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Abstract
Topic taxonomy discovery aims at uncovering
topics of different abstraction levels and con-
structing hierarchical relations between them.
Unfortunately, most prior work can hardly
model semantic scopes of words and topics
by holding the Euclidean embedding space
assumption. What’s worse, they infer asym-
metric hierarchical relations by symmetric
distances between topic embeddings. As a re-
sult, existing methods suffer from problems
of low-quality topics at high abstraction lev-
els and inaccurate hierarchical relations. To
alleviate these problems, this paper develops a
Box embedding-based Topic Model (BoxTM)
that maps words and topics into the box em-
bedding space, where the asymmetric metric
is defined to properly infer hierarchical rela-
tions among topics. Additionally, our BoxTM
explicitly infers upper-level topics based on
correlation between specific topics through
recursive clustering on topic boxes. Finally,
extensive experiments validate high-quality of
the topic taxonomy learned by BoxTM.

1 Introduction

Taxonomy knowledge discovery, the process of
extracting latent semantic hierarchies from text
corpora, is a crucial yet challenging research field.
For text mining applications, it can serve as the
foundation of complex question answering (Luo
et al., 2018) and recommendation systems (Xie
et al., 2022). An important line of research focuses
on learning word-level or entity-level taxonomies
(Miller, 1995; Jiang et al., 2022), but such prod-
ucts may encounter problems of low coverage,
high redundancy, and limited information (Zhang
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et al., 2018). Since a topic can cover the semantics
of a set of coherent words, some works propose
to use topics as the basic taxonomic units. Tak-
ing the topic taxonomy of the arXiv website as
an example, ‘‘computer science’’ is an academic
discipline highlighted by general keywords of ‘‘in-
formation’’, ‘‘computation’’, and ‘‘automation’’.
It involves various sub-fields such as ‘‘compu-
tation and language’’ and ‘‘computer vision’’,
which have specific keywords of ‘‘language’’
and ‘‘image’’, respectively. With this topic taxon-
omy, users can readily retrieve papers of interest
and explore related research fields.

Early methods for topic taxonomy discovery
(Blei et al., 2003a; Kim et al., 2012; Mimno et al.,
2007) take a probabilistic perspective originated
from LDA (Blei et al., 2003b). In these ap-
proaches, each topic is a distribution across words.
A document is generated by sampling topics in
different levels, and then sampling words from
the selected topics iteratively. As a more flexible
and efficient solution compared with probabilis-
tic models, the Hierarchical Neural Topic Models
(HNTMs) that adopt deep generative models and
Neural Variational Inference (NVI) have been de-
veloped in recent years (Isonuma et al., 2020).
With remarkable developments of text represen-
tation learning (Pennington et al., 2014; Devlin
et al., 2019; Vilnis, 2021), mining topic taxonomy
in the high-quality embedding space has become
a promising idea. Particularly, the latest HNTMs
(Chen et al., 2021b; Duan et al., 2021a) extend the
Embedded Topic Modeling (ETM) (Dieng et al.,
2020) method to topic taxonomy discovery. With
the assumption that topics and their keywords are
close in the embedding space, these models utilize
dot products between topic and word embeddings
to infer topic-word distributions.
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In parallel, some other methods conduct recur-
sive clustering on word embeddings to construct
topic taxonomy directly (Zhang et al., 2018;
Grootendorst, 2022). Such clustering-based meth-
ods often train the word embedding space on
local contexts, which helps them capture accu-
rate word semantics. Unfortunately, they have
difficulty in exploiting global statistics of word
occurrences, such as Bag-of-Words and TF-IDF
representations. As a result, topics mined by
these methods are highly coherent but may
not be representative of the entire corpus.
Due to this flaw of clustering-based methods,
HNTMs persist as the prevailing paradigm for
topic taxonomy discovery.

Despite the impressive performance of existing
HNTMs, they suffer from the following prob-
lems. (1) Suboptimal representation: Most of
these methods are limited in modeling semantic
scopes of words and topics at different abstraction
levels using classic point embeddings (Pennington
et al., 2014). Instead, geometric embeddings such
as hyperbolic and box embeddings are more effec-
tive representations for structured data, including
knowledge graphs and taxonomies (Bai et al.,
2021; Abboud et al., 2020). Although Hyper-
Miner (Xu et al., 2022) attempts to uncover topic
taxonomy within a geometric embedding space,
it simply replaces point embeddings in traditional
HNTMs with hyperbolic embeddings and lacks
in-depth analysis. This makes HyperMiner suffer
from the following problems. (2) Topic collapse:
Prior models struggle to learn high-quality topics,
especially at higher abstraction levels. In partic-
ular, their top-level topics often degenerate into
clusters of meaningless common words (Wang
et al., 2023; Wu et al., 2023). (3) Inaccurate
hierarchy relations: Many existing HNTMs rely
on the symmetric distance metric (i.e., dot prod-
uct) to infer the asymmetric hierarchy relations
among topics. Such approximation results in an
inaccurate hierarchical topic structure.

Considering the above challenges, we propose
to learn topic taxonomy in the box embedding
space (Vilnis et al., 2018) and develop a Box
embedding-based Topic Model (BoxTM)1 fol-
lowing the framework of NVI. Figure 1 shows
the differences of the topic taxonomy discovery
processes in the point embedding space and the

1The source code of our model is available in public at:
https://github.com/luyy9apples/BoxTM.

Figure 1: The topic taxonomy discovery processes
in the point embedding space (a–c) and the box
embedding space (d–f) of most existing HNTMs and
the proposed BoxTM, respectively.

box embedding space, which are adopted by most
existing HNTMs and our BoxTM, respectively.
And the topic taxonomy discovery process in the
hyperbolic embedding space is similar to that in
the point embedding space. Specifically, BoxTM
represents a topic or word as a hyperrectangle
instead of a point, whose volume is proportional
to the size of its semantic scope. In other words,
the box embedding of a general topic covers a rel-
atively larger region than that of a specific topic.
Additionally, we conduct recursive clustering on
the box embeddings of the lower-level topics to
extract the upper-level topics. This approach lever-
ages the connection between descendant topics to
precisely capture the semantics of the upper-level
topics, which can address the topic collapse prob-
lem caused by unguided upper-level topic mining.
Intuitively, we employ symmetry and asymmetry
distance metrics defined in the box embedding
space respectively to capture similarity and hi-
erarchy relations among topics. In summary, the
main contributions of this paper are as follows:

• We propose representing topics and words
as box embeddings to capture their semantic
scopes and accurately infer the hierarchical
relations among these topics.

• We propose to conduct recursive clustering
on leaf topics to mine upper-level topics,
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which is an interpretable and effective way
to capture the semantics of upper-level topics.

• We conduct intrinsic evaluation, extrinsic
evaluation, human evaluation, and qualitative
analysis to validate the effectiveness of our
model compared to state-of-the-art baselines.

2 Related Work

2.1 Document Generation-based Methods
The classic topic model, i.e., LDA (Blei et al.,
2003b), uses a document generative process under
the framework of probabilistic graphical models
to extract flat topics. As an extension of LDA
to topic taxonomy discovery, a series of hierar-
chical topic models has been proposed, such as
nCRP (Blei et al., 2003a) and rCRP (Kim et al.,
2012). Despite their popularity, they suffer from
high complexity of posterior inference. Recently,
HNTMs (Isonuma et al., 2020; Chen et al., 2021a),
based on NVI and deep generative model, have
been developed to tackle this problem.

Inspired by the Embedded Topic Model (ETM)
(Dieng et al., 2020), nTSNTM (Chen et al., 2021b),
and SawETM (Duan et al., 2021a) project topics
and words into the same Euclidean embedding
space and construct topic taxonomy via the sym-
metric distances between topic and word points.
Due to the advantage of hyperbolic space in
modeling tree-structured data (Nickel and Kiela,
2017), HyperMiner (Xu et al., 2022) adopts a
hyperbolic embedding space to discover topic
taxonomy. However, HyperMiner still uses the
symmetric distance metric (i.e., dot product) to
infer the complex relations among topics and
randomly initializes topic embeddings, following
prior HNTMs. Such approximation of asymmetric
relations and ‘‘cold start’’ of embedding learning
result in a risk of top-level topics collapsing into
meaningless common words. To alleviate the latter
problem, C-HNTM (Wang et al., 2023) attempts
to learn topics of different levels using different
semantic patterns. Specifically, C-HNTM learns
level-2 topics by clustering on word embeddings,
and it adopts ETM to mine leaf topics. Unfor-
tunately, C-HNTM lacks the flexibility to learn
topic taxonomies of different depths.

2.2 Clustering-based Methods
Since pre-trained embedding models (Devlin et al.,
2019; Pennington et al., 2014) have boosted the

performance of many text mining tasks in recent
years, a branch of research attempts to mine flat
(Sia et al., 2020; Meng et al., 2022) or hierarchical
topics (Zhang et al., 2018; Grootendorst, 2022)
from high-quality embedding spaces directly. As
a representative clustering-based method, Taxo-
Gen (Zhang et al., 2018) conducts hierarchical
clustering to group similar words into clusters
(topics) and split coarse clusters (topics) into spe-
cific ones. Additionally, it ranks the importance
of each word to its topic by some manually de-
signed metrics, such as the symmetric distance
between a word and its cluster centroid. Im-
portantly, most clustering-based methods train
word embedding spaces on local contexts, which
enables them to capture accurate semantics of
words but hinders them from getting high-quality
topics, because the boundaries between clus-
ters are blurred in such delicate embedding
spaces. Regardless, since topics are semantic sum-
maries of corpora, global semantic information
is more critical for topic mining compared to
local contexts. However, clustering-based meth-
ods have trouble in utilizing the global statistics
of word occurrences effectively. For example,
both BERTopic (Grootendorst, 2022) and Taxo-
Gen (Zhang et al., 2018) simply apply TF-IDF
information as weights for topic keyword ranking.

2.3 Supervised Methods

Apart from self-supervised topic taxonomy dis-
covery, another line of research tries to adopt a
word-level knowledge graph (Lee et al., 2022;
Meng et al., 2020) or manually built topic hierar-
chy (Duan et al., 2021b) as the ‘‘framework’’ of
the topic taxonomy. As a representative method of
supervised HNTMs, TopicNet (Duan et al., 2021b)
adopts prior knowledge from WordNet (Miller,
1995). Specifically, TopicNet discovers each topic
and each topic hierarchical relation guided by a
seed word and the hypernym-hyponym relation
between seed words, respectively. Similarly, a
clustering-based method called TaxoCom (Lee
et al., 2022) uses manually defined seed words as
centers of topic clusters. Unfortunately, there may
be a semantic gap between the general knowledge
graph and the target corpus, and it’s difficult and
costly to determine a complete topic hierarchy
manually. Therefore, self-supervised topic taxon-
omy discovery is more flexible and versatile, since
it does not rely on prior knowledge.
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3 Background Knowledge

As a representative geometric embedding tech-
nology, the box embedding method represents a
word or topic as a box (i.e., axis-aligned hyper-
rectangle) instead of a point in the traditional
Euclidean embedding method. With extra degrees
of freedom, box embeddings can capture semantic
scopes and asymmetric relations of objects (Vilnis
et al., 2018; Li et al., 2019; Dasgupta et al., 2020).

Definition 1 (box embedding). A D-dimensional
box is determined by its minimum and maximum
coordinates in each axis, parameterized by a pair
of vectors (xm,xM ), where xm,xM ∈ [0, 1]D

and xm,i ≤ xM,i, for ∀i ∈ {1 . . . D}.

Definition 2 (box operations). Let Box(A) :=
(xA

m,xA
M ),Box(B) := (xB

m,xB
M ) denote box em-

beddings of objects A and B, respectively. The
basic box operations are defined as follows:

Definition 2.1 (volume). The volume of Box(A) is
defined as Vol(Box(A)) :=

∏D
i=1(x

A
M,i − xA

m,i).

Definition 2.2 (intersection). If there is an overlap
between Box(A) and Box(B), their intersec-
tion box is defined to be Box(A) ∧ Box(B) :=
(max(xA

m,xB
m),min(xA

M ,xB
M )); otherwise, it is

defined to be Box(A) ∧ Box(B) :=⊥.

Definition 2.3 (union). The union box of Box(A)
and Box(B) is defined as Box(A) ∨ Box(B) :=
(min(xA

m,xB
m),max(xA

M ,xB
M )).

Note that box embeddings are closed under the
intersection and union operations. For simplicity,
the base box operations are described above, while
in practice we adopt the Gumbel version that is
more stable for training (Dasgupta et al., 2020).

In this work, we consider the volume of a topic
or word box as its size of semantic scope, i.e.,
a more general concept covers a larger region in
the latent semantic space. The union box of topics
and words is a generalization of their semantics.
For the symmetric affinity, denoted as R1, there is
∀A,B : AR1B ⇒ BR1A. We estimate R1 with
the volume of the intersection between topic and
word boxes (Rs), which is defined as follows:

Rs(A,B) = Vol (Box(A) ∧ Box(B)) . (1)

Accordingly, we have Rs(A,B) = Rs(B,A).
To mitigate the bias towards large boxes, we can

regularize the Rs(A,B) metric through division
by Vol (Box(A)) · Vol (Box(B)) in practice.

For the asymmetric hierarchical relation be-
tween topics of adjacent levels, denoted as R2,
there is ∀ti, tj ∈ T : tiR2t

j ⇒ ¬tjR2t
i, which

means ‘‘if ti is a sub-topic of tj , then tj is NOT a
sub-topic of ti’’. We reflect R2 by the ratio of the
volume of their intersection box to the upper-level
topic box (Ra), that is,

Ra

(
tik
∣∣tjk+1

)
=

Vol
(

Box(tik) ∧ Box(tjk+1)
)

Vol
(

Box(tjk+1)
) ,

(2)

where tik ∈ Tk and tjk+1 ∈ Tk+1 denote top-
ics of the k-th and (k+1)-th level, respectively.
Unlike Rs(·, ·), Ra(·|·) has the property that
Ra(A

∣∣B) = Ra(B
∣∣A) �= 0 iff. Vol (Box(A)) =

Vol (Box(B)). Thus Ra(·|·) can better model the
hierarchical relation that is asymmetric.

Discussion of Box Embeddings for
Taxonomy Learning
Most of the previous works (Vilnis et al., 2018;
Lees et al., 2020; Dasgupta et al., 2020) learn
box embeddings of pre-defined entities or words
for taxonomy completion in a supervised man-
ner. For instance, Vilnis et al. (2018) first
proposed to train box embeddings for words
on the incomplete ontology, in order to infer
missing hypernym relations. Unlike these super-
vised methods, this paper aims at self-supervised
topic taxonomy construction from unstructured
text via box embeddings. This research prob-
lem poses new challenges for box embedding
learning. Accordingly, we propose a recursive
clustering algorithm for self-supervised box em-
bedding learning, which is integrated with a
VAE framework to provide an efficient so-
lution for topic taxonomy construction based
on box embeddings.

4 Proposed Method

In this section, we introduce the proposed
BoxTM in detail. Firstly, we propose the box
embedding-based document generative process in
Section 4.1, which is the main framework of
BoxTM. In general, BoxTM infers topic distri-
butions via the symmetric affinities and semantic
scopes of topics and words in the box embedding
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Figure 2: The main framework of BoxTM.

space. Additionally, the hierarchical relations are
modeled by the values of the asymmetric metric
between topic boxes. Subsequently, we intro-
duce more detailed designs of BoxTM, including
a novel workflow of recursive topic clustering
for upper-level topic mining (Section 4.2) and
two self-training tasks for modeling the semantic
scopes of words and topics better (Section 4.3).
Finally, we introduce the learning strategy of
BoxTM in Section 4.4.

4.1 Document Generative Process

BoxTM holds the assumption that a document
is generated by any topics in the topic taxon-
omy and adopts a bottom-up hierarchical topic
discovery method following Chen et al. (2021b).
For NVI, BoxTM adopts a classic Variational
AutoEncoder (VAE) with a logistic normal dis-
tribution LN (0, I) (Atchison and Shen, 1980) as
the prior of topic proportion. A VAE consists of an
encoder that learns hierarchical topic proportions
given document representations and a decoder
that reconstructs documents based on hierarchical
topic proportions and topic distributions. Figure 2
shows the main framework of BoxTM.

Given a corpus D and a vocabulary V , BoxTM
firstly encodes the TF-IDF representationd ∈ R

|V|

of each document into a latent distribution, from
which the latent feature z is sampled. After trans-
forming z to acquire the leaf topic proportion
π1, we infer upper-level topic proportions {π>1}
based on the asymmetric relations {Θk} of top-
ics in the box embedding space. Specifically,
Θk ∈ R

|Tk|×|Tk+1| between level-k topics Tk and

the upper-level topics Tk+1 are estimated by the
asymmetric metric Ra (·|·), i.e.,

Θij
k = logRa

(
tik
∣∣tjk+1

)
, (3)

where tik ∈ Tk and tjk+1 ∈ Tk+1. The encoding
process of BoxTM is defined as follows:

h = fh(d), (4)
z ∼ N (fμ(h), fσ(h)) , (5)

π1 = Softmax (fπ(z)) , (6)
πk+1 = Softmax (πkΘk) , (7)

where fh(·), fμ(·), fσ(·), and fπ(·) are feedfor-
ward neural networks. As the sampling process
for the latent feature z is not differentiable,
we adopt the reparameterization trick (Rezende
et al., 2014) to make the gradient descent pos-
sible. Specifically, the sampled feature z can be
expressed by a standard normal distribution, i.e.,
z = fμ(h) + ε · fσ(h), ε ∼ N (0, I).

For the decoding process of BoxTM, we apply
normalization before document reconstruction to
enhance the generation power of weak topic levels
(Hung et al., 2019), which is defined as follows:

d̃ =
K∑
k=1

(πk · Φk) ◦ CVΦk
/Zk, (8)

where K is the depth of the topic taxonomy
and ◦ denotes the element-wise multiplication.
Φk ∈ [0, 1]|Tk|×|V| is topic-word distributions of
the k-th level and Zk = ||(πk · Φk) ◦ CVΦk

||2 is
a 2-norm term. To weaken the impact of com-
mon words on document generation, we adopt the
Coefficient of Variation (CV) (Brown, 1998) to
sharpen all topic-word distributions {Φk}. Specif-
ically, the j-th element of CVΦk

∈ R
|V| is the

ratio of the standard deviation to the mean of
the j-th column in Φk, which is defined by
CVj

Φk
= σ(Φ:,j

k )/μ(Φ:,j
k ).

Notably, BoxTM infers topic-word distribu-
tions over the vocabulary V via the normalized
symmetric affinity between topic and word boxes.
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For the i-th topic tik at level-k and the j-th word
wj in V ,

Φij
k = Softmax

(
log

Rs(t
i
k, wj)

Vol(tik) · Vol(wj)

)
, (9)

which enables abstract topics to bias toward
general words, and vice versa.

In summary, we describe the document gen-
erative process of BoxTM as follows:

� For global topics, k ∈ {1, . . . ,K-1}:

1. Infer the hierarchical relations between
level-k and level-(k+1) topics Θk by Eq. (3).

2. Infer the topic-word distribution Φk by
Eq. (9).

� For each document:

1. Draw the leaf topic proportion π1 ∼
LN (0, I).

2. Infer the upper-level topic proportion πk+1

by Eq. (7), for level k ∈ {1, . . . , K-1}.

3. For each word wj in the document:

a. Draw topic level k ∼ Uniform(K).

b. Draw topic assignment tik ∼ Cat(πk).

c. Draw word ŵj ∼ Cat(Φi,:
k ).

4.2 Recursive Topic Clustering

Unlike most HNTMs that randomly initialize em-
beddings of topics in different abstraction levels,
BoxTM conducts recursive clustering on topic
boxes to learn upper-level topics. Notably, such a
method can alleviate the problem of topic collapse,
since the upper-level topic mining is guided by
the correlation between lower-level topics. For the
selection of clustering algorithms, we adopt the
Affinity Propagation (AP) (Frey and Dueck, 2007)
algorithm for its flexibility and interpretability.2

BoxTM constructs a topic affinity graph for top-
ics at each level, where topic nodes are connected
if their boxes overlap. However, the direct corre-
lation between topics may be sparse in the box

2Compared to the AP algorithm, centroid-based methods
such as k-means++ (Arthur and Vassilvitskii, 2007) cannot
accommodate non-flat geometries like the box embedding
space, while density-based DBSCAN (Ester et al., 1996) is
vulnerable to the setting of hyperparameters.

embedding space due to the diversity of topics,
i.e., Vol(Box(tik) ∧ Box(tjk)) → 0, ∀tik, t

j
k ∈ Tk.

To address this, we expand the semantic scope of
each topic by merging the information of its key-
word boxes. The box embedding of the processed
i-th topic t̃ik at level-k is defined as follows:

Box(t̃ik) :=
[
∨w∈Wi

k
Box(w)

]
∨ Box(tik), (10)

where W i
k = {wj | argmaxj Φ

ij
k } with

∣∣W i
k

∣∣ = n
denotes the set of top-n (n = 5 in our exper-
iments) representative words of topic tik. Next,
the affinity between topics is measured by the
value of the asymmetric metric Ra(·|·) instead of
the symmetric similarity metric Rs(·, ·), because
Ra(·|·) can weaken the influence of hub topics in
clustering and prevent over-smoothing. Formally,
the affinity matrix Ak ∈ R

|Tk|×|Tk| is defined by

Aij
k =

{
log Ra(t̃

j
k

∣∣t̃ik) , i �= j;

0 , i = j.
(11)

Later, the union of topic boxes in each cluster
is adopted as a reasonable initialization of an
upper-level topic. To reduce the impact of outliers
in clustering, we propose a soft union operation
∨†, which is defined as follows:

Box
(
tik+1

)
:= (xim, xiM ) = ∨†t∈Cik

Box(t̃),

xim = μ({xtm}t∈Cik), x
i
M = μ({xtM}t∈Cik),

(12)

where Ci
k is the i-th topic cluster of the k-th

level and μ(·) is the mean operation. Additionally,
Box

(
tik+1

)
is the reinitialized box embedding for

the upper-level topic tik+1. Then BoxTM infers
the hierarchical relations Θk between level-k and
level-(k+1) topics based on their box embeddings.
For each topic tik ∈ Tk at the k-th level, its most
relevant topic at the upper level is adopted as its
parent topic tip ∈ Tk+1. Formally, we have

tip := tjk+1 = argmax
j

Θij
k . (13)

After conducting (K-1) times of topic cluster-
ing recursively, BoxTM can mine topics of K
levels in a bottom-up manner.
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4.3 Semantic Scope Modeling
The effectiveness of our box embedding-based
document generative process with recursive topic
clustering is based on an important premise that
box embeddings can accurately model the se-
mantic scopes of words and topics. Here we
propose two self-supervised tasks by means of
word-level and topic-level constraints for seman-
tic scope modeling.

4.3.1 Word-level Constraint
Importantly, the semantic scope of each word con-
sists of its abstraction level and semantics, which
correspond to the volume and position of its box,
respectively. Inspired by GloVe (Pennington et al.,
2014), we propose to encode the (co-)occurrence
patterns of words into word boxes.

Our key insight is that the marginal probability
P (wj) of word wj reveals its abstraction level.
Besides, as the distributional hypothesis states
that similar words wi and w′

i tend to co-occur
with the same word wj , the joint probability
P (wi, wj) may reflect the correlation between
the semantics of wi and wj . In practice, the joint
and marginal probabilities can be estimated by
P (wi, wj) ∼ Xij and P (wj) ∼ Xj , where Xij

is the co-occurrence time of wi and wj in the
corpus, and Xj =

∑
wn∈V Xjn. Integrating these

patterns, we propose that the values of the asym-
metric metric Ra(wi|wj) in the box embedding
space should be consistent with the conditional
probability Pi|j = P (wi|wj) = Xij/Xj .

For the word-level constraint of semantic
scope modeling, the Mean-Square Error (MSE)
loss is a straightforward selection, i.e., LCO =∥∥Ra(wi|wj)− Pi|j

∥∥2
2
. However, the MSE loss

strongly restricts the absolute volumes of word
boxes, which is difficult for training. There-
fore, we adopt the cross-entropy loss H(·, ·)
to constrain the relative volumes of word
boxes among a randomly sampled batch B =
{(wi, wj)|Pi|j > 0}. Formally, we denote the box
volume distribution as qBox(wi, wj) ∼ Ra(wi|wj)
and the co-occurrence pattern distribution as
pCO(wi, wj) ∼ Pi|j . Then the loss function is
defined by

LCO = H(pCO, qBox)

= −
∑

(wi,wj)∈B
pCO(wi, wj) log qBox(wi, wj).

(14)

4.3.2 Topic-level Constraint
In a reasonable topic taxonomy S , the semantic
scope of a parent topic tp should cover that of
its child topic tc (Viegas et al., 2020). In other
words, the box embedding of tp should entail that
of tc. Intuitively, we can define the following loss
to maximize the score of asymmetric correlation
metric between tp and tc:

LHT = −
∑

(tp,tc)∈S
log Ra(tc|tp)

= −
∑

(tp,tc)∈S
log Rs(tc, tp)− logVol(tp),

(15)

where the first term Rs(tc, tp) regularizes the
semantic coherence between tp and tc. However,
the second term of the above definition may lead
to a trivial solution that all topic boxes collapse to
points, i.e., Vol(t) → 0 and then Rs(tc, tp) → 0,
∀t, tc, tp. To avoid this problem, we replace the
second term with a max-margin objective, which
makes the box of tp larger than that of tc by at least
the margin m. So LHT is redefined as follows:

LHT =−
∑

(tp,tc)∈S
log Rs(tc, tp)

−max [0,m− logVol(tp) + logVol(tc)] .
(16)

4.4 Learning Strategy
Similar to the training objective of VAEs, the
main loss of BoxTM is to maximize the Evi-
dence Lower BOund (ELBO). Specifically, the
ELBO loss of BoxTM is defined by

LELBO =Eπ1∼qd log p(d|{πk}, {Φk})
−DKL [qd(π1)||p(π1)] ,

(17)

which balances between maximising the ex-
pected log-likelihood (the first term) and min-
imising the KL divergence (the second term) of
the variational distribution qd(π1) := N (fμ(d),
fσ(d)) and the prior distribution p(π1) :=
N (0, I).

For modeling the semantic scopes of
words and topics, we propose two constraints in
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Algorithm 1 The i-th epoch of training
Input: The corpus D and its vocabulary V; The
word and topic box embeddings W and {Tk}; The
topic taxonomy S after prior epoch; The threshold
γ for early stop.
Output: Updated word and topic box embed-
dings W̃ and {T̃k}; Updated topic taxonomyS̃.

1: if i < γ then
2: S̃, {T̃k} ← RECURCLUS(W,T1, K)
3: else S̃, {T̃k} ← S, {Tk}
4: for each batch B ⊂ D do
5: Infer hierarchical relations Θ by Eq. (3).
6: Infer topic-word distributions Φ by Eq. (9).
7: for each document d ∈ D do
8: Draw topic proportions {πk} ← EN-

CODE(d,Θ).
9: Reconstruct document d̃ ← DE-

CODE({πk},Φ).
10: Compute loss L = LELBO + LBox.
11: Update W̃ and {T̃k} by minimizing L.
12: Update S̃ based on {T̃k} by Eq. (13).
13: return W̃ , {T̃k}, S̃

Section 4.3. Accordingly, we define the regular-
ization loss by

LBox = α · LCO + β · LHT , (18)

where α and β are weights for these losses.
And the overall loss function of BoxTM is de-
fined by

L = LELBO + LBox. (19)

Then we adopt the Adam optimizer to update
the network parameters of the encoder and box
embeddings of topics and words. Based on the
updated topic boxes, we perform a correction for
the topic taxonomy using Eq. (13). The training
workflow of BoxTM is shown in Algorithm 1.
Intuitively, topic boxes overlap less along with
the training to capture diverse semantics, which
limits the effectiveness of our recursive cluster-
ing module at the late phase of training. To tackle
this problem, we use the early stopping trick that
stops recursive clustering after the γ-th iteration.
In the following experiments, γ is set to 100.

#document

dataset #train #valid #test #word #class

20news 9,007 2,251 7,487 1,838 20
NYT 6,279 1,569 5,233 8,171 25
arXiv 110,451 27,612 92,042 11,799 53

Table 1: Statistics of datasets.

5 Experiments

5.1 Experimental Settings

5.1.1 Datasets

We conduct comprehensive evaluations on three
benchmark datasets with latent topic hierarchies:
(1) 20news3: A corpus consists of 20 newsgroups
(Song and Roth, 2014). (2) NYT4: A set of news
articles from the New York Times, which are cate-
gorized into 25 classes. (3) arXiv5: A set of paper
abstracts covering 53 classes from arXiv website.
The latter two datasets are collected by Meng et al.
(2019). Table 1 shows the statistics of all datasets.
After preprocessing of removing stopwords and
low-frequency words, we split documents into a
training set and a testing set with the ratio of 6:4.
In addition, we adopt 20% of documents in the
training set as a validation set.

5.1.2 Baselines

We compare our model with state-of-the-art
topic taxonomy discovery models based on
different frameworks, including document
generation-based methods of nTSNTM6 (Chen
et al., 2021b), SawETM7 (Duan et al., 2021a),
HyperMiner8 (Xu et al., 2022), and C-HNTM9

(Wang et al., 2023), as well as a clustering-based
method of TaxoGen10 (Zhang et al., 2018).
Notably, HyperMiner adopts the hyperbolic
embedding space, and the others hold the
Euclidean embedding space assumption.

5.1.3 Hyperparameter Settings

The maximum depth of the topic taxonomy is set
to 3 for the 20news and NYT datasets following

3http://qwone.com/˜jason/20Newsgroups/.
4http://developer.nytimes.com/.
5https://arxiv.org/.
6https://github.com/hostnlp/nTSNTM.
7https://github.com/BoChenGroup/SawETM.
8https://github.com/NoviceStone/HyperMiner.
9https://github.com/Jladygoogoo/C-HNTM.

10https://github.com/franticnerd/taxogen.

1408

http://qwone.com/~jason/20Newsgroups/
http://developer.nytimes.com/
https://arxiv.org/
https://github.com/hostnlp/nTSNTM
https://github.com/BoChenGroup/SawETM
https://github.com/NoviceStone/HyperMiner
https://github.com/Jladygoogoo/C-HNTM
https://github.com/franticnerd/taxogen


20news NYT arXiv

model C D C*D HC C D C*D HC C D C*D HC

nTSNTM 0.212 0.728 0.154 0.134 0.221 0.420 0.093 0.079 – – – –
SawETM 0.221 0.404 0.089 0.098 0.228 0.476 0.109 0.084 0.134 0.256 0.034 0.047
HyperMiner 0.224 0.459 0.103 0.102 0.231 0.500 0.115 0.101 0.142 0.382 0.054 0.050
C-HNTM 0.196 0.633 0.124 0.090 0.152 0.458 0.070 0.036 – – – –
TaxoGen 0.202 0.789 0.159 0.123 0.239 0.881 0.210 0.111 0.214 0.681 0.146 0.084

BoxTM 0.301 0.661 0.199 0.159 0.409 0.648 0.265 0.177 0.257 0.672 0.173 0.113

Table 2: Intrinsic metric scores on three datasets.

Chen et al. (2021b). To evaluate the flexibility of
BoxTM and baseline models, the maximum depth
for the large dataset arXiv is set to 5. Addition-
ally, the maximum number of leaf topics |T1|max

of nTSNTM is 200 following the setting in its pa-
per, which can get a reasonable number of topics
adaptively based on the stick-breaking process.
According to the number of active topics obtained
by nTSNTM, |T1|max of BoxTM and the other
HNTMs is set to 50/50/100 for three datasets,
respectively. For TaxoGen, the maximum number
of clusters is set to 5/5/3. The embedding dimen-
sion of BoxTM is set to 50 following Vilnis et al.
(2018). Since box embeddings have 2 parameters
per dimension, the embedding size of baselines
are set to 100 for a fair comparison.

Other hyperparameters of baselines take the op-
timal values reported in their papers. For BoxTM,
the learning rate is 5e-3, the dimension of hidden
layers is 256, and the max margin m is set to
10. The weight of LHT gradually increases to the
maximum value (βmax = 0.005) during training,
when the constant weight of LCO is set to 3.

5.2 Intrinsic Evaluation of Topic Taxonomy

For a reasonable topic taxonomy, each topic is a
set of closely coherent words and diverse from
one another. Also, keywords of a parent topic
tp and its child topic tc are coherent but have
different semantic abstraction levels. Thus we
validate the quality of the topic taxonomy from
the following perspectives: (1) Topic Coherence
(C): We adopt a classic metric NPMI (Lau et al.,
2014) to quantify the coherence of mined topics.
(2) Topic Diversity (D): The widely used TU
(Nan et al., 2019) metric is for assessing the
diversity among all topics, which is calculated
by the number of unique keywords among all
topics. (3) Hierarchical Coherence (HC): We

adopt the CLNPMI (Chen et al., 2021b) metric to
evaluate the hierarchical coherence between topics
tp and tc.

Because highly overlapping topics may cause
inflated coherence scores, the product of NPMI
and TU are used as an integrated metric (C*D) for
a comprehensive validation (Dieng et al., 2020).
For the aforementioned metrics, we calculate the
average of the scores of top-5, top-10, and top-15
topic words. Because the source code of nTSNTM
and the algorithm of C-HNTM cannot adapt to
topic taxonomy with more than 3 levels, their
results on the arXiv dataset are not reported.

As shown in Table 2, BoxTM achieves new
state-of-the-art results on most metrics across
three datasets, when HyperMiner using hyper-
bolic embeddings outperforms SawETM. These
results validate the advantage of geometric (i.e.,
hyperbolic and box) embeddings on topic taxon-
omy discovery over traditional point embeddings.
Compared to C-HNTM that performs poorly on
the HC metric, the proposed recursive topic clus-
tering module of BoxTM can effectively learn
topics of different levels. While both SawETM
and HyperMiner fail to learn a deep topic taxon-
omy on the arXiv dataset with massive documents,
BoxTM remains outstanding performance on topic
quality and hierarchical coherence. It validates that
BoxTM not only has scalability for large-scale
data but also has flexibility to learn topic tax-
onomies of different structures. In terms of the
clustering-based method, TaxoGen obtains high
scores of topic diversity (D), because each word
only belongs to one topic at each level in its ap-
proach. However, it neglects the polysemy of some
words, i.e., a word can be the keyword of different
topics, which leads to its performance decline on
topic coherence. For example, the word ‘‘driver’’
could be the keyword of topics ‘‘hardware’’
and ‘‘motorcycles’’.
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Figure 3: The C*D scores at each level of BoxTM and
baselines on NYT.

Furthermore, Figure 3 illustrates the C*D scores
at each level of BoxTM and baselines on the
NYT dataset. Both coherence and diversity of
the level-2 topics of all models have different
degrees of improvement compared to leaf topics.
However, most baselines fail to learn high-quality
topics at the root level, that is, they encounter
the topic collapse problem. And topics mined by
BoxTM remain high-quality at all levels, due to
the effectiveness of the proposed recursive topic
clustering module.

5.3 Extrinsic Evaluation of Topic Taxonomy

As an important application scenario for topic
taxonomy discovery, the tree structure and key-
words of the mined topic taxonomy can serve as
auxiliary knowledge to improve the performance
of hierarchical text clustering (Lee et al., 2022).
Specifically, each topic is regarded as a clus-
ter, characterized by its keywords. We utilize the
topic structure and the top-15 keywords of all top-
ics learned by our BoxTM and baseline models as
the inputs of a hierarchical text clustering model
named WeSHClass (Meng et al., 2019). For the
evaluation metrics, we adopt two external crite-
ria of clustering (i.e., ARI and Fβ) using golden
labels of documents (Steinbach et al., 2005).

Table 3 shows the results of BoxTM and base-
line models on the hierarchical text clustering
task. Particularly, BoxTM and other HNTMs sig-
nificantly outperform C-HNTM and TaxoGen that
conduct clustering on word embeddings to mine
topics, which reveals the limitation of latter meth-
ods in learning document-level semantics. Among
HNTMs, BoxTM achieves the best results over-
all (ARI = 0.254 and Fβ = 0.296 in average),
followed by SawETM (ARI = 0.226 and Fβ =
0.267 in average). Although SawETM outper-
forms BoxTM on the arXiv dataset, it cannot

20news NYT arXiv

model ARI Fβ ARI Fβ ARI Fβ

nTSNTM 0.081 0.133 0.389 0.448 – –
SawETM 0.074 0.123 0.452 0.494 0.151 0.184
HyperMiner 0.075 0.127 0.421 0.466 0.115 0.151
C-HNTM 0.056 0.104 0.143 0.216 – –
TaxoGen 0.066 0.132 0.310 0.367 0.097 0.133

BoxTM 0.117 0.168 0.541 0.577 0.103 0.143

Table 3: Extrinsic metric scores on three datasets.

discover coherent topics according to the intrin-
sic evaluation. These results show that there is
a tradeoff between learning high-quality topics
and document-level semantics for topic modeling
methods, and our BoxTM strikes a good balance.

5.4 Human Evaluation

To complement the above automatic metrics, we
also utilize a manual evaluation task of topic in-
trusion (Chang et al., 2009) to further validate the
ability of topics at different levels to describe doc-
uments. As shown in Figure 4 (left), human raters
are shown a document from the testing set of NYT,
along with four topics represented by their top-10
keywords. Three of them are the top-3 topics at the
same level assigned to the given document by the
topic model, while the remaining intruder topic is
sampled randomly from the other low probability
topics. We recruit ten graduate students majoring
in computer science as raters and instruct them
to choose topics that are not relevant to the doc-
uments. For evaluation, we compare our BoxTM
with two strong baselines, i.e., SawETM and Hy-
perMiner, excluding TaxoGen that cannot infer
the topic distributions of documents. According
to the value of Light’s kappa (Light, 2011) (κ =
0.607), the annotation results of the ten raters have
a fairly high degree of agreement.

Figure 4 (right) shows the precision scores of
different models on this task. The performance
of all three models on the manual assessment
is generally consistent with those on the extrinsic
evaluation. Notably, our BoxTM achieves an over-
all optimal result, which indicates that it generates
different levels of topics that describe documents
in alignment with human judgment.

5.5 Ablation Analysis

In this section, we conduct an ablation study to
analyze the roles of several key components of
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Figure 4: Illustration of the human evaluation on the NYT dataset: An example of the topic intrusion task (left)
and the average precision (%) of our BoxTM and strong baselines (right).

embedding model C*D HC ARI Fβ

box

BoxTM 0.265 0.177 0.541 0.577
wo/ LCO 0.266 0.191 0.449 0.489
wo/ LHT 0.276 0.157 0.299 0.355
wo/ clus 0.256 0.139 0.337 0.394

point

w/ kmeans 0.201 0.174 0.397 0.441
w/ AP 0.241 0.158 0.444 0.488
w/ hier 0.208 0.162 0.417 0.458
wo/ clus 0.193 0.153 0.376 0.423

Table 4: Intrinsic and extrinsic metric scores of
ablation models on NYT.

BoxTM, whose results are shown in Table 4. Most
importantly, the ablation models that replace box
embeddings with traditional point embeddings
(i.e., the point models), experience a drastic per-
formance drop in both topic quality and extrinsic
evaluation compared to BoxTM. Within several
clustering algorithms, the point model using AP
clustering (w/ AP) performs better than those
with kmeans++ (w/ kmeans) or agglomerative
clustering (w/ hier).

In terms of the proposed box embedding reg-
ularizations, BoxTM wo/ LHT fails to capture
the proper semantic scopes of topics at different
levels, leading to worse performance on the HC
metric as well as the downstream task. Though
BoxTM wo/ LCO remains competitive on intrin-
sic evaluation, its performance on the hierarchical
text clustering task drops compared to BoxTM.

5.6 Case Study of Topic Taxonomy

In this section, we evaluate the mined topic tax-
onomy qualitatively via a case study. Figure 5(a)
illustrates some sample topics from the 5-level
topic taxonomy learned by BoxTM on the arXiv
dataset. A level-4 topic about ‘‘network’’ branches

into child topics related to ‘‘computer communica-
tion networks’’ (left), ‘‘optimization algorithms’’
(middle), and ‘‘applications’’ (right). Further-
more, in the field of ‘‘applications’’, there are
sub-fields that focus on different research prob-
lems, including ‘‘computation and language’’
and ‘‘computer vision and pattern recognition’’.
Moreover, Figure 5(b) shows some topics re-
lated to ‘‘sports’’ and ‘‘administration’’ mined
by BoxTM on NYT.

5.7 Analysis of Taxonomy Depth

In the aforementioned experiments, we set the
maximum depth to the same value for all models
by following Chen et al. (2021b). As a comple-
ment, Figure 6 illustrates the performance of our
BoxTM compared to the top-2 best performing
baselines (i.e., TaxoGen and HyperMiner) for dif-
ferent settings of taxonomy depth. In most cases,
BoxTM outperforms baselines with the same tax-
onomy depth. Nevertheless, how to determine
an appropriate taxonomy depth in the real-life
applications is a valuable but challenging problem.

Considering that the automatic metrics (e.g.,
C and HC) may be sensitive to the taxonomy
depth, we also conduct a qualitative analysis to
discuss the influence of taxonomy depths on our
BoxTM. As shown in Figure 7, the leaf topic
about ‘‘Galerkin methods’’ is assigned to the par-
ent topic related to ‘‘numerical analysis’’ for K =
3. And when K = 4, BoxTM further extracts a
level-4 topic that is related to ‘‘general algo-
rithm’’. Interestingly, when the structure of the
taxonomy continues to deepen (K = 5), BoxTM
identifies that ‘‘Galerkin methods’’ is commonly
applied in the field of ‘‘physics’’ as a classic
PDE solver. Overall, our BoxTM can discover
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Figure 5: Illustration of the partial topic taxonomy learned by BoxTM on arXiv (a) and NYT (b).

Figure 6: The C*D and HC scores of BoxTM, Taxo-
Gen, and HyperMiner with different settings of tax-
onomy depth (i.e., K).

topics with different granularity and the hierarchi-
cal relations under varying settings of taxonomy
depth. Therefore, users can set the taxonomy depth
according to their practical requirements.

Moreover, unlike most HTMs that require a
fixed taxonomy depth, the recursive topic clus-
tering module in BoxTM provides a promising
solution for determining the taxonomy depth
adaptively. Specifically, BoxTM can halt topic

Figure 7: Pathways of the leaf topic about ‘‘Galerkin
methods’’ obtained by BoxTM on the arXiv dataset,
when the taxonomy depth (i.e., K) is set to different
values.

clustering when the number of topics at the top
level is smaller than a threshold, which is easier
to determine compared to the taxonomy depth.
Figure 7 (adaptive) illustrates the topic pathway
mined by BoxTM when the threshold is set to 10.
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Figure 8: (a) Visualization of parent topic 2–5 (yellow)
and child topic 1–13 (blue) boxes. (b) Visualization of
intersection boxes of hierarchical topics (i.e., 1–13 and
2–5) (yellow) as well as irrelevant topics (i.e., 1–13
and 2–11) (purple).

5.8 Qualitative Analysis of Box Embeddings

In this section, we examine whether box em-
beddings can reflect the asymmetric relation
between parent and child topics. For example,
topic 2-5 (i.e., the 5-th topic at level-2) learned
by BoxTM on NYT is related to ‘‘religion’’ and
topic 1-13 is one of its children, while topic 1-27
is about ‘‘hardware’’, characterized by keywords
such as ‘‘drive’’ and ‘‘controller’’. As shown in
Figure 8(a), the boxes of upper-level topics en-
tail those of their children. Besides, Figure 8(b)
illustrates that the box embedding of child topic
1–13 has a larger overlap with its parent topic 2–5
compared to a randomly sampled topic 2–11, with
p = 0.007 < 0.05 according to the paired sample
t-test.

6 Conclusion

This paper proposes a novel model called BoxTM
for self-supervised topic taxonomy discovery in
the box embedding space. Specifically, BoxTM
embeds both topics and words into the same box
embedding space, where the symmetric and asym-
metric metrics are defined to infer the complex
relations among topics and words properly. Addi-
tionally, instead of initializing topic embeddings
randomly, BoxTM uncovers upper-level topics via
recursive clustering on topic boxes.

While our BoxTM has achieved state-of-the-art
performance in multiple evaluation experiments,
it also exhibits a limitation in efficiency. The point
model, a variant of BoxTM that replaces the box
embeddings with point embeddings, is trained for
0.22 GPU (GTX 1080 Ti) hour on the 20news
dataset. Due to the extra computation of box op-

erations compared to dot product, BoxTM costs
about 1.0 hour, which reveals the research space
for efficient computation of box embeddings.
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