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Abstract
Weakly supervised learning aims to reduce the
cost of labeling data by using expert-designed
labeling rules. However, existing methods re-
quire experts to design effective rules in a
single shot, which is difficult in the absence
of proper guidance and tooling. Therefore,
it is still an open question whether experts
should spend their limited time writing rules
or instead providing instance labels via active
learning. In this paper, we investigate how
to exploit an expert’s limited time to create
effective supervision. First, to develop prac-
tical guidelines for rule creation, we conduct
an exploratory analysis of diverse collections
of existing expert-designed rules and find that
rule precision is more important than coverage
across datasets. Second, we compare rule cre-
ation to individual instance labeling via active
learning and demonstrate the importance of
both across 6 datasets. Third, we propose an
interactive learning framework, INTERVAL,
that achieves efficiency by automatically ex-
tracting candidate rules based on rich patterns
(e.g., by prompting a language model), and
effectiveness by soliciting expert feedback on
both candidate rules and individual instances.
Across 6 datasets, INTERVAL outperforms
state-of-the-art weakly supervised approaches
by 7% in F1. Furthermore, it requires as few
as 10 queries for expert feedback to reach F1
values that existing active learning methods
cannot match even with 100 queries.

1 Introduction

Supervised machine learning models for text
classification require large, hand-labeled train-
ing datasets, which are both expensive and
time-consuming to obtain. Most efforts to reduce
the reliance on large training datasets support just
a single type of expert supervision, namely, to
label individual instances one at a time (Seeger,
2006; Clark et al., 2018; Ruder and Plank, 2018;
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Berthelot et al., 2019; Peters et al., 2018; Devlin
et al., 2019; Zhang and Yang, 2021; Zhang et al.,
2022c).

To reduce the data labeling bottleneck, weakly
supervised learning (WSL) (Zhang et al., 2022a)
focuses on labeling rules that automatically gen-
erate weak labels for unlabeled instances. WSL
works in two separate steps: (i) experts provide la-
beling rules; and (ii) labeling rules are used to train
a machine learning model. Most work focuses on
solving the second step and learn with noisy rules
(Ratner et al., 2016, 2017; Karamanolakis et al.,
2019; Bach et al., 2019; Awasthi et al., 2020).
In practice, however, experts find it difficult to
define sufficiently many rules in one shot (Varma
and Ré, 2018). Considerable time and creativity
are required for inspecting unlabeled instances
and creating rules that add predictive value by
effectively covering a substantial number of in-
stances. Therefore, it is an open question whether
experts should spend their limited time writing
rules or instead providing instance labels, notably
via active learning (Settles, 2009).

In this paper, we investigate how to efficiently
exploit an expert’s limited time for machine teach-
ing. Our main idea is to automatically extract
labeling rules with high coverage of unlabeled
data, and then rely on domain expertise to validate
the candidate rules. In contrast to active learning
methods, where the machine queries the expert
for labels of individual examples (Zhang et al.,
2022c), providing feedback for each rule leads
to multiple data labels, which we show here can
boost classification performance faster.

Supporting rich forms of interaction is chal-
lenging, especially when the teaching budget is
limited. First, given a restricted number of rules
that can be created or validated by an expert, it is
not clear what properties these rules should have to
train an accurate model. For example, should one
prioritize rules that cover many examples but with
relatively low precision, or rules that have high
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precision but lower coverage? Moreover, existing
algorithms for rule extraction require substantial
labeled data, and it is unclear how to extract and
rank candidate rules when we are given just limited
labeled data and perhaps a few expert-validated
rules. In general, there are few guidelines in the
literature for creating effective rules for efficient
machine teaching. Additionally, the option to ask
for feedback on both rules and instances requires
balancing the costs and potential benefits of each
type of feedback when there is a shared budget of
expert interaction.

Our work addresses these open questions via
the following contributions:

Characterization of Prevalent Patterns in
Offline Machine Teaching. We analyze six
datasets with expert-defined rules and evalu-
ate multiple weak supervision methods under
simulated low-resource settings. Specifically, we
unify several weak supervision methods using a
Teacher-Student abstraction, where a subset of
the rules are considered in the teacher model for
training a student model. By evaluating more than
1,000 Teacher-Student configurations per dataset,
we associate Teacher properties with the Stu-
dent’s performance and, even though rules are
dataset-specific, we find two prevalent patterns
across datasets and methods that could inform
guidelines for rule creation. First, we show that a
higher-F1 Teacher does not necessarily lead to a
higher-F1 Student. Second, we show the Teacher’s
precision is more important than coverage for
training an accurate Student.

Automatic Rule Extraction via Prompting.
We propose a method that extracts rules with rich
predicates, expressed as conjunctions of n-grams,
syntactic features, and prompt-based features. By
prompting a pre-trained model (see Figure 1), our
method extracts high-level features that might not
explicitly appear in the text (e.g., ‘‘terrible’’ cus-
tomer experience) and thus can discover common
patterns across instances with no n-gram overlap.
As we will show, by extracting both surface-level
and higher-level features, our rule family achieves
higher precision and coverage than n-gram rules.
Our design focuses on rules that could be easily
validated by a human and are highly effective.

Interactive Machine Teaching. We present a
human-in-the-loop machine teaching framework

Figure 1: Our INTERVAL framework supports inter-
action on both instances and automatically extracted
rules (e.g., by prompting a large language model) for
weakly supervised learning.

called INTERVAL,1 which queries for expert
feedback on both instances and rules, and uses
all the available resources to train a classifier.
We quantify the trade-off between labeling rules
vs. instances and show that our framework is
more efficient than existing WSL and active
learning approaches even when starting with no
expert-written rules. Our analysis demonstrates
that feedback on both rules and instances is more
effective than feedback on instances only (as in
Active Learning) even when labeling rules are
more expensive than labeling instances by up
to 9 times.

The rest of this paper is organized as follows.
Section 2 reviews related work on interactive ma-
chine teaching and defines our problem of focus.
Section 3 presents our interactive machine teach-
ing framework,2 which queries for feedback on
labeling rules and instance. Sections 4 and 5 eval-
uate our interactive method via experiments on
six text classification datasets. Finally, Sections 6
and 7 conclude and suggest future work.

2 Problem Definition and Related Work

We now define our problem of focus (Section 2.1);
we also discuss related work on non-interactive
weak supervision and interactive learning with
instance- and feature-level feedback (Section 2.2).

2.1 Problem Definition
Let X denote the feature space and Y =
{1, . . . ,K} denote the label space for a K-class
classification task. We consider a set of manually
labeled examples DL = {(sl, yl)}, where sl ∈ X

1INTERVAL: INTEractive Rule discoVery for weAkly
supervised Learning.

2Our implementation is publicly available at https://
github.com/gkaramanolakis/interval.
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and yl ∈ Y , and a set of unlabeled examples
DU = {si}. We also consider a set of pre-defined
expert-provided labeling rules R = {rj}. A rule
rj : X → Y ∪ {⊥} maps an example si into a
label zji ∈ Y ∪ {⊥}. Predicting zji = ⊥ indicates
that rj does not cover si. We are primarily inter-
ested in the scenario where the size of DL is small
in comparison to that of DU , and where R con-
tains just a few or no expert-provided rules, which
is often the case for new tasks. Additionally, we
assume that we have a budget of T ‘‘cost’’ units
(e.g., time) for querying a subject matter expert
for feedback on either an instance si ∈ DU (at a
cost of TI ) or an automatically extracted rule rj

(at a cost of TR), as we discuss in Section 2.2.
Our goal is to leverage DL, DU , and R, and

interact with the expert within the specified budget
T to train a classifier that, given an unseen test
instance s′ ∈ X , predicts a label y′ ∈ Y .

2.2 Prior Work
Non-interactive Approaches. Non-interactive
weak supervision approaches do not involve a
human in the loop (i.e., T = 0 for our problem
definition). Supervised learning methods consider
just DL, semi-supervised learning methods con-
sider DL and DU (Nigam and Ghani, 2000; Lee,
2013; Gera et al., 2022), and WSL methods
consider DL, DU , and R (Ratner et al., 2017;
Bach et al., 2019; Badene et al., 2019; Fu et al.,
2020; Awasthi et al., 2020; Karamanolakis et al.,
2021). WSL uses rules in R (e.g., keyword-based
patterns, regular expressions, heuristic labeling
functions) to automatically generate weak train-
ing labels for unlabeled instances in DU . As rules
can be noisy, can have limited coverage, and dif-
ferent rules may generate conflicting labels for
the same instance, WSL techniques estimate rule
weights for noise-aware training (Zhang et al.,
2022a). Our method also employs WSL, can work
with any rule-weighting technique and further
discovers new rules to expand the coverage of R.

Our method is also related to zero-shot and
few-shot prompting methods, which use a tem-
plate to modify the input si into a cloze-style
or entailment question and leverage a pre-trained
model to ‘‘answer’’ the question (Schick and
Schütze, 2021; Yin et al., 2019; Liu et al., 2023).
By directly using the outputs of the pre-trained
model for classification, prompt-based techniques
are sensitive to the selection of prompting tem-
plates (Gao et al., 2021; Ye et al., 2023), labeled

examples (Zhao et al., 2021; Perez et al., 2021),
and hyperparameters (Tam et al., 2021). Even
prompting powerful models such as ChatGPT, the
successor of InstructGPT (Ouyang et al., 2022),
requires work to reach the performance of su-
pervised (fine-tuned) models on text benchmarks
(Bang et al., 2022). Our work explores prompting
for rule creation during training instead of di-
rect inference. Specifically, we use the pre-trained
model’s output to construct labeling rules, which
we assume are only weakly indicative of the true
labels. Through our approach prompting is re-
quired just for training and can work with any
model for inference, thus enabling applications
where deploying large language models might not
be possible.

Our work is also related to rule extraction
methods, which consider rules of various types
such as keywords, named entities, and numeric
expressions (Yangarber et al., 2000), synthetic re-
lations (Snow et al., 2004), part-of-speech tags
and hypernyms (Califf and Mooney, 2003), regu-
lar expression patterns (Augenstein et al., 2016),
sequential patterns (Srikant and Agrawal, 1996;
Jindal and Liu, 2008), and more recently, features
extracted by prompting pre-trained models (Zhang
et al., 2022b). Our method considers a rich fam-
ily of rules based on n-grams, linguistic features
(e.g., part of speech tags and named entities), and
prompt-based features and focuses on efficient in-
teraction by soliciting feedback on both candidate
rules and instances.

Interactive Learning with Instance Feedback.
One type of interaction that has been studied ex-
tensively in the literature is active learning, in
which the machine queries the expert for just
a small number of labels for examples that are
chosen adaptively from abundant unlabeled data
(Lewis and Gale, 1994; Cohn et al., 1996; Roy and
McCallum, 2001; Dasgupta et al., 2007; Dasgupta
and Hsu, 2008; Settles, 2009; Beygelzimer et al.,
2010; Houlsby et al., 2011; Zhang and Chaudhuri,
2015; Shen et al., 2017; Kirsch et al., 2019; Ash
et al., 2019; Brantley et al., 2020; Yuan et al.,
2020; Dor et al., 2020; Margatina et al., 2021;
Zhang et al., 2022c). Nearly all previous active
learning methods solicit the expert’s judgment to
just label instances. In other words, they do not
support feedback on labeling rules (i.e., TR = ∞)
and query for feedback on 
 T

TI
� instance labels.

Creating a sufficiently large training set would
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require separate feedback on many individual in-
stances. On the other hand, validating a candidate
rule leads to weak labels for many examples at a
time (i.e., for all the examples covered by the rule)
and, as a result, a large weakly-labeled dataset can
be created with a relatively small number of rules.

Interactive Learning with Rule Feedback.
Our work is related to previous interactive
methods that support expert queries on au-
tomatically generated rules from the n-gram
family (Druck et al., 2008; Melville et al.,
2009; Settles, 2011; Jagarlamudi et al., 2012;
Poulis and Dasgupta, 2017; Dasgupta et al.,
2018; Boecking et al., 2020; Kartchner et al.,
2022). These methods extract simple n-gram
based rules, which as we will show (e.g., in
Figure 3) have limited effectiveness and differ-
ent characteristics than expert-provided rules in
R. As two exceptions, Sen et al. (2019) extract
rules based on linguistic expressions via syntactic
parsing and Zhang et al. (2022b) consider rules
based on the output of pre-trained language mod-
els prompted with task-specific templates; both
show that experts can successfully provide feed-
back on rules from the proposed families. Most of
the above methods do not allow instance-labeling
queries (i.e., these methods assume that TI = ∞).
In contrast, our method subsumes and generalizes
existing work on rule labeling and active learning
by querying an expert for both instances and au-
tomatically extracted rules from a new rule family
with rich predicates.

3 Interactive Machine Teaching with
Instance and Rule Feedback

This section describes our interactive machine
teaching framework, which addresses the prob-
lem defined in Section 2.1. The core question is
how to efficiently solicit expert feedback for ma-
chine teaching given a limited budget T . Our main
idea is to balance the quality of instance labels
with the efficiency of labeling rules under this
low-resource setting. We propose a framework,
INTERVAL, that supports efficient interaction by
selecting which instances to label manually and
by extracting candidate rules that, when accepted,
can automatically generate many additional la-
bels. INTERVAL can be used with several WSL
methods and any learning model.

In the rest of this section, we describe
the individual steps followed by INTERVAL

on each iteration, namely, Teacher-Student
co-training (Section 3.1), querying for instance
feedback (Section 3.2), candidate rule extraction
(Section 3.3), and querying for rule feedback
(Section 3.4), and then we summarize the
main ideas of our interactive machine teaching
algorithm (Section 3.5).

3.1 Teacher-Student Co-Training
In the first step of each iteration, we use DL,
DU , and R to train a model. This has been the
main objective in non-interactive WSL. Our model
training employs the Teacher-Student abstraction
by Karamanolakis et al. (2021) to unify several
WSL methods (Dawid and Skene, 1979; Ratner
et al., 2016, 2019; Zhang et al., 2022a).

The teacher model qφ(·) considers DL, DU ,
and R, and predicts labels qi for all examples
si ∈ DU except for examples covered by no
rules in R, which are then not covered by the
Teacher either. The student model pθ(·) is the
base learning model that is trained using DL, DU ,
and the teacher model by approximately solving
the following optimization problem:

min
θ

Esl,yl∈DL
[− log pθ(yl | sl)] +

λEs∈DU
Ey∼qφ∗ (y|s)[− log pθ(y | s)], (1)

where λ ∈ R is a hyper-parameter controlling the
relative weight of the manually labeled data (first
term) and the weakly labeled data (second term).

The same Teacher-Student abstraction appears
across different WSL approaches (Zhang et al.,
2022a), which differ in the teacher model de-
sign. For example, in simple majority voting, the
Teacher aggregates the predictions of rules inR. In
Snorkel (Ratner et al., 2017), the Teacher is a prob-
abilistic graphical model that estimates weights
for rules in R in an unsupervised way. In ASTRA
(Karamanolakis et al., 2021), the Teacher is a
rule-attention network that aggregates rule labels
with instance-specific weights and is co-trained
with the Student.

In our problem of focus, where the size of DL

is small and R contains just a small number of
rules, the student model might have far less than
satisfying accuracy for our target task. Next, we
show how to exploit the interaction budget T .

3.2 Querying for Instance Feedback
After having trained the Student, INTERVAL
queries the label yi for an instance si from the
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unlabeled set DU . To efficiently interact with an
expert, we design a method that chooses which
instance to query for feedback based on the Stu-
dent’s probabilities, as some instances might be
more ‘‘informative’’ for the Student than others.
INTERVAL identifies a diverse collection of un-
labeled instances for which the Student’s predicted
probabilities have high entropy as explained next.

Instance Clustering. At the beginning of our
algorithm, we construct a hierarchical cluster-
ing of the unlabeled instances in DU . To achieve
this, we implement agglomerative clustering using
Ward’s linkage method, which focuses on min-
imizing cluster variances. For cluster variances,
we calculate the Euclidean distances between in-
stances based on instance embeddings, which are
computed via pre-trained BERT (Devlin et al.,
2019). For implementation details see Section 4.

Instance Selection. To choose which instances
to query, INTERVAL applies the Student pθ(·)
on each unlabeled instance si ∈ DU to get soft
labels pi = (p1i , . . . , p

K
i ), where pki represents

the Student’s predicted probability for assign-
ing si into the target class k ∈ K. We use
DStudent = {(si, pi)}si∈DU

to define the dataset
that is soft-labeled by the Student. Then, IN-
TERVAL selects sample instances si via the
cluster-adaptive sampling algorithm of Dasgupta
and Hsu (2008), which exploits the hierarchical
structure of the data and evaluates cluster infor-
mativeness based on the entropy of the Student’s
predicted probabilities for si in DS . Specifi-
cally, the algorithm chooses instances si from
clusters characterized by low label ‘‘purity’’, or
equivalently, high entropy based on the Student’s
probabilities pi. This selection is made under the
premise that collecting expert labels for these in-
stances will provide valuable information for the
subsequent round of Student training. Once a clus-
ter becomes ‘‘pure,’’ then the algorithm shifts its
focus to another cluster with the goal to acquire a
diverse collection of instances.

Instance Labeling. After selecting an instance
si, the system queries the expert’s label yi at a
cost of TI . At the end of the iteration, the labeled
pair (si, yi) is added in DL to train the Teacher
and Student at the next iteration.

Name Prompt Template
EXPERIENCE Overall, the experience is [MASK]. [TEXT].
RECOMMEND [TEXT]. Would I recommend it? The answer is [MASK].

ASKS FOR The following SMS message asks for [MASK]: [TEXT].
IS ABOUT The following SMS message is about [MASK]: [TEXT].

Table 1: Examples of templates used to prompt
pre-trained models in Yelp (top) and SMS
(bottom) for candidate rule extraction.

3.3 Candidate Rule Extraction
In contrast to WSL, where experts manually create
rules with significant coverage on DU , we pro-
pose to automatically extract candidate rules and
hopefully reduce the cost of rule creation. After
getting the label yi for an instance si, we extract
candidate rules rj that predict the same label yi
for si and have non-trivial coverage in DU . We
first describe the types of rules and then how to
extract them.

Rule Family. Most work on interactive learn-
ing with rule feedback has focused on extracting
keyword-based labeling rules. These rules have
limited expressiveness compared to expert-written
rules, which include class-indicative keywords,
regular expression patterns, and auxiliary clas-
sifiers (e.g., polarity and subjectivity classifiers
for spam classification) (Zhang et al., 2022c). To
improve expressiveness without sacrificing inter-
pretability, our method extracts rules rj whose
predicates vj(si) are conjunctions of features
that can have three different types: n-grams
(vj(si) is true if a specific n-gram appears in
si), linguistic features (e.g., part-of-speech tags
and named entities), and prompt-based features.
Specifically, to construct prompt-based rules, we
prompt pre-trained models for si using templates
from ‘‘PromptSource’’ (Bach et al., 2022). As
an example, consider the sentence from Figure 1
(si: ‘‘I have been to this restaurant 3 times. I
won’t go back’’). We construct ‘‘prompt-based’’
predicates by prompting a pre-trained model to
fill in the mask in the following template: ‘‘<si>.
Overall, the experience is [MASK]’’ and extract-
ing the top k tokens (e.g., ‘‘terrible’’). Table 1
shows more examples of prompt templates and
Table 2 lists examples of rules extracted by our
method using such templates (extraction details
are discussed later). Our approach extracts com-
mon patterns across instances that might not even
share any n-gram features, such as in tasks with
short documents. As we will see in Section 5.2, the
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Candidate Rules (predicate → label)
PMT-EXPERIENCE=‘‘terrible’’ → Negative
PMT-EXPERIENCE=‘‘fantastic’’→ Positive
PMT-RECOMMEND=‘‘certainly’’ → Positive
PMT-IS ABOUT=‘‘prizes’’ → Spam
NGRAM=‘‘http’’ AND PMT-ASKS FOR=‘‘donations’’ → Spam
NER=‘‘CARDINAL’’ AND PMT-ASKS FOR=‘‘information’’→ Spam

Table 2: Examples of rules extracted by our
method for Yelp (top) and SMS (bottom).
‘‘NGRAM = a’’ means that a appears as an
n-gram in the text. ‘‘NER = a’’ means that
at least one entity of type a exists in the text.
‘‘PMT-b = a’’ means that a appears among the
top-k tokens predicted by the pre-trained model to
fill in the [MASK] token for a prompt template b.

rules in our expanded family can be substantially
more accurate than the simple n-gram rules con-
sidered in previous work, and yet they are nearly
as interpretable. Note that, at test time, our method
does not require access to the above resources as
the student model predicts labels directly based on si.

Rule Extraction. We extract rules r from the
above family, as long as (i) they cover at least tcov
examples in DU including si and (ii) they have a
precision of at least tprec inDL. Both tcov and tprec
are hyper-parameters. Given the above coverage
and precision constraints, we extract conjunctions
of features using the Apriori algorithm (Agrawal
et al., 1994). Specifically, we first exhaustively
search all rules with a single feature from the
above family and keep all rules that satisfy all
constraints. (The constraint that all rules have to
cover si with a label yi is especially strong and
allows efficient search.) Then, we create rules
as conjunctions of two features selected before
and pick just the resulting rules that satisfy all of
the above constraints. Our method considers rules
with conjunctions of up to tlen features, where tlen
is another hyper-parameter. The set RC contains
all candidate rules that are extracted by our method
and satisfy our constraints.

Automatically identifying a good rule is hard
with limited labeled data DL. For example, a
candidate rule rj with high coverage on DU might
have low coverage in DL (DL might contain just
a few labeled examples), and therefore it is hard
to estimate the true precision of rj . Therefore,
we rely on expert feedback for selected candidate
rules from RC , as discussed next.

Algorithm 1 Interactive Machine Teaching
Input: Small amount of labeled data DL;
task-specific unlabeled data DU ; small set
of weak rules R; budget of T cost units for
interaction with a subject matter expert
Output: Student p∗θ(·), Teacher q∗φ(·), aug-
mented labeled data D′

L, augmented set of
weak rules R′

1: Cluster all data si ∈ DU into hierarchical
clusters (agglomerative clustering; Ward’s
linkage; Euclidean distance of instance
embeddings)

2: Initialize D′
L = DL, R′ = R

3: Repeat until the budget T runs out:
3.1: Train Teacher q∗φ(·) and Student pθ(·)
using D′

L, DU , R′

3.2: Apply pθ(·) to s ∈ DU to obtain soft
labels: DStudent = {(si, pi)}si∈DU

3.3: Pick a candidate instance si ∈ DU

3.4: Query the label yi for si (cost = TI )
3.5: Extract candidate rules rj that cover si
3.6: Query the labels zj for βi rules rj (cost
= βi · TR)
3.7: Update D′

L = D′
L ∪ {(si, yi)}βi

, R′ =
R′∪{rj : (vj(·), zj)}, T = T−TI−βi ·TR

3.4 Querying for Rule Feedback

After having extracted the set of RC candidate
rules that cover si, we select up to β candidate
rules rj and query for their labels zji , where β
is a hyper-parameter. Specifically, we first select
in R′

C all rules from RC that predict a label
zji = yi (thus agreeing with the expert’s label for
si). Then, we select from R′

C the top β rules with
the highest precision (computed on DL). Note that
R′

C might have fewer than β rules in total, thus
we use βi ≤ β to indicate the number of rules
selected finally.

Next, we query the labels zji for the βi selected
rules at a cost of βi · TR. At the end of the
iteration, the βi labeled rules, which we denote as
{(rj , zj)}βi

, are added in R, where by design each
rule rj will predict the same label zj = zji for all
instances that it covers. Our method ignores rules
labeled with zji = ⊥.

Throughout this interaction design, we assume
that the domain expert can judge whether rj pro-
vides the correct label for most of the examples
that the rule covers, and is aware that (i) a rule
rj does not need to have perfect accuracy but
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YouTube SMS IMDB Yelp TREC AGNews
Classification task spam spam sentiment sentiment question type topic
Domain user comments text messages movies reviews web queries news
# Classes (K) 2 2 2 2 6 4
Unlabeled size (|DU |) 1546 4531 19,960 30,360 4845 95,920
Labeled train size (|DL|) 40 40 40 40 120 80
Test size 250 500 2500 3800 500 12,000
# Prompt templates 5 5 15 12 6 9
# Expert-provided rules (R) 10 73 5 8 68 9

Table 3: Statistics for available datasets with expert-labeled rules.

rather represents a pattern that the expert intends
to exploit to label examples more efficiently than
manually; (ii) rule predictions will be aggregated
to train a model in a noise-aware way. Similar
to how expert-written rules are used for WSL,
we assume that accepting a precise candidate rule
for si could improve the Student in the next itera-
tion. This is possible, by augmenting the Student’s
training data with all the unlabeled examples cov-
ered by the rule, and by increasing the overlap of
accepted rules R on DU , which provides useful
signal for rule denoising, similar to inter-annotator
agreement methods.

3.5 Interactive Machine Teaching Algorithm

These steps outlined in Sections 3.1–3.4 make
up our interactive machine teaching method
(Algorithm 1), which we recap as follows. First,
our method clusters DU into hierarchical clusters.
In each interaction round: (1) we train the Teacher
and Student using labeled data, unlabeled data,
and expert-validated rules (line 3.1); (2) we apply
the Student on unlabeled data to get soft labels
(line 3.2); (3) we pick a candidate unlabeled in-
stance (line 3.3) and obtain its instance label from
an expert (line 3.4); (4) we extract candidate rules
(line 3.5) and obtain the labels for βi rules from
an expert (line 3.6); and (5) we update the labeled
dataset, expert-validated rules, and the remaining
budget (line 3.7). In practice, we repeat Steps 3–6
(lines 3.3–3.6) in batches of 10 instances. We
repeat the full procedure until the budget T runs out.

By associating rj with a specific instance si,
we give the expert extra context (e.g., the text of
si) for deciding zj . Also, we hypothesize that, in
practice, reading the text of the instance can help
reduce the cost TR for deciding zj . While some
previous work assumes that labeling rules have
no extra cost (Poulis and Dasgupta, 2017), we
assume that TR > 0. The hyper-parameter βi con-
trols how to distribute the budget T . Specifically,

setting βi = 0 reduces to standard active learn-
ing, as INTERVAL will perform 
 T

TI
� queries on

instances only. By setting βi ≥ 1, one can ex-
ploit feedback on rules that apply to si. As we
will show, rule feedback leads to performance
improvements relative to instance feedback only.

4 Experimental Settings

We now present our experimental setting for
interactive machine teaching on several text
classification datasets.

Datasets. For our analysis and to evaluate our
framework, we consider six benchmark datasets
from diverse domains: (1) spam classification of
YouTube comments (Alberto et al., 2015); (2)
spam classification of SMS messages (Almeida
et al., 2011); (3) sentiment classification of IMDB
movie reviews (Maas et al., 2011); (4) sentiment
classification of Yelp reviews (Zhang et al., 2015);
(5) question classification from TREC-6 (Li and
Roth, 2002); and (6) topic classification in AG-
News (Zhang et al., 2015). Table 3 reports dataset
statistics. For each dataset, we use expert-made
rules that are provided by Zhang et al. (2021) and
prompt templates that are provided by Bach et al.
(2022). For a fair comparison, we use exactly the
same expert-written rules3 as in previous work,
which can have various types such as keywords,
regular expression patterns, and lexicons.

Experimental Procedure. To simulate the
low-resource setting, we split the training ex-
amples into DL (labeled set) and DU (unlabeled
set) by sampling 20 labeled examples per class
(20 · K in total) uniformly at random, which we
use in DL, while we use the rest in DU . To be
consistent with our low-resource assumptions, we
downsample the validation set (used for training

3All rules are described at https://github.com
/JieyuZ2/wrench.
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Student via early stopping) to match the size of
DL. For interactive approaches, we consider the
extreme low-resource setting where R = ∅. We
simulate expert feedback for candidate instances
si fromDU (Section 3.2) using the ground-truth la-
bels of DU (hidden to the main algorithm), which
is common in active learning research (Zhang
et al., 2022c). We simulate expert feedback for
candidate automatic rules (Section 3.4) using all
ground-truth labels in DU : a candidate rule rj is
accepted if it correctly classifies more than toracle
of the instances in DU that it covers. We exper-
iment with different values of toracle: 25%, 50%,
75%, 90%, and 100% and study their impact on
the student’s accuracy.

For a robust evaluation, for each method we run
10 different experiments with different random
seeds, thus each run corresponds to a different
version of DL, DU , and R. We report the average
test performance over the 10 different runs. As
evaluation metric, we use the macro-averaged F1
of the student model on the test set.

Model Configuration. For a fair comparison,
we use exactly the same text pre-processing
(tokenization, embedding) as in the WRENCH
benchmark (Zhang et al., 2021). Following Zhang
et al. (2021), we represent each text instance
(si) as a vector using pre-trained BERT (Devlin
et al., 2019), specifically as the output em-
bedding of the [CLS] token of BERT-base.4

For the hyper-parameters and search space for
bag-of-words logistic regression, multilayer per-
ceptron, and BERT, see Table 10 in Zhang et al.
(2022c). For candidate rule extraction, we con-
sider conjunctions (AND) of up to tlen = 3
features consisting of n-grams with n = 1, 2, 3;
linguistic features (part-of-speech tags and named
entities extracted using the spaCy library5); and
prompt-based features as the top k = 10 to-
kens predicted by pre-trained RoBERTa (Liu
et al., 2019) for each of the templates pro-
vided by Bach et al. (2022).6 For our analysis
of rule characteristics, we experiment with dif-
ferent values for the minimum rule coverage
on DU (tcov ∈ {10, 100, 1000}) and the min-
imum rule precision based on DL (tprec ∈

4https://huggingface.co/google-bert
/bert-base-cased.

5https://spacy.io/usage/linguistic
-features/.

6Prompt templates are available at https://github
.com/bigscience-workshop/promptsource.

{25%, 50%, 75%, 100%}). In INTERVAL, we
use tcov = 100 and tprec = 75%. For interaction,
we study different relative values for β (maximum
number of rules per instance), TR (rule labeling
cost) and TI (instance labeling cost).

Model Comparison. For a robust evaluation of
our approach, we compare several approaches that
utilize different resources:

1. ‘‘Fully supervised’’: a model trained in the
high-resource setting using all labeled data.

2. ‘‘Low supervised’’: a model trained in the
low-resource setting using only DL.

3. ‘‘Semi supervised’’: a model trained us-
ing DL and DU . We consider self-training
(Nigam and Ghani, 2000; Lee, 2013) for up
to 25 iterations with early stopping based on
the validation performance.

4. ‘‘WSL’’: a model trained usingDL,DU , and
R. We experiment with different methods,
including unweighted majority voting and
weighted aggregation of rule predictions with
majority voting, Snorkel (Ratner et al., 2017),
Dawid-Skene (Dawid and Skene, 1979), Fly-
ingSquid (Fu et al., 2020), MeTaL (Ratner
et al., 2019), and ASTRA (Karamanolakis
et al., 2021).

5. ‘‘Active learning’’: a model trained using
DL,DU , and the interaction budgetT . We ex-
periment with standard active learning (per-
forming 
 T

TI
� queries on instances only) with

different acquisition functions, including ran-
dom instance selection, uncertainty-based
sampling, hierarchical sampling (Dasgupta
and Hsu, 2008), and contrastive active learn-
ing (Margatina et al., 2021). We also evaluate
IWS (Boecking et al., 2020), which consid-
ers n-gram rule families and performs 
 T

TR
�

queries on rules only.7

6. ‘‘INTERVAL’’: a model trained using our
interactive machine teaching method that
uses DL and DU , and spends the interac-
tion budget T to perform queries on both
instances and rules.

7Unfortunately, the code repository for PRBoost (Zhang
et al., 2022b), https://github.com/rz-zhang
/PRBoost, does not contain any code as of August 9,
2024.
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Figure 2: Precision-coverage scatterplots reporting the precision (x-axis) and coverage (y-axis) of the Teacher.
Each data point corresponds to a different Teacher-Student pair and its color indicates the F1 score of the Student.

For a fair comparison, we use exactly the same
modeling configuration across all methods (see
paragraph ‘‘Model configuration’’ for details).

5 Experimental Results

We now present our analysis of expert-provided
rules (Section 5.1), results on automatic rule ex-
traction (Section 5.2), and our experiments for
interactive machine teaching with queries on
instances and rules (Section 5.3).

5.1 Analysis of Expert Rules

In this section, we analyze existing datasets with
expert-labeled rules and simulate low-resource
rule settings to understand the impact of Teacher
properties on the performance of the Student.

Analysis of the Precision vs. Coverage
Trade-off. In Section 1, we highlighted one
challenging question: Should one prioritize
rules that cover more examples but have a
relatively lower precision or a few rules that
have higher precision but lower coverage? To
analyze the precision-coverage trade-off, we
create different Teacher versions using different
subsets of the expert-labeled rules and evaluate
the performance of Student using each Teacher
separately. For a robust analysis, we evaluate
multiple Teacher types (majority voting, Snorkel
(Ratner et al., 2016), Dawid-Skene (Dawid and
Skene, 1979), MeTaL (Ratner et al., 2019),
FlyingSquid (Ratner et al., 2019)), and multiple
Student types (bag-of-words logistic regression,
multilayer perceptron, BERT). See Section 4 for
implementation details. For each Teacher type,
we keep different randomly selected subsets of
the rules in R ranging from 1% to 100%. For each

Teacher-Student combination, we run 10 different
experiments with different random seeds. This
results in more than 1,000 Teacher-Student
configurations for each dataset.

Figure 2 summarizes the results across all exper-
iments for YouTube and TREC. While different
datasets have Teacher-Student pairs with different
characteristics, there are patterns that are preva-
lent across datasets. First, a more accurate Teacher
does not necessarily lead to a more accurate Stu-
dent. For example, in YouTube (Figure 2) some
Teachers with F1 ≥ 0.6 train a Student with
F1 ≥ 0.5, while other Teachers with F1 ≤ 0.2
train a Student with F1 ≥ 0.8. This result implies
that naively optimizing the Teacher’s performance
(according to the standard ‘‘data programming’’
paradigm (Ratner et al., 2016)) might not lead to
the best performing student model.

A second pattern that is prevalent across
datasets is that the Teacher’s precision is more
important than coverage for training an accurate
Student. In the scatterplots of Figure 2, most
Teachers with high precision train high-quality
Students, while many Teachers with high coverage
train low-quality Students. To quantify this obser-
vation, we compute precision-coverage weights
using the Teacher’s precision and coverage to
predict the Student’s F1 score. Specifically, we
compute the Student’s F1 score as the weighted
geometric average of the Teacher’s precision and
coverage, and we tune the corresponding weights
using grid search. A higher weight thus indicates
that the corresponding feature is more impor-
tant for the prediction of the Student’s F1 score.
Table 4 shows the estimated precision and cover-
age weights for all datasets. Across all datasets,
precision has higher weight than coverage: more
precise Teachers lead to more accurate Students.
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YouTube SMS Yelp IMDB TREC AGNews
Coverage weight 0.20 0.00 0.22 0.23 0.30 0.46
Precision weight 0.80 1.00 0.78 0.77 0.70 0.54

Table 4: Quantifying the relative importance of Teacher coverage and precision
for training an accurate Student. Across all datasets, precision has a higher
weight than coverage.

Figure 3: Precision-coverage scatterplots for auto-
matically extracted n-grams (grey) and prompt-based
rules (red). Grid numbers show the count of
n-gram/prompt-based rules on the corresponding grid.
Prompt-based rules can achieve relatively higher
precision and coverage than n-gram rules.

Our observation that rule precision is more
important than coverage explains recent design
choices for WSL (Awasthi et al., 2020; Hsieh et al.,
2022), such as the ‘‘contextualized LF modeling’’
component of Hsieh et al. (2022), which explicitly
reduces rule coverage to improve rule precision.
Moreover, our observation might inform guide-
lines for rule creation. In YouTube, for instance,
if we reject all Teacher models with coverage
lower than 0.5, then the precision’s importance
weight increases from 0.75 to 0.84, indicating that
focusing on precision would be beneficial. There-
fore, one potential guideline is that if the Teacher
has a coverage higher than 50%, then the main
focus should be on improving its precision.

5.2 Analysis of Automatic Rules

In this section, we compare our rule family to
n-gram rules and expert rules. Figure 3 shows
precision-coverage scatterplots for rules automat-
ically extracted by our method. For this analysis,
we have included all rules with precision higher
than 0.5 and coverage higher than 0. Rules with
high-level predicates (conjunctions of n-grams,

named entities, and prompt-based features) can
achieve relatively high precision and coverage
compared to n-gram predicates and thus are
promising to improve the overall performance
of interactive machine teaching.

Table 5 reports the performance of ‘‘WSL’’
with automatically extracted rules extracted by
our method using tcov = 100 (minimum coverage)
and tprec = 0.75 (minimum precision). Across all
datasets, our rule family is more effective than
n-gram rules and could thus improve the effec-
tiveness of automatic rule extraction. Also, across
most datasets (except TREC and YouTube), our
rule family is more effective than expert-provided
rules: we effectively use DU and DL to discover
high-quality rules. As an exception, TREC con-
tains the highest number of manually crafted rules
compared to the rest of the datasets. As we will
show next, expert interaction can lead to further
improvements.

5.3 Interactive Machine Teaching

Table 6 reports classification results of different
methods for each dataset. For brevity, we report
the best method under each category and list the
average F1 across datasets (see AVG F1 column).
In interactive methods, we assume TR = TI and
fix β = 1 (while we study different values later).

Non-interactive Approaches. Across non-
interactive approaches, WSL ASTRA per-
forms best: using both labeled instances and
expert-provided rules is more effective than using
just labeled instances (in Low Supervised or
Semi Supervised), which agrees with conclusions
from recent work (Karamanolakis et al., 2021).
ASTRA outperformed other WSL methods,
including majority voting (AVG F1= 74.1) and
Snorkel (AVG F1 = 74.5).

Active Learning Approaches. Using the ex-
tra interaction budget T in Active Learning
improves over Low Supervised: Labeling extra
instances leads to important performance boosts,
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Rule family YouTube SMS IMDB Yelp TREC AGNews AVG F1
Expert 90.0 86.8 71.2 80.2 57.0 75.9 76.8
Automatic (n-gram; Boecking et al. (2020)) 76.4 79.7 49.1 54.9 52.7 74.8 64.6
Automatic (ours) 82.7 91.4 73.5 86.1 53.3 78.1 77.5

Table 5: F1 score of the WSL method trained with expert rules and automatically extracted rules from
two different families, namely, n-gram rules and high-level rules (conjunctions of n-grams, named
entities, and prompt-based features). Our automatic rules lead to better performance than expert rules
and n-gram rules. Performance differences for each dataset are statistically significant at p < 0.05 using
the Student’s t-test.

Method |DL| DU R T (TI , TR) YouTube SMS IMDB Yelp TREC AGNews AVG F1
Fully Supervised 100% – – – 94.0 95.6 79.6 87.5 90.3 80.7 88.0
Low Supervised 20·K – – – 79.8 82.5 61.6 70.4 55.0 58.8 68.0
Semi Supervised 20·K � – – 80.7 83.2 63.4 72.0 55.0 60.7 69.2
WSL (ASTRA) 20·K � � – 90.0 86.8 71.2 80.2 57.0 75.9 76.8
Active Learning (hierarchical) 20·K � – 100 (100, 0) 85.3 89.9 67.6 81.2 61.4 71.4 76.1
INTERVAL 20·K � – 100 (50, 50) 91.4 94.8 79.3 86.2 66.6 78.8 82.8

Table 6: F1 score reported for various methods on 6 datasets. Columns 2–5 describe the resource usage,
specifically the size of labeled set DL (where the number of classes K varies per dataset), the usage of
the unlabeled set DU and initial expert rules R, and the interaction budget for feedback on instances (TI )
and rules (TR). We report the best performing method for each category. INTERVAL outperforms WSL
and Active Learning across all datasets, where performance differences for each dataset are statistically
significant at p < 0.05 using the Student’s t-test.

as expected. Hierarchical sampling performs bet-
ter than random sampling (AVG F1 = 75.0),
uncertainty-based sampling (AVG F1 = 75.3),
contrastive active learning (AVG F1 = 74.1), and
IWS (AVG F1 = 75.3). For SMS, Yelp, and
TREC, Active Learning with a budget of T =
100 outperforms ASTRA: Acquiring 100 extra
instance labels is more effective than collect-
ing expert rules for these datasets. However, for
YouTube, IMDB, and AGNews, Active Learn-
ing (hierarchical) does not outperform ASTRA,
which highlights that expert-provided rules are
worth many examples. The above results sug-
gest that there is no clear winner between Active
Learning and WSL, and their relative performance
varies across datasets.

Interactive Learning with Queries on Rules and
Instances. In Table 6, INTERVAL with a bud-
get of T= 100 performs better than the best Active
Learning (hierarchical) approach with the same
budget: leveraging feedback on both instances
and rules within a limited budget is more effective
than feedback on instances only. Interestingly,
even without using any expert-provided rules,
INTERVAL outperforms ASTRA. This indicates
that automatically-generated rules (analyzed in

Method AVG F1

Fully Supervised 88.0

Low Supervised 68.0
Semi Supervised (self-training) (Lee, 2013) 69.2
WSL (majority voting) 74.0
WSL (Snorkel) (Ratner et al., 2017) 74.2
WSL (FlyingSquid) (Fu et al., 2020) 74.2
WSL (MeTaL) (Ratner et al., 2019) 74.7
WSL (ASTRA) (Karamanolakis et al., 2021) 76.8
Active Learning (random) 75.0
Active Learning (uncertainty) 75.3
Active Learning (contrastive) (Margatina et al., 2021) 75.4
Active Learning (hierarchical) (Dasgupta and Hsu, 2008) 76.1
Interactive Rule Labeling (IWS) (Boecking et al., 2020) 75.1
INTERVAL 82.8
INTERVAL w/o instance labeling 78.2 ↓6%
INTERVAL w/o rule labeling 76.1 ↓8%
INTERVAL w/o prompt-based rules 79.7 ↓4%
INTERVAL w/o n-gram rules 80.2 ↓3%

Table 7: Comparison of all methods (average F1
across datasets) and ablation experiments.

Section 5.2) are effective. While the ASTRA Stu-
dent might capture implicit rules via self-training,
many rules could be inaccurate, thus highlighting
the importance of expert interaction.

Table 7 summarizes the results for all methods
and ablation experiments. INTERVAL performs
better than its ablations without instance label-
ing (by 6%) and without rule labeling (by 8%):
feedback on both instances and rules is the most
effective. Also, our rule family is more effective
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Budget (T )
Method 10 50 100 150 200 250

Active Learning (rand.) 68.1 71.8 75.0 76.5 78.0 78.4
Active Learning (hier.) 68.4 73.9 76.1 78.3 79.3 79.9
INTERVAL 76.2 81.1 82.8 84.3 85.5 86.2

Table 8: Comparison of interactive methods
(average F1) with different budget sizes (T ). Per-
formance differences for each budget size are
statistically significant at p < 0.05 using the
Student’s t-test.

Figure 4: Performance of interactive methods on Yelp
(top) and AGNews (bottom) as a function of budget
(T ). INTERVAL outperforms Active Learning with
strongest improvements in low-budget settings (left).

than its ablations without n-gram rules (by 4%)
and without prompt-based rules (by 3%). Perfor-
mance differences on each dataset are statistically
significant at p < 0.05 using the Student’s t-test.

Performance with Different Budget Values.
Table 8 reports the performance of interactive
methods with different budget sizes ranging from
10 to 250. INTERVAL requires as few as T =
10 queries to reach F1 values that existing active
learning methods cannot match even with T =
100 queries. Figure 4 shows the performance of
INTERVAL compared to Active Learning ap-
proaches on Yelp and AGNews. INTERVAL
leads to a big performance boost especially in
low-budget settings where T < 100. Our re-
sults highlight that INTERVAL can effectively

YouTube SMS IMDB Yelp TREC AGNews

TR 4 TI 4 TI 8 TI 9 TI 2TI 4 TI

Table 9: Maximum value for TR (cost of rule
feedback) as a function of TI (cost of instance
feedback) so that feedback on rules and instances
is more effective than just instance feedback.

β YouTube SMS IMDB Yelp TREC AGNews AVG F1

0 85.3 89.9 67.6 81.2 61.4 71.4 76.1
1 91.4 94.8 79.3 86.2 66.6 78.8 82.8*
2 91.9 94.8 79.2* 87.3 65.0 79.7 83.0
5 91.0 94.7* 78.4 86.9 62.5 79.2 82.1

Table 10: F1 score of INTERVAL for each dataset
by varying β (maximum rules labeled per in-
stance). An asterisk (*) next to a number denotes
that the difference is not statistically significant
when compared to the bolded values, as deter-
mined by a p-value greater than 0.05 using the
Student’s t-test.

leverage feedback on both instances and auto-
matic rules, and outperform previous interactive
methods.

Evaluating the Relative Cost of Rules and In-
stances. So far, we have evaluated our method
by assuming that TR = TI . Here, we experiment
with different relative costs of labeling rules (TR)
and instances (TI ). We assume T = 100·TI (fixed
total budget), β = 1 (labeling up to one rule per
instance), and find the maximum value for TR

so INTERVAL (T =
∑

i TI + βi · TR) has an
F1 score that is at least as high as the best Ac-
tive Learning (hierarchical) method (T =

∑
i TI ).

Table 9 reports the maximum TR value for each
dataset. On average across datasets, feedback on
rules and instances is more effective than feedback
on instances as long as TR ≤ 5.2TI , though this
value varies significantly per dataset and can be as
high as 9TI (for Yelp). In other words, our hybrid
method for labeling rules and instances is highly
effective even when labeling rules is 9 times (for
Yelp) more expensive than labeling instances.

How Many Rules to Label per Instance. Table 10
shows the performance of INTERVAL by vary-
ing β (maximum number of rules to label per
instance). Labeling up to one rule (β = 1) gives
strong boosts compared to no rule labeling (β = 0)
across datasets while labeling up to two rules
(β = 2) gives further improvements in some tasks

1452



Text instance si:
‘‘Prime Minister Manmohan Singh today said international
environment for India’s development was highly favourable...’’
Queries:
- Instance label: World
- Rule 1: NGRAM=‘‘prime minister’’ → World �
- Rule 2: PROMPT IS ABOUT=‘‘politics’’ → World �
- Rule 3: NGRAM=‘‘international’’ → World ✗

- Rule 4: –
- Rule 5: –

Table 11: Example from AGNews with β = 5. All
classes are ‘‘World,’’ ‘‘Sports,’’ ‘‘Business,’’ and
‘‘Sci/Tech.’’ Out of the rules that were queried, 2
were accepted and 1 was rejected.

(YouTube, Yelp, AGNews). However, increasing
β to values higher than 2 is less effective: when
β = 5, then either less-accurate or redundant rules
are queried, while this interaction budget could
be used more effectively by labeling more in-
stances (and the associated rules). Table 11 shows
an example from AGNews (classes are ‘‘World,’’
‘‘Sports,’’ ‘‘Business,’’ and ‘‘Sci/Tech’’) where
INTERVAL is applied with β = 5. The candi-
date instance is labeled as ‘‘World’’ topic and
out of the βi = 3 rules that were queried (by
satisfying the minimum precision and coverage
thresholds), 2 were accepted and 1 was rejected as
‘‘international’’ also appears in other topics (e.g.,
‘‘Business’’). Our analysis suggests that most per-
formance benefits are realized by labeling up to
1 rule per instance, while future research could
dynamically determine the threshold β, for ex-
ample as a function of task characteristics and
labeling costs.

6 Discussion and Future Work

Our framework and analysis demonstrates the ad-
vantages of soliciting feedback on both candidate
rules and individual instances. We identify several
areas for future research and discuss them next.

As future work, we will explore additional de-
sign choices for INTERVAL, including instance
selection strategies (e.g., based on rule informa-
tiveness), rule extraction methods (e.g., based on
rule diversity), and weak supervision techniques.
While INTERVAL selects up to β candidate rules
per instance (where βi depends on how many
rules satisfy the precision and coverage thresh-
olds), we could further explore adaptive querying
protocols, for example dynamically determining
β or selectively skipping instance labeling based

on dataset characteristics or labeling costs. We
could also extend INTERVAL to support richer
types of feedback, such as editing (rather than
accepting or rejecting) candidate rules and prompt
templates (rather than relying on fixed templates
from Bach et al. (2022)). More research is re-
quired from a user perspective, for example on
how to visualize rules (Lertvittayakumjorn et al.,
2022) and effectively present a combination of
rules and instances for expert labeling. INTER-
VAL supports prompting pre-trained models just
for training data creation, and can work with any
model for inference, thus enabling applications
where deploying large language models might not
be possible. We expect further gains by creating
rules using more powerful pre-trained models such
as InstructGPT (Ouyang et al., 2022); PaLM-T5
(Chung et al., 2022); LLaMA (Touvron et al.,
2023a,b). We also expect performance improve-
ments by replacing the Student using stronger
pre-trained models and by representing instances
using more recent text embedding techniques
(He et al., 2020; Wang et al., 2023; Su et al.,
2023; Muennighoff et al., 2024). INTERVAL
could also be extended for multi-label classifica-
tion by changing the Teacher-Student co-training
objective (Section 3.1) and for other broader tasks
by generating rules from more complex rule fam-
ilies using models such as Toolformer (Schick
et al., 2023).

Our current experimental evaluation used sim-
ulated expert feedback, because a definitive
evaluation involving actual subject matter experts
would be too expensive. A potential stopgap is
to use large language models (such as ChatGPT),
which may be too expensive to query at test time,
but are cheaper than subject matter experts to
query at training time for selected instances.

7 Conclusions

In this paper, we presented an interactive ma-
chine teaching approach that queries experts for
feedback on both instances and automatically gen-
erated rules. Our findings show that, even though
rules are domain specific and have diverse char-
acteristics, there are patterns that are prevalent
across datasets. Specifically, a higher-F1 Teacher
does not necessarily lead to a higher-F1 Student.
We identified that the Teacher’s precision is more
important than coverage for training an accurate
Student. These findings could potentially inform
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guidelines for rule creation. Our analysis demon-
strates that automatic rules based on high-level
predicates are more accurate than rules based on
n-gram predicates. We additionally showed that
by asking queries on both instances and automat-
ically extracted rules, our method can be more
effective than active learning methods.
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