned after others, or at least only
once the model reaches some particular state. Iso-
lating these sequential dependencies is an exciting
direction for future work.

N-gram Learning and Refinement. As a fur-
ther step towards understanding fine-grained
learning patterns in language models, our work
investigates whether simple statistical regularities
can explain learning patterns such as the sudden
loss changes discussed above. We demonstrate
that learning curves are more stable and con-
verge faster for frequent tokens, n-gram probable
tokens, and frequent contexts (§6.2). High prob-
ability n-grams in particular are less likely to be
‘‘forgotten’’, suggesting that evolving model gen-
eralizations throughout pre-training have larger
effects on low-probability n-grams. Combined
with findings that language models roughly follow
n-gram learning early in pre-training and only later
produce longform coherent text (§4; Chang and
Bergen 2022b), language model learning might
be characterized as early n-gram learning, then
gradual refinement of the tail n-gram probabili-
ties based on longer contexts and more nuanced
linguistic capabilities (e.g., world knowledge and
reasoning; Liu et al., 2021).

Robust Model Deployment. Our work also
has implications for robust model deployment.
High token frequencies and n-gram probabili-
ties are by far the most influential predictors
of early and stable learning in language models
(§6.2, with marginal additional effects of context
lengths and likelihoods). As language models are
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deployed in domains with highly-specific vocabu-
lary terms (e.g., healthcare, law, and finance; Yang
et al., 2024), the accurate prediction of infrequent
domain-specific terms during text generation is
likely to require extensive pre-training (late ac-
quisition, likely mitigated by large pre-training
datasets). Such domain-specific text generation
is also likely to be unstable across models and
pre-training steps (high variability, potentially
more difficult to mitigate). Even if model de-
ployment in these areas is beyond researchers’
control, realistic expectations of when models
might behave unstably are important to facilitate
safe use by the public. Of course, it is also pos-
sible that fine-tuning or careful prompting may
reduce instability across models and training steps
in these domains.

Finally, our work demonstrates that loss curves
for individual examples often fluctuate in ways
that are not evident from aggregate loss curves.
Even as models appear to converge (smoothly
plateauing loss), models may still be adjusting pre-
dictions for tail examples in substantial ways. Our
work provides insights and methods to identify ex-
amples that are likely to exhibit late fluctuations
in language model pre-training; for example, low
probability n-grams correlate with high variabil-
ity and forgettability metrics. When determining
whether a model is sufficiently and stably trained
for a given use case, convergence for these types
of examples should be considered.

Limitations and Scaling. Our work has sev-
eral limitations. First, surprisal is an imperfect
proxy for language model learning. A model
might achieve the same surprisal at different points
during pre-training by using different internal pre-
diction strategies (e.g., predicting the same token
based on frequency vs. more nuanced reasoning).
Additionally, reaching some minimum surprisal
does not mean that an example is ‘‘learned’’; it
simply indicates the best performance achieved
by a model. The optimal surprisal is not necessar-
ily zero due to the nondeterminism of language.
That said, surprisal remains a common measure
of language model behavior (Futrell et al., 2019;
Li et al., 2021), performance (Hoffmann et al.,
2022), and learning (Chang and Bergen, 2022b;
Xia et al., 2023), and it requires no annotated text
data to compute.

Second, we only consider language models with
124M parameters trained on 5.1B tokens. Previous

work has demonstrated that learning curves differ
across model sizes (Xia et al., 2023); larger models
are able to ‘‘learn’’ some examples (usually late
in pre-training) for which smaller models reach
non-optimal local minima or even diverge. Larger
models also exhibit less forgetting of pre-training
examples (Tirumala et al., 2022), although it re-
mains unclear whether similar mechanisms are
responsible for evaluation example forgetting (i.e.,
surprisal increases for seen vs. unseen examples).
Further research is necessary to determine the ef-
fects of model size on learning speed, variability,
and forgetting; with a larger compute budget, the
methods presented in our work can easily be ap-
plied to larger models. Nonetheless, previous work
has documented similar behaviors for different
model sizes when they achieve similar perplexities
(Choshen et al., 2022; Xia et al., 2023), suggesting
that pre-training dynamics in smaller models may
be similar to the early dynamics of larger models.
A particularly exciting direction for future work is
to characterize the examples (e.g., based on types
of reasoning, world knowledge, or commonsense)
that fluctuate at different points during pre-training
across model sizes.

8 Conclusion

In this work, we identify learning patterns during
language model pre-training, including concrete
features that predict when and how stably individ-
ual examples are acquired. We assess the impact
of n-gram probabilities, context lengths and like-
lihoods, and part-of-speech tags on the speed and
stability of language model learning. We propose
a high-level characterization of language model
learning based on simple distributional statistics,
and we discuss implications for deploying robust
language models in practice.
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Figure 4: Loss curves (mean surprisal) for all five
pre-training runs. Loss curves are nearly identical
across runs. To align with other figures, pre-training
steps are reported in log10.

A Appendix

A.1 Pre-Training Details

Language models are pre-trained using the Hug-
gingFace Transformers library (Wolf et al., 2020).
Hyperparameters are reported in Table 4, and loss
curves are in Figure 4.

Hyperparameter Value

Layers 12
Embedding size 768
Hidden size 768
Intermediate hidden size 3072
Attention heads 12
Attention head size 64
Activation function GELU
Vocab size 50004
Max sequence length 128
Position embedding Absolute
Batch size 256
Train steps 1M
Learning rate decay Linear
Warmup steps 10000
Learning rate 1e-4
Adam ε 1e-6
Adam β1 0.9
Adam β2 0.999
Dropout 0.1
Attention dropout 0.1

Table 4: Language model pre-training hyperpa-
rameters (Devlin et al., 2019; Chang and Bergen,
2022b).

Each model takes 2.1 weeks to train on four
NVIDIA TITAN Xp GPUs or 2.5 weeks to train
on one NVIDIA RTX A6000 GPU. Including
pre-training and inference (evaluation surprisals),

1360

https://doi.org/10.1201/9781003205388-2
https://doi.org/10.1201/9781003205388-2
https://doi.org/10.18653/v1/2021.emnlp-main.72
https://doi.org/10.18653/v1/2021.emnlp-main.72
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1201/9781315370279
https://doi.org/10.1201/9781315370279
https://doi.org/10.18653/v1/2023.acl-long.767
https://doi.org/10.18653/v1/2023.acl-long.767
https://doi.org/10.1145/3649506


our experiments take approximately 2220 hours
in A6000 GPU hours. Computing fitted GAM
curves, distances between curves, n-gram proba-
bilities, contextual diversities, and POS tags takes
approximately 2990 CPU core hours.

A.2 Checkpoint Strategy
Assume that the steps per checkpoint s(t) in-
creases linearly as a function of the current step
t. Assume we start with some s(0) = s0 and end
with s(t1) = s1 steps per checkpoint. Then:10

s(t) = s0 +
s1 − s0

t1
t

The rate of checkpoints per step is the inverse
of steps per checkpoint, or 1/s(t). Excluding the
checkpoint at step zero (i.e., checkpoints(0) = 0),
the number of checkpoints at step t is:

checkpoints(t) = checkpoints(0) +
∫ t

0

1

s(t)
dt

=

∫ t

0

t1
s0t1 + (s1 − s0)t

dt

=
t1

s1 − s0
ln
(
1 +

s1 − s0
s0t1

t

)

By solving for t, we can compute the time steps
where the number of checkpoints is equal to

10Assume t1 > 0 and s1 > s0 > 0.

n = 0, 1, 2, 3, etc. Formally, we can compute
the time step t for the nth checkpoint:

n = checkpoints(t)

n =
t1

s1 − s0
ln
(
1 +

s1 − s0
s0t1

t

)

t =
s0t1

s1 − s0

(
e
n
(

s1−s0
t1

)
− 1

)

Note that t increases exponentially as a function
of the checkpoint number n. For our experiments,
we start with s0 = s(0) = 100 steps per check-
point. We end with s1 = s(1000000) = 25000
steps per checkpoint at step 1M. Then, the time
step t for the nth checkpoint is:

step(n) =
100 ∗ 1000000

24900

(
en(

24900
1000000 ) − 1

)

We round each step(n) to the nearest integer,
and we save model checkpoints at the selected
steps until reaching 1M steps. Concretely, we save
checkpoints at steps: step(1) = 101, step(2) =
205, . . . , step(221) = 981536. We also save one
checkpoint at step zero. In total, we save 222
checkpoints per pre-training run.

A.3 Part-of-Speech (POS) Coefficients
In Table 5, we report coefficients for all POS tags
when predicting each learning curve metric, after
accounting for other predictors (§6.1).
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Surprisal Var. (steps) AoA Forgettability Var. (runs)
Tag Coef. Tag Coef. Tag Coef. Tag Coef. Tag Coef.

PART −1.28 INTJ −0.03 INTJ −0.30 INTJ −0.36 INTJ −0.23
AUX −1.19 PART −0.02 PUNCT −0.25 SCONJ −0.25 NUM −0.15
NOUN −1.17 X −0.01 DET −0.23 ADV −0.22 VERB −0.08
PUNCT −1.16 AUX −0.01 NUM −0.19 VERB −0.19 ADV −0.05
PRON −1.13 SCONJ −0.01 X −0.18 NUM −0.12 SCONJ −0.05
X −1.12 NUM −0.01 VERB −0.17 PART −0.11 AUX −0.02
SYM −0.89 VERB 0.00 ADJ −0.17 X −0.09 ADJ −0.02
PROPN −0.81 PRON 0.00 ADV −0.15 ADJ −0.08 PART 0.02
ADP −0.75 ADV 0.00 SYM −0.15 PRON −0.03 PRON 0.03
VERB −0.64 DET 0.00 PROPN −0.13 AUX −0.01 SYM 0.04
NUM −0.60 PROPN 0.00 PART −0.12 ADP 0.05 DET 0.07
SCONJ −0.53 PUNCT 0.00 CCONJ −0.11 NOUN 0.09 X 0.07
CCONJ −0.49 ADJ 0.00 SCONJ −0.09 CCONJ 0.14 CCONJ 0.08
INTJ −0.47 ADP 0.00 NOUN −0.07 PUNCT 0.22 PUNCT 0.11
DET −0.41 CCONJ 0.01 PRON −0.06 PROPN 0.27 ADP 0.12
ADJ −0.35 SYM 0.01 AUX −0.04 SYM 0.29 NOUN 0.15
ADV −0.11 NOUN 0.01 ADP 0.01 DET 0.50 PROPN 0.15

L −0.56 B −0.01 U 0.00 U 0.00 U 0.00
I −0.26 L 0.00 I 0.00 B 0.43 B 0.11
U 0.00 U 0.00 L 0.03 L 0.47 L 0.30
B 0.82 I 0.02 B 0.03 I 0.67 I 0.41

Table 5: Part-of-speech (POS) tag coefficients when predicting each learning curve metric, after
accounting for other predictors (§6.1). POS tags use the Universal POS tags (Nivre et al., 2020), and we
include a feature indicating whether a token is the first token (B), intermediate token (I), last token (L),
or only token (U) in a word.
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