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Abstract

Self-correction is an approach to improving re-
sponses from large language models (LLMs)
by refining the responses using LLMs dur-
ing inference. Prior work has proposed vari-
ous self-correction frameworks using different
sources of feedback, including self-evaluation
and external feedback. However, there is still
no consensus on the question of when LLMs
can correct their own mistakes, as recent stud-
ies also report negative results. In this work,
we critically survey broad papers and discuss
the conditions required for successful self-
correction. We first find that prior studies of-
ten do not define their research questions
in detail and involve impractical frameworks
or unfair evaluations that over-evaluate self-
correction. To tackle these issues, we cat-
egorize research questions in self-correction
research and provide a checklist for design-
ing appropriate experiments. Our critical sur-
vey based on the newly categorized research
questions shows that (1) no prior work dem-
onstrates successful self-correction with feed-
back from prompted LLMs, except for studies
in tasks that are exceptionally suited for self-
correction, (2) self-correction works well in
tasks that can use reliable external feedback,
and (3) large-scale fine-tuning enables self-
correction.

1 Introduction

Self-correction is a popular approach to improve
responses from large language models (LLMs)
by refining them using LLMs during inference
(Bai et al., 2022; Madaan et al., 2023). Extensive
studies on self-correction have been conducted
in various tasks, including arithmetic reasoning,
code generation, and question answering (Gao
et al., 2023; Shinn et al., 2023). The simplest
approach of self-correction prompts LLMs to pro-
vide feedback on their own responses and refine
the responses using the feedback (Huang et al.,

2024a), under the hypothesis that recognizing er-
rors is easier than avoiding them (Saunders et al.,
2022). As in Figure 1, self-correction has also been
studied using additional information for improv-
ing feedback, including external tools such as code
interpreters (Chen et al., 2024d; Gou et al., 2024),
external knowledge retrieved via web search (Gao
et al., 2023; Jiang et al., 2023b), or fine-tuning
(Welleck et al., 2023; Ye et al., 2023). However,
recent studies also report negative results indicat-
ing that LLMs cannot self-correct (Huang et al.,
2024a; Gou et al., 2024; Li et al., 2024b) or even
self-detect (Chen and Shu, 2024; Tyen et al., 2024;
Hong et al., 2024; Jiang et al., 2024; Kamoi et al.,
2024) their own mistakes at least in certain con-
ditions. These conflicting observations indicate
that further analysis of self-correction is needed.

In this work, we provide a critical survey to
investigate the conditions required for success-
ful self-correction. First, our analysis finds that
prior studies often do not define their research
questions in detail. As a result, many papers fail
to provide appropriate experiments to evaluate
the research questions they implicitly target. To
address this issue, we categorize research ques-
tions in self-correction research (§3.1) and dis-
cuss frameworks that should be used for verifying
each research question (§3.2). Finally, we pro-
vide a checklist for designing appropriate experi-
ments (§8).

Next, we analyze prior work to identify when
LLMs can self-correct their mistakes, using the
new definitions of the research questions. Our
analysis highlights that the bottleneck is in the
feedback generation (§7). Specifically, (1) no
prior work shows successful self-correction with
feedback from prompted LLMs in general tasks
(§4), (2) self-correction works well in tasks where
reliable external feedback is available (§5.1),
(3) large-scale fine-tuning enables self-correction
(§5.2), and (4) some tasks have properties ex-
ceptionally suitable for self-correction (§4). In
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Figure 1: Self-correction in three stages: initial response
generation, feedback, and refinement.

summary, our analysis identifies the properties
required for successful self-correction as follows:

[RQ1] When can LLMs self-correct based solely
on the inherent capabilities of LLMs?

• In general tasks, no prior work shows reli-
able evidence of successful self-correction
with in-context learning. (§4)

• In tasks with specific properties that are ex-
ceptionally favorable for self-correction (e.g.,
responses are decomposable), self-correction
is effective even with in-context learning.
(§4)

[RQ2] When can LLMs self-correct the best-
possible initial responses with external informa-
tion?

• Self-correction is effective in tasks where
reliable external feedback is available. (§5.1)

• Fine-tuning enables self-correction when
large training data is available but is unex-
plored for small training data. (§5.2)

[RQ3] When are the final outputs of self-
correction better than other approaches?

• Self-correction is often not compared with
sufficiently strong baselines, and it is still
unclear whether it is better than other ap-
proaches. (§6)

This survey is organized as follows. Section 2
provides an overview of self-correction. Section 3
introduces a new approach to classify research
questions and frameworks in self-correction re-
search. Sections 4 and 5 analyze prior work in
self-correction with in-context learning and ex-
ternal information (external tools, external knowl-
edge, fine-tuning), respectively. Section 6 explains
related approaches that should be compared with
self-correction as baselines. Section 7 summa-

rizes our findings from the analysis. Section 8
provides a checklist for self-correction research.
Section 9 explains differences from other sur-
veys. Section 10 provides studies related to self-
correction. Section 11 provides future directions.

2 Self-Correction of LLMs

The term ‘‘self-correction’’ is used in a wide
range of scenarios, from a strict definition in
which LLMs refine their own responses by them-
selves (Madaan et al., 2023; Huang et al., 2024a)
to broader concepts that also involve feedback
from external tools or knowledge (Shinn et al.,
2023; Gou et al., 2024). In this work, we define
self-correction as a framework that refines re-
sponses from LLMs using LLMs during inference,
possibly with external tools or knowledge. As in
Table 1, Figure 2, and Figure 3, self-correction has
been studied in various frameworks with differ-
ent sources of feedback.

2.1 Frameworks

Prior studies propose self-correction frameworks
with various different architectures.

Explicit Feedback vs. Direct Refinement.
Self-correction often consists of three stages in-
cluding feedback generation (Kim et al., 2023;
Madaan et al., 2023; Shinn et al., 2023; Huang
et al., 2024a):

• Initial Response Generation is a stage of
generating initial responses from an LLM.

• Feedback model generates feedback given
the original input and initial response. This
stage may use external tools or knowledge.

• Refinement model generates a refined re-
sponse, given the input, initial response, and
feedback.

Direct refinement is another approach that re-
fines responses without generating feedback ex-
plicitly (Saunders et al., 2022; Bai et al., 2022;
Welleck et al., 2023; Akyurek et al., 2023).

Post-hoc vs. Generation-time. Post-hoc cor-
rection refines responses after they are generated
(Pan et al., 2024). Generation-time correction or
step-level correction (Paul et al., 2024; Jiang et al.,
2023b) improves step-by-step reasoning by pro-
viding feedback on intermediate reasoning steps.
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Paper Category Main Models Additional Feedback Main Tasks

Oracle External Tools Fine-Tuning Reasoning,
Coding

Closed-book,
Knowledge

Open-book,
Context-based

Open-ended
Text Gen

Decom-
posable

Self-Correction with In-context Learning (Intrinsic Self-Correction)
CoVe
(2023) Intrinsic PaLM 540B – – – – – – –

Multiple
Answers

CAI Revisions
(2022)♠ Intrinsic 52B (no details) – – – – – – Detoxification –

Self-Refine
(2023)♠ Intrinsic GPT-3.5, GPT-4 – – –

Math,
Coding – Dialogue – –

RCI
(2023, §3.1) Oracle GPT-3.5-T � – –

Computer
Tasks CSQA – – –

Reflexion
(2023, §4.2) Oracle GPT-4 � – – – –

HotpotQA
(GT Context) – –

Self-Correction with External Tools or Knowledge
Reflexion
(2023, §4.1, 4.3) Fair-Asym. GPT-4 – Game Envs,

Interpreter –
Games,
Coding – – – –

Self-Debug
(2024d) Fair-Asym.

GPT-3.5-T,
GPT-4

– Code
Interpreter – Text-to-Code – – – –

CRITIC
(2024) Fair-Asym.

GPT-3,
Llama 2 70B

– Interpreter,
Web Search –

GSM8k,
SVAMP HotpotQA – Detoxification –

RARR
(2023) Unfair-Asym. Palm 540B – Web Search – –

NQ, SQA,
QReCC – – –

Reflexion
(2023, §4.2) Oracle GPT-4 � Wikipedia API – – HotpotQA – – –

Self-Correction with Fine-tuning
Self-Critique
(2022) Fair-Asym. InstructGPT – –

Human
Assessment – –

Topic-based
Summarization – –

SelFee
(2023) Fair-Asym. Llama 7B, 13B – –

ChatGPT
Assessment MT-Bench MT-Bench MT-Bench MT-Bench –

Baldur
(2023) Fair-Asym. Minerva 8B, 62B – Proof

Assistant GT Answer Proof
Generation – – – –

REFINER
(2024) Cross-Model

GPT-3.5
(FB:T5-base)

– – Synthetic Data Math, Logic – – Moral Stories –

RL4F
(2023) Cross-Model

GPT-3
(FB: T5-large)

– –
Reinforcement
Learning

Action
Planning –

Topic-based
Summarization – –

Self-Correction
(2023, §3.4) Cross-Model

GPT-3
(FB: GPT-Neo)

– –
GT Answer,
External

GSM8k,
SVAMP – – Detoxification –

Self-Correction
(2023, §3.1-3.3) Unfair-Asym.

GPT-Neo 1.3B,
GPT-2

– –
GT Answer,
External

GSM8k,
SVAMP – –

Detoxification,
Const Gen –

Negative Results of Self-Correction (i.e., LLMs cannot Self-Correct)
RCI (Table 17)
(2023) Intrinsic GPT-3.5-T – – –

Computer
Tasks CSQA – – –

CRITIC w/o Tool
(2024) Intrinsic

GPT-3,
Llama 2 70B

– – –
GSM8k,
SVAMP

Closed-book
HotpotQA – Detoxification –

Huang et al.
(2024a) Intrinsic

GPT-4-T,
GPT-3.5-T

– – – GSM8k CSQA,
HotpotQA – – –

Table 1: Representative studies in self-correction of LLMs. Gray color represents unrealistic settings.
♠: Weak prompts for generating initial responses. FB: Feedback models for cross-model correction.

Figure 2: LLM self-correction frameworks, categorized by information used for generating feedback and whether
they use best-possible initial responses (§3.2). This figure illustrates representative architectures.
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Figure 3: Taxonomy of LLM self-correction, categorized by information used for generating feedback and whether
they use best-possible initial responses (fair or unfair). Refer to Section 3.2 for the definitions.

Post-hoc correction is more flexible and applicable
to broader tasks, although generation-time correc-
tion is popular for reasoning tasks (Pan et al.,
2024).

Same-model vs. Cross-model. Cross-model
correction generates feedback or refines the re-
sponses using models different from the model
that generates initial responses. Cross-model cor-
rection has been mostly studied in the settings
of correcting mistakes of large proprietary LLMs
using small fine-tuned models (Welleck et al.,
2023; Akyurek et al., 2023; Paul et al., 2024) or
multi-agent debate of multiple models with simi-
lar capabilities (Liang et al., 2023; Li et al., 2023;
Cohen et al., 2023; Du et al., 2023; Zhang et al.,
2023a; Chen et al., 2024b; Chan et al., 2024; Wang
et al., 2024a).

2.2 Sources of Feedback

Intrinsic (§4). Intrinsic self-correction prompts
LLMs to generate feedback on their own re-
sponses. Prompting strategies include simple
zero-shot or few-shot prompts (Madaan et al.,
2023; Kim et al., 2023), decomposing the re-

sponses (Dhuliawala et al., 2023), and evaluating
confidence (Varshney et al., 2023; Jiang et al.,
2023b; Wu et al., 2024).

External Information (§5.1). Self-correction
often relies on external information, including ex-
ternal tools such as code executors (Jiang et al.,
2023a; Gou et al., 2024; Chen et al., 2024d;
Stengel-Eskin et al., 2024), symbolic reasoners
(Pan et al., 2023), proof assistant (First et al.,
2023), or task-specific metrics (Xu et al., 2023),
external knowledge from search engines (Jiang
et al., 2023b; Gao et al., 2023; Zhao et al., 2023),
Wikipedia (Yu et al., 2023; Zhao et al., 2023),
or other corpora (Peng et al., 2023; Zhao et al.,
2023), oracle information such as ground-truth
answers (Kim et al., 2023; Shinn et al., 2023),
human feedback (Chen et al., 2024a), or stronger
models (Zhang et al., 2024).

Fine-tuning (§5.2). Models fine-tuned for self-
correction are another source of feedback, which
are trained via supervised fine-tuning (Welleck
et al., 2023; Ye et al., 2023; First et al., 2023; Paul
et al., 2024; Han et al., 2024) or reinforcement
learning (Le et al., 2022; Akyurek et al., 2023).
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RQ Self-Refine Huang et al. RCI RCI CRITIC CRITIC RARR
(2023) (2024a) (2023, §3.1) (2023, §3.2) (2024, §4.2) (2024, §4.3) (2023)

RQ1 ✓ ✗ (§3,5) ✓ – ✗ ✗ –
RQ2 – – – ✓ ✓ ✓ –
RQ3 – ✗ (§4) – ✓ – ✓ ✓

Table 2: Research questions that prior studies implicitly target by claiming they are ✓ verified or
✗ refuted.

RQ
Requirements for Frameworks Required Experiments

Information Symmetricity Best-possible Realistic Comparison to Comparison to
Initial Responses Initial Responses Strong Baselines

RQ1 � � � � –
RQ2 – � � � –
RQ3 – – � – �

Table 3: Requirements for experiments to verify each research question in Section 3.1.

2.3 Tasks

Self-correction has been studied in various
tasks, including Reasoning: arithmetic reasoning
(Madaan et al., 2023; Nathani et al., 2023; Gou
et al., 2024), code generation (Jiang et al., 2023a;
Charalambous et al., 2023; Gou et al., 2024; Chen
et al., 2024d; Olausson et al., 2024), proof gen-
eration (First et al., 2023), logical reasoning (Pan
et al., 2023); Knowledge: closed-book QA (Shinn
et al., 2023; Gao et al., 2023; Jiang et al., 2023b;
Gou et al., 2024); Context-based Generation:
dialogue generation (Madaan et al., 2023; Peng
et al., 2023), text summarization (Saunders et al.,
2022); Open-ended Generation: conditional text
generation (Ye et al., 2023; Schick et al., 2023),
story generation (Yang et al., 2022b), detoxifica-
tion (Schick et al., 2021; Bai et al., 2022; Gou et al.,
2024; Phute et al., 2024); Others: machine trans-
lation (Chen et al., 2023b; Raunak et al., 2023; Ki
and Carpuat, 2024), information retrieval (Gero
et al., 2023), vision language tasks (Yin et al.,
2023; Ge et al., 2023; Zhou et al., 2024; Lee
et al., 2024; Huang et al., 2024b; Liu et al., 2024),
and prompt optimization (Pryzant et al., 2023;
Mehrabi et al., 2023; Yang et al., 2024).

2.4 Differences from Related Approaches

In this work, we define self-consistency (Wang
et al., 2023) or generate-and-rank (Shen et al.,
2021; Weng et al., 2023) to be different from
self-correction because these approaches do not
refine responses and assume that LLMs generate

correct answers with a reasonable probability.
We discuss these methods in Section 6 as
strong baselines that should be compared with
self-correction.

3 Research Questions

We find that prior studies often do not define
their research questions in detail and fail to use
appropriate self-correction frameworks in their
experiments. We propose a new approach to clas-
sify research questions and frameworks in self-
correction.

3.1 RQs in Self-Correction Research

Prior studies often simply state their research
questions as whether LLMs can self-correct their
mistakes (e.g., Kim et al., 2023; Madaan et al.,
2023). However, we claim that research questions
in self-correction research should be defined in
more detail. We identify the following research
questions implicitly targeted in prior studies, as
in Table 2.

• [RQ1] Can LLMs self-correct their best-
possible initial responses based solely on
the inherent capabilities? (§4)

• [RQ2] Can LLMs self-correct their best-
possible initial responses assisted by external
information? (§5)

• [RQ3] Are the final outputs from self-
correction better than other methods? (§6)
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We define the best-possible initial responses as
initial responses generated with best effort, us-
ing information that self-correction modules can
access, such as external tools, knowledge, or
fine-tuning.

Requirements for Verifying RQs. Experi-
ments for verifying these research questions need
to satisfy different requirements, as shown in
Table 3. External Information: RQ1 needs to
be evaluated on frameworks that refine responses
using the same model without additional in-
formation. RQ2 and RQ3 can be evaluated on
frameworks that use external information. Initial
Responses: RQ1 and RQ2 need to be evaluated
on frameworks that use the best-possible initial
responses. RQ3 is about the final performance, so
it is not necessary to start from strong initial re-
sponses. Evaluation: RQ1 and RQ2 only require
to show that self-correction improves performance
from the initial responses. RQ3 requires compar-
ison with strong baselines (§6).

Confusion in Prior Work. Some prior studies
implicitly target different research questions in a
single work without clearly distinguishing them.
As in Table 2, Kim et al. (2023) target RQ1 for
arithmetic reasoning by comparing self-corrected
responses only with initial responses, but they
target RQ3 for MiniWoB++ by comparing self-
correction with baseline methods. Similarly, Gou
et al. (2024) target RQ2 for arithmetic reasoning
but target RQ3 for detoxification.

3.2 Frameworks for Verifying RQs

Prior work often categorizes self-correction
frameworks based on approaches for generating
feedback (§2). However, we point out that we
also need to categorize them by the quality of
initial responses because the frameworks we need
to use for verifying different research questions
vary by whether they use the best-possible initial
responses (§3.1).

We propose categories of (same-model) self-
correction that correspond to different research
questions (§3.1), as shown in Figure 2. Specifi-
cally, we propose to categorize the self-correction
frameworks as follows.

• Realistic: Can be used in real-world applica-
tions.

– Fair: Using best-possible initial responses

– Unfair: Using sub-optimal initial responses

• Unrealistic: Using information that is not
accessible in real-world applications.

In this work, we focus on categorizing self-
correction frameworks that do not involve multi-
ple language models with different architectures.
Cross-model correction uses different models for
initial response generation and self-correction, so
it is unsuitable for evaluating whether LLMs
can improve their own initial responses [RQ1,
RQ2]. However, it can be used to evaluate [RQ3]
whether the final responses from self-correction
are better than other methods.

Realistic vs. Unrealistic. Some prior studies
propose unrealistic self-correction, which cannot
be implemented in real-world applications, by
using oracle information such as ground-truth an-
swers (Kim et al., 2023; Shinn et al., 2023). These
methods cannot be used to verify any research
questions.

Fair vs. Unfair. Realistic frameworks can be
categorized by whether they use the best-possible
initial responses. Fair self-correction represents
frameworks that refine the best-possible initial
responses. (1) Intrinsic self-correction (Huang
et al., 2024a) uses the same model and infor-
mation for initial response generation and self-
correction. Intrinsic self-correction can be used
to assess [RQ1] whether LLMs can self-correct
based solely on their inherent capabilities. (2)
Fair-asymmetric self-correction uses additional
information for self-correction, but also uses in-
formation to improve initial response generation
as much as possible. For example, self-correction
with code interpreters (Chen et al., 2024d; Gou
et al., 2024) is not intrinsic but fair because we
cannot easily use code interpreters to directly
improve the initial response generation. Fair-
asymmetric self-correction can be used to evaluate
[RQ2] whether LLMs can self-correct the best-
possible initial responses using external informa-
tion. Unfair self-correction (or unfair-asymmetric
self-correction) represents frameworks that are
practical but do not use the best-possible ini-
tial responses. For example, methods that use
search engines only for self-correction (Gao et al.,
2023; Yu et al., 2023) are unfair because they
can use search engines to directly improve the
initial response generation. Unfair self-correction
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Paper Task Using Oracle Info
for Feedback

Weak Prompt for
Initial Responses Comments

RCI
(2023, §3.1) Computer Tasks �

stop condition – Using ground-truth answers and do not update correct
responses, which unfairly ignores false-positive correction

Reflexion
(2023, §4.2)

HotpotQA
(Context)

�
feedback – Feedback is the exact match between the responses and

ground-truth answers

CAI Revisions
(2022) Detoxification – � Initial generation is not prompted to remove harmful

outputs

Self-Refine
(2023)

Math, Coding,
Dialogue – � Unfairly weak or wrong instructions or few-shot

demonstrations for initial response generation

Table 4: Unfair settings in prior studies of self-correction with prompting, over-evaluating self-correction.

can evaluate [RQ3] whether the final responses
from self-correction outperform other methods
but cannot evaluate [RQ2] whether self-correction
can improve the best-possible initial responses.

4 Self-Correction with Prompting

[RQ1] Can LLMs self-correct their best-
possible initial responses based solely
on the inherent capabilities?

Several studies propose intrinsic self-correction
methods, which self-correct responses from LLMs
by prompting themselves to generate feedback
and refine the responses. Bai et al. (2022) pro-
pose self-correcting harmful responses from LLMs
by prompting themselves. Self-Refine (Madaan
et al., 2023) and RCI Prompting (Kim et al., 2023)
iteratively prompt LLMs to self-correct their own
responses in tasks such as arithmetic reasoning.

Negative Results. However, recent studies re-
port that intrinsic self-correction does not improve
or even degrade the performance in tasks such
as arithmetic reasoning, closed-book QA (Huang
et al., 2024a; Gou et al., 2024), code generation
(Gou et al., 2024; Olausson et al., 2024), plan gen-
eration (Valmeekam et al., 2023), and graph col-
oring (Stechly et al., 2023). Several studies claim
that a bottleneck is in the feedback generation,
and it is difficult to generate reliable feedback
on their responses only by prompting themselves
(Gou et al., 2024; Huang et al., 2024a; Olausson
et al., 2024).

Unrealistic or Unfair Settings. The conflicting
positive and negative results motivate us to ana-
lyze when LLMs can self-correct only by prompt-
ing themselves. Specifically, we assess whether

prior studies satisfy the requirements to verify
that [RQ1] LLMs can self-correct their responses
based solely on their inherent capabilities. As
in Table 4, we find that many studies use ei-
ther oracle information in the self-correction pro-
cesses (unrealistic frameworks) or weak prompts
that can be easily improved for generating initial
responses (unfair settings), which over-evaluate
self-correction. Consequently, we conclude that
no major work shows successful self-correction of
responses from LLMs using feedback generated
by prompting themselves under fair settings in
general tasks. Oracle Information: RCI Prompt-
ing (Kim et al., 2023) uses ground-truth answers
and does not apply self-correction when the ini-
tial responses are correct, which unfairly ignores
mistakes caused by updating correct responses in-
correctly. Reflexion (Shinn et al., 2023) generates
feedback by using an exact match between the
generated and ground-truth answers, which can-
not be accessed in real-world applications. Weak
Initial Responses: Detoxifying harmful responses
is a popular task in self-correction research, but
prior studies often study in situations where initial
response generation is not instructed to generate
harmless responses (Bai et al., 2022; Wang et al.,
2024b). Although detecting harmful contents us-
ing LLMs is a reasonable research topic, this
setting is not the self-correction from best-possible
initial responses, since we can improve the initial
response generation process by instructing not
to generate harmful responses. As more obvious
weak prompts, Self-Refine (Madaan et al., 2023)
uses instructions or few-shot examples that do not
correctly correspond to the target task only for
initial response generation (e.g., providing wrong
target labels in few-shot examples), while us-
ing appropriate instructions for self-correction, as
shown in Tables 9 and 10. These settings evaluate
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Paper Main Task
External Tools or Knowledge

For Initial Response Generation For Feedback Generation

Reflexion (2023, §4.1, 4.3) Games, Coding – Game Envs, Code Interpreter
CRITIC (2024) GSM8k, SVAMP – Python interpreter
Self-Debug (2024d) Text-to-Code – Code Interpreter

CRITIC (2024) HotpotQA Web Search Web Search
FLARE (2023b) 2WikiMultihopQA, StrategyQA, ASQA Web Search Web Search

RARR (2023) NQ, SQA, QReCC – Web Search
ReFeed (2023) NQ, TriviaQA, HotpotQA – Wikipedia

Table 5: Self-correction with external tools or knowledge (with in-context learning).

improvement from weak initial responses, which
over-evaluate the improvement by self-correction.

Tasks in which Self-Correction is Exceptionally
Effective. Although our analysis of prior stud-
ies shows that intrinsic self-correction is difficult
in general, some tasks have properties that make
feedback generation easy and enable intrinsic self-
correction. For example, CoVe (Dhuliawala et al.,
2023) is an intrinsic self-correction method for
tasks of generating multiple answers, such as
Name some politicians who were born in NY,
New York. Generated responses include multiple
answers, but the feedback generation can be de-
composed into easier sub-tasks of verifying each
answer. Tasks with decomposable responses are
one of the few groups of tasks for which veri-
fication is clearly easier than generation, which
enables intrinsic self-correction. However, many
real-world tasks do not satisfy this property.

5 Self-Correction with
External Information

[RQ2] Can LLMs self-correct their
best-possible initial responses assisted
by external information?

This section analyzes self-correction frame-
works that make use of external tools, external
knowledge, and fine-tuning.

5.1 Self-Correction with External Tools
or Knowledge

Given the observation that feedback generation
is a bottleneck of self-correction (§4), improv-
ing feedback using external tools or knowledge
is a promising direction. External tools used for
self-correction include code interpreters for code
generation tasks (Chen et al., 2024d; Gou et al.,

2024) and symbolic reasoners for logical reason-
ing tasks (Pan et al., 2023). A popular source of
knowledge is search engines, which are often used
with queries generated from initial responses to
retrieve information for validating their correct-
ness (Gao et al., 2023; Jiang et al., 2023b). These
prior studies widely agree that self-correction can
improve LLM responses when reliable external
tools or knowledge suitable for improving feed-
back are available.

Unfair Self-correction with External Informa-
tion. Although using external tools or knowl-
edge is known to be effective in self-correction,
we raise caution that the way of using external
tools or knowledge influences the research ques-
tions we can verify (§3.1). As shown in Table 5,
some prior studies (Gao et al., 2023; Yu et al.,
2023; Zhao et al., 2023) use external knowledge
only for self-correction, while they can also di-
rectly use external knowledge to improve the ini-
tial response generation process. For example,
RARR (Gao et al., 2023) uses external knowl-
edge to detect mistakes in initial responses, while
it does not use any external knowledge when
generating initial responses. These methods are
reasonable when only focusing on [RQ3] the per-
formance of final responses, but it is not fair
to use them for evaluating [RQ2] whether self-
correction can improve from the best-possible ini-
tial responses. In contrast, using code interpreters
for self-correction (Gou et al., 2024; Chen et al.,
2024d) can be regarded as using best-possible
initial responses because there is no easy way to
improve the initial response generation directly.

Verifiable Tasks. Some tasks have a property
that allows the correctness of the responses to
be verified easily, even without external informa-
tion. For example, the constrained generation task
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Paper Main Task Cross-
Model

SFT
Tasks

Initial Responses Feedback Generation Refinement

Model SFT Target Model SFT Target Size Model SFT Target

SelFee
(2023) MT-Bench – General

Tasks
Llama
(7B,13B)

ChatGPT
Responses

Llama
(7B,13B)

ChatGPT
Feedback 178K Llama

(7B,13B)
ChatGPT
Refinement

Volcano
(2024)

Visual
Reasoning – General

Tasks
LLaVA
(7B, 13B)

GPT-3.5-T,
Human

LLaVA
(7B, 13B)

GPT-3.5-T
Feedback 274K LLaVA

(7B, 13B)
Reference
Answers

Self-Critique
(2022)

Topic-based
Summarization – Target

Task
Instruct
GPT

Human
Summaries

Instruct
GPT

Human
Feedback 100K Instruct

GPT
Human
Refinement

REFINER
(2024)

Math, Logic,
Moral Stories � Target

Task GPT-3.5 – T5-base Synthetic
Data

20K –
30K GPT-3.5 –

Self-Edit
(2023b)

Code
Generation � Target

Task GPT-3 – (Code Executor and Test Cases)
PyCodeGPT
110M

Reference
Code

Table 6: Self-correction with supervised fine-tuning. Most methods require large training datasets.
‘‘–’’ represents no fine-tuning.

evaluated in Self-Refine (Madaan et al., 2023) is
a task to generate a sentence that includes five
specified words. We can easily evaluate the cor-
rectness by checking whether the five words are in-
cluded in the generated sentence. Tree-of-thought
(Yao et al., 2023) is a generate-and-rank method
for verifiable tasks,1 such as Game of 24, the
task to obtain 24 using basic arithmetic oper-
ations (+,−,×,÷) and provided four integers.
For Game of 24, we can easily verify the an-
swer by checking whether the generated answer
is 24. We consider self-correction to work well
in these tasks because they are in the same situ-
ations as using strong external tools or the ora-
cle information to generate feedback.

5.2 Self-Correction with Fine-tuning

Prior work shows that fine-tuning LLMs for
generating feedback or refining responses im-
proves the self-correction capability. A common
approach fine-tunes feedback models to gener-
ate reference feedback given initial responses
and fine-tunes refinement models to generate ref-
erence answers given the initial responses and
reference feedback (Ye et al., 2023; Lee et al.,
2024; Saunders et al., 2022). Frameworks: The
first approach fine-tunes the same model to cor-
rect its own responses. In this approach, most
methods fine-tune models for all stages: initial
responses, feedback, and refinement (Saunders
et al., 2022; Ye et al., 2023; Lee et al., 2024).
Another approach corrects responses from larger
models using smaller fine-tuned models. This

1Tree-of-thought is a generate-and-rank method and not
a self-correction method in our definition.

cross-model correction approach often instructs
the larger models to refine their own responses
using feedback from the smaller fine-tuned mod-
els (Yang et al., 2022b; Welleck et al., 2023;
Akyurek et al., 2023; Paul et al., 2024), which can
be viewed as using the small fine-tuned models
as external tools. Training Strategies: A pop-
ular approach is supervised fine-tuning, which
fine-tunes self-correction modules on human-
annotated feedback (Saunders et al., 2022), feed-
back from stronger models (Ye et al., 2023), or
synthetic negative responses (Paul et al., 2024).
As other approaches, to avoid the cost of col-
lecting human feedback, self-corrective learning
(Welleck et al., 2023) selects model-generated
feedback that successfully refines responses as
training data, and RL4L (Akyurek et al., 2023)
uses reinforcement-learning. External Tools:
Some works fine-tune models to refine responses
given feedback from external tools. Self-Edit
(Zhang et al., 2023b) uses the results on test
cases evaluated by code executors for code gen-
eration, and Baldur (First et al., 2023) uses proof
assistants for improving proof generation.

Large Training Data for SFT of Feedback. As
shown in Table 6, many methods with supervised
fine-tuning for feedback generation rely on train-
ing data with more than 100K instances. These
studies often use feedback generated by stronger
models to simulate human annotation, but this
approach requires large-scale human annotations
to be implemented on state-of-the-art models.
We expect future research to explore approaches
that do not require large-scale human annota-
tions (§11).
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Unfair Fine-tuning. Some studies (Welleck
et al., 2023) apply stronger fine-tuning for self-
correction models than initial response genera-
tion models, which do not use best-possible initial
responses in the available resources (§3.2). This
approach can be used to evaluate [RQ3] the per-
formance of the final responses to compare with
other methods but cannot be used to evaluate
[RQ2] the improvement from best-possible ini-
tial responses.

6 Strong Baselines

[RQ3] Are the final outputs from self-
correction better than other methods?

Self-correction involves multiple LLM calls
for generating feedback and refinement. There-
fore, to claim that [RQ3] the performance of the
final outputs from self-correction frameworks is
better than other approaches, it should be com-
pared with sufficiently strong baselines, possibly
relying on additional LLM calls or computational
cost. Many self-correction studies do not com-
pare their methods with strong baselines, although
some studies pointed out this issue and compare
self-correction with self-consistency (Gou et al.,
2024; Huang et al., 2024a) or pass@k in code
generation (Zhang et al., 2023b; Olausson et al.,
2024). We encourage future research to com-
pare self-correction with strong baselines, includ-
ing self-consistency and generate-and-rank, to
further explore RQ3.

Self-Consistency. (Wang et al., 2023) is an ap-
proach that generates multiple responses for the
same input and takes the majority vote of the final
answers in reasoning tasks. The idea of select-
ing good responses using the consistency between
multiple responses from the same model has also
been extended to other tasks such as text gener-
ation (Manakul et al., 2023; Elaraby et al., 2023;
Chen et al., 2024c) and code generation (Shi et al.,
2022).

Generate-and-Rank. is an approach that gen-
erates multiple responses and selects the best
response using verifiers. Post-hoc approach ranks
responses using self-evaluation (Weng et al., 2023;
Zhang et al., 2023d), confidence (Manakul et al.,
2023), fine-tuned verifiers (Cobbe et al., 2021;
Shen et al., 2021; Lightman et al., 2024), or ver-

ifiers with external tools (Shi et al., 2022; Chen
et al., 2023a; Ni et al., 2023). Feedback-guided
decoding generates multiple responses and se-
lects the best response for each reasoning step
using generation probability (Hao et al., 2023;
Tyen et al., 2024), prompted self-evaluation (Jung
et al., 2022; Creswell and Shanahan, 2022; Xie
et al., 2023; Yao et al., 2023; Miao et al., 2024), or
fine-tuned verifiers (Uesato et al., 2022; Tafjord
et al., 2022; Yang et al., 2022a; Asai et al., 2024).

7 Summary of Our Analysis

Bottleneck is in Feedback Generation. Prior
studies widely agree that LLMs can refine their
responses given reliable feedback (§5). However,
generating reliable feedback on their own re-
sponses is still observed to be challenging for
LLMs without using additional information (§4).
In other words, for the current LLMs, the hy-
pothesis that recognizing errors is easier than
avoiding them (Saunders et al., 2022) is only true
for certain tasks whose verification is exception-
ally easy, according to our analysis of the ex-
periments in prior studies. We recommend that
self-correction research analyze the quality of
generated feedback in more detail, not only eval-
uate the downstream performance of the refined
responses.

Tasks Suitable for Self-Correction. Our anal-
ysis identifies the properties of tasks that are suit-
able for self-correction under different conditions.

• Intrinsic Self-Correction (§4)

– Tasks whose verification tasks are much
easier than the original tasks (e.g., tasks
whose responses are decomposable)

• Self-Correction with External Information
(§5.1)

– Tasks for which external tools that pro-
vide reliable feedback exist (e.g., code
generation)

– Tasks for which responses can be utilized
to obtain useful information that is diffi-
cult to obtain before generating initial
responses (e.g., generate queries from re-
sponses to retrieve documents for verify-
ing information)

• Self-Correction with Fine-tuning (§5.2)
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RQ1 RQ2 RQ3 Requirements for Verifying the Target RQs

� � � Clearly stating the target RQ and the category of self-correction framework discussed. (§3.2) Required
� � � Not using oracle information, such as ground-truth answers. (§4) Required

� � � When using fine-tuning, reporting the detailed settings, including the number of annotations and
computational cost required to achieve the reported performance.

(§5.2) Required

� � � Evaluating the quality of feedback directly (e.g., error detection accuracy). (§7) Recommended

� � Using sufficiently strong prompts for generating initial responses. (§4) Required

� Using intrinsic self-correction. (§3.2) Required

When using external tools or knowledge,
� Using external tools or knowledge to improve initial response generation as much as possible. (§5.1) Required

When using fine-tuning for self-correction,
� Fine-tuning initial response generators as well, as much as possible. (§5.2) Required
� Evaluating the minimum required size of training data that enables self-correction. (§5.2) Recommended
� Evaluating cross-model correction setting that refines mistakes in responses from stronger LLMs. (§3.2) Recommended

� Comparing with strong baselines using comparable computational cost. (§6) Required

Table 7: Checklist for self-correction research for different target research questions.

Clearly stating the RQ that is refuted by the reported results and the category of the framework discussed. (§3.2) Required

Using strong prompts for self-correction (e.g., state-of-the-art reference-free metrics). (§11) Required

When not using external tools or knowledge available in real-world applications, explicitly reporting that the
evaluation is done under weak conditions.

(§5.1) Required

Evaluating with external tools or knowledge available in real-world applications. (§5.1) Recommended

Table 8: Checklist for reporting negative results of self-correction.

– Self-correction works in many tasks when
large training data for feedback generation
is available

– Tasks that can use reinforcement learning
or self-corrective learning (Welleck et al.,
2023), i.e., tasks whose responses can be
easily evaluated given ground-truth answers

8 Checklist for Self-Correction Research

Our analysis shows that many studies do not
clearly define their research questions and fail
to conduct appropriate experiments (§3.1, 4).
To tackle these issues, we provide a checklist
for self-correction research that provides re-
quirements for designing appropriate experiments
for verifying target RQs and recommended ex-
periments for comprehensive analysis. Table 7
provides a checklist for verifying different RQs
identified in Section 3.1. Table 8 provides a
checklist for reporting negative results.

9 Differences from Other Survey

Pan et al. (2024) provide a comprehensive sur-
vey on broad topics related to self-correction,

including training strategies. Our work specifi-
cally focuses on (inference-time) self-correction
and provides a more detailed and critical analy-
sis of prior work. Huang et al. (2024a) provide
an analysis of problems in the evaluation set-
tings of self-correction research, which motivates
our work. They focus on analyzing a few papers
on intrinsic self-correction in reasoning tasks.
We provide a more comprehensive analysis of
self-correction with in-context learning, external
tools, and fine-tuning.

10 Related Work of Self-Correction

Self-Detection. of mistakes in LLM responses
using LLMs (possibly with external information)
has been studied in various domains, including
misinformation detection (Zhang et al., 2023c;
Chern et al., 2023; Chen and Shu, 2024; Mishra
et al., 2024), context-faithfulness (Wang et al.,
2020; Durmus et al., 2020; Scialom et al., 2021),
harmful content detection (Rauh et al., 2022), and
bias detection (Blodgett et al., 2020; Feng et al.,
2023). However, recent studies (Tyen et al., 2024;
Kamoi et al., 2024) show that even strong LLMs
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often cannot detect their own mistakes in vari-
ous tasks.

Editing Human-Written Text. by using lan-
guage models has been studied in various do-
mains, including information update (Shah et al.,
2020; Iv et al., 2022; Schick et al., 2023), gram-
matical error correction (Ng et al., 2014; Lichtarge
et al., 2019), factual error correction (Cao et al.,
2020; Thorne and Vlachos, 2021), and code re-
pair (Gupta et al., 2017; Mesbah et al., 2019;
Bader et al., 2019; Chen et al., 2021; Yasunaga
and Liang, 2020, 2021).

Self-Training. or self-improvement is an ap-
proach to train models using their own responses.
Some studies use self-evaluation or self-correction
for creating training data (Bai et al., 2022;
Gulcehre et al., 2023) or use self-evaluation
as training signals (Pang et al., 2024). Another
approach improves the reasoning of LLMs us-
ing LLM-generated reasoning by selecting high-
quality outputs using ground-truth final answers
(Zelikman et al., 2022) or self-consistency (Huang
et al., 2023). As another direction, Meng et al.
(2022) use sentences generated by LLMs with
high confidence for training classifiers.

11 Future Directions

Improving Feedback. Prior studies indicate
that it is difficult for LLMs to generate feedback
on their own responses with in-context learn-
ing (§4, 7). However, most studies in intrinsic
self-correction (Madaan et al., 2023; Huang et al.,
2024a) use simple prompts for generating feed-
back, and there is room for improvement. A pos-
sible direction to improve feedback is to apply
(reference-free and point-wise) LLM-based eval-
uation metrics. Recent approaches for improv-
ing the model-based evaluation include using
human-written evaluation criteria (Chiang and
Lee, 2023; Liu et al., 2023) and decomposing
responses (Saha et al., 2024; Min et al., 2023). As
another direction, recent studies in self-correction
propose frameworks using the confidence in
their responses, estimated by generation probabil-
ities (Varshney et al., 2023; Jiang et al., 2023b),
prompting (Li et al., 2024a), or generating new
questions from their answers to evaluate logical
consistency (Jung et al., 2022; Tafjord et al., 2022;
Wu et al., 2024).

Unexplored Tasks. The difficulty of self-
evaluation differs from task to task (§4), while
many studies assume that verification is con-
sistently easier than generation. We expect that
there are unexplored tasks in which intrinsic self-
correction works well, although self-correction
research mostly focuses on reasoning tasks such
as math reasoning and coding (Madaan et al.,
2023; Gou et al., 2024; Huang et al., 2024a). For
example, LLM-based evaluation is often studied
in open-ended text generation, such as dialogue
generation and text summarization (Fu et al.,
2024; Liu et al., 2023), suggesting that reasonable
model-based feedback is available for these tasks.

Fine-tuning on Small Training Data. Fine-
tuning of feedback generation often relies on
large training data, which requires large-scale hu-
man annotations (§5.2). We expect future work
to explore self-correction with smaller training
data. Although reinforcement learning (Akyurek
et al., 2023) or self-corrective learning (Welleck
et al., 2023) do not require human feedback, they
require reasonable reward functions for evaluat-
ing LLM responses, which are not available in
many tasks. For example, RL4F (Akyurek et al.,
2023) uses ROUGE as a reward function for
text summarization and action planning, which is
sub-optimal.

Pre-training for Improving Self-Correction.
Prior studies show that large-scale fine-tuning on
reference feedback improves the self-correction
capability of LLMs (§5.2). This observation sug-
gests that the current approach or datasets for
pre-training LLMs are insufficient to make LLMs
acquire self-correction capability. We expect fu-
ture work to explore pre-training strategies to
improve the intrinsic self-correction capability of
LLMs.

12 Conclusion

We provide a critical survey of self-correction
to identify in which conditions LLMs can self-
correct their mistakes. Our analysis reveals that
many studies fail to define their research ques-
tions clearly or design experiments appropriately.
To tackle these issues, we categorize research
questions and frameworks in self-correction re-
search and provide a checklist for conducting
appropriate experiments.
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Initial Response Prompt Feedback Prompt

Provided a dialogue between two speakers, generate a response
that is coherent with the dialogue history. Desired traits for
responses are: 1) Relevant - The response addresses the context,
2) Informative - The response provides some information, 3)
Interesting - The response is not interesting, 4) Consistent - The
response is consistent with the rest of the conversation in terms of
tone and topic, 5) Helpful - The response is helpful in providing
any information or suggesting any actions, 6) Engaging - The
response is not very engaging and does not encourage further
conversation, 7) Specific - The response contains pecific content,
9) User understanding - The response demonstrates an
understanding of the user’s input and state of mind, and 10) Fluent.
Response should begin with - Response:

[3 examples omitted]

We want to iteratively improve the provided responses. To help
improve, scores for each response on desired traits are provided: 1)
Relevant, 2) Informative, 3) Interesting, 4) Consistent, 5) Helpful,
6) Engaging, 7) Specific, 8) Safe, 9) User understanding, and 10)
Fluent.
Here are some examples of this scoring rubric:

Conversation history:

Hi!
Hi there.
What are you listening to?
All sorts of music. I listen when no-one is chatting to me.
That’s great!
Thanks.
Do you chat here often?
I am a talking computer, after all, so of course I could talk here, if I
needed to.
Let’s talk about Taylor Swift!

Response: Sure, Taylor Swift sounds like a good topic.

Scores:
* Relevant: The response is somewhat relevant, as it acknowledges
the user’s topic of interest. 2/3
* Informative: There is no information provided in the response. 1/3
* Interesting: The response does not provide any interesting
information or ask engaging questions. 1/3
* Consistent: The response is consistent with the information in the
conversational context and the user’s topic of interest. 3/3
* Helpful: The response is not helpful, as it simply asks the user
what they want to know without providing any additional
information or suggestions for the conversation. 1/3
* Engaging: The response is not particularly engaging, as it does
not encourage further conversation or provide any interesting
information. 1/3
* Specific: The response is not specific, as it does not address the
topic of Taylor Swift in any particular way. 1/3
* Safe: The response is safe and does not contain any offensive,
toxic or harmful content and does not touch on any sensitive topics
or share any personal information. 3/3
* User understanding: The response does not show a good
understanding of the user’s inputs, needs and their state of mind. 1/3
* Fluent: The response is fluent in terms of grammar and flow of
words. 3/3
* Total score: 17/30

[5 examples omitted]

Table 9: Prompts for Dialogue Response Generation used in Self-Refine (Madaan et al., 2023).
Dialogue Response Generation is a task that generates a response, given a history of conversations.
Prompts used by Madaan et al. (2023) for generating initial responses instruct to generate responses
that are not interesting and not very engaging, which are contradicting to the task goal. They unfairly
instruct the models to generate initial responses that have problems intentionally, over-evaluating
self-correction performance. Prompts for generating initial responses: https://github.com
/madaan/self-refine/blob/main/src/responsegen/task_init.py and feedback:
https://github.com/madaan/self-refine/blob/main/src/responsegen/feedback.py.
Few-shot examples for generating initial responses: https://github.com/madaan/self
-refine/blob/main/data/prompt/responsegen/init.jsonl and feedback: https://
github.com/madaan/self-refine/blob/main/data/prompt/responsegen/feedback.jsonl.
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Initial Response Prompt (to neg) Refinement Prompt (to neg)

Very positive: If you’re looking for a truly magical experience in
Vegas, look no further than the Trop! The retirement community
vibe adds to the charm, and the food court and restaurants are
top-notch. The free Folies Bergere show is a real treat and the
rooms are spacious and comfortable. I highly recommend the
Trop for a unique and unforgettable Vegas experience.
NLP Research Project. Please rewrite this review to have a
Positive sentiment.
Answer: This review is "Very positive" because of extremely
positive words like "magical", "top-notch", "charming",
"comfortable", "unique", and "unforgettable". We can tone it
down just a bit to "Positive" by using a few more less extreme
adjectives, like "good", and replacing expressions like "a real
treat" with "fun". The rewrite is:
Positive: If you’re looking for a good experience in Vegas, the
Trop may be the perfect place for you. The hallways and rooms
have a charming and cozy feel, and the food court and restaurants
offer a variety of tasty options. The free Folies Bergere show is
a fun and entertaining way to spend an evening. Overall, it’s a
great value and an enjoyable stay.
###
Positive: If you’re looking for a unique and affordable experience
in Vegas, the Trop may be the perfect place for you. The hallways
and rooms have a charming and cozy feel, and the food court
and restaurants offer a variety of tasty options. The free Folies
Bergere show is a fun and entertaining way to spend an evening.
Overall, it’s a great value and an enjoyable stay.
NLP Research Project. Please rewrite this review to have a
Neutral sentiment.
Answer: This review is "Positive" because of positive words like
"great", "enjoyable", "charming", "cozy." To make it "Neutral"",
we’ll use a few more neutral words and phrases, like
"budget-friendly" and "aren’t the greatest." The rewrite is:
Neutral: If you’re looking for a budget-friendly option in Vegas,
the Trop may be worth considering. The rooms and hallways can
have a bit of a musty smell, and the food options aren’t the
greatest. The Folies Bergere show is free, but it’s not the most
exciting. Overall, it’s not the best choice for a Vegas trip, but
it’s not the worst either. Just keep your expectations in check.
###
[two examples omitted]

Very positive: If you’re looking for a truly magical experience in
Vegas, look no further than the Trop! The retirement community vibe
adds to the charm, and the food court and restaurants are top-notch. The
free Folies Bergere show is a real treat and the rooms are spacious and
comfortable. I highly recommend the Trop for a unique and
unforgettable Vegas experience.
Positive: If you’re looking for a good experience in Vegas, the Trop
may be the perfect place for you. The hallways and rooms have a
charming and cozy feel, and the food court and restaurants offer a
variety of tasty options. The free Folies Bergere show is a fun and
entertaining way to spend an evening. Overall, it’s a great value and an
enjoyable stay.
Why is this review not Very negative?
Feedback: The rewritten review converts "Very positive" to merely a
"Positive". This is because it has positive words and phrases like
"great", "enjoyable", "charming", "cozy", "real treat", "spacious",
"highly recommend", and "unforgettable". To make it "Very negative"",
we’ll need to add toxicity and extremely negative words, like "terrible",
"lame", "rot", "underwhelming", "questionable", "avoid". Make sure the
output is extremely vile and negative. Try again!
Okay, let’s try again. NLP Research Project. Please rewrite this review
to have a Very negative sentiment using the feedback above.
Very negative: If you’re looking for a truly terrible experience in Vegas,
look no further than the Trop! The retirement community vibe adds to
the horror, and the food court and restaurants are underwhelming. The
free Folies Bergere show is a real disappointment and the rooms are
cramped and uncomfortable. Avoid this place like the plague!
###
Positive: If you’re looking for a unique and affordable experience in
Vegas, the Trop may be the perfect place for you. The hallways and
rooms have a charming and cozy feel, and the food court and
restaurants offer a variety of tasty options. The free Folies Bergere
show is a fun and entertaining way to spend an evening. Overall, it’s a
great value and an enjoyable stay.
Neutral: If you’re looking for a budget-friendly option in Vegas, the
Trop may be worth considering. The rooms and hallways can have a bit
of a musty smell, and the food options aren’t the greatest. The Folies
Bergere show is free, but it’s not the most exciting. Overall, it’s not the
best choice for a Vegas trip, but it’s not the worst either. Just keep your
expectations in check.
Why is this review not Very negative?
Feedback: The rewritten review converts "Positive" to merely a
"Neutral". This is because it has ambivalent or mildly positive words
and phrases like "budget-friendly", "a bit of musty", "not the best, not
the worst." To make it "Very negative"", we’ll need to add toxicity and
extremely negative words, like "questionable", "subpar", "rot",
"underwhelming". Make sure the output is extremely vile and negative.
Try again!
Okay, let’s try again. NLP Research Project. Please rewrite this review
to have a Very negative sentiment using the feedback above.
Very negative: If you’re looking for a truly terrible experience in
Vegas, look no further than the Trop! The rooms and hallways smell
like rot, and the food options are subpar. The Folies Bergere show is
underwhelming, and the rooms are cramped and uncomfortable. I
highly recommend completely avoiding the Trop.
###
[two examples omitted]

Table 10: Few-shot examples in prompts for the Sentiment Reversal task (positive to negative) used
in Self-Refine (Madaan et al., 2023). Sentiment Reversal is a task to revert the sentiment of a
review from positive to negative or negative to positive. Few-shot examples for generating initial
responses include examples in settings different from the target task (positive to negative), while all
few-shot examples for refinement are positive to negative. The few-shot examples used by Madaan
et al. (2023) for generating initial responses unfairly have different properties from the target task.
Prompts for initial responses: https://github.com/madaan/self-refine/blob/main
/src/sentiment_reversal/task_init.py and refinement: https://github.com
/madaan/self-refine/blob/main/src/sentiment_reversal/task_iterate.py.
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