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Abstract

Several uncertainty estimation methods have
been recently proposed for machine translation
evaluation. While these methods can provide
a useful indication of when not to trust model
predictions, we show in this paper that the
majority of them tend to underestimate model
uncertainty, and as a result, they often pro-
duce misleading confidence intervals that do
not cover the ground truth. We propose as an
alternative the use of conformal prediction, a
distribution-free method to obtain confidence
intervals with a theoretically established guar-
antee on coverage. First, we demonstrate that
split conformal prediction can ‘‘correct’’ the
confidence intervals of previous methods to
yield a desired coverage level, and we demon-
strate these findings across multiple machine
translation evaluation metrics and uncertainty
quantification methods. Further, we highlight
biases in estimated confidence intervals, re-
flected in imbalanced coverage for different
attributes, such as the language and the quality
of translations. We address this by applying
conditional conformal prediction techniques to
obtain calibration subsets for each data sub-
group, leading to equalized coverage. Overall,
we show that, provided access to a calibration
set, conformal prediction can help identify
the most suitable uncertainty quantification
methods and adapt the predicted confidence
intervals to ensure fairness with respect to
different attributes.1

1 Introduction

Neural models for natural language processing
(NLP) are able to tackle increasingly challeng-
ing tasks with impressive performance. However,
their deployment in real-world applications does
not come without risks. For example, systems that
generate fluent text might mislead users with fabri-
cated facts, particularly if they do not expose their

1Code and data can be accessed on https://github
.com/deep-spin/conformalizing_MT_eval.

confidence. High performance does not guarantee
an accurate prediction for every instance—for ex-
ample, the degradation tends to be more severe
when instances are noisy or out of distribution.
This makes uncertainty quantification methods
more important than ever.

While most work on uncertainty estimation
for NLP has focused on classification tasks, un-
certainty quantification for text regression has
recently gained traction, with applications in
machine translation (MT) evaluation, semantic
sentence similarity, or sentiment analysis (Wang
et al., 2022; Glushkova et al., 2021). This line
of work builds upon a wide range of methods
proposed for estimating uncertainty (Kendall and
Gal, 2017a; Kuleshov et al., 2018a; Amini et al.,
2020; Ulmer et al., 2023). However, current un-
certainty quantification methods suffer from three
important limitations:

1. Most methods provide confidence intervals
without any theoretically established guar-
antees with respect to coverage. In other
words, while a representative confidence in-
terval should include (cover) the ground truth
target value for each instance (and ideally the
bound of the confidence interval should be
close in expectation to the ground truth as
shown in Figure 1), the predicted interval
is often much narrower and underestimates
the model uncertainty. In fact, for the con-
crete problem of MT evaluation, we show
that the majority of uncertainty quantifi-
cation methods achieve very low coverage
even after calibration, as can be observed in
Figures 2 and 5.

2. Most proposed methods involve underly-
ing assumptions on the distribution (e.g.,
Gaussianity) or the source of uncertainty
(e.g., aleatoric or epistemic) which are often
unrealistic and may lead to misleading (over-
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Figure 1: Predicted confidence intervals and cover-
age for the same ground truth/prediction points. We
consider the middle (green) interval to be desired as
it covers the ground truth but does not overestimate
uncertainty.

or under-estimated) results (Izmailov et al.,
2021; Zerva et al., 2022). Hence, choos-
ing a suitable method for a dataset can be
complicated.

3. While uncertainty quantification can shed
light on model weaknesses and biases,
the uncertainty prediction methods them-
selves can suffer from biases and provide
unfair and misleading predictions for spe-
cific data subgroups or for examples with
varying levels of difficulty (Cherian and
Candès, 2023; Ding et al., 2020; Boström
and Johansson, 2020).

To address the shortcomings above, we pro-
pose conformal prediction (§2) as a means to
obtain more trustworthy confidence intervals on
textual regression tasks, using MT evaluation as
the primary paradigm. We rely on the fact that
given a scoring or uncertainty estimation func-
tion, conformal prediction can provide statistically
rigorous uncertainty intervals (Angelopoulos and
Bates, 2021; Vovk et al., 2005, 2022). More im-
portantly, the conformal prediction methodology
provides theoretical guarantees about coverage
over a test set, given a chosen coverage thresh-
old. The predicted uncertainty intervals are thus
valid in a distribution-free sense: They pos-
sess explicit, non-asymptotic guarantees even
without distributional assumptions or model as-
sumptions (Angelopoulos and Bates, 2021; Vovk
et al., 2005), and they also allow for an intuitive
interpretation of the confidence interval width.

We specifically show (§3) that previously pro-
posed uncertainty quantification methods can be
used to design non-conformity scores for split
conformal prediction (Papadopoulos, 2008). We
confirm that, regardless of the initially obtained
coverage, the application of conformal predic-
tion can increase coverage to the desired—user

Figure 2: Coverage obtained by different uncertainty
predictors. We compare originally obtained values
(red), with values after calibration (light blue), and
conformal prediction (green) for the desired coverage
(dashed line) set to 0.9 (90%).

defined—value (see Figure 2). To this end, we
compare four parametric uncertainty estimation
methods (Monte Carlo dropout, deep ensembles,
heteroscedastic regression, and direct uncertainty
prediction) and one non-parametric method (quan-
tile regression) with respect to coverage and
distribution of uncertainty intervals. Addition-
ally, we introduce a translation-inspired measure
for referenceless quality estimation (QE) that
uses the distance between quality estimates of
translated and back-translated text to estimate
non-conformity. We show that the estimated quan-
tiles over each non-conformity score are indicative
not only of the coverage but also of the over-
all suitability of the non-conformity score and
the performance of the underpinning uncertainty
quantification method (e.g. it aligns well with er-
ror correlation computed over the test set). Our
experiments highlight the efficacy of quantile re-
gression, a previously overlooked method for the
MT evaluation task.

Moreover, we investigate the fairness of the ob-
tained intervals (§4) for a set of different attributes:
(1) translation language pair; (2) translation diffi-
culty, as reflected by source sentence length and
syntactic complexity, (3) estimated quality level
and (4) uncertainty level. We highlight unbal-
anced coverage for all cases and demonstrate how
equalized conformal prediction (Angelopoulos
and Bates, 2021; Boström and Johansson, 2020;
Boström et al., 2021) can address such imbalances
effectively.

2 Conformal Prediction

In this section, we provide background on confor-
mal prediction and introduce the notation used

1461



throughout this paper. Later in §3 we show
how this framework can be used for uncertainty
quantification in MT evaluation.

2.1 Desiderata

Let X ∈ X and Y ∈ Y be random variables
representing inputs and outputs, respectively; in
this paper we focus on regression, where Y = R.
We use upper case to denote random variables and
lower case to denote their specific values.

Traditional machine learning systems use train-
ing data to learn predictors ŷ : X → Y which,
when given a new test input xtest, output a point
estimate ŷ(xtest). However, such point estimates
lack uncertainty information. Conformal predic-
tors (Vovk et al., 2005) depart from this framework
by considering set functions C : X → 2Y—given
xtest, they return a prediction set C(xtest) ⊆ Y
with theoretically established guarantees regard-
ing the coverage of the ground truth value. For
regression tasks, this prediction set is usually a
confidence interval (see Figure 1). Conformal pre-
diction techniques have recently proved useful in
many applications: for example, in the U.S. pres-
idential election in 2020, the Washington Post
used conformal prediction to estimate the number
of outstanding votes (Cherian and Bronner, 2020).

Given a desired confidence level (e.g., 90%),
these methods have a formal guarantee that, in
expectation, C(Xtest) contains the true value Ytest

with a probability equal to or higher than (but close
to) that confidence level. Importantly, this is done
in a distribution-free manner, i.e., without mak-
ing any assumptions about the data distribution
beyond exchangeability, a weaker assumption
than independent and identically distributed (i.i.d.)
data.2

In this paper, we use a simple inductive method
called split conformal prediction (Papadopoulos,
2008), which requires the following ingredients:

• A mechanism to obtain non-conformity
scores s(x, y) for each instance, i.e., a way
to estimate how ‘‘unexpected’’ an instance

2Namely, the data distribution is said to be exchangeable
iff, for any sample (Xi, Yi)

n
i=1 and any permutation func-

tion π, we have P((Xπ(1), Yπ(1)), . . . , (Xπ(n), Yπ(n))) =
P((X1, Y1), . . . , (Xn, Yn)). If the data distribution is
i.i.d., then it is automatically exchangeable, since
P((X1, Y1), . . . , (Xn, Yn)) =

∏n
i=1P(Xi, Yi) and mul-

tiplication is commutative. By De Finetti’s theorem
(De Finetti, 1929), exchangeable observations are condi-
tionally independent relative to some latent variable.

is with respect to the rest of the data. In
this work, we do this by leveraging a pre-
trained predictor ŷ(x) together with some
heuristic notion of uncertainty—our method
is completely agnostic about which model
is used for this. We describe in §2.2 the
non-conformity scores we design in our
work.

• A held-out calibration set containing n ex-
amples, Scal = {(x1, y1), . . . , (xn, yn)}. The
underlying distribution from which the cali-
bration set is generated is assumed unknown
but it must be exchangeable (see footnote 2).

• A desired error rate α (e.g., α = 0.1), such
that the coverage level will be 1 − α (e.g.,
90%).

These ingredients are used to generate predic-
tion sets for new test inputs. Specifically, let
(s1, . . . , sn) be the non-conformity scores of each
example in the calibration set, i.e., si := s(xi, yi).
Define q̂ as the �(n+ 1)(1− α)�/n empirical
quantile of these non-conformity scores, where
�·� is the ceiling function. This quantile can be
easily obtained by sorting the n non-conformity
scores and examining the tail of the sequence.
Then, for a new test input xtest, we output the
prediction set

Cq̂(xtest) = {y ∈ Y : s(xtest, y) ≤ q̂}. (1)

We say that coverage holds if the true output
ytest lies in the prediction set, i.e., if ytest ∈
Cq̂(xtest). This simple procedure has the following
theoretical coverage guarantee:

Theorem 1. (Vovk et al. 1999, 2005) Using the
above quantities, the following bounds hold:

P
(
Ytest ∈ Cq̂(Xtest)

)
∈
[
1− α, 1− α+

1

n+ 1

]
.

This result tells us two important things: (i) the
expected coverage is at least 1 − α, and (ii)
with a large enough calibration set (large n), the
procedure outlined above does not overestimate
the coverage too much, so we can expect it to be
nearly 1− α.3

2.2 Non-conformity Scores
Naturally, the result stated in Theorem 1 is only
practically useful if the prediction sets Cq̂(Xtest)

3For most purposes, a reasonable size for the calibration
set is n ≈ 1000. See Angelopoulos and Bates (2021, § 3.2).
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are small enough to be informative—to ensure
this, we need a good heuristic to generate the
non-conformity scores s(x, y). In this paper, we
are concerned with regression problems (Y = R),
so we define the prediction sets to be confi-
dence intervals. We assume we have a pretrained
regressor ŷ(x), and we consider two scenarios,
one where we generate symmetric intervals (i.e.,
where ŷ(x) is the midpoint of the interval) and
a more general scenario where intervals can be
non-symmetric.

Symmetric Intervals. In this simpler scenario,
we assume that, along with ŷ(x), we have a
corresponding uncertainty heuristic δ(x), where
higher δ(x) values signify higher uncertainty. An
example—to be elaborated upon in §3.1.1—is
where δ(x) is the quantile of a symmetric proba-
bility density, such as a Gaussian, which can be
computed analytically from the variance. We then
define the non-conformity scores as

s(x, y) =
|y − ŷ(x)|

δ(x)
(2)

and follow the procedure above to obtain the
quantile q̂ from the calibration set. Then, for a
random test point (Xtest, Ytest) and from (1) and
(2), we have:

P
[
|Ytest − ŷ(Xtest)| ≤ δ(Xtest)q̂

]
� 1− α, (3)

which corresponds to the confidence interval

Cq̂(x) =
[
ŷ(x)− q̂δ(x), ŷ(x) + q̂δ(x)

]
. (4)

We examine this procedure in §3.1.1 with various
uncertainty heuristics (Monte Carlo dropout, deep
ensembles, heteroscedastic regression, and direct
uncertainty prediction estimates).

Non-symmetric Intervals. Sometimes, bet-
ter heuristics can be obtained which are
non-symmetric, i.e., where there is larger uncer-
tainty in one of the sides of the interval—we
will see a concrete example in §3.1.2 where we
describe a non-parametric quantile regression
procedure (although this might happen as well
with parametric heuristics based on fitting
non-symmetric distributions, such as the skewed
beta distribution). In this case, we assume left
and right uncertainty estimates δ− and δ+, both

positive and satisfying δ− ≤ δ+, and define the
non-conformity scores as:

s(x, y) =

{
y−ŷ(x)
δ+(x)

if y ≥ ŷ(x)
ŷ(x)−y
δ−(x)

if y < ŷ(x).
(5)

This leads to prediction sets

Cq̂(x) =
[
ŷ(x)− q̂δ−(x), ŷ(x) + q̂δ+(x)

]
, (6)

which also satisfy Theorem 1. Naturally, when
δ− = δ+ := δ, this procedure recovers the
symmetric case.

3 Conformal MT Evaluation

We now apply the machinery of conformal pre-
diction to the problem of MT evaluation, which
is a regression task, aiming to predict a numeric
quality score over an (automatically) translated
sentence. The input is a triplet of source segment
s, automatic translation t, and (optionally) hu-
man reference r, x := 〈s, t, r〉, and the goal is
to predict a scalar value ŷ(x) that corresponds to
the estimated quality of the translation t. We can
also consider a reference-less MT evaluation sce-
nario where the input is simply x := 〈s, t〉.4 The
ground truth is a quality score y manually pro-
duced by a human annotator, either in the form of
a point on a quality scale called direct assessment
(DA; Graham (2013)) or in the form of accu-
mulated penalties called multidimensional quality
metrics (MQM; Lommel et al., 2014). We use DA
scores that are standardized for each annotator.
An example instance is shown in Figure 3.

Subsequently, to apply conformal prediction
we need to determine suitable non-conformity
metrics, that can capture the divergence of a
new test point xtest with respect to the seen
data. To that end, we primarily experiment with
a range of uncertainty quantification heuristics
to generate δ(x) (or δ−(x) and δ+(x) in the
non-symmetric case). With the symmetric para-
metric uncertainty methods, described in §3.1.1,
we obtain heuristics to compute δ which we use
to obtain non-conformity scores via (2), leading
to the confidence intervals Cq̂(x) in (4), for each
x triplet. Alternatively, in §3.1.2 we describe a
non-symmetric and non-parametric method which
returns ŷ, δ−, and δ+, and which we will use to

4The reference-less scenario is also frequently referred to
as quality estimation for machine translation.
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Figure 3: Example of MT evaluation instance: x := 〈s, t, r〉 input triplet (left) evaluated by human and then
normalised to obtain the ground truth scores (top right) and model prediction (bottom right).

compute the non-conformity scores (5) and confi-
dence intervals (6). Finally, in 3.1.3 we describe a
heuristic non-conformity score which is inspired
by the MT symmetry between s and t.

3.1 Choice of Non-conformity Scores
For the application of conformal prediction on
MT evaluation, we experiment with a diverse
set of uncertainty prediction methods to obtain
non-conformity scores, accounting both for para-
metric and non-parametric uncertainty prediction.
We extensively compare all the parametric meth-
ods previously used in MT evaluation (Zerva
et al., 2022), which return symmetric con-
fidence intervals. In addition, we experiment
with quantile regression (Koenker and Hallock,
2001), a simple non-parametric approach that
has never been used for MT evaluation (to the
best of our knowledge), and which can return
non-symmetric intervals. Finally, we propose a
new MT evaluation-specific non-conformity mea-
sure that relies on the symmetry between source
and target in MT tasks.

3.1.1 Parametric Uncertainty
We compare a set of different parametric meth-
ods which fit the quality scores in the training
data to an input-dependent Gaussian distribution
N (μ̂(x), σ̂2(x)). All these methods lead to sym-
metric confidence intervals (see Eq. 4). We use
these methods to obtain estimates ŷ(x) := μ̂(x).
Then we use σ̂ to extract the corresponding un-
certainty estimates as δ(x) := probit(1 − α

2 )σ̂,
which correspond to the α

2 and 1 − α
2 quantiles

of the Gaussian, for a given confidence thresh-
old 1 − α. For α = 0.1 (i.e., a 90% confidence
level) this results in δ(x) = 1.64× σ̂. We describe
the concrete methods used to estimate μ̂(x) and
σ̂(x) below.

MC Dropout (MCD). This is a variational
inference technique approximating a Bayesian

network with a Bernoulli prior distribution over
its weights (Gal and Ghahramani, 2016). By re-
taining dropout layers during multiple inference
runs, we can sample from the posterior distribution
over the weights. As such, we can approximate
the uncertainty over a test instance x through
a Gaussian distribution with the empirical mean
μ̂(x) and variance σ̂2(x) of the quality estimates
{ŷ1, . . . , ŷN}. We use 100 runs, following the
analysis of Glushkova et al. (2021).

Deep Ensembles (DE). This method
(Lakshminarayanan et al., 2017) trains an
ensemble of neural models with the same
architecture but different initializations. During
inference, we collect the predictions of each
single model and return μ̂(x) and σ̂2(x) as in MC
dropout. We use N = 5 checkpoints obtained
with different initialization seeds, following
Glushkova et al. (2021).

Heteroscedastic Regression (HTS). We follow
Le et al. (2005) and Kendall and Gal (2017b)
and incorporate σ̂2(x) as part of the training
objective. This way, a regressor is trained to
output two values: (1) a mean score μ̂(x) and
(2) a variance score σ̂2(x). This predicted mean
and variance parameterize a Gaussian distribu-
tion N (y; μ̂(x; θ), σ̂2(x; θ)), where θ are the
model parameters. The negative log-likelihood
loss function is used:

LHTS(μ̂, σ̂
2; y) =

(y − μ̂)2

2σ̂2
+

1

2
log σ̂2. (7)

This framework is particularly suitable to express
aleatoric uncertainty due to heteroscedastic noise,
as the framework allows larger variance to be
assigned to ‘‘noisy’’ examples which will result
in down-weighting the squared term in the loss.

Direct Uncertainty Prediction (DUP). This is
a two-step procedure which relies on the assump-
tion that the total uncertainty over a test instance
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is equivalent to the generalization error of the re-
gression model (Lahlou et al., 2021). A standard
regression model ŷ(x) is first fit on the training set
and then applied to a held-out validation set Sval.
Then, a second model is trained on this held-out
set to regress on the error ε = |ŷ(x)− y| incurred
by the first model predictions, approximating its
uncertainty. To train the error predicting model,
we follow the setup of Zerva et al. (2022), us-
ing as inputs the xval = 〈s, t, r〉 triplets combined
with the predictions ŷval of the first model, which
are used as bottleneck features in an intermediate
fusion fashion. The loss function is

LDUP(ε̂; ε) =
ε2

2ε̂2
+

1

2
log(ε̂)2. (8)

We use ε̂(x) as the uncertainty heuristic.

3.1.2 Non-parametric Uncertainty: Quantile
Regression (QNT)

Quantile regression is a statistical method used to
model input-dependent quantiles within a regres-
sion framework (Koenker and Bassett Jr, 1978).
As opposed to regular (linear) regression that mod-
els the mean of a target variable Y conditioned on
the input X , quantile regression models a quantile
of the distribution of Y (e.g., the median, the 95%,
or the 5% percentile scores). By definition, quan-
tile regression does not require any parametric
assumptions on the distribution of Y and is less
sensitive to outliers. Quantiles provide an attrac-
tive representation for uncertainty: They allow for
easy construction of prediction intervals, at cho-
sen confidence levels. Learning the quantile for a
particular quantile level involves optimizing the
pinball loss, a tilted transformation of the absolute
value function (see Figure 4). Given a target y,
a prediction ŷ, and quantile level τ ∈ (0, 1), the
pinball loss Lτ is defined as:

Lτ (ŷ; y) = (ŷ − y)(1{y ≤ ŷ} − τ). (9)

We can select τ to correspond to the error rate α
that we want to achieve. Note that for τ = 0.5 the
loss function reduces to (half) the mean absolute
error loss LMAE(ŷ; y) =

1
2 |ŷ − y|.

We use τ = α to train our models to predict
the Q̂1−τ/2 and Q̂τ/2 quantiles, as well as the Q̂0.5

quantile, which corresponds to the median (see be-
low), but there are extensions that either optimize
multiple quantiles that cover the full predictive
distribution (Tagasovska and Lopez-Paz, 2019) or

Figure 4: The pinball loss objective used for quantile
regression. The slope of the lines is determined by the
desired quantile level τ .

Method Orig. Calib. Conform. q̂

MCD 23.82 66.60 90.01 8.08
DE 29.10 66.23 91.31 6.99
HTS 82.02 68.29 89.89 1.28
DUP 86.01 66.13 89.88 1.11
QUANT-NS 77.83 – 90.21 1.29
QUANT-S 78.66 49.03 90.54 1.28

Table 1: Coverage percentages for α = 0.1 over
different uncertainty methods. Values reported
correspond to the mean over 10 runs. The second,
third, and fourth columns refer respectively to the
coverage obtained by original methods without
calibration, after the ECE calibration described in
§3.2, and with conformal prediction as described
in §2.

explore asymmetric loss extensions to account for
overestimating or underestimating the confidence
intervals (Beck et al., 2016).

Unlike the parametric methods covered in
§3.1.1, the quantile regression method can be
used to return asymmetric confidence inter-
vals. This is done by fitting 0.5, 1 − τ

2 , and
τ
2 quantile predictors to the data, and setting
ŷ(x) := Q̂0.5(x), δ̂+(x) := Q̂1− τ

2
(x)− ŷ(x), and

δ̂−(x) := ŷ(x)− Q̂ τ
2
(x).

For completeness, we also consider a symmet-
ric variant of quantile regression where we do
not estimate the median Q̂0.5(x), but rather set
ŷ(x) = 1

2

(
Q̂1− τ

2
(x) + Q̂ τ

2
(x)

)
. We report cover-

age for both the non-symmetric (QNT-NS) and
the symmetric case (QNT-S) later in Table 1.

3.1.3 Back-translation-inspired
Non-conformity

The aforementioned uncertainty quantification
metrics are based on well-established methods
that could be applied on other regression problems
with minimal modifications. However, conformal
prediction is quite flexible with respect to the
choice of the underlying non-conformity measure,
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allowing us to tailor the definition of conformity
to the task at hand. Thus, we also experiment
with a back-translation-inspired setup for the
referenceless COMET metric (COMET-QE).

Our intuition for this metric is previous work
that exploiting the symmetry between source and
target, e.g. via back translation, can be used as
an indicator of translation quality (Agrawal et al.,
2022; Moon et al., 2020). In other words, a met-
ric that computes the distance (on semantic or
surface level) between the original source sen-
tence and the one obtained upon translating the
target, correlates well with translation quality. In
this work, we hypothesize that we can exploit the
symmetry between translation directions to infer
a non-conformity measure as follows:

• We compute ŷ as described in §3 for x :=
〈s, t〉.

• We compute ŷT for inverted inputs x :=
〈t, s〉.

• We finally compute the non-conformity score
s as in Eq. 2 with δ(x) = |ŷ − ŷT|.

We henceforth refer to this score as the BT
non-conformity score.

3.2 Comparison with Calibration

We compare the coverage obtained by our pro-
posed ‘‘conformalized’’ uncertainty scores with
that of a vanilla calibration approach that min-
imizes the expected calibration error (ECE;
Naeini et al. 2015; Kuleshov et al. 2018b). ECE
has been proposed as a measure of how well
aligned the model confidence is with the model
accuracy, based on the simple desideratum that
a model with, e.g., 80% confidence over a set
of examples should achieve an accuracy of 80%
over the same examples to be well-calibrated. It is
defined as

ECE =
1

M

M∑
b=1

|acc(γb)− γb|, (10)

where each b is a bin representing a confidence
level γb, and acc(γb) is the fraction of times
the ground truth y falls inside the confidence
interval associated to that bin. Several variants
of uncertainty calibration have been proposed to
correct unreliable uncertainty estimates that do not
correlate with model accuracy (Kuleshov et al.,
2018b; Amini et al., 2020; Levi et al., 2022).

We follow Glushkova et al. (2021) who find that
computing a simple affine transformation of the
original uncertainty distribution that minimises
the ECE is effective to quantify uncertainty in MT
evaluation.

3.3 Experimental Setup

Models. We experiment with a range of differ-
ent models for the task of MT quality evaluation.
We specifically use two models that employ
source, translation, and reference in their input,
namely UniTE (Wan et al., 2022) and COMET
(Rei et al., 2020). We also experiment with
BLEURT (Sellam et al., 2020), a metric that relies
only on translation and reference comparisons,
and finally, we explore a reference-less setup us-
ing COMET-QE, receiving only the source and
translation sentences as input (Rei et al., 2021;
Zerva et al., 2021). We provide model training
hyperparameters in Appendix B.

Data. For training, we use the direct assessment
(DA) data from the WMT17-19 metrics shared
tasks (Ma et al., 2018, 2019). We evaluate our
models on the WMT20 metrics dataset (Mathur
et al., 2020). For the calibration set Scal, we use
repeated random sub-sampling for k = 20 runs.
The WMT20 test data includes 16 language pairs,
of which 9 pairs are into-English and 7 pairs are
out-of-English translations. For the calibration set
sub-sampling, we sample uniformly from each
language pair. For metrics for which we report
averaged performance, we use micro-average over
all of the language pairs.

3.4 Results

We first compare the uncertainty methods de-
scribed in §3.1 with respect to coverage percentage
as shown in Table 1. We select a desired coverage
level of 90%, i.e., we set α = 0.1. We also align
the uncertainty estimates with respect to the same
α value: for the parametric uncertainty heuristics,
we select the δ(x) that corresponds to a 1 − α
coverage of the distribution, by using the pro-
bit function as described in §3.1.1; and for the
non-parametric approach, we train the quantile
regressors by setting τ = α/2, as described in
§3.1.2.

Table 1 shows that coverage varies signifi-
cantly across methods for the COMET metric,
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Figure 5: Coverage obtained by different uncertainty predictors for different MT evaluation metrics. We compare
originally obtained values (red), with values after calibration (light blue) and after conformal prediction (green)
with the desired coverage threshold (dashed line) set to 0.9 (90%).

while Figure 5 shows that the same trend fol-
lows the coverage for BLEURT, UniTE, and
COMET-QE metrics respectively. We can see that
the sampling-based methods such as MC dropout
and deep ensembles achieve coverage much below
the desired 1 − α level. In contrast, direct uncer-
tainty prediction and heteroscedastic regression
achieve comparatively high coverage even before
the application of conformal prediction. This could
be related to the fact that by definition, they try to
model uncertainty in relation to model error (DUP
explicitly tries to predict uncertainty modelled as
ε = |ŷ−y|, while based on Eq. 7, the model needs
to predict larger variance for larger errors). The
quantile regression method also performs com-
petitively to DUP achieving high coverage across
metrics, with the exception of BLEURT (the only
metric that does not use the source sentence),
where coverage is significantly lower to DUP and
HTS. Finally, while the back-translation-inspired
(BT) score does not achieve high coverage, it
outperforms sampling-based methods, providing
a low-cost solution even in the absence of trained
uncertainty quantifiers.

Calibration helps improve coverage in the cases
of MC dropout and deep ensembles—albeit still
without reaching close to 0.9. Instead, it seems
that minimizing the ECE is not well aligned to
optimizing coverage as for most cases calibration
leads to less than 70% coverage. In contrast, we
can see that conformal prediction approximates
the desired coverage level best for all methods,
regardless of the initial coverage they obtain, in
line with the guarantees provided by Theorem 1.

MCD DE HTS DUP QNT BT

q 8.08 6.99 1.29 1.11 1.28 –

C
O

M
E

T

UPS 0.04 0.07 0.24 0.27 0.34 –

q 38.72 13.92 1.31 0.89 1.23 –

B
L

E
U

R
T

UPS 0.29 0.18 0.28 0.33 0.33 –

q 45.50 18.02 1.36 1.66 1.56 –

U
ni

T
E

UPS 0.02 0.04 0.17 0.23 0.35 –

q 15.00 11.75 1.12 0.09 1.28 11.77

C
O

M
-Q

E

UPS −0.11 0.02 0.23 0.29 0.20 0.13

Table 2: Conformal prediction quantiles q̂ versus
UPS correlation coefficients over the test set, for
each metric.

In addition, as shown in Table 2 the q̂ value
seems to correlate well with the performance of
each uncertainty quantification metric, as mea-
sured by uncertainty Pearson correlation (UPS)
(Glushkova et al., 2021).5 We can specifically see
that methods with low q̂ correspond to uncertainty
quantification methods that yield better perfor-
mance and correlate better with the residuals of the
MT evaluation metric. Hence, conformal predic-
tion can be used to efficiently guide the selection

5Note that unlike (Glushkova et al., 2021) we compute
UPS over the full test set, instead of taking the macro-average
over each language-pair. However, looking at the values
reported in that work we can see that our findings hold for
the macro-averaged UPS values as well.
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Figure 6: Width for each uncertainty quantifier for the
COMET metric showing the original intervals (red), the
intervals after calibration (light blue) and the intervals
after conformal prediction (green).

Figure 7: Coverage (x-axis) vs width (y-axis) for
increasing α values, for the COMET metric.

of a suitable uncertainty quantification method,
using only a small amount of data (calibration set).

Besides measuring the coverage achieved by
the several methods, it is also important to ex-
amine how wide the predicted intervals are. To
that end, we also compute the confidence interval
width as the average width of the predicted con-
fidence intervals after the conformal prediction
application (Kuleshov and Deshpande, 2022),6

avg.width =
1

|S test|
∑
x∈S test

|Cq̂(x)|. (11)

We show the width in Figure 6, where we
can see that especially for MCD and DE meth-
ods the average width increases significantly to
reach the desired 90% coverage. The direct un-
certainty prediction method is the one that shows
a smaller increase in width, with quantile and
heteroscedastic regression following.

6In related work (Glushkova et al., 2021), sharpness is
computed with respect to σ2, but this cannot be applied
to non-parametric uncertainty cases, so we use the confi-
dence interval length, henceforth referred to as width to be
able to compare conformal prediction for all uncertainty
quantification methods.

We also plot the average width of the con-
formalised confidence intervals with respect to
coverage for increasing α values (see Figure 7).
We can see that as the desideratum on coverage
relaxes confidence interval widths reduce accord-
ingly, and that depending on the chosen α value
the optimal method can vary. For example, quan-
tile regression performs much better for α ≤ 0.2
but for more ‘‘relaxed" values the width-coverage
balance deteriorates.

4 Conditional Coverage

The coverage guarantees stated in Theorem 1 re-
fer to marginal coverage—the probabilities are
not conditioned on the input points, they are aver-
aged (marginalized) over the full test set. In several
practical situations it is desirable to assess the con-
ditonal coverage P[Ytest ∈ C(Xtest) | Xtest ∈ G]
where G ⊆ X denotes a region of the input space,
e.g., inputs containing some specific attributes or
pertaining to some group of the population.

In fact, evaluating the conditional coverage with
respect to different data attributes may reveal
biases of the uncertainty estimation methods to-
wards specific data subgroups which are missed
if we only consider marginal coverage. In the
next experiments, we follow the feature stratified
coverage described in Angelopoulos and Bates
(2021); we use conformal prediction with MC
dropout as our main paradigm. We demonstrate
five examples of imbalanced coverage in Figure 8
and Table 3 with respect to different attributes:
language pairs, estimated source difficulty, and
predicted quality and uncertainty scores.

We can see that, coverage varies significantly
across groups, revealing biases towards specific
attribute values. For example, the plots show that
into-English translations are under-covered for
most uncertainty quantifiers (coverage ≤ 0.9),
i.e., we consistently underestimate the uncertainty
over the predicted quality for these language
pairs. More importantly, we can see that examples
with low predicted quality are significantly under-
covered, as coverage for quality scores where y ≤
−1.5 drops below 50%. For MCD-based uncer-
tainty scores on the other hand, the drop in cov-
erage seems to be related to the low uncertainty
scores, indicating that due to the skewed distribu-
tion of uncertainty scores, the calculation of the q̂
quantile is not well tuned to lower uncertainty val-
ues (i.e., higher non-conformity scores). Instead,
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Figure 8: Conditional coverage imbalance per
(top-to-bottom): sentence length, syntactic complexity,
estimated quality score level and uncertainty score for
conformal prediction with MCD-based non-conformity
scores. To facilitate plotting, the segment frequencies
are re-scaled with respect to the maximum bin fre-
quency (so that the bin with the maximum frequency
equals 1).

our two proxies for source difficulty reveal bet-
ter balanced behaviour, with small deviations for
very small sentences or high syntactic complex-
ity. Similar patterns for these dimensions are also

QNT MCD DE HTS DUP

En-Cs 0.982 0.959 0.939 0.875 0.931
En-De 0.973 0.971 0.925 0.863 0.927
En-Ja 0.990 0.978 0.987 0.886 0.972
En-Pl 0.977 0.948 0.914 0.882 0.914
En-Ru 0.974 0.958 0.936 0.862 0.926
En-Ta 0.970 0.952 0.949 0.892 0.858
En-Zh 0.934 0.983 0.991 0.919 0.945
Cs-En 0.890 0.871 0.884 0.898 0.875
De-En 0.880 0.888 0.867 0.896 0.902
Ja-En 0.883 0.856 0.921 0.910 0.887
Kn-En 0.881 0.875 0.948 0.943 0.840
Pl-En 0.862 0.833 0.825 0.873 0.849
Ps-En 0.851 0.854 0.932 0.922 0.786
Ru-En 0.851 0.828 0.831 0.879 0.888
Ta-En 0.793 0.809 0.878 0.898 0.883
Zh-En 0.861 0.833 0.868 0.886 0.827

En-Cs 0.893 0.917 0.888 0.892 0.902
En-De 0.902 0.902 0.902 0.896 0.893
En-Ja 0.909 0.891 0.900 0.891 0.904
En-Pl 0.882 0.905 0.895 0.900 0.898
En-Ru 0.900 0.898 0.908 0.906 0.903
En-Ta 0.903 0.895 0.883 0.886 0.903
En-Zh 0.880 0.890 0.884 0.896 0.896
Cs-En 0.890 0.917 0.909 0.904 0.894
De-En 0.897 0.901 0.901 0.897 0.903
Ja-En 0.900 0.912 0.899 0.894 0.902
Kn-En 0.896 0.903 0.902 0.904 0.894
Pl-En 0.900 0.905 0.893 0.894 0.877
Ps-En 0.905 0.899 0.900 0.884 0.907
Ru-En 0.910 0.896 0.907 0.900 0.900
Ta-En 0.884 0.901 0.886 0.901 0.908
Zh-En 0.900 0.910 0.908 0.900 0.905

Table 3: Conditional coverage over different lan-
guage pairs of WMT 2020 DA data, before (top)
and after (bottom) balanced conformal prediction.
Red coloured entries signify coverage < 0.9.

observed for the other uncertainty quantification
methods shown in Appendix C.

Ensuring that we do not overestimate con-
fidence for such examples is crucial for MT
evaluation, in particular for applications where
MT is used on the fly and one needs to decide if
human editing is needed. Hence, in the rest of this
section, we elaborate approaches to assess and mit-
igate coverage imbalance in the aforementioned
examples, towards equalized coverage (Romano
et al., 2020).

1469



4.1 Conditioning on Categorical Attributes:
Language-pairs

To deal with imbalanced coverage for discrete
data attributes we use an equalized conformal
prediction approach, i.e., we compute the con-
ditional coverage for each attribute value and,
upon observing imbalances, we compute condi-
tional quantiles instead of a single one on the
calibration set.

Let {1, . . . ,K} index the several attributes
(e.g., language pairs). We partition the calibration
set according to these attributes, Scal =

⋃K
k=1 Scal

k ,
where Scal

k denotes the partition corresponding to
the kth attribute and Scal

k ∩ Scal
k′ = ∅ for every

k �= k′. Then, we follow the procedure described
in §2 to fit attribute-specific quantiles q̂k to each
calibration set Scal

k .
We demonstrate the application of this process

on language pairs in Table 3 for all uncertainty
quantification methods examined in the previ-
ous section. The top part of Table 3 shows
the language-based conditional coverage, using
a heatmap coloring to highlight the language
pairs that fall below the guaranteed marginal
coverage of 1 − α = 0.9. We can see that for
all language pairs we achieve coverage >75%
but some are below the 90% target. For all
methods except for DUP, the coverage is high
for out-of-English translations and drops for the
majority of into-English cases. Applying the
equalizing approach described above, we suc-
cessfully rectify the imbalance for all uncertainty
quantification methods, as shown in the bottom
heatmap of Table 3.

4.2 Conditioning on Numerical Attributes:
Quality, Difficulty and
Uncertainty Scores

With some additional constraints on the equalized
conformal prediction process described in §4.1
we can generalize this approach to account for
attributes with numerical discrete or continuous
values, such as the MT quality scores (ground
truth quality y) or the uncertainty scores obtained
by different uncertainty quantification methods.
To that end, we adapt the Mondrian confor-
mal regression methodology (Vovk et al., 2005;
Boström et al., 2021). Mondrian conformal pre-
dictors have been used initially for classification
and later for regression, where they have been used
to partition the data with respect to the residuals

|y− ŷ(x)| (Johansson et al., 2014; Boström et al.,
2021). Boström and Johansson (2020) proposed
a Mondrian conformal predictor that partitions
along the expected ‘‘difficulty’’ of the data as
estimated by the non-conformity score s(x, y) or
the uncertainty score δ(x).

In all the above cases, the calibration instances
are sorted according to a continuous variable of
interest and then partitioned into calibration bins.
While the bins do not need to be of equal size,
they need to satisfy a minimum length condition
that depends on the chosen α threshold for the
error rate (Johansson et al., 2014). Upon obtaining
a partition into calibration bins, and similarly to
what was described in §4.1 for discrete attributes,
we compute bin-specific quantiles q̂b, where b ∈
{1, . . . , B} indexes a bin.

We apply the aforementioned approach to the
MT evaluation for the estimated translation qual-
ity scores, ŷ, and uncertainty scores, as well
as two different proxies for sentence translation
difficulty, namely sentence length and syntactic
complexity (computed on the source language)
(Mishra et al., 2013). We compute the source
sentence length, as the number of tokens in
the sentence, while for syntactic complexity we
consider the sum of subtrees that constitute gram-
matical phrases7 and sort the calibration and test
samples accordingly.

We then split the ordered calibration set into
bins8 and compute the quantiles over the calibra-
tion set bins. Subsequently, to apply the conformal
prediction on a test instance xtest, we check the at-
tribute value and identify which bin b̂ of theScal set
it falls into, to use the corresponding quantile q̂b̂.

The equalized coverage for COMET-MCD is
shown in Figure 8, compared with the original
coverage. We can see that for estimated quality
and uncertainty scores, the previously observed
coverage drop for the lower values is successfully
rectified by the equalized conformal prediction ap-
proach, achieving balanced coverage across bins,
as desired. Between the two difficulty approxima-
tion methods, we see that for MCD the obtained
bins are fairly balanced concerning coverage, with
only a small drop for higher difficulty in terms
of syntactic complexity. We provide additional
results for the remaining uncertainty quantifiers in
Appendix C.

7We employ an nltk-based dependency parser.
8We use a threshold of 100 instances per bin.
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5 Related Work

5.1 Conformal Prediction

We build on literature on conformal prediction that
has been established by Vovk et al. (2005). Sub-
sequent works focus on improving the predictive
efficiency of the conformal sets or relaxing some
of the constraints (Angelopoulos and Bates, 2021;
Jin and Candès, 2022; Tibshirani et al., 2019).
Most relevant to our paper are works that touch
conformal prediction for regression tasks, either
via the use of quantile regression (Romano et al.,
2019) or using other scalar uncertainty estimates
(Angelopoulos and Bates, 2021; Johansson et al.,
2014; Papadopoulos et al., 2011). Other strands
of work focus on conditional conformal predic-
tion and methods to achieve balanced coverage
(Angelopoulos and Bates, 2021; Romano et al.,
2020; Boström et al., 2021; Lu et al., 2022).

There are few studies that use conformal predic-
tion in NLP, so far focusing only on classification
or generation, with applications to sentiment and
relation classification and entity detection (Fisch
et al., 2021, 2022; Maltoudoglou et al., 2020).
Recently, Ravfogel et al. (2023) and Ulmer et al.
(2024) considered natural language generation,
with the former proposing the use of conformal
prediction applied to top-p nucleus sampling, and
the latter proposing applying non-exchangeable
conformal prediction with k-nearest neighbors to
obtain better prediction sets for generation. Some
other works apply conformal prediction on the
sentence level to rank generated sentences for
different tasks (Kumar et al., 2023; Ren et al.,
2023; Liang et al., 2024). Concurrent to this work,
Giovannotti (2023) proposed the use of conformal
prediction to quantify MT quality estimation, us-
ing a k-nearest neighbor (kNN) quality estimation
model to obtain non-conformity scores, proposing
the use of conformal prediction as a new stan-
dalone uncertainty quantification method for this
task. They empirically demonstrate the impact of
violating the i.i.d. assumption on the obtained per-
formance and compare to a fixed-variance baseline
regarding ECE, AUROC, and sharpness, but they
consider neither the aspect of marginal or con-
ditional coverage for the estimated confidence
intervals, nor any other uncertainty quantification
methods.

Our work complements the aforementioned ef-
forts, as it focuses on a regression task (MT

evaluation) and investigates the impact of con-
formal prediction on the estimated confidence
intervals. Contrary to previous approaches, how-
ever, we provide a detailed analysis of conformal
prediction for an NLP regression task and in-
vestigate a wide range of uncertainty methods
that can be used to design non-conformity scores.
Additionally, we elaborate different aspects of
equalized coverage for MT evaluation, revealing
biases for different data attributes, and providing
an effective method that corrects these biases.

5.2 Uncertainty Quantification

Several uncertainty methods have been previously
proposed for regression tasks in NLP and the task
of MT evaluation specifically. Beck et al. (2016)
focused on the use of Gaussian processes to ob-
tain uncertainty predictions for the task of quality
estimation, with emphasis on cases of asymmetric
risk. Wang et al. (2022) also explored Gaussian
processes but provided a comparison of multiple
NLP regression tasks (semantic sentence simi-
larity, MT evaluation, sentiment quantification)
investigating end-to-end and pipeline approaches
to apply Bayesian regression to large language
models. Focusing on MT evaluation, Glushkova
et al. (2021) proposed the use of MC dropout
and deep ensembles as efficient approximations
of Bayesian regression, inspired by work in com-
puter vision (Kendall and Gal, 2017a). Zerva et al.
(2022) proposed additional methods of uncer-
tainty quantification for MT evaluation, focusing
on methods that targ et aleatoric or epistemic
uncertainties under specific assumptions. They
specifically investigated heteroscedastic regres-
sion and KL-divergence for aleatoric uncertainty
and direct uncertainty prediction for epistemic un-
certainty, highlighting the performance benefits
of these methods, when compared to MC dropout
and deep ensembles, with respect to the correlation
of uncertainties to model error. However, none of
the previous works in uncertainty for NLP regres-
sion considered coverage. We compare several
of the aforementioned uncertainty quantification
methods with respect to coverage and focus on the
impact of applying conformal prediction to each
uncertainty method.

6 Conclusions

In this work, we apply conformal prediction to
the important problem of MT evaluation. We
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show that most existing uncertainty quantification
methods significantly underestimate uncertainty,
achieving low coverage, and that the applica-
tion of conformal prediction can help rectify this
and guarantee coverage tuned to a user-specified
threshold. We further show that the estimated
quantiles provide a way to choose the most suit-
able uncertainty quantification methods, aligning
well with other metrics such as UPS (Glushkova
et al., 2021).

We also use conformal prediction tools to as-
sess the conditional coverage for five different
attributes: language pairs, sentence length and
syntactic complexity, predicted translation qual-
ity, and estimated uncertainty level. We highlight
inconsistencies and imbalanced coverage for the
different cases, and we show that equalized con-
formal prediction can correct the initially unfair
confidence predictions to obtain more balanced
coverage across attributes.

Overall, our work aims to highlight the potential
weaknesses of using uncertainty estimation meth-
ods without a principled calibration procedure.
To this end, we propose a methodology that can
guarantee more meaningful confidence intervals.
In future work, we aim to further investigate the
application of conformal prediction across differ-
ent data dimensions as well as different regression
tasks in NLP.
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Katharina Höbel, and Jayashree Kalpathy-
Cramer. 2022. Fair conformal predictors for
applications in medical imaging. In Proceed-
ings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 12008–12016.
https://doi.org/10.1609/aaai.v36i11
.21459
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Figure 9: Widths obtained for the BLEURT, UniTE, and COMET-QE metrics showing the original intervals
(red), the intervals after calibration (light blue) and the intervals after conformal prediction (green).

Hyperparameter COMET BLEURT UniTE COMET-QE

Encoder Model XLM-R (large) RemBERT (large) Info-XLM (large) XLM-R (large)
Optimizer Adam Adam Adam Adam
No. frozen epochs 0.3 0.3 0.3 0.3
Learning rate 3e-05 3e-05 3e-05 3e-05
Encoder Learning Rate 1e-05 1e-05 1e-05 1e-05
Layerwise Decay 0.95 0.95 0.95 0.95
Batch size 4 4 4 4
Dropout 0.15 0.15 0.15 0.15
Hidden sizes [3072, 1024] [2048, 1024] [3072, 1024] [2048, 1024]
Encoder Embedding layer Frozen Frozen Frozen Frozen
FP precision 32 32 32 32
No. Epochs (training) 2 2 2 2

Table 4: Hyperparameters for MT evaluation metrics used.

A Average Width Across Metrics and Uncertainty Quantifiers

In this section we are presenting the average width of the confidence intervals calculated by the
original uncertainty quantification methods, as well as the adapted width when using calibration either
by minimising the ECE or by applying conformal prediction. Expanding the analysis on COMET as
presented in Figure 6, we are presenting results for BLEURT, UniTE, and COMET-QE. As shown
in Figure 9, a similar pattern can be observed for all metrics, where, upon conformalizing, the width
increases significantly for MCD, DE, and BT, while changes for the other methods are more moderate.

B Model Implementation and Parameters

Table 4 shows the hyperparameters used to train the following metrics: BLEURT, UniTE, COMET,
and COMET-QE. We implemented the models using the COMET codebase9 and implementation from
Zerva et al. (2022) for the uncertainty quantification methods. For deep ensembles, we trained 5 models
with different seeds. For MCD we used a total of 100 runs following Glushkova et al. (2021) and
Zerva et al. (2022). For the DUP method, we used a bottleneck layer with dimensionality 256, and we
maintained the same setup across metrics.

C Equalized Conformal Prediction Across Uncertainty Quantification Methods

In this section, we extend the analysis discussed in Section 4 of the main paper, to the rest of the
quantification methods for the COMET metric, shown in Figures 10 to 13. We can see that direct
uncertainty prediction (Figure 12) and quantile regression (Figure 13) are the two methods that suffered
less from imbalanced coverage, even for extreme values of quality and uncertainty, supporting their
suitability for MT evaluation, as also shown for the general results in Section 3.4. We can also observe
that when the initial calibration step yields balanced results around the desired α, the recalibration
brings no significant benefits and may even result in slightly lower coverage. Hence, it is important to
first detect for which, if any, attributes we may need to recalibrate.

9https://github.com/Unbabel/COMET, version 2.1.0.
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Figure 10: Equalized prediction for COMET using deep ensembles.

Figure 11: Equalized prediction for COMET using heteroscedastic regression.
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Figure 12: Equalized prediction for COMET using direct uncertainty prediction.

Figure 13: Equalized prediction for COMET using quantile regression.
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