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Abstract

Authorship verification (AV) aims to identify
whether a pair of texts has the same au-
thor. We address the challenge of evaluating
AV models’ robustness against topic shifts.
The conventional evaluation assumes mini-
mal topic overlap between training and test
data. However, we argue that there can still be
topic leakage in test data, causing misleading
model performance and unstable rankings. To
address this, we propose an evaluation method
called Heterogeneity-Informed Topic Sam-
pling (HITS), which creates a smaller dataset
with a heterogeneously distributed topic set.
Our experimental results demonstrate that
HITS-sampled datasets yield a more stable
ranking of models across random seeds and
evaluation splits. Our contributions include: 1.
An analysis of causes and effects of topic
leakage; 2. A demonstration of the HITS in
reducing the effects of topic leakage; and 3.
The Robust Authorship Verification bENch-
mark (RAVEN) that allows topic shortcut
test to uncover AV models’ reliance on topic-
specific features.

1 Introduction

Authorship verification (AV) is a task that aims
to predict whether a pair of texts is written by the
same author. A common research problem in AV
is to develop a model that performs well across
unseen topics, domains, or genres (Mikros and
Argiri, 2007; Stamatatos, 2013; Sapkota et al.,
2014). Our study focuses on the unseen topic
problem for two reasons: First, it is not realistic
to assume that an author will always write on
the same topics. Second, the unseen texts might
be written on topics with unseen keywords or
themes. Unlike typical domain adaptation scenar-
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ios, a topic shift can also be subtle and unrecog-
nized. We think it is useful for AV systems to be
able to recognize authors’ writing styles regard-
less of whether the topics of texts change or not.

To develop such systems, cross-topic bench-
marks are necessary to assess the model’s perfor-
mance in handling topic shifts and compare the
effectiveness of various methods. Existing cross-
topic AV evaluations assume that different topic
categories hold dissimilar information. Conse-
quently, the topic shift is commonly simulated by
separating training and test data across two dif-
ferent sets of topics. For example, two topics are
automatically considered dissimilar if they come
from two different domain categories.

In this paper, we challenge the conventional
practice of cross-topic split by viewing topic sim-
ilarity as a value on a continuous spectrum. In
other words, some pairs of topics may be more
similar, sharing common attributes or character-
istics than the rest. We argue that performing
a cross-topic train-test split without considering
topic similarity can cause topic leakage. Topic
leakage has been suggested (Sawatphol et al.,
2022) to exist when documents in cross-topic test
data unintentionally contain topical information
similar to those in training data. Furthermore, we
explain that topic leakage can cause uncertainties
in model evaluation and selection. For example,
some models may rely on only learning short-
cuts from topic-specific features. Such models
can demonstrate inflated performances in test data
with topic leakage.

To address the issue of topic leakage, we pro-
pose an evaluation framework that takes into
account the similarity of topics in a dataset. The
crux of our method lies in the similarity-based
sampling technique that can create a smaller but
more topically heterogeneous version of any ex-
isting dataset. This ensures that each topic cat-
egory is less overlapping in information, thus
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helping reduce topic leakage. Our experimental
results demonstrate that our evaluation method
can help prevent misleading cross-topic perfor-
mance by exposing models relying on topic
shortcuts and improving model ranking stabil-
ity compared to comparable-sized datasets with
randomly distributed topics.

We summarize our contribution as follows.

1. We introduce the notion of topic similar-
ity, which can cause information leakage
between train and test data in creating cross-
topic benchmarks for the AV task.

2. We propose Heterogeneity-Informed Topic
Sampling (HITS), a framework that consid-
ers the topical heterogeneity in the dataset
to mitigate possible topic leakage issues.
This framework can be applied to any exist-
ing dataset to improve topic shift degree and
ranking stability compared to conventional
cross-topic evaluation approaches.

3. We provide Robust Authorship Verification
bENchmark (RAVEN), a benchmark compris-
ing datasets with heterogeneous topic sets.
This benchmark can be beneficial toward the
development of topic-robust AV methods by
allowing the identification and comparison of
models’ reliance on topic-specific shortcuts.

2 Related Works

A limited number of studies have attempted to
provide a standard benchmark to compare the ef-
fectiveness of AV methods on cross-topic setups.
In particular, the PAN 2020 and 2021 AV task
(Kestemont et al., 2020, 2021) is considered one
of the largest benchmarks for cross-topic AV
that compares the effectiveness of many AV ap-
proaches. The PAN organizers use a dataset col-
lected from fanfiction.com comprising over 4,000
topics. Additionally, Brad et al. (2022) introduced
a cross-topic setup (denoted as open unseen fan-
doms) as one of their evaluation splits that extend
the experiment setups of PAN competitions. Tyo
et al. (2023) also attempted to compare various
attribution and verification methods on the 15 da-
tasets, but only four were cross-topic evaluations.
In more extreme cases, the study by Altakrori
et al. (2021) tests authorship attribution mod-
els’ behavior by deliberately inverting the topic-

author relationship between training and test data,
a setup considered more challenging than regular
cross-topic train-test splits.

Other than benchmarks, numerous studies have
also attempted to develop AV systems to handle
topical changes in texts. Those studies conducted
experiments with many different variations on
datasets and problem formulations. For example,
Mikros and Argiri (2007) studied the features’
topic independence using Greek newspaper arti-
cles. In addition, Stamatatos (2017) has pro-
posed using text distortion to mask topic-specific
terms, having experimented with datasets col-
lected from Guardian news articles. More re-
cently, Boenninghoff et al. (2021) have proposed
a hybrid neural-probabilistic system, achieving
state-of-the-art performance on the PAN2021
cross-topic AV competition. Furthermore, Rivera-
Soto et al. (2021) and Sawatphol et al. (2022)
studied applying representation learning in au-
thorship verification, evaluating in test sets with
both unseen topics and unseen authors.

Despite advances in cross-topic AV research,
few studies have questioned the limitations of
existing cross-topic evaluation. The most closely
related study we have found was conducted by
Wegmann et al. (2022). The study suggests that
current AV training objectives either do not con-
trol content or only use domain/topic labels to
approximate topic differences. The study then pro-
posed a contrastive style representation learning
task that controls the topic similarity of each text
pair to help force models to favor learning writing
styles rather than content. In our understanding,
content control is a broader concept similar to
cross-topic evaluation. However, the key differ-
ence is that their work primarily addresses content
control between text pairs to improve style rep-
resentation learning of AV models. On the other
hand, our study aims to control the topic informa-
tion at the dataset level to enhance the reliability
of cross-topic evaluation.

To the best of our knowledge, in studies propos-
ing either cross-topic benchmarks or cross-topic
AV methods, we notice that these studies are
still limited to the assumption that each labeled
topic category is mutually exclusive. Our study
argues that such an assumption might lead to
an overlooked issue of topic information leakage
and its consequences toward model evaluation
and selection, which we will further describe in
Section 3.
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Figure 1: An illustration of two different scenarios of how texts in various topics are distributed on a topic
embedding space. In randomly distributed datasets, some topics are more similar to each other than other topics.
When performing a cross-topic train-test split from this data, some topics are leaked into the test data. On the
other hand, a topic similarity-controlled dataset removes topics that are similar to each other, reducing the degree
of leakage.

3 Topic Leakage

In cross-topic AV studies, it is essential to simu-
late an environment comprising texts from unseen
topics to assess models’ behavior when applied to
topic-shifted scenarios. However, we argue that
there is an issue that might diminish the effec-
tiveness of cross-topic evaluation: topic leakage.

We define topic leakage as a phenomenon
where some topics in test data unintentionally
share information with topics in training data. A
topic in training data and another in test data might
share common topical attributes despite being la-
beled as different topics. Consequently, the test
data may include texts intended to represent un-
seen topics but are not ‘‘unseen’’ regarding topic
content. With topic leakage, the ‘‘cross-topic’’
property of test sets is diminished.

Causes of Leakage. Topic leakage is caused
by the assumption of topic heterogeneity in AV
datasets. These datasets often contain metadata
that categorizes texts into specific topics. Re-
searchers leverage these datasets for evaluating
models’ robustness by implementing a train-test
split, where the test data includes texts in topics
not in the training set. This conventional evalua-
tion approach assesses models’ capacity to work
with texts without relying on topic-specific fea-
tures present in the training data. However, the
approach presupposes that texts in each topic
category are mutually exclusive, which is not

always the case. Figure 1 illustrates how a col-
lection of randomly distributed topics can cause
topic leakage after train-test splits, while a col-
lection of heterogeneous topics can help prevent
topic leakage. In this example, the restaurant topic
is in training data, and the cooking topic is in
test data, despite these two topics having similar
content. This overlap diminishes the intended dis-
tribution shift in cross-topic evaluation, as some
test data are still similar to topics in the training
data. Furthermore, recent evidence, as reported
by Sawatphol et al. (2022), suggests topic in-
formation leakage in the train-test split of the
Fanfiction dataset in PAN2021 AV competition
(Kestemont et al., 2021) where training and test
data contain examples of topics sharing infor-
mation like entity mentions and keywords. As
a result, their experimental results show simi-
lar cross-topic evaluation performance to the in-
distribution-topic experiments.

Consequences. We argue that topic leakage can
lead to the following negative consequences: mis-
leading evaluation and unstable model rankings.
To the best of our knowledge, these issues are not
commonly discussed in existing studies.

Misleading Evaluation. Topic leakage can
complicate measuring a model’s performance in
topic-shifted scenarios. A model may show strong
performance on a ‘‘cross-topic’’ benchmark, im-
plying that it is robust against the topic shift.
However, the model might rely on topic bias
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Figure 2: A diagram illustrating the pipeline of the HITS method in selecting a topic-heterogeneous subset.

or spurious correlations between topic-specific
keywords and authors rather than learning to
distinguish writing styles. This scenario contra-
dicts the objective of cross-topic AV evaluation,
which is to build an AV system that works in
texts with unseen topics. When there is a risk
of topic leakage, the evaluation results can be
misled by spurious correlations, which misrepre-
sents the models’ robustness against topic shifts
in real-world applications.

Unstable Model Rankings. Topic leakage can
also affect the selection of the most suitable model
among candidates. When topic leakage is present
in a cross-topic evaluation, a model might erro-
neously appear to perform better due to spurious
correlations. The same model may fail to perform
adequately in cross-topic data without leakage.
This inconsistency in model performance compli-
cates the model selection process and introduces
uncertainty. If a set of candidate models is eval-
uated on a topic-leaked split, the best-performing
model might not be the most robust.

With the issue of possible topic leakage and
heterogeneity assumption in mind, our objective
is to mitigate the topic information leakage prob-
lem. To achieve such goals, we design a method
to help ensure the heterogeneous topic categories
in datasets, which will be described in Section 4.

4 Proposed Evaluation Method

We hypothesize that a more controlled, topic-
heterogeneous dataset is less prone to topic infor-
mation leakage, regardless of the train-test split
method. The reason behind this hypothesis is that
if there is less overlap in information between

each topic category, there would be a higher de-
gree of distribution shift in cross-topic evalua-
tion splits.

We present Heterogeneity Informed Topic Sam-
pling (HITS), an evaluation framework involving
a subsampling technique that ensures that the re-
sulting subsampled dataset has less topic similar-
ity and, thus, less topic leakage. Our framework
aims to process a full, original dataset (denoted as
D) into a smaller but more topic-heterogeneous
subset, D′. To ensure that the resulting subset has
low topic similarity, we use an iterative process
that selects each candidate topic based on its sim-
ilarity with previously selected topics. The pipe-
line of the HITS method is illustrated in Figure 2.

1. Creating Topic Representation. First, let us
denote the dataset asD a set comprising |D| topics
{T1, . . . , T|D|}. Each topic Ti is a set containing
|Ti| vectors representing each text document in
that topic. The vectors can be created with any
encoding function. We use a pre-trained Sen-
tenceBERT (Reimers and Gurevych, 2019) model
in our experimental studies in this paper. We use
vi,k to denote the representation of text k within
topic i. To create a vector representing each topic,
ti, we compute the mean of the vectors of all texts
within that topic as shown in Equation 1.

ti =
1

|Ti|

|Ti|∑

k=1

vi,k (1)

2. Initialize Topic Subset. Since we want to
select topics based on their similarity to the pre-
viously selected topics, we need a separate set
with an initial topic. First, we initialize D′ as an
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empty set. We then compute the mean average
cosine similarity between each topic and every
other topic in the dataset. Afterward, we select the
topic with the lowest mean average cosine sim-
ilarity with other topics in D and add it to D′.

3. Iterative Topic Selection. We then itera-
tively select a topic to add to D′. The following
steps are repeated until the number of topics in D′

reaches m, where m is a manually set parameter.

1. First, we compute the cosine similarity be-
tween each topic in D and each topic in D′.
We aim to select a topic that is the least
similar to the previously selected topics. We
denote Si as a set of similarities of a topic i
each of the previously selected topic j.

Si = {sim(ti, tj), j = 1, . . . , |D′|} (2)

2. Second, for each topic Ti, we compute the
leakage score of that topic as described in
Equation 3. We denote li as the leakage score
of the topic Ti.

li = mean(Si) ∗ max(Si) (3)

To prevent a possible scenario of two topics
having high similarity but low similarity with
the rest, we compute the leakage score with
the mean similarity scaled by max similarity.

The intuition behind this score is that if the
representation of that topic is similar to other
topics, that topic is closely related to other
topics and is more likely to cause leakage.

3. Lastly, we select one topic with the lowest
leakage score (that is not already present in
D′) and add that topic toD′. the leakage score
will be recomputed for the next iteration since
the members of D′ are updated.

After m − 1 iterations, the size of D′ reaches
m. We discard other topics from the original da-
taset D. We also considered merging unselected
topics with these selected topics, but experiments
in Section 7 suggest that discarding the unse-
lected topics yields better ranking stability.

Finally, we obtain D′, a topic-heterogeneous
version of the original dataset D with reduced
topic information leakage. We can use the HITS
method to convert any existing dataset on any

task with topic or domain category labels into
an evaluation dataset with less topic information
leakage.

5 Experimental Setup

We conducted a number of experimental studies
to reveal the consequences of topic leakage de-
scribed in Section 3: misleading model evalua-
tion and unstable model rankings.

5.1 Dataset

In this study, we use the Fanfiction dataset
from the PAN2020 (Kestemont et al., 2020) and
2021 competitions (Kestemont et al., 2021). This
dataset comprises fiction texts written by on-
line users on fanfiction.net. The topic category
in this dataset is called ‘‘fandom’’, which is the
source story on which each fiction text is based.
The original dataset contains approximately 4,000
fandoms and 50,000 authors. Given the original
dataset, we study the difference in creating eval-
uation splits from subsampled datasets under two
conditions:

1. Similarity-Controlled Topics. This condi-
tion simulates a dataset with heterogeneous
topic categories, revealing whether the mis-
leading assessment and inconsistent rankings
are reduced when topic similarity is con-
trolled. To create this condition, we sample a
dataset into a topic-heterogeneous using the
HITS method from Section 4.

2. Random Topics. This condition simulates
the same distribution of topic information
with the original dataset. We do not use the
full original dataset since we cannot control
the number of documents and authors, all of
which might affect the results. The randomly
subsampled datasets are used to make results
comparable with the HITS version.

To study the effect of topic heterogeneity in
different numbers of topics, we create the sub-
datasets with the number of documents and top-
ics as shown in Table 1.

Preprocessing. We use the following steps.
First, we subsample the original dataset by select-
ing a number of topic subset (parameter m) using
either HITS or random subsampling. In Section 6,
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HITS

m train pairs test pairs train auths test auths
50 29646 3211 18046 2081
60 34902 3762 22042 2555
70 41772 4480 24956 2920
80 47417 5100 28668 3347
90 53617 5734 32007 3772

100 60006 6437 35197 4135

Random

50 29420 3210 18205 2082
60 35245 3840 21804 2500
70 41177 4449 25347 2933
80 47279 5107 21804 3334
90 53649 5784 31944 3727

100 59907 6443 35251 4125

Table 1: Dataset statistics of our HITS and ran-
domly subsampled Fanfiction datasets, using the
number of topics at [50, 60, 70, 80, 90, 100]. Each
figure is a rounded mean from 10-fold evaluation
splits from each subsampled dataset. m denotes
the number of topics. ‘‘pairs’’ denote the number
of text pairs in the training and test data. ‘‘auths’’
denote the number of authors.

we primarily present the results from datasets
with 70 topics. However, in Section 7, we also
experimented with using 50, 60, 80, 90, and
100 topics to see the effect of different numbers
of topics. The dataset statistics are reported in
Table 1. Second, to create different evaluation
splits, we divide the data using the k-fold vali-
dation split method with k=10. Each validation
fold comprises a different set of k topics, and
one fold is used for evaluation while the rest is
used for training.

5.2 Authorship Verification Methods

In our experiments, we use various baselines
from the PAN2021 competition (Kestemont et al.,
2021) to assess the consistency and reliability of
our HITS subsampled datasets compared to ran-
domly distributed ones. We also experimented
with two additional AV state-of-the-art models.

Character n-gram Distance. N-gram distance
is a widely used baseline method in authorship ver-
ification. The character n-gram has also been used
in previous studies (Stamatatos, 2013; Sapkota
et al., 2014; Stamatatos, 2017) to achieve good
performance in cross-topic scenarios. In our ex-
periment, we use the implementation provided
by the organizers of the PAN2021 competition
(Kestemont et al., 2021). We build the n-gram

vocabulary set using our training data. At in-
ference time, we compute the cosine similarity
between each vector representation of each text
in an input text pair. The similarity scores are
then calibrated based on two thresholds (p1 and
p2). This method performs a linear transformation
as follows. Scores less than or equal to p1 are
rescaled to the range [0, 0.49]. Scores between p1
and p2 are set to 0.5. Scores greater than or equal
to p2 are rescaled to the range [0.51, 1]. p1 and p2
are hyperparameters we obtain using grid search
on validation data held out from our training data.

Prediction by Partial Matching (PPM) (Teahan
and Harper, 2003). This model computes the
cross-entropy of each text pair in the training
data for each text pair (text1, text2). A compres-
sion model of text1 computes the cross-entropy
of text2. The vice-versa is computed for text1.
Afterward, the model computes the mean and
absolute difference of the two cross-entropy val-
ues and predicts a probability score using logistic
regression.

Topic-fit Model. We design a topic-fit model
to assess the topic-shift effect of datasets, similar
to the bias-only models used in studies of spuri-
ous correlations in natural language understanding
tasks (Clark et al., 2019; Utama et al., 2020a,b;
Deutsch et al., 2021). However, our focus is that
our topic-fit model is designed to fail when the
topic in the test data changes from the training.

Our designed topic-fit model is a reversed ver-
sion of the text distortion method (Stamatatos,
2017). The bias models are trained on input texts
with top k most frequent features masked to ob-
fuscate topic-independent words such as gram-
matical words. The non-masked words will likely
be the content words, which should be more topic-
dependent. For topic-fit models, we use the same
implementation as the character n-gram baseline
but with word unigrams instead of characters.
The example of the masked input texts is illus-
trated in Table 3. We expect the resulting model
to perform worse in cross-topic evaluation when
topic-specific information is not available in the
test set.

O2D2 (Boenninghoff et al., 2021). This ap-
proach uses CNN character embeddings and bi-
directional LSTM with attention and modified
contrastive loss to create text representation. They
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Subsampling Method AUC c@1 F0.5u F1 Overall

HITS

CharNGram 0.964±0.011 0.959±0.011 0.859±0.031 0.921±0.018 0.926±0.017

PPM 0.976±0.008 0.944±0.011* 0.854±0.035* 0.877±0.021* 0.913±0.017*
TopicFit 0.950±0.013* 0.908±0.014* 0.724±0.022* 0.826±0.028* 0.852±0.017*
O2D2 0.904±0.023 0.672±0.090 0.458±0.085 0.560±0.070 0.648±0.059

LUAR 0.964±0.008 0.931±0.014 0.775±0.035 0.880±0.024 0.887±0.017

Random

CharNGram 0.966±0.008 0.962±0.007 0.863±0.027 0.918±0.015 0.927±0.011

PPM 0.977±0.007 0.955±0.009 0.879±0.036 0.893±0.022 0.926±0.017

TopicFit 0.961±0.011 0.928±0.012 0.754±0.033 0.852±0.028 0.874±0.019

O2D2 0.901±0.034 0.712±0.132 0.488±0.101 0.583±0.088 0.671±0.083

LUAR 0.964±0.008 0.935±0.020 0.780±0.056 0.876±0.040 0.889±0.028

Table 2: Scores of AV models in HITS and randomly subsampled datasets (number of topics = 70),
mean averaged across ten-fold validation splits. The best-performing models in each setup and metric
are in bold. Asterisk (*) denotes significantly lower scores (p < 0.05 using unpaired t-tests) of HITS
compared to Random.

then use the representation with a combination
of Bayes factor scoring, uncertainty adapta-
tion, and out-of-distribution detector to predict
the probability output. This framework achieved
state-of-the-art on the PAN 2021 AV challenge.
In our experiments, we train the O2D2 framework
on our training data in each evaluation split using
the authors’ provided training scripts.

LUAR (Rivera-Soto et al., 2021). This model is
based on a pre-trained SentenceBERT, fine-tuned
using a Siamese network and supervised con-
trastive loss from aggregated sliding window
text vectors. This model was not a part of the
PAN2020/2021 challenge, but the authors used
modified Fanfiction data from PAN2020/2021 in
their study and achieved successful results. We
train the LUAR framework on our training data
in each evaluation split in our experiments using
the authors’ provided training scripts. Since the
original author’s setup does not directly predict
the same-author probability of a text pair, we per-
form inference using the cosine similarity of the
text pair from LUAR vectors, calibrated using the
same method as the character n-gram baseline.

Evaluation. We follow the evaluation metrics
used in the PAN 2020 and 2021 AV competitions
(Kestemont et al., 2020, 2021). Given an input pair
of texts, models are expected to predict a score of
between 0.0 and 1.0, indicating the probability
of the text pair being written by the same au-
thor. Models are allowed to predict non-answers

version text

Original
The dogs and cats are
running in the garden

Bias
*** dogs *** cats ***
running ** *** garden

Table 3: An example of the masked input
texts that we use to obtain a topic-fit model.

(scoring exactly at 0.5). The evaluation metrics
used include the F1 score (Fabian Pedregosa and
Èdouard Duchesnay, 2011), Area Under Receiver
Operating Characteristic Curve (AUC) (Fabian
Pedregosa and Èdouard Duchesnay, 2011), c@1
score (Peñas and Rodrigo, 2011; Stamatatos et al.,
2014), and F0.5u score (Bevendorff et al., 2019),
and Overall, the mean value of all other metrics.
We use multiple metrics to allow comparison with
the baseline results from the existing PAN2021
benchmark. Moreover, one might prioritize dif-
ferent properties of an AV system. For example,
if one prioritizes precision over recall, F0.5u may
be used over the F1 score. F0.5u and C@1 also
reward the systems’ ability to give non-answers in
ambiguous cases, while the F1 score does not.

6 Experimental Results

This section illustrates the effectiveness of con-
trolling topic similarity in mitigating topic leakage.
We present a number of experiments comparing
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datasets sampled using the HITS method and ran-
domly sampled datasets to see the difference be-
tween datasets with heterogeneous and randomly
distributed topic sets. We present HITS results
and randomly subsampled datasets, both with m
(number of topics) = 70. For Random datasets,
we subsampled five datasets, each from a differ-
ent random seed. The results for Random datasets
in this section are reported with a mean average
across five randomly subsampled datasets from
different random seeds, each with a different topic
set. On the other hand, since the HITS method is
deterministic, there is only one subsampled dataset
for the HITS dataset.

Evaluation Results. First, we assess the per-
formance of the baseline and state-of-the-art AV
models on both setups. We present the mean aver-
age metrics across ten validation folds in Table 2.
We observe that most models have lower Over-
all scores in HITS than Random. This agrees with
our hypothesis that controlling topic similarity
helps reduce topic leakage, thus making the HITS
test sets more challenging than Random datasets
with more similar topics. However, when we look
at individual metrics, we found that the F1 scores
of LUAR and CharNGram are higher in the HITS
setup, while the c@1 and F0.5u metrics are lower
on all models in the HITS setup. This different
behavior might be caused by the fact that c@1
and F0.5u reward non-answers for difficult sam-
ples, but F1 doesn’t. Another observation is that
the scores of topic-fit models are significantly
lower on HITS than random in every metric, with
the largest difference compared to other mod-
els. This supports our hypothesis that the HITS
dataset with reduced topic similarity allows the
models relying on topic information to perform
worse. However, even in random datasets where
we expect topic leakage to happen, the topic-fit
model does not gain enough advantage to outper-
form other models on this mean average results.
Furthermore, we notice a low performance from
O2D2 on both HITS and random datasets com-
pared to the PAN2021 results, which we think is
caused by the smaller training dataset from the
subsampling process. This performance drop is
also reported by Brad et al. (2022), which used
custom Fanfiction data splits in their study. De-
spite the limited data, O2D2 also demonstrates
lower performance in HITS setup, like other mod-
els. Our speculation for this result is that AV
models gain an advantage from topic leakage in

Dataset AUC c@1 F0.5u F1 Overall Average
HITS 0.88 0.92 0.95 0.88 0.94 0.92
Ravg 0.78 0.88 0.89 0.87 0.87 0.86
R0 0.79* 0.85* 0.86* 0.86 0.91* 0.85
R1 0.81* 0.87* 0.92* 0.82* 0.90* 0.87
R2 0.80* 0.91 0.92* 0.92* 0.91* 0.89
R3 0.76* 0.92 0.91* 0.94* 0.82* 0.89
R4 0.74* 0.86* 0.86* 0.79* 0.88* 0.81

Table 4: Spearman’s rank correlation of AV mod-
els compared between HITS and Random data-
sets, mean averaged across ten validation folds.
The highest correlations are in bold. Rn represents
random datasets subsampled using seed n. Ravg

represents the mean average correlation between
all random datasets. Asterisk (*) denotes a sig-
nificantly lower correlation (p < 0.05 using un-
paired t-tests) of each Random dataset compared
to the HITS dataset.

different degrees. Still, topic-fit models do not
generalize as well as them, hence the lower scores.

Ranking Stability. We also assess the ranking
stability of the HITS-sampled dataset in Table 4.
If the chance of topic leakage is decreased, then
the models’ rankings should be more consistent
across validation splits. We measure Spearman’s
rank correlation between model rankings on each
pair of validation splits to assess the ranking sta-
bility. Then, we compute the mean average of
the correlation values into a single figure for each
metric. We found that the different topic sets in the
dataset affect the ranking stability of models even
when using k-fold cross-validation. For example,
the Random dataset on seed 2 has 0.89 Spearman’s
rank correlation on average across metrics, but the
correlation can be as low as 0.814 on seed 4. On
the other hand, the HITS dataset with controlled
topic similarity has a higher rank correlation than
4 out of 5 random datasets. It is higher than the av-
erage of all seeds of random datasets. Considering
that real-world datasets without control for topic
similarity might have high variance in ranking
stability like the random datasets, it can be bene-
ficial to use the HITS method (when applicable)
to improve ranking stability. As a side note, when
comparing models evaluated on the HITS dataset,
we think using metrics other than F1 is beneficial
since its rank correlation is noticeably lower than
other metrics.

Model Ranking Analysis. While rank correla-
tion might show the stability of the HITS dataset,
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Dataset CharNGram PPM TopicFit O2D2 LUAR
HITS 1.2±0.42 1.9±0.57 4.0±0.00 5.0±0.00 2.9±0.32

Ravg 1.5±0.58 1.6±0.54 3.8±0.43 5.0±0.00 3.1±0.64

R0 1.8±0.63 1.3±0.48 3.7±0.48 5.0±0.00 3.2±0.32

R1 1.3±0.48 1.7±0.48 3.7±0.48 5.0±0.00 3.3±0.48

R2 1.6±0.52 1.4±0.52 3.7±0.48 5.0±0.00 3.3±0.48

R3 1.5±0.53 1.5±0.53 3.8±0.42 5.0±0.00 3.2±0.42

R4 1.5±0.71 1.9±0.57 3.9±0.32 5.0±0.00 2.7±0.95

Table 5: Ranking of each model (lower is bet-
ter) on each subsampled dataset, mean averaged
across ten validation folds. The rankings are com-
puted with the Overall metric. Top-ranked models
in each dataset are in bold. Rn represents random
datasets subsampled using seed n. Ravg repre-
sents the mean average between all five randomly
subsampled datasets.

we look further into the model rankings of each
validation split. On average, topic-fit models in
HITS datasets have a lower average rank than
in random. Other models have mixed rankings
across Random datasets. Notably, CharNGram
and PPM have mixed results on both HITS and
Random datasets, while PPM has been reported as
having higher performance on both PAN2020 and
PAN2021 AV challenges. Unstable rankings be-
tween CharNGram and PPM illustrate that topic
leakage in certain evaluation splits can change
the performance ranking of models and might re-
sult in selecting models that might not perform
the best on texts with unseen topics. Furthermore,
we also notice O2D2 consistently being the low-
est rank in all datasets and has no variation due
to the small subsampled datasets’ size.

Subsampled Topics Examples. We also ques-
tion whether the subsampled topic set can be
considered heterogeneous for human readers.
Therefore, we look at the examples of topics
used in the HITS dataset compared to random,
presented in Table 6. We observe that the top
similar train-test topics in Random datasets (more
than 0.95) are much higher than the HITS ones
(0.86-0.87). In addition, upon manual inspection,
we found that 3 out of 5 most similar topics in Ran-
dom datasets are what we consider closely related.
For example, X-Men: Evolution and X-Men: The
Movie fandoms are both from the X-Men fran-
chise. Moreover, Star Wars and Star Wars: The
Clone Wars are also from the same franchise.
Furthermore, Batman is also a subset of DC Su-
perheroes. On the other hand, we do not find
such patterns in the most similar topic pairs in

Train Topic Test Topic Sim

HITS

Girl Meets World One Tree Hill 0.872
Durarara!! Saiyuki 0.862
Naruto Tenchi Muyo 0.862
Inuyasha Naruto 0.862
Gakuen Alice Naruto 0.861

Random

X-Men: Evolution X-Men: The Movie 0.971
Star Wars Star Wars:

The Clone Wars 0.961
Final Fantasy I-VI League of Legends 0.961
Days of Our Lives General Hospital 0.961
Batman DC Superheroes 0.951

Table 6: Top 5 similar train-test topics from eval-
uation splits from HITS and random datasets.
‘‘Sim’’ denotes the cosine similarity between
each train-test topic pair.

HITS datasets other than all of them are base
d on Japanese fictional texts.

Discussion. The experimental results on HITS
reveal the implications of mitigating topic leakage
by controlling topic similarity. The efficacy of the
HITS method in managing topic similarity adds
reliability to model evaluation and selection pro-
cesses. The significantly lower scores of topic-fit
and PPM models in HITS datasets (Table 2) sug-
gest that these models still rely on topic-specific
information rather than generalizing to unseen
topics. On the other hand, CharNGram outper-
forms other deep-learning-based models without
a significant difference in performance between
HITS and Random datasets. This finding suggests
that the method is the best choice in datasets
with the number of topics and authors compara-
ble to our subsampled Fanfiction dataset, whether
there is topic leakage or not. In addition, Spear-
man’s rank correlation in HITS datasets (Table 4)
shows improved stability in model rankings com-
pared to the Random datasets. This suggests the
volatility of ranking models on datasets without
control for topic similarity. Moreover, the indi-
vidual rankings are also influenced by random-
ness, as suggested in the model ranking analysis
(Table 5). Even on the same number of topics,
different randomly selected topics can result in
CharNGram being the top performer in some cases
and PPM in others. Together, HITS datasets with

1371



controlled topic similarity can be valuable to en-
sure the reliable development of AV systems. As a
result, we obtained improved accurate evaluation
results and ranking stability compared to datasets
without topic similarity control.

7 Component Design Analysis

In this section, we perform additional experiments
to study the impact of varying the following com-
ponents in the HITS method: 1. the number of
topics, 2. whether to discard the unselected topics
and 3. the choice of topic representation encoder.

7.1 Effect of the Number of Topics

Effect on Dataset Statistics. First, we question
the effect of parameter m from our HITS method
on the resulting subsampled dataset. As a result,
we create multiple subsampled datasets with vary-
ing numbers of topics with both HITS methods
and random sampling. The numbers of topics we
studied are = [50, 60, 70, 80, 90, 100]. According
to the data statistics in Table 1, an apparent effect
is that the more topics in the subsampled cor-
pus mean, the more documents available for both
training and testing. There is also a larger number
of authors as the topics increase. However, there is
no noticeable difference in data statistics between
HITS and random sampling.

Effect on Topic Similarity. In addition, we
want to know whether training and validation
data (after the k-fold validation split) in the HITS
dataset are more dissimilar than the randomly
sampled datasets in different numbers of topics.
To answer the question, we computed the mean
and max topic cosine similarity of evaluation splits
from subsampled datasets in different topic sizes.
We also compare the topic similarity with ran-
domly subsampled datasets. The topic similarity
is illustrated in Table 7. The general trend for
topic similarity is that when the number of topics
increases, the topic similarity increases. However,
one notable difference is that the mean and max
topic similarity in Random datasets are quite sim-
ilar across all topic sizes. On the other hand, the
topic similarity is much lower in HITS datasets
at smaller numbers of topics and becomes closer
to random datasets when the number of topics
approaches 100.

Effect on Ranking Stability. Furthermore, we
question how the changes in the number of topics

Topics Random HITS Random HITS
Mean similarity Max similarity

50 0.836 0.766 0.920 0.837
60 0.842 0.766 0.928 0.853
70 0.841 0.775 0.922 0.862
80 0.857 0.785 0.938 0.862
90 0.862 0.795 0.950 0.868
100 0.864 0.801 0.949 0.879

Table 7: Mean and max topic cosine similarity
compared between random and HITS subsampled
datasets after validation splits. The figures are the
mean average of ten validation folds.

AUC C@1 F0.5u F1 Overall Avg.
50 0.88 0.88 0.88 0.93 0.91 0.91
60 0.93 0.89 0.85 0.84 0.91 0.88
70 0.88 0.92 0.95 0.88 0.94 0.92
80 0.91 0.96 0.89 1.00 0.89 0.93
90 0.91 0.93 0.91 1.00 0.89 0.93
100 0.84 0.80 0.87 0.81 0.87 0.84

Table 8: Spearman’s rank correlation of AV
models on datasets with numbers of topics us-
ing HITS subsampling. The y-axis denotes the
number of topics in the subsampled dataset.
The x-axis denotes Spearman’s rank correlation
of ranks computed from each metric. ‘‘Avg.’’
denotes the mean Spearman’s rank correlation
across all metrics.

affect evaluation regarding ranking stability. We
computed Spearman’s rank correlation similarly
with the Section 6. The results are presented in
Table 8. One observation is that ranking stability
seems to not correlate with topic similarity. The
mean average Spearman’s rank correlation across
metrics starts at 0.88 to 0.93 at 50 to 90 topics
before falling off to 0.84 at 100 topics. With the
exception of 60 topics, the rank correlations are
similar. We did not experiment with a smaller
number of topics since if the number is too small,
the result can be too random to be reliable due to
the smaller dataset size. We also did not experi-
ment with larger numbers of topics since when the
number of topics is too large (in our case, 100),
the topic similarity becomes close to that of the
randomly sampled datasets. We suggest tuning
the number of topics or m as a hyperparameter to
obtain the best results, especially when applying
the HITS method to other datasets.
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Metric Cutting Grouping
AUC 0.884 0.851
c@1 0.916 0.904
F 0.5 u 0.953 0.900
F1 0.882 0.893
Overall 0.940 0.900
Average 0.915 0.890

Table 9: A comparison between Spearman’s rank
correlation (with p-value) across five random
seeds between cutting and grouping approaches.
The highest correlations are in bold. ‘‘Average’’
denotes the mean Spearman’s rank correlation
across all metrics.

7.2 Topic Sampling Approach

One may question whether it is reasonable to
subsample a corpus into a topic-heterogeneous
version since this method reduces the training
and test data available for models. Therefore, we
consider two different approaches.

• Cutting. We select a set of m topics from
the entire topic set of the original dataset as
described in Section 4. This is the approach
we use in our proposed method.

• Grouping. Instead of discarding the data in
non-selected topics, we merge them with the
nearest neighboring topic category to allow
similar topics to prevent topic information
leakage since the highly similar topics are
either in training or test data together.

We compared Spearman’s rank correlation
between the cutting and grouping approach and
presented the results in Table 9. This result shows
that cutting yields a higher Spearman’s rank cor-
relation than grouping on c@1, F0.5u, F1, and
Overall metrics. The ranking stability of the F1
metric is similar to grouping. Our explanation for
the lower-ranking stability of the grouping ap-
proach involves the dataset size. Since unselected
topics are not discarded but merged with selected
topics, more data is in the resulting subsampled
dataset, thus more topic similarity and less sta-
bility. This finding also agrees with experiments
on the number of topics, where Spearman’s rank
correlation degrades at a higher number of topics,
which is also a larger dataset. One could also do
a hybrid cutting-grouping approach, where only

Metric sBERT LDA NMF
AUC 0.884 0.436 0.667
c@1 0.916 0.613 0.836
F 0.5 u 0.953 0.667 0.858
F1 0.882 0.809 0.702
Overall 0.940 0.747 0.822
Average 0.915 0.654 0.777

Table 10: A comparison between Spearman’s
rank correlation (with p-value) across five ran-
dom seeds between LDA, NMF, and Sentence-
BERT representations. The highest correlations
are in bold. ‘‘Average’’ denotes the mean Spear-
man’s rank correlation across all metrics.

topics with similarity exceeding a certain thresh-
old are merged. However, we did not experiment
with such an approach due to the resources re-
quired for extensive threshold parameter tuning.

7.3 Topic Representation

We consider the following vector representa-
tion mapping functions as candidates for creating
topic representation for our sampling method:

• Latent Dirichlet Allocation (LDA) (Blei
et al., 2003). LDA is often used to perform
topic modeling in an unsupervised manner.
We hypothesize that we may be able to use the
representation created by LDA to compare
similarities between topics.

• Non-Negative Matrix Factorization
(NMF). It is another method commonly used
for topic modeling. In a study by Kestemont
et al. (2020, 2021), NMF has been used to
test the models’ correlation between text
pairs’ topic similarity and predicted results.

• SentenceBERT (sBERT) (Reimers and
Gurevych, 2019). Studies have shown that
fine-tuned pre-trained language models such
as BERT (Devlin et al., 2019) can cre-
ate sentence representations that capture the
semantic similarity between texts.

We compared Spearman’s rank correlation be-
tween each candidate topic representation and
presented the results in Table 10. The experimental
results reveal that HITS subsampling with Sen-
tenceBERT representation yields the most stable
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rankings on average. SentenceBERT outperforms
other topic representations in all of the metrics.
With these results, we select SentenceBERT as
the topic representation for experiments in this
paper. There is also an additional benefit: Sen-
tenceBERT is already pretrained and does not
need to be trained specifically on the Fanfiction
dataset.

8 RAVEN Benchmark

We propose the Robust Authorship Verification
bENchmark (RAVEN) created with our HITS
framework. The objective of our benchmark is
to assess the robustness of authorship verifica-
tion models by uncovering the topic bias, or their
reliance on topic-specific features.

8.1 Benchmark Description

We use the same source dataset as our main ex-
periments, the Fanfiction dataset from PAN2020/
2021 competitions. Our benchmark consists of two
sets of evaluation setups: Random and HITS. Each
setup has ten evaluation splits comprising train-
ing and cross-topic test data. The data statistics of
each version are described in Table 1.

One could use the HITS-sampled data setup in
the RAVEN benchmark the same way as a regu-
lar benchmark: Select one of the evaluation splits,
then train or fine-tune a system on the provided
training data and evaluate on test data. However,
we also propose another alternative evaluation
method that might help uncover topic bias: the
topic shortcut test.

8.2 Topic Shortcut Test

One might question how we can use the RAVEN
benchmark to uncover the topic bias. The intuition
behind using two evaluation setups is that models
that rely on topic-specific features would perform
worse in the heterogeneous split than the random
one. This is similar to our experimental results in
that topic-fit models reveal high score differences
between HITS and randomly sampled datasets.
To perform this test on a set of candidates AV
systems, one follow the following steps:

1. Train and evaluate each system on our pro-
vided datasets, including each random seed
of the HITS and randomly sampled datasets.

Model Random HITS Avg. Diff
Model1 0.80 0.56 0.68 0.25
Model2 0.75 0.72 0.73 0.02
Model3 0.76 0.70 0.72 0.06

Table 11: An example illustration is evaluating
three different AV models using our RAVEN
Benchmark. ‘‘Random’’ and ‘‘HITS’’ denote
each model’s average overall score (e.g., F1)
across validation folds of random and HITS sam-
pled datasets, respectively. ‘‘Avg.’’ denotes the
mean average score HITS and randomly sampled
datasets (higher is better). ‘‘Diff’’ denotes the
mean absolute difference in the scores of both
setups (lower is better), which is intended to show
the model’s reliance on topic-specific informa-
tion. The best models for each criterion are in
bold.

2. Aggregate the scores across random seeds
into the mean average score.

3. Compute the absolute difference between the
mean average score of HITS sampled data-
sets and randomly sampled datasets.

After these steps, we get results similar to our
illustration in Table 11. We can use the mean
absolute difference in score between these two
sampling methods to uncover the topic bias in a
model. Lastly, we can rank each score difference
to select the most robust model against topic shift.

9 Limitations

It is important to address the limitations of our
HITS evaluation method and the RAVEN bench-
mark. First, the HITS method assumes a large
number of topics and samples to still have suffi-
cient data after removing some of the topics. One
would also need to consider tuning the parameter
m, which is the number of topics in the target sub-
sampled dataset, to balance the trade-off between
the dataset size and the degree of topic similarity.

Second, the HITS methods assume existing
topic labels for each sample in the dataset. Our
experiments use the topic label provided in the
Fanfiction dataset. When applying the HITS
method to other datasets without such labels, one
needs to perform topic modeling methods to obtain
the topics. However, the scope of our experiments
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does not cover the outcome of performing HITS
on the automatically extracted topics.

Moreover, the score calibration used in some of
the baselines in our experiments does not explic-
itly handle class imbalance, which might affect
metrics such as the F1 score. When applying these
baselines to other datasets, post-hoc calibration
methods such as the one described by Guo et al.
(2017) might be more suitable. We recommend
exploring these calibration methods in future work
to enhance the robustness of the score adjustments.

Furthermore, due to the subsampling process,
the RAVEN benchmark is still limited in the num-
ber of topics, authors, and text samples. Therefore,
this benchmark only simulates smaller real-world
applications where a domain shift between train-
ing and inference, such as historical or literary
texts, is expected. Future efforts can be made
to improve the dataset size, which might better
simulate other AV applications in large corpora.

10 Conclusion

In conclusion, we describe the topic leakage issue
in the conventional cross-topic evaluation of au-
thorship verification systems. We illustrate how
topic leakage can cause misleading evaluation and
unstable model rankings.

To tackle these issues, we present HITS, an
evaluation method that can create a dataset with
heterogeneous topic sets from existing datasets.
Our experimental results show that a heteroge-
neous topic set can help reduce topic information
leakage, thus improving ranking stability in
evaluating authorship verification models.

Furthermore, we present RAVEN, a benchmark
created using the HITS method on the Fanfiction
dataset. The benchmark is designed to uncover
the degree of topic bias of authorship verification
models to select the most robust one. One can also
use the HITS method on their datasets to create a
similar benchmark.

11 Reproducibility

To allow the reproduction of our experi-
ments and obtain the RAVEN benchmark, our
source code for preprocessing, sampling, base-
line authorship verification models, random
seed, and other parameter settings is avail-
able at https://github.com/jitkapat
/hits_authorship.
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