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Abstract

Word-level AutoCompletion (WLAC)
is a rewarding yet challenging task in
Computer-aided Translation. Existing work
addresses this task through a classification
model based on a neural network that maps
the hidden vector of the input context into
its corresponding label (i.e., the candidate
target word is treated as a label). Since the
context hidden vector itself does not take
the label into account and it is projected
to the label through a linear classifier, the
model cannot sufficiently leverage valuable
information from the source sentence as
verified in our experiments, which eventually
hinders its overall performance. To alleviate
this issue, this work proposes an energy-based
model for WLAC, which enables the context
hidden vector to capture crucial information
from the source sentence. Unfortunately,
training and inference suffer from efficiency
and effectiveness challenges, therefore we
employ three simple yet effective strategies
to put our model into practice. Experiments
on four standard benchmarks demonstrate
that our reranking-based approach achieves
substantial improvements (about 6.07%)
over the previous state-of-the-art model.
Further analyses show that each strategy
of our approach contributes to the final
performance.1

1 Introduction

Computer-aided Translation (CAT) (Barrachina
et al., 2009; Santy et al., 2019; Huang et al., 2021),

∗Work done during internship at Tencent AI Lab.
†Corresponding authors.
1Our codes are available at https://github.com

/yc1999/energy_wlac.

which enables the leveraging of machine transla-
tion systems (Bahdanau et al., 2015; Vaswani
et al., 2017) to improve the efficiency of the
human translation process, has seen increasing in-
terest in recent years. In this work, we study a
crucial yet challenging task in CAT: Word-Level
AutoCompletion (WLAC) (Li et al., 2021), which
aims at yielding word-level suggestions based on
context pieces provided by human (Figure 1(a)).

Previous research includes statistical methods
(Huang et al., 2015) and neural methods (Santy
et al., 2019; Li et al., 2021). With the help of
word alignment toolkits (Och and Ney, 2003;
Dyer et al., 2013), statistical approaches build
a translation table and use it to predict the tar-
get word. More recently, Li et al. (2021) use
a Transformer-based classification model, which
firstly encodes the input context to a hidden vec-
tor and then maps the hidden vector into the
candidate target word through a linear classi-
fier. This strong baseline method achieves the
state-of-the-art (SOTA) performance.

In the aforementioned classification paradigm,
the hidden vector of the input context inher-
ently does not take the candidate target word
into consideration. As a result, it may not ef-
fectively leverage valuable information carried
by the candidate target word when occurring
in the input context, as shown in Figure 1(b).
Specifically, given the input context and human
typed characters ‘‘d’’, the user may tend to type
‘‘disease’’ (‘‘Krankheit’’ in German). However,
through visualizing attention weights, it shows that
the baseline method captures more information
from ‘‘gemeinsame’’ and ‘‘verzweifelten’’ than
that from the most informative word ‘‘Krankheit’’
in the source side, which may underestimate the
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Figure 1: (a) Illustration of the WLAC task in De⇒En.
Suppose that a user has input a source sentence x,
partial translations (cl, cr) and is now typing some
characters (s). A well-trained WLAC model is expected
to suggest ‘‘disease’’ to complete s. The expected
translation for x is ‘‘And disease is the common enemy
of these desperate people.’’ (b) Attention weights from
‘‘[MASK]’’ to words in x of the baseline method. (c)
Attention weights from ‘‘disease’’ to words in x of
our energy-based model. (Color intensity reflects the
strength of attention weights.)

model score of the ground-truth word ‘‘disease’’
and thereby leads to incorrect prediction.

To alleviate the above issue, we formalize the
WLAC task with an energy-based model (Ranzato
et al., 2006; LeCun et al., 2006) based on Trans-
former, where the hidden vector is defined on top
of both the candidate target word and the input
context through a deep energy function. Further-
more, with the help of deep neural networks, the
energy-based function is expected to capture suf-
ficient information for each candidate target word
through the attention mechanism. In this way,
the energy function is able to capture informative
context (i.e., ‘‘Krankheit’’) to evaluate the target
word (i.e., ‘‘disease’’), and thereby the score from
the energy-based model is more reliable, as shown
in Figure 1(c).

Unfortunately, training and inference with the
energy-based model suffer from efficiency and
effectiveness challenges due to the normalization
term in the model. To alleviate the effect of these
barriers, we systematically incorporate three sim-

ple yet effective strategies inspired by previous
studies: (1) a negative sampling method for ef-
ficient training (Ma and Collins, 2018; Li et al.,
2019a; Xu et al., 2022), (2) a reranking paradigm
as an approximate proxy for efficient inference
(Shen et al., 2004; Nogueira and Cho, 2019;
Bhattacharyya et al., 2021), and (3) a pre-training
method for effective training (Lee et al., 2021a).
Experiments on four standard benchmarks demon-
strate that the energy-based model is indeed better
at capturing informative signals for the predic-
tion of a candidate target word and thereby yields
substantial improvements over strong baselines.

To sum up, our contribution is three-fold:

1. We point out that the previous SOTA model
for the WLAC task suffers from an issue, i.e.,
it can not sufficiently leverage the valuable
information from the source sentence for
word prediction.

2. We propose an energy-based model to alle-
viate this issue and we employ three simple
yet effective strategies to put it into practice.

3. We comprehensively evaluate our approach
on four benchmarks, and our approach
achieves substantial improvements (about
6.07%) over the previous SOTA model.

2 Preliminary

In this section, we review the setting of the WLAC
task and introduce the state-of-the-art baseline
method, which will be reused in Section 3.

2.1 WLAC Task

Notations Let x = (x1, x2, . . . , xT ) be a source
sentence, s = (s1, s2, . . . , sk) be a sequence of
human typed characters and c = (cl, cr) be trans-
lation context where cl = (cl,1, cl,2, . . . , cl,m) and
cr = (cr,1, cr,2, . . . , cr,n). cl and cr are on the left-
and right-hand side of s, respectively. Figure 1(a)
illustrates the examples for x, cl, cr, and s.

Task Definition Given the input tuple (x, c, s),
the WLAC task aims at predicting the target word
w, which starts with s and is the most appropriate
to be placed between cl and cr (Li et al., 2021).
In partial translation consisting of cl, w, and cr, w
is not necessary to be consecutive to cl,m and cr,1.
Figure 1(a) gives an illustrative example. To be
more general in real-world scenarios, the WLAC
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Figure 2: The comparison between the network architectures for the baseline method WPM (a) and the
energy-based model (b). In the baseline model, h[MASK] does not capture the information from ‘‘disease’’ whereas
h[disease] does in the energy-based model. Note that ‘‘Target Encoder’’ is a variant of the Transformer decoder
which can capture bidirectional information on the target side.

task further assumes that cl and cr can be empty,
which leads to following four translation context
types:

• Zero-context: both cl and cr are empty;

• Prefix: cr is empty;

• Suffix: cl is empty;

• Bi-context: both cl and cr are not empty.

It is noteworthy that context types described
above are general and encompass context of sev-
eral conventional translation scenarios, such as
prefix-decoding for left-to-right interactive ma-
chine translation (IMT) (Knowles and Koehn,
2016) and post-editing (Lee et al., 2021b; Yang
et al., 2022). To elaborate, in prefix-decoding,
the context falls into the special case of prefix,
where cr is empty and cl is consecutive to w. In
post-editing, the context corresponds to the spe-
cial case of bi-context, where both cl and cr are
consecutive to w.

2.2 Baseline Method

Li et al. (2021) cast WLAC as a word predic-
tion task. Generally, they decompose the WLAC
task into two steps: (1) Model the distribution of
the target word w using x and c via a Word

Prediction Model (WPM); (2) Predict the most
appropriate word ŵ which starts with s accord-
ing to the conditional distribution. Their method
achieves state-of-the-art performance.

A baseline WPM is defined by Transformer
architecture (Vaswani et al., 2017) for NMT.
Specifically, it first uses a placeholder [MASK]
to represent the position of the target word
w and put it between cl and cr. Ultimately,
it uses the representation of [MASK] defined
through Transformer to predict the target word.
Figure 2(a) shows the model architecture of
the baseline WPM. Formally, the conditional
probability distribution of the target word w is:

Pb(w | x, c; Θ) = softmax(Mh�
[MASK])[w] (1)

where h[MASK] is the dense representation of
[MASK], M represents the learnable embedding
matrix, and [w] denotes taking the component with
respect to the index w. In the following sections,
we use Pb to denote the baseline WPM.

Then during the inference stage, Pb tries to pick
up the best w according to the following equation:

argmax
w∈V(s)

Pb(w | x, c; Θ)

=argmax
w∈V(s)

M[w]h�
[MASK] (2)
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where V(s) denotes a set of candidate words that
start with s, and M[w] is the word embedding
vector of w. Note that h[MASK] is independent
of w, and Mh�

[MASK] can be efficiently com-
puted with GPU in parallel. Therefore, argmax
in Equation (2) can be computed exactly.

3 Energy-based Model

3.1 Motivation

As shown in Equation (2) in Section 2.2, the
baseline WPM essentially maps the hidden vec-
tor of the input context (i.e., h[MASK]) into the
candidate target word to predict the most ap-
propriate target word for [MASK]. Furthermore,
according to the model architecture of the baseline
WPM, the context hidden vector h[MASK] does not
take the candidate target word into consideration
(Liu et al., 2016; Li et al., 2018). Therefore, it
might be difficult for h[MASK] to make full use
of sufficient information from the source side
for accurately predicting the ground-truth target
word. Intuitively, the above issue for the base-
line WPM in Equation (1) can be demonstrated
from the example in Figure 1(b), where we use
attention weights to visualize source words which
are mostly used in h[MASK].2 From this figure,
we see that h[MASK] uses more information from
‘‘gemeinsame’’ and ‘‘verzweifelten’’ than that
from ‘‘Krankheit’’. Therefore, such a model may
underestimate the score for the ground-truth word
‘‘disease’’, which aligns to ‘‘Krankheit’’ on the
source side. Consequently, the baseline WPM may
not successfully predict the ground-truth word,
leading to sub-optimal performance.

In response to the above issue, this paper
proposes an energy-based model which enables
defining the hidden vector on top of both the can-
didate target word and the input context through
an energy function. Our intuition is that with the
help of deep neural networks (e.g., attention net-
works), the energy function is expected to capture

2In our preliminary experiments, we also employed other
methods to attribute source words that are mostly used (e.g.,
the prediction difference method [Li et al., 2019b]). The con-
clusions drawn from these alternative methods align closely
with those obtained using attention weights. This suggests
that, in the context of the WLAC task, the model’s utiliza-
tion of source-side information can be consistently reflected
through various effective attribution methods. In this paper,
we opt to utilize attention weights for easier description.

more valuable information from the source sen-
tence, which makes the model score more reliable
to evaluate contributions for w.

3.2 Model Definition

Formally, given x and c, we employ an
energy-based model to define the word prediction
model as follows:

P (w | x, c; Θ) =
exp(S(w,x, c))

Z(x, c)
(3)

with

Z(x, c) =
∑

w

exp(S(w,x, c))

where S(w,x, c) is an energy function taking a
real value and Z(x, c) is the normalization term.

The energy-based model in Equation (3) is very
general, because the energy function S(w,x, c)
can be any function. For example, as a special
case, if we set S(w,x, c) = Pb(w|x, c), the
energy-based model is then reduced to Equa-
tion (1) because the normalization term is 1. Since
this paper aims to alleviate the insufficient usage
of source sentence information for Pb, it seeks
another definition of the energy function to define
the hidden vector on top of both the candidate
target word w and the input context (x, c).

Theoretically, there are many ways to define
the energy function S(w,x, c). In this paper, in
practice, we adopt the way to define S(w,x, c)
very similar to Pb in model architecture with min-
imal modifications and almost the same number
of parameters as Pb. As a result, it could indicate
that the potential improvement derived from the
energy-based model is not significantly attributed
to the complex model architecture of S(w,x, c),
but rather to define the hidden vector on top of
both the candidate target word w and the input
context (x, c).

Specifically, the energy function S adopts the
similar Transformer architecture as Pb. S differs
from Pb only in two aspects. First, we replace the
embedding matrix with a binary classifier. The
binary classifier is defined by a parameterized
weight vector and brings only a small number
of parameters. Second, in particular, the candidate
target word w is fed into the Transformer, then it is
used as the query in the attention mechanism with
(x, c). With the help of deep neural networks, S
is expected to capture sufficient information for
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w through the attention mechanism. Formally, the
energy function is defined as follows:

S(w,x, c) = Sigmoid
(
θ · h(w,x, c)�

)

where h is the dense representation vector of w
accompanied with x and c, and θ is a learn-
able weight vector. The architecture of the energy
function is illustrated in Figure 2(b).

We believe that the energy function S can
adequately exploit contextual information from
(x, c). This belief is exemplified in Figure 1(c).3

In this figure, after visualizing attention weights
to source words, the energy function S is able to
capture more information from ‘‘Krankheit’’ to
evaluate the target word ‘‘disease’’. Therefore
S(disease,x, c) is more reliable than baseline
score Pb(disease|x, c), which inadequately make
use of the signal from ‘‘Krankheit’’ as shown in
Figure 1(b).

3.3 Challenges

However, it is far from trivial to make the
energy-based model achieve the effect as shown
in Figure 1(c) and further deliver excellent per-
formance on the WLAC task due to the following
efficiency and effectiveness challenges.

Efficiency The first challenge is the efficiency
in both training and inference. During training,
maximizing the log-likelihood for Equation (3)
needs the calculation of the value of the nor-
malization term. During inference, it needs to
enumerate all candidate words from vocabulary
V . Unfortunately, the energy function S sacrifices
the parallel computation for all w ∈ V: One has
to feed all candidate target words to the network
architecture independently for each w. However,
since V is too large, such exhaustive computation
is infeasible in practice. Consequently, this makes
both training and inference challenging for the
energy-based model.

Effectiveness Second, in our preliminary exper-
iments, optimizing the energy-based model from
scratch does not work well, and its final perfor-
mance is significantly worse than the baseline
Pb. One possible reason is that it is more dif-
ficult to train the energy-based model. Training
the energy-based model involves an approximate

3Note that this example is not cherry-picked and more
quantitative analyses will be shown in the later experiments.

method to shrink the subset for the normalization
term, and this may induce a risk that the informa-
tive negative examples are excluded in the shrunk
subset (Ma and Collins, 2018; Xu et al., 2022).
Therefore, it is easy to get trapped in local op-
timization when training the energy-based model
from scratch.

4 Training and Inference

To relieve the aforementioned challenges, we
systematically employ three simple yet effective
methods inspired by previous studies. First, we
employ negative sampling to address the normal-
ization computation during the training (Ma and
Collins, 2018; Li et al., 2019a; Xu et al., 2022);
similarly, during the inference, we adopt a rerank-
ing paradigm, where the energy-based model is
used as a reranker over a small subset of candi-
dates (Shen et al., 2004; Nogueira and Cho, 2019;
Bhattacharyya et al., 2021). Moreover, we harness
a conditional mask bilingual language modeling
pre-training strategy for parameter initialization
(Lee et al., 2021a).

4.1 Efficient Training and Inference

Efficient Training via Negative Sampling As
described in Section 3.3, it is infeasible to cal-
culate the normalization term in an exact way.
To optimize the parameter Θ for the energy-based
model in Equation (3), we instead use the negative
sampling method to approximate the normaliza-
tion term Z(w,x, c; Θ), and then we maximize
the following objective function:

wi ∼ P̂ for i ∈ [1,K] (4)

S(w,x, c; Θ)− log
[ K∑

i=1

expS(wi,x, c; Θ)
]

where P̂ is a predefined and parameter-free distri-
bution over the vocabulary V and wi ∼ P̂ denotes
sampling from the distribution P̂ . Note that if
we consider all wi ∈ V , then the above objective
function is equivalent to the likelihood function
for the energy-based model in Equation (3).

In this paper, we try different settings for P̂ .
As the first setting, P̂ is defined by the uniform
distribution over V . Although sampling from this
distribution is efficient and even does not intro-
duce extra computation, it cannot ensure the hard
negatives are sampled with a high probability.
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Thus it is not promising to speed up the conver-
gence in our experiments. Hence, as the second
setting, P̂ is instantiated by the baseline model Pb.
Furthermore, according to our empirical results, it
will achieve better performance by replacing the
sampling operation in Equation (4) with the top-K
operation over the distribution Pb(w|x, c).

Efficient Inference via Reranking As de-
scribed before, due to the definition of the energy
function S(w,x, c), it is too costly to evaluate
S(w,x, c) for all w. Thus, it is infeasible to ex-
actly predict the best w such that S(w,x, c) is
maximal. Similar to the top-K operation in the
training stage, we adopt it in the inference stage
as an approximation. Specifically, the inference
process by the energy-based model includes the
following two steps:

• Obtain the top-K subset denoted by Ω(s,K)
according to Pb(w|x, c), where each element
also satisfies the constraint s:

Ω(s, K) = TOPK
w∈V(s)Pb(w|x, c)

• Output the target word ŵ in terms of the
energy function as follows:

ŵ = argmax
w∈Ω(s,K)

S(w,x, c) (5)

4.2 Weight Initialization via Pre-training

Recently, pre-trained language models have made
exceptional success in numerous natural language
processing tasks (Devlin et al., 2019; Lewis et al.,
2020; Ouyang et al., 2022). One of their advan-
tages is that they can learn general and contextual
representations to boost the downstream tasks
(Li et al., 2022, 2023a; Shi et al., 2023). Inspired
by this, we propose to use our limited supervised
bilingual data to conduct a small-scale pre-training
for the energy-based model to yield better weight
initialization.

Specifically, following practices of Non-
Autoregressive Translation (Ghazvininejad et al.,
2019; Li et al., 2022), we adopt Conditional
Masked Bilingual Language Modeling (CMBLM)
as our pre-training task. This CMBLM pre-trained
model is supposed to capture bidirectional con-
textual information better. Given a sentence pair
(x,y), similar to masked language models (Devlin
et al., 2019), we train the model to predict a set of
masked target tokens ym given a source sentence

x and the observable target words yo = y \ ym.
The prediction probability distribution for each
masked target word yi ∈ ym can be formalized as:

P (yi|x,yo) = CMBLM-Transformer(x,yo)
(6)

As for the model architecture, we adopt the
same architecture as Pb. During the pre-training
stage, we randomly mask 15% of the tokens
in y to get ym. After pre-training, we use the
CMBLM pre-trained parameters to initialize our
energy-based model.

5 Experiments

In this section, we first describe the experimental
setup. Then we report the main results and analyze
the proposed approach.

5.1 Experimental Setup

Datasets We experiment on four language pairs:
Zh⇒En, En⇒Zh, De⇒En and En⇒De. For train-
ing on Zh⇒En and En⇒Zh, we use the training
set from the LDC corpus,4 which consists of
1.25M sentence pairs. For training on De⇒En
and En⇒De, we use the preprocessed WMT14
dataset by Stanford,5 which consists of 4.5M sen-
tence pairs. We use the standard validation and
test sets released by Li et al. (2021).6 Specifically,
for Zh⇒En and En⇒Zh, they construct validation
set from NIST02 and test set from NIST05 and
NIST06. For De⇒En and En⇒De, they extract
validation set from newstest13 and test set from
newstest14.

In order to construct simulated training data,
we follow the same strategy as Li et al. (2021) to
sample target words, human typed characters and
translation context, which aims at avoiding sam-
pling trivial instances. Statistics of the average
length of target words and human typed charac-
ters on validation sets are shown in Table 1. As
we can see, in general, target words are long and
human typed characters are short, which poses
a challenge for the WLAC task. In addition, we
also conduct a frequency analysis of each word

4The total training set is composed of LDC2002E18,
LDC2003E07, LDC2003E14, and part of LDC2004T07-08
and LDC2005T06 from https://www.ldc.upenn
.edu.

5https://nlp.stanford.edu/projects/nmt.
6https://github.com/ghrua/gwlan.
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Zh⇒En En⇒Zh De⇒En En⇒De

T.W. 6.42 2.22 6.22 7.19
H.T.C. 2.00 2.05 1.95 2.20

Table 1: Statistics of average length of target
words and human typed characters on Zh⇔En
and De⇔En validation sets. T.W. and H.T.C. are
short for target words and human typed charac-
ters, respectively.

in training set across four language pairs. Follow-
ing this, words are categorized into ten intervals
based on their frequency. Finally, we calculate
the proportion of target words in validation sets
corresponding to each frequency interval. The re-
sult is presented in Figure 3. Figure 3 indicates
a non-uniform distribution of target words across
different frequency intervals. This data compo-
sition basically reflects demands encountered in
real-world scenarios, where non-high frequency
words are more challenging for WLAC models.

Baselines We compare our model with the
following baseline models:

• TRANSTABLE: A statistical method inspired by
Huang et al. (2015). They create a word-level
translation table with a word alignment
toolkit.7 During the inference stage, they use
the translation table to obtain translations of
all source words and filter out invalid candi-
date words through human typed characters.
Ultimately, they pick the candidate word with
the highest frequency as the prediction.

• TRANS-PE: A Transformer-based baseline in-
spired by Langlais et al. (2000) and Santy
et al. (2019). They first train a vanilla Trans-
former on training set. While testing, they
only feed the left translation context to the
Transformer decoder. Then they conduct a
next-word prediction task with human typed
characters as hard constraints to get the
prediction word.

• TRANS-NPE: The only difference between
this method between TRANS-PE is that there
is no position encoding layer in the decoder
of TRANS-NPE. They apply average pooling
to the representations of all translation con-

7https://github.com/clab/fast_align.

Figure 3: The proportion of different frequency in-
tervals on Zh⇔En and De⇔En validation datasets.
Interval 1 and Interval 10 denote the most frequent
interval and the most infrequent interval, respectively.

text words. And then, they use the pooled
representation to predict the target word.

• Pb: The word prediction model defined in
Equation (1), which is the state-of-the-art
model of the WLAC task.

• TRANS-BPE: Inspired by De Cao et al. (2021);
Yang et al. (2022), we also implement a new
Transformer-based baseline over subwords.
Specifically, we apply BPE to segment words
into subwords. During the inference stage,
we adopt Prefix-Constrained Beam Search
(De Cao et al., 2021) to generate outputs
which start with human typed characters.
This model is expected to be capable of
defining the hidden vector on top of pre-
viously generated subwords and the input
context to predict the next subword.

Implementation Details We implement
our energy-based model on top of the
Transformer-Base architecture (Vaswani et al.,
2017) implemented in Fairseq toolkit
(Ott et al., 2019).8 The source encoder is a stack
of 6 Transformer encoder blocks. The target
encoder is also composed of 6 blocks, each
of which is a Transformer encoder block with
an additional cross-attention layer between the
multi-head self-attention layer and feed-forward
layer. The vocabulary size is 60K for Chinese,
50K for German, and 50K for English. As for
the implementation of TRANS-BPE, we adopt
the Transformer-Base architecture and make

8https://github.com/facebookresearch
/fairseq.
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# Systems Zh⇒En En⇒Zh De⇒En En⇒De

NIST05 NIST06 NIST05 NIST06 NT13 NT14 NT13 NT14

1 TRANSTABLE† 41.40 39.78 28.00 26.99 37.43 36.64 32.99 31.12
2 TRANS-PE† 34.51 35.50 32.23 34.88 34.45 33.02 31.51 30.65
3 TRANS-NPE† 35.97 36.78 34.31 36.19 36.69 36.01 33.25 31.30
4 Pb

† 55.54 55.85 53.64 54.25 57.84 56.75 56.91 52.68
5 Pb

∗ 55.52 56.57 53.89 54.24 59.11 56.99 56.89 53.80
6 TRANS-BPE∗ 57.29 57.80 53.82 55.93 61.44 59.95 55.41 54.80
7 OURS∗ 65.61 65.44 60.43 61.25 64.62 63.13 62.23 60.24

Table 2: The main results of different systems on Zh⇔En and De⇔En datasets. The results in this
table are the average accuracy across four translation context types (i.e., zero-context, prefix, suffix and
bi-context). ‘†’: results are reported in previous work. ‘∗’: results are implemented by ourselves, which
is the average of 5 runs with different random seeds. The best and the second-best results are in bold
and underlined fonts, respectively.

# Systems Zh⇒En En⇒Zh

Prefix Suffix Zero. Bi. Overall Prefix Suffix Zero. Bi. Overall

1 TRANSTABLE† 41.91 44.99 44.19 43.28 43.59 29.73 32.80 29.73 29.61 30.46
2 TRANS-PE† 29.84 38.61 26.08 48.06 35.64 30.64 34.97 22.67 38.95 31.80
3 TRANS-NPE† 37.36 40.43 29.50 44.42 37.92 36.10 43.05 32.00 45.79 39.23
4 Pb

† 59.91 60.71 55.35 62.30 59.56 61.39 61.73 53.87 63.78 60.19
5 Pb

∗ 58.59 63.34 54.35 68.21 61.12 60.47 62.94 53.40 67.40 61.05
6 TRANS-BPE∗ 60.14 64.03 55.24 69.84 62.31 61.89 62.54 55.02 69.26 62.18
7 OURS∗ 68.13 70.32 66.45 75.56 70.12 68.63 69.16 59.91 71.80 67.37

Table 3: The detailed results for each translation context type of different systems on Zh⇔En vali-
dation set.

adjustments to the input of Transformer Encoder.
Specifically, we feed the concatenation of the
source context, target context, and placeholder
[MASK] to the Transformer Encoder, and adopt
segment embedding to distinguish different
languages as Yang et al. (2022). The vocabulary
size is 32K for both Zh⇔En and De⇔En. For
a fair comparison, we also re-implement Pb

with the same hyperparameter settings as the
energy-based model.

For the above models, we set dmodel = 512,
dhidden = 2048, nhead = 8 and pdropout = 0.1. The
learning rate is set as 0.0005, and the warmup step
is set as 4,000 steps. All models are trained with
4096 tokens per batch for a maximum of 50,000
steps with the Adam optimizer (Kingma and Ba,
2015) on 8 NVIDIA V100 GPUs. We update the
model parameters after accumulating 2 gradients
for TRANS-BPE and 1 gradient for Pb and OURS.
Models are selected with the best accuracy on the
validation set. We repeat the main experiment 5
times by using different random seeds.

5.2 Main Results

Evaluation on Word Prediction by ACC
Table 2 lists the main results on four lan-
guage pairs. From the table, we can make
three observations: First, statistical and intu-
itive Transformer-based methods (#1-3) perform
poorly on all language pairs. We speculate that
this is because these approaches can not make
full use of the information from the input con-
text (e.g., source sentence). Second, TRANS-BPE
outperforms Pb on average accuracy. The reason
behind this could be attributed to the effectiveness
of TRANS-BPE to leveraging more valuable source
sentence information than Pb, which we will elab-
orate on in Section 5.4. Third, our energy-based
model (#7) improves over the previous SOTA per-
formance by an average of 6.07 accuracy points
across all language pairs, which demonstrates its
effectiveness. Furthermore, in Table 3 and Table 4,
we report the detailed results of different systems
on four translation context types on the Zh⇔En
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# Systems De⇒En En⇒De

Prefix Suffix Zero. Bi. Overall Prefix Suffix Zero. Bi. Overall

1 Pb 57.52 61.59 51.01 66.32 59.11 54.63 60.83 48.51 63.58 56.89
2 TRANS-BPE 61.88 65.35 50.68 67.84 61.44 52.25 60.94 46.60 61.85 55.41
3 OURS 61.47 68.01 58.47 70.54 64.62 57.17 67.01 56.45 68.28 62.23

Table 4: The detailed results for each translation context type of different systems on De⇔En vali-
dation set.

# Systems Zh⇒En En⇒Zh

Prefix Suffix Zero. Bi. Overall Prefix Suffix Zero. Bi. Overall

1 Pb 81.50 82.50 87.00 83.00 83.50 79.50 84.00 86.50 83.50 83.38
2 TRANS-BPE 80.00 84.00 86.50 94.00 86.13 86.00 84.50 89.50 80.00 85.00
3 OURS 90.50 87.00 88.00 94.50 90.00 86.50 87.00 93.50 88.50 88.88

Table 5: The detailed results of different systems under the Zh⇒En and En⇒Zh human evaluation
setting. The results in the table represent the average rating scores from two evaluators.

and De⇔En validation sets. We can find that our
energy-based model can almost achieve perfor-
mance improvement on each translation context
type, except for De⇒En prefix context, and finally
results in overall performance in Table 2.

Human Evaluation It is also crucial to assess
the actual improvement in effectiveness of our
approach via human evaluation. However, per-
forming comprehensive human evaluations can
be resource-intensive in terms of labor. As a com-
promise, we randomly sample 400 examples from
the original Zh⇒En and En⇒Zh NIST05 test
sets, with 100 instances for each translation con-
text type. We then collect predictions from three
models: Pb, TRANSBPE, and OURS. Subsequently,
we enlist two professional evaluators to assess the
appropriateness of predictions of these models.
The human evaluators are presented with the in-
put context, human typed characters, as well as
each prediction. The predictions, originating from
different models, are anonymized to the evalua-
tors. The human evaluators are asked to assign
binary scores for each prediction, where a score of
‘1’ indicates appropriateness, while ‘0’ signifies
inappropriateness. Results of human evaluation
are presented in Table 5. The Cohen’s kappa
is 0.92 between the two translators, which is a
relatively high agreement. Table 5 demonstrates
that our energy-based model retains an advantage
over previous methods under human evaluation.
What’s more, one detail worth noting is that, com-
pared to results in Table 2, all models exhibit

Figure 4: Accuracy of our energy-based model and
recall of ground-truth word with differentK on Zh⇒En
NIST02 dataset (a) and De⇒En NT13 dataset (b).
Experiments are conducted in the bi-context scenario.

an improvement in performance when evaluated
manually. This can be attributed to the fact that the
accuracy metric only considers the top-1 predic-
tion, while other predictions may also be valid. To
ensure consistency with prior research, we utilize
accuracy as the evaluation metric in the following
sections.

5.3 Ablation Studies

Negative Sampling for Training As we state in
Section 3, negative sampling in the training stage
can affect the performance of the energy-based
model. We consider two sampling distributions
(the uniform distribution and the distribution of
Pb) and three negative sampling strategies, i.e.,
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Systems
Zh⇒En De⇒En

NIST05 NIST06 NT13 NT14

Acc. 	 Acc. 	 Acc. 	 Acc. 	
P b 55.52 − 56.57 − 59.11 − 56.99 −

w/ CMBLM 59.45 +3.93 60.67 +4.10 60.83 +1.72 59.33 +2.34

OURS w/ Pb Init 58.09 +2.57 58.54 +1.97 60.15 +1.04 58.03 +1.04
w/ CMBLM 65.61 +10.09 65.44 +8.87 64.62 +5.51 63.13 +6.14

Table 6: Performance of weight initialization on Zh⇒En and De⇒En datasets. The results in this table
are the average accuracy across four translation context types.

random sampling, top-p sampling and top-K sam-
pling. We compare them on Zh⇒En dataset.
During the inference stage, we use Pb to recall
top-8 predicted words as candidate target words
for these models trained with different negative
sampling techniques.

We report the results in Table 7. We can ob-
serve that the random sampling strategy from the
uniform distribution is not as effective as the other
three sampling configurations from Pb. We con-
jecture that negative samples by random sampling
on the uniform distribution could be too trivial to
recognize hard negatives, which may hinder the
performance of the energy-based model. While
sampling according to Pb (i.e., the other three
strategies) can sample hard negatives and facilitate
the training of the energy-based model.

K-best Size in Inference We further analyze
the impact of candidate word set size K = V(s)
during the inference with the energy-based model.
Figure 4 shows that, as K increases, the accu-
racy improvement increases rapidly from K = 1
to K = 4 and starts to saturate after K = 4.
The recall of the ground-truth word shares the
same trend as accuracy: It first improves sharply,
then increases slowly and reaches a relatively
high value. So for the efficiency and effectiveness
trade-off, we choose to use K = 8 as our candi-
date word set size in all experiments during the
inference.

Weight Initialization Our energy-based model
is pre-trained by a CMBLM pre-training strategy.
Therefore, its improvements might come from
two aspects, including 1) the energy-based model
and 2) better initialization weights and representa-
tions learned from the CMBLM pre-training task.
Hence, we perform further studies to quantify the

Dist. Strategy NIST02 NIST05 NIST06

Uniform Random 66.71 62.22 62.92

Pb

Random 69.10 64.97 64.47
Top-p 69.55 64.84 64.97
Top-K 70.12 65.61 65.44

Table 7: The results of different negative sampling
strategies on Zh⇒En. The results in this table
are the average accuracy across four translation
context types.

contribution of each component of our approach.
To this end, we conduct two experiments: we
replace the CMBLM pre-training by initializing
the weights from the baseline WPM Pb; and we
apply the CMBLM pre-training on top of Pb and
compare it with the energy-based model with the
CMBLM pre-training. We evaluate all these meth-
ods on Zh⇒En dataset and De⇒En dataset and
present the results in Table 6.

The results in Table 6 illustrate that: First, ini-
tializing the weights of the energy-based model
with Pb is not as effective as initializing with the
CMBLM pre-training strategy. Second, although
both Pb and our energy-based model benefit from
the CMBLM pre-training strategy, the gain for
the energy-based model is much larger. These ob-
servations demonstrate that a simple pre-training
method can not activate the potential of the
energy-based model and the CMBLM pre-training
strategy succeeds.

5.4 Analysis
Evaluation on Prefix-Decoding and
Post-Editing Settings Although our work
mainly focuses on four translation context types
in the WLAC task, we also explore whether
the energy-based model would still improve
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# Systems Zh⇒En En⇒Zh De⇒En En⇒De

NIST05 NIST06 NIST05 NIST06 NT13 NT14 NT13 NT14

Prefix-Decoding

1 Pb 79.57 78.85 73.45 74.95 81.41 79.15 76.09 73.38
2 TRANS-BPE 80.96 78.63 74.47 75.28 81.99 79.63 77.66 74.23
3 OURS 83.73 83.21 77.34 79.10 84.13 82.60 78.68 76.73

Post-Editing

1 Pb 85.30 86.95 80.11 80.93 86.79 83.70 83.86 79.82
2 TRANS-BPE 85.95 87.53 81.96 80.73 87.81 84.84 85.01 80.93
3 OURS 89.74 90.16 84.09 84.16 89.85 87.04 86.99 83.02

Table 8: The main results of different systems on Zh⇔En and De⇔En datasets under prefix-decoding
and post-editing settings.

performance on two common translation sce-
narios including prefix-decoding widely used in
left-to-right interactive machine translation and
post-editing as stated in Section 2.1. To this end,
we implement Pb, TRANS-BPE and OURS on these
two scenarios with the same parameter config-
uration in Section 5.1. As for the construction
of validation sets and test sets, we adopt the
same simulation method as Li et al. (2021) other
than that the target word must be consecutive to
target context. Table 8 shows the results of Pb,
TRANS-BPE, and OURS on prefix-decoding and
post-editing scenarios. As we can see, OURS can
further improve average accuracy points across
all language pairs by 3.22 on post-decoding
and by 2.68 on post-editing, demonstrating the
effectiveness of our energy-based model.

Evaluation on Usage of Informative Context
As we have claimed in Section 3, our motiva-
tion is that the energy-based model is capable of
capturing more informative context for word pre-
diction, which thereby leads to better performance
eventually. In addition to the intuitive example in
Figure 1(c), we design an automatic metric to ver-
ify our motivation. This metric is inspired by the
word alignment error rate for the cross-attention
in the Transformer (Li et al., 2019b; Garg et al.,
2019). Specifically, as shown in Figure 1(c), the
metric (alignment recall@n) is defined as the re-
call rate of the informative source word ‘‘Krankhof
Type-II errors and eit’’ by the top-n source words
according to the attention score by the Trans-
former architecture. For each ground-truth target
word, e.g., ‘‘disease’’ in Figure 1(c), the infor-

Figure 5: Alignment recall@n on Zh⇔En NIST05
dataset with n ranging from 1 to 8. Experiments are
conducted in the bi-context scenario.

Systems Type-I Type-II Type-III Total

Pb 79 29 20 128

OURS 57 (−25) 11 (−20) 9 (−14) 77

Table 9: Quantitative results of error occurrences
between Pb and OURS. The numbers in paren-
theses represent the quantity of errors, which are
initially presented inPb and subsequently rectified
by OURS. Type-I means ‘‘semantic discrepancy er-
ror’’. Type-II means ‘‘repetition error’’. Type-III
means ‘‘morphological error’’.

mative source word is defined by the manually
annotated word alignment.

We use the human-annotated alignment data on
Zh⇔En NIST05 dataset and conduct experiments
in the bi-context scenario. We compare the align-
ment recall@n between Pb, TRANS-BPE and OURS

in Figure 5. As we can see, the alignment recall@1
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Figure 6: Three cases of Pb and OURS in Zh⇒En test set. Human typed characters are in underlined fonts.

Figure 7: Attention weights from the predicted word to source words of three cases in Figure 6. Boxed text
denotes source words aligned with the ground-truth target word.

of OURS is higher than Pb by 60 points and when
n is small, it always maintains this advantage.
What’s more, TRANS-BPE also achieves better
alignment recall@n than Pb. This may serve as
quantitative evidence that introducing subwords
or the entire candidate target word into the mod-
eling of hidden vectors with the input context, as
implemented in TRANS-BPE and OURS, can make
more use of informative context than Pb (De Cao
et al., 2021). And results illustrated in the Figure 5
also reveal that our energy-based model might be
more effective in leveraging informative context
than TRANS-BPE.

Error Analysis After conducting the human
evaluation in Section 5.2, we proceed to inspect
incorrect instances of Pb and OURS in Zh⇒En test
examples.

Furthermore, we summarize incorrect instances
into three distinct categories: (1) Semantic dis-
crepancy error (Type-I): The model erroneously
suggests irrelevant words. These words lack se-
mantic relevance to source sentences other than
starting with the same human typed characters.
(2) Repetition error (Type-II): The model suggests
words that convey semantics of source sentences,
however, these words already appear within the
target context. (3) Morphological error (Type-III):
The model suggests incorrect cognates of target

words.9 In the forthcoming Case Study section,
we will present illustrative examples representing
each of these three error categories.

In Table 9, we present quantitative results of
error occurrences for Pb and OURS. In terms of
the total error quantity, OURS exhibits a lower
number of errors. Notably, for both methods, the
most common error type is semantic discrepancy
error. Comparatively, OURS demonstrates a no-
table ability to rectify 25 instances (31.65%) of
Type-I errors, 20 instances (68.97%) of Type-II
errors, and 14 instances (70.00%) of Type-III er-
rors that are present in Pb. Furthermore, OURS

exhibits significantly fewer instances in repetition
and morphological errors. However, it is essential
to acknowledge that the OURS approach also in-
troduces new incorrect instances in each type that
are not originally observed in Pb.

Case Study We provide this case study to bet-
ter illustrate the advantages of OURS over Pb in
utilizing contextual information, thereby leading
to enhanced semantic information for word-level
autocompletion. Figure 6 presents cases where
Pb yields errors while OURS predicts correctly.
Furthermore, Figure 7 illustrates their attention
weights which depict the connection between the
predicted word and the source words.

9It is important to note that some instances might involve
valid morphological transformations for the target word,
which we do not categorize as errors.

148



Systems Training Inference
(hours) (ms/sample)

Pb 4.19 (1.0×) 30.01 (1.0×)
OURS 8.28 (2.0×) 46.17 (1.5×)
TRANS-BPE 4.99 (1.2×) 56.71 (1.9×)

Table 10: Training and inference latency com-
parison on Zh⇒En validation set. ‘‘ms/sample’’
represents millisecond per sample. The evalua-
tion of inference is based on a single NVIDIA
V100 GPU, batch size is set to 1, beam size for
TRANS-BPE is set to 3 and K-best size for OURS is
8. The training latency of OURS does not include
the training time of Pb.

In case 1 (Type-I), Pb tends to suggest ‘‘suf-
fice’’, which is not consistent with semantics
expressed by the source sentence other than
starting with human typed characters ‘‘suf’’. In
contrast, OURS succeeds in completing ‘‘suf’’ to
‘‘suffer’’. Through visualizing attention weights
in Figure 7, we can find that OURS may have the
merit of leveraging more information from the
valuable source context (e.g., the aligned word
‘‘ ’’). In case 2 (Type-II), Pb completes ‘‘so’’
to ‘‘social’’, which has already been translated in
target context. With the leverage of interactions
between candidate target words and input context,
OURS successfully suggests ‘‘services’’. In case
3 (Type-III), Pb suggests the cognates of target
words (i.e. ‘‘problematic’’). Whereas, according
to the information captured in the energy-based
model, OURS succeeds in suggesting the noun
‘‘problems’’, which are more appropriate. Al-
though our model has substantially alleviated
aforementioned cases, it is not flawless. One such
instance is that, during the inference stage, the ef-
fectiveness of OURS is influenced by the baseline
recall rate.

Running Latency Comparison Table 10 sum-
marizes the training and inference latency of
Pb, TRANS-BPE, and OURS on Zh⇒En valida-
tion dataset. The results indicate that the training
and inference latency of OURS is comparatively
higher than that of Pb (approximately 2.0 times
and 1.5 times, respectively). This discrepancy in
latency can be attributed to the inherent neces-
sity of OURS to get candidate words from Pb and
subsequently rerank them, which demands addi-
tional computational time. In comparison to the

more potent auto-regressive model, TRANS-BPE,
OURS exhibits a lower inference latency while
concurrently delivering better performance. As a
result, our approach achieves a desirable balance
between performance and processing speed.

5.5 Applying WLAC into Human–Computer
Interactive Translation

Setup and Evaluation As stated in the previ-
ous sections, one advantage of WLAC is that it
is able to increase the efficiency of human input
in interactive machine translation. To exemplify
the usefulness of WLAC, we apply the WLAC
models into IMT. Specifically, we first implement
a practical IMT model following Huang et al.
(2021) which is based on lexical constrained de-
coding (Hokamp and Liu, 2017) and thus enables
the flexible input from users. Then, we apply three
WLAC models (Pb, TRANS-BPE, and OURS) into
the IMT model, leading to three IMT systems
named by IMT-Pb, IMT-TRANS-BPE, and IMT-
OURS. As a direct baseline, the IMT system with-
out WLAC is denoted by IMT-RAW.

For efficiency evaluation in IMT, the standard
metric, the number of keystrokes from a human
translator (Nepveu et al., 2004; Bender et al.,
2005), is used for all IMT systems. To ensure
a fair comparison in efficiency, we enforce all
human inputted words to be the same for all IMT
systems and thus all these IMT systems yield the
same translation outputs. We randomly select a
subset consisting of 200 source sentences from
Zh⇒En NIST05 as x due to intensive human
efforts in IMT experiments. On this subset, the
standard NMT obtains 50.13 BLEU points and all
IMT systems achieve 56.02 BLEU points thanks
to human interactions.

Experiment Results Table 11 presents the total
and average number of keystrokes across differ-
ent IMT systems. Notably, the employment of
WLAC systems significantly reduces the number
of keystrokes in comparison to the IMT-RAW base-
line without WLAC. Furthermore, in comparison
to other systems, our proposed IMT-OURS system
attains a minimal number of keystrokes relative
to other systems. This observation is reinforced
in Figure 8, which depicts the distribution of the
number of keystrokes across different systems.
We can see that most of the keystrokes of OURS

are less than 3 (constituting approximately 84.5%
of cases), leading to a reduction in the number
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Systems WLAC Keystrokes

Total Average

IMT-OURS

✔

478 2.39
IMT-TRANS-BPE 686 3.43
IMT-Pb 704 3.52

IMT-RAW ✗ 1320 6.60

Table 11: Efficiency for IMT systems with
WLAC or not in terms of total and average num-
ber of keystrokes. IMT-Raw denotes the IMT
system without WLAC function and other sys-
tems respectively denote IMT systems with cor-
responding WLAC models.

Figure 8: Proportion of the number of keystrokes
in different IMT systems with and without WLAC
models.

of keystrokes and offering input convenience for
users.

6 Related Work

Computer-aided Translation Computer-aided
Translation (CAT) (Langlais et al., 2000;
Barrachina et al., 2009; Green et al., 2014;
Knowles and Koehn, 2016; Santy et al., 2019;
Lee et al., 2021b) has the merit of leveraging
advantages of machine translation systems to
facilitate human translation process. Word-level
AutoCompletion (WLAC) is an important feature
of interactive CAT (Casacuberta et al., 2022) and
it plays an important role in CAT. Huang et al.
(2015) leverage useful source-side knowledge to
complete the target word. Li et al. (2021) propose
a strong word prediction model (WPM) and
try to leverage both source-side and target-side
information. However, as stated in Section 1,
these methods may still inadequately leverage the
valuable information from the source sentence.

To fill this gap, we introduce an energy-based
model to enable the hidden vector to capture more
valuable information.

Reranking Reranking has been long researched
in natural language processing tasks (Shen et al.,
2004; Collins and Koo, 2005; Charniak and Johnson,
2005). Recently, the retrieval-then-reranking
framework has served as the de facto paradigm
(Nogueira and Cho, 2019; Zhang et al., 2022) in
text retrieval. To yield high-quality answers, an-
swer reranking is also widely employed in ques-
tion answering (Wang et al., 2018; Iyer et al.,
2021), dialogue systems (Li et al., 2023b), and rea-
soning (Kazemi et al., 2023; Zhu et al., 2023a,b).
In machine translation, with the purpose of allevi-
ating the mismatch between maximum likelihood
estimation and the desired metric (e.g., BLEU),
Bhattacharyya et al. (2021) and Lee et al. (2021a)
propose to train an energy-based model to rerank
candidate translations generated by NMT models.
In this work, we are in line with prior find-
ings that reranking is a conceptually simple yet
empirically powerful framework. However, we
pay more attention to leveraging valuable source
sentence information in the WLAC task and cor-
responding training and inference challenges of
the energy-based model for reranking.

Input Method In recent years, with the advance
of neural networks, the input method has shown
significant progress in being effective (Huang
et al., 2018; Zhang et al., 2019; Tan et al., 2022).
However, most current research has concentrated
on the monolingual scenarios, without sufficient
consideration of how to utilize source-side infor-
mation in bilingual settings (Li, 2012; Huang et al.,
2015). Our work, which centers on the word-level
autocompletion task to reduce keystrokes, is a new
exploration of bilingual input methods. We be-
lieve that combining our approach with other input
method technologies could significantly enhance
the productivity of human translators. We leave
this as a potential direction for future research.

7 Conclusion

Word-level AutoCompletion is a critical yet
challenging task in Computer-aided Translation.
Existing work casts this task as a classification
problem. However, it cannot make full use of the
contextual information from the input context for

150



its prediction. To alleviate such issue, we intro-
duce a reranking perspective by an energy-based
model, which directly defines the energy function
on top of the input context and the candidate target
word. Extensive experiments and analyses demon-
strate the effectiveness of our proposed approach
on four standard benchmarks: It achieves about
6.07% improvements over the strongest baseline.
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