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Abstract

Recent large language model applications,
such as Retrieval-Augmented Generation and
chatbots, have led to an increased need to
process longer input contexts. However, this
requirement is hampered by inherent limita-
tions. Architecturally, models are constrained
by a context window defined during training.
Additionally, processing extensive texts re-
quires substantial GPU memory. We propose
a novel approach, FINCH, to compress the input
context by leveraging the pre-trained model
weights of the self-attention. Given a prompt
and a long text, FINCH iteratively identifies the
most relevant Key (K) and Value (V) pairs
over chunks of the text conditioned on the
prompt. Only such pairs are stored in the KV
cache, which, within the space constrained
by the context window, ultimately contains a
compressed version of the long text. Our pro-
posal enables models to consume large inputs
even with high compression (up to 93x) while
preserving semantic integrity without the need
for fine-tuning.

1 Introduction

Large Language Models (LLMs), built upon the
Transformer architecture, have delivered break-
throughs in numerous applications. With their gen-
eralization and reasoning capabilities, models such
as ChatGPT have revolutionized fields where ex-
tensive input prompts are necessary for generating
precise responses, such as Retrieval-Augmented
Generation, Chain-of-Thought, conversational
chatbots, and In-Context Learning (Lewis et al.,
2020; Wei et al., 2022; Dong et al., 2022). How-
ever, the use of LLMs in production is limited by
their increasing requests in terms of GPU memory
(Dettmers et al., 2023). First, as the computa-
tional complexity grows along with the size of
the models, their memory consumption increases.
Second, this issue becomes more pronounced
when LLMs process larger inputs, as demanded

by their ever-increasing context size. Third, the
Key-Value (KV) cache mechanism, typically em-
ployed by LLMs to speed up the generation
process, prioritizes efficiency by retaining and
reusing previously computed KV vectors during
attention computation, bypassing re-calculations
at each token generation step (Kaiser et al.,
2017). Nevertheless, this solution comes with the
trade-off of increased memory consumption.1 To
offer more efficient solutions to operate these
models, it has been proposed to compress input
prompts, exploiting the redundancy in natural lan-
guage (Goyal et al., 2020). By preserving critical
token information while compressing less cru-
cial details, these models reduce the context in a
compact description, without noticeably degrad-
ing the functional accuracy (Mu et al., 2023).
Compression also enables the LLMs to process
large inputs that do not fit the model’s context
size. However, most of these models require a
training/fine-tuning process or a large number
of calls to an external model for the compres-
sion (Jiang et al., 2023b). We revisit the LLMs’
generative inference mechanism to deal with the
memory constraint problem and the limitations of
current solutions in processing large inputs. We
propose a novel approach targeting the reduction
of the KV cache memory footprint while avoid-
ing resource-intensive retraining or fine-tuning
processes. Drawing insights from the patterns in-
herent in attention modules, and guided by the
understanding that not all attention modules en-
gage with every token, our solution compresses the
cached vectors, leading to a reduction in memory
usage and efficient text generation.

Our approach, termed FINCH,2 facilitates faster
generative inference through adaptive KV cache

1It has been reported that OPT-175B (with batch size 128
and sequence length 2048) consumes 325 GB of memory,
but its KV cache requires 950 GB (Liu et al., 2023b).

2Finch is a small and quick bird, known for its chirp—a
complex language for a small animal.
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Figure 1: Overview of FINCH. An input document is larger than the model context and thus is processed in chunks.
At each step in the Prefill stage, FINCH sequentially consumes a document chunk (two dashed border squares,
blue background), alongside the input prompt (one dashed border square, yellow background) as depicted at the
bottom. At each step, it processes the key, value pairs (solid squares in the transformer) and identifies the most
relevant to the prompt. It then carries them to the cache processing the next chunk (where they appear with a
violet background). In the Generation stage, the model synthesizes a response that is informed by the compressed
cached information from the entire document. The white square is the space reserved for producing output tokens
in the Generation stage.

compression in the Prefill stage. Figure 1 shows
how a long document and the input prompt are
processed with a model context size that cannot fit
the entire input. At every step, a document chunk
is processed. FINCH uses the attention information
between the prompt and the document chunk to
identify the most relevant KV pairs across dif-
ferent layers. This information then is stored in
the KV cache for the processing of the next input
chunk. Our approach dynamically selects what to
keep in the KV cache’s memory, effectively keep-
ing its footprint constrained, until the Generation
stage produces the response.

FINCH incrementally feeds the KV cache with
the compressed context without any learning or
external summarization module; it can be used in
a plug-and-play fashion with any decoder-based
model. The compression rate is specified by set-
ting the target size of the KV cache as an input
parameter constrained by the model context size.
Even with high compression ratios, our method
ensures that the correctness of the model re-
sponse is preserved. We test FINCH on two popular
benchmarks covering tasks in question answering,
summarization, code completion, synthetic tasks
and few-shot learning. Compared against the orig-
inal LLM (without compression) over the SQuAD
v2 benchmark (Rajpurkar et al., 2018), FINCH

achieves comparable generation quality at 2.35x

compression and 90% of the reference accuracy
score at 3.76x compression, while being faster in
terms of end-to-end execution times in most cases.
When compared to the state-of-the-art compres-
sion method LongLLMLingua (Jiang et al., 2024)
FINCH reports the best quality scores in most of the
tasks in LongBench (Bai et al., 2024), both with
Llama 2 and Mistral (Touvron et al., 2023b; Jiang
et al., 2023a). Our method achieves a compression
range of 2x to 93x across various tasks, consis-
tently outperforming a truncation baseline in most
experiments. Remarkably, FINCH even surpasses
the performance of the LLMs operating with the
full, uncompressed context in certain cases. Fi-
nally, in question answering tasks, we also include
a RAG baseline, and our method outperforms it in
10 out of 12 experiments.

2 Related Work

We position our work w.r.t. two main topics.
First, we discuss strategies for improving compu-
tational efficiency, i.e., making LLMs accessible
for real-time applications or use on devices with
limited resources. Second, we focus on attention
patterns in LLMs, as our work shows that those
contribute significantly towards optimizing the
models to handle larger inputs in a limited context
size.
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Efficiency Improvements in LLMs. Meth-
ods targeting the reduction of inference and
fine-tuning costs include model modification, such
as quantization (Frantar et al., 2023; Dettmers
et al., 2022) and model compression (Frantar and
Alistarh, 2023). Other efforts enhance model effi-
ciency for LLMs by eliminating redundant input
words based on attention scores (Goyal et al.,
2020) and compressing the input sequence by
augmenting the encoding modules with pooling
layers (Dai et al., 2020). Proposed solutions also
involve learning to skip layers in the transformer
architecture (Guan et al., 2022; Zhou et al., 2020)
or to select the most critical tokens for perfor-
mance (Huang et al., 2022). Other approaches
pursue prompt compression, either by limiting
the number of tokens that are processed in in-
ference by learning special ‘‘compressed’’ tokens
(Mu et al., 2023; Wingate et al., 2022; Ge et al.,
2024b) or by pruning and merging tokens (Goyal
et al., 2020; Modarressi et al., 2022), e.g., learn-
ing thresholds for pruning unimportant ones (Kim
et al., 2022). However, some of these strategies
require an additional re-training or fine-tuning
phase and others have been designed for en-
coder models and are not well suited for auto-
regressive LLMs such as ChatGPT and Llama
(Touvron et al., 2023a,b). In contrast with such
solutions, our approach condenses auto-regressive
LLMs input contexts during the Prefill stage
by using the caching mechanism without model
re-training and even faster inference. Finally, re-
cent methods focus on optimizing the generation
stage to improve efficiency (Zhang et al., 2023;
Xiao et al., 2024; Han et al., 2024; Oren et al.,
2024; Ren and Zhu, 2024). We leave to future
work the study of how to use our prompt-guided
token selection strategy in such approaches.

The Role of Attention. Our work relies on
self-attention to make the most relevant infor-
mation in a context available in a concise manner.
The development of transformer models provoked
studies to unravel the underlying mechanisms of
self-attention, e.g., heads prominently pay atten-
tion to separator and adjacent tokens (Clark et al.,
2019). Our solution capitalizes on the attention
mechanism structure to heighten inference effi-
ciency by exploring the KV cache for the most
important key, value pairs w.r.t. the given prompt.
Related work evaluates the informativeness of lex-
ical units using a language model and drops less

informative content for compression (Li, 2023;
Jiang et al., 2023b, 2024), for example, by re-
garding tokens with lower perplexity as more
influential in the inference process. These tech-
niques view LLMs as a compressor for world
knowledge and work by further compressing in-
formation within prompts (Deletang et al., 2024).
In contrast with these solutions, our approach in-
stead optimizes the management of the KV cache
during the Prefill stage without requiring a sepa-
rate LLM. Other approaches look at how to select
the most important tokens in the Prefill stage,
but, differently from our method that dynamically
identifies the most important tokens, they rely on
manually defined policies for token selection (Ge
et al., 2024a).

Finally, we focus on a plug-and-play solution
for existing models, with an emphasis on limited
computing resources. This is in contrast with other
solutions that demand more devices to handle a
very large input context (Liu et al., 2023a).

3 Background

Self-attention is foundational in transformer mod-
els (Vaswani et al., 2017), enabling language
understanding and generation capabilities. Trans-
formers learn the contextual relationships between
words or subwords within a sentence. Central
to this mechanism are three types of vectors—
Queries (Q), Keys (K), and Values (V)—that are
learned from the input embeddings.

• Queries (Q): Represent the current word or
token being processed, acting as a point of
focus.

• Keys (K): Serve as identifiers, highlighting
tokens in the sequence relevant to the query.

• Values (V): Correspond to the actual specific
information carried by each token.

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V

The self-attention mechanism computes the dot
product of the Query with all Keys to determine
their similarity. A softmax function normalizes
these scores, creating a distribution that deter-
mines how much attention to allocate to each
token. The output is a weighted sum of the Values.
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In several NLP tasks, transformers generate a
response sequence from a given context/document
and a user prompt. Consider a sequence of tokens
representing the context xcont ∈ R

ncont
and a se-

quence of tokens representing the user prompt
xque ∈ R

nque
, which may also include instructions,

the goal is to enable the model to generate a re-
sponse sequence y ∈ R

a. This process can be
divided into two stages.

Prefill Stage. As a first step, both the context
and the prompt sequence are concatenated to form
the input sequence x ∈ R

n, where:

x =

[
xcont

xque

]
, and n = ncont + nque

This sequence is then embedded into an em-
bedding matrix X ∈ R

n×d, where d denotes
the embedding dimension and processed through
multiple layers of multi-head self-attention and
feed-forward networks, which operate in parallel
across the sequence length and attention heads.
Each attention layer calculates and stores the cor-
responding Key and Value K ∈ R

n×d, V ∈
R
n×d matrices in a cache for the sake of perfor-

mance for the subsequent Generation stage. In the
transformer architectures, the K and V matrices
encapsulate historical token information. Unlike
other components of the transformer (e.g., feedfor-
ward layer or layer norm), which process current
inputs independently of their past tokens, the K
and V matrices are the only matrices that retain
information from previously encountered tokens.
Caching the Key and Value matrices for every
layer for the context eliminates the necessity to
recompute them for each new token generated.

Generation Stage. In this step, the model itera-
tively generates new tokens. For each new token,
the qnew,knew,vnew ∈ R

d are produced at each
attention layer with the knew and vnew vectors
appended to the existing cache keys and values:

K ←
[

K
knew

]
, V ←

[
V
vnew

]

Self-attention uses this updated cache to compute
attention. Thanks to the stored K and V matrices,

the computational complexity is just O(nd) as
opposed to the approach without cache, which has
a computational complexity of O(n2d). Finally,
logits are generated and used to predict the next
token in the vocabulary, e.g., with greedy decoding
(Vijayakumar et al., 2016; Shao et al., 2017).

4 Problem Formulation

As discussed, K and V are the only matrices that
retain information about previous tokens. We can
therefore formulate the problem of compression
as reducing the size of these two matrices during
the Prefill stage and before the actual answer
generation takes place. Specifically, we have to
find K̃ and Ṽ where K̃, Ṽ ∈ R

k×d such that two
properties are satisfied:

• Compression: the target tokens size of the
compressed K̃, Ṽ matrices should be smaller
than the sequence length ncont of Kcont,Vcont ∈
R
ncont×d.

• Information retention: the output y ∈ R
a

using K,V matrices is similar to the output
ỹ ∈ R

a obtained using K̃, Ṽ, expressed as:

min
K̃,Ṽ

f(ỹ,y) (1)

where f is a distance function and its choice
depends on the task at hand. For example, in
question answering, the difference between F1
scores for ỹ and y might be used.
We also define the compression ratio σ as:

σ =
ncont

k

In this work, we compress the context Kcont,
Vcont matrices, according to the target tokens
size k, while conditioning on the user prompt.
This decision is driven by the recognition that
the integrity of the user prompt—particularly its
instructions for an instruction-tuned model—plays
a significant role in the answer generation (Ouyang
et al., 2022). Furthermore, in the tasks that we
address in this work, the prompt is typically much
shorter than the context, making its compression
of limited value.

1520



5 Method

Our approach aims at compressing contexts into
a manageable form for LLMs, particularly when
faced with extensive documents and the need to
maintain computational efficiency. Our method-
ology is motivated by the following observation:
The softmax of self-attention distributes attention
across all elements to varying degrees, effectively
capturing a spectrum of contextual relationships
in the data. We hypothesize that the ‘‘smooth’’
distribution of attention may include superfluous
information for the given prompt at hand.

5.1 Adaptive Key-Value Cache Compression
As depicted in Figure 1, FINCH iteratively pro-
cesses a document segmented into chunks, each
evaluated in conjunction with a user prompt, and
uses the self-attention to identify which K,V
pairs to keep in the cache. In analogy to the
long-term memory involving the capacity to re-
call words, concepts, or numbers (Chauvet, 2024),
we say that these pairs can act as the semantic
memory for the model. The document is re-
duced to its significant elements and processed in
the Generation stage.

Document Segmentation. The transformer in-
put is constrained by a context window defined
during training, denoted as nmax. Given the
user specified target tokens size k for the KV
cache, FINCH processes chunks using at most
mmax = nmax − k tokens.3 The input document
is partitioned into chunks of size m, which value
is constrained by mmax. At every Prefill step i, for
i > 1, the K,V pairs from the previous step i− 1
(the compressed chunk) are added into the tokens
reserved for the k target tokens.

This process introduces a trade-off between
granularity and throughput. Smaller chunks enable
finer granularity in processing, which is benefi-
cial for certain tasks as we highlight in Section 7.
Conversely, larger chunks (up to mmax) enhance
throughput by reducing the number of sequential
operations required, thus speeding up the Prefill
stage. This trade-off is crucial for optimizing per-
formance and is examined in our ablation study.

Prompt-Guided Layer-wise top-r position
selection. Our method for selecting the top r
(relevant) positions is rooted in the analysis of

3We ignore the user prompt size in this discussion as we
assume it to be much smaller than the input document size.

the attention scores across its layers. We take
into account the unique role of each layer for
the representation of the input, i.e., early layers
might focus on syntactic features, while deeper
layers might capture more abstract, semantic rela-
tionships (Clark et al., 2019). As a consequence,
for each layer of the transformer, we calculate
attention scores (the scaled dot-product attention
between Q and K) and determine the context
per-token relevance of the chunk with respect
to tokens in the user prompt. By acknowledging
that relevance varies by layer, we ensure a
more holistic compression of the document. For
example, tokens that are relevant in early layers
might be not relevant in deeper layers. This
allows our method to preserve a wide spectrum of
information without redundancy.

Our method also takes into consideration the
inherent positional bias present in the attention
mechanism. In particular, causal language mod-
els operate in the principle that each token in a
sequence can only be influenced by preceding
tokens, not by those that come after it. This is
visually represented by a triangular matrix in at-
tention mechanism, where the ability of tokens
to ‘‘attend’’ to each other is constrained by their
position in the sequence. As a result, early tokens
in a sentence have a broader scope of attention
compared to later tokens. For example, for the
first token, its attention score is maximal since
it only considers itself, leading to a score of 1.
To address the issue that later tokens in the se-
quence, which could be equally or more relevant to
the question, are not overlooked due to systemic
bias, we incorporate a normalization step that
adjusts the raw attention scores to mitigate posi-
tional bias, ensuring that each token’s relevance
is equally evaluated.

Consider A(l) ∈ R
H×M×N as the attention

scores matrix at layer l, with H attention heads.
Here, M and N are defined as:

M = m+ nque, N = m+ nque + c

wherem is the chunk length and c is the current KV
cache length. The compression process involves
several steps as visualized in Figure 2.

• Sum over Heads: Every Head in a transformer
attention layer captures various aspects of the
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Figure 2: Our attention computation process. In the
top portion, the initial chunk of length m is processed
to identify the top r keys,values pairs through the dot
product of queries and keys. The top r elements are
then stored in cache memory. As the second chunk
undergoes processing (bottom), new keys and values
are generated and both the current chunk of length m
and the top r elements of the previous iteration are
considered for the subsequent top r selection.

data. We sum the attention scores over the heads
to aggregate their contributions, The elements
A

(l)sum
ij of A(l)sum are defined as:

A
(l)sum
ij =

H∑
h=1

A
(l)sum
hij

∀ i ∈ {1, . . . ,M},j ∈ {1, . . . , N}

• Extract Prompt-guided Submatrix: A sub-
matrix is extracted to focus on the attention
scores between prompt tokens and the current
document chunk, this includes considering the
tokens accumulated in the KV cache, which
grows with each iteration:

A
(l)cont
i,j =A

(l)sum
m+i,j

∀ i ∈ {1, . . . , nque},j ∈ {1, . . . ,m+ c}

Figure 3 shows how attention scores for the
last layer of Llama 2 evolve in the sequential
operations.

• Normalization: Attention scores are normal-
ized to mitigate positional bias, adjusting for
non-zero attention scores:

A(l)norm = A(l)cont ·
(

count(A(l) cont �= 0)

m+ c

)

• Selection of Top r Position: The final step is to
select the top r indices based on the aggregated
attention scores over the prompt tokens.

A
(l)agg
i =

nque∑
p=1

A
(l)norm
p,i ∀ i ∈ {1, . . . ,m+ c}

t = top-r(A(l)agg, r)

here, t is a vector containing indices of the top
r positions with the highest attention scores.
The parameter r dynamically updates at each
iteration based on the chunk size m, cache
length c, and compression rate σ. Specifically,
the update rule is given by:

rit+1 =
mit+1

σ
+ cit

where it denotes the iteration. At the final iter-
ation, r corresponds to the target token size k.

Managing the Cache: The key, value pairs for
the selected top r positions are preserved within
the KV cache due to their significant relevance
to the user prompt. This process involves an ad-
justment to their positional embeddings. To ac-
curately reflect the tokens’ relative positions, we
draw inspiration from the mechanisms used in
Attention sinks (Xiao et al., 2024). For example,
given a cache sequence [0, 1, 2, 3, 4, 5] and a
relevance ranking [3, 5, 0], we prioritize ‘3’ by
moving it three positions to the left, ‘5’ by moving
it four positions to the left, and ‘0’ by shifting
it two positions to the right, while the others are
discarded. For Rotary Position Embeddings (Su
et al., 2024), as in Llama 2, this repositioning
involves calculating the cosine and sine required
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Figure 3: Attention distribution in the final layer of Llama 2, FINCH does the same analysis across all layers. The
blue and yellow rectangles represent the document chunk and the user prompt, respectively. Initially, attention
scores are evaluated between chunk 1 and the prompt, the most relevant tokens (circled) get stored in the cache
in the next iteration. In successive iterations, the attention of the cached tokens together with the new chunk is
measured w.r.t. the prompt. The final step involves only the cache and the prompt, leading the model to generate
the response ‘‘Paris’’ based on the cached information.

Method Complexity per Layer Sequential Ops Cache Growth/Op.

Vanilla O(n2d) O(1) Δc = n

FINCH O(mcd+m2d) O
(
n
m

)
Δc = m

σ

Table 1: Complexity comparison between the Vanilla transformer and FINCH in the Prefill stage.

for rotating to earlier or later positions in the
sequence.

Compression Output: The final cache, com-
posed of K̃ and Ṽ, represents the compressed
document, which encapsulates its essence in a
condensed form and is used in the Generation
stage.

5.2 Complexity Analysis

To illustrate the computational benefit of our
approach, we report a comparative analysis of
complexity metrics between the attention-based
Vanilla transformer and FINCH. We consider Com-
plexity per Layer according to n (total number of
tokens), m (chunk size), d (model’s embedding
dimension), a (output sequence length), Sequen-
tial Operations as the number of times the model
is invoked sequentially, Cache Growth per Oper-
ation as the increment in cache size c with each
sequential operation, and Initial Cache Size at
the beginning of the Generation stage (0 at the
beginning of the Prefill stage). Table 1 shows
complexities for the Prefill stage. For large n,
the Vanilla method has a higher computational
complexity due to quadratic relations, while FINCH

introduces sequential operations that scale ac-
cording to m, hence demonstrating enhanced
efficiency and potential for scalability in pro-
cessing large sequences (m � n). Table 2 shows

complexities in the Generation stage, comparing
the resource usage when synthesizing the final
output. Also in this stage, the benefit for FINCH

come from the reduced size of the initial cache
according to the compression ratio σ.

5.3 Encoder-decoder
Our presentation of the methods is focused on
a decoder-only architecture, as it is increasingly
prevalent in NLP applications. While our method-
ology is experimented with decoder-only models,
it is equally viable for encoder-decoder models
that employ a KV cache mechanism. In such sce-
narios, during the Prefill stage, we can prefill
the KV cache enabling the concise representation
of context within the decoder. Subsequently, in
the Generation stage we can feed the question
or instructions to the encoder. The decoder then
utilizes cross-attention mechanisms to access this
information, along with the compressed context
stored in the KV cache to generate the answer.

6 Experimental Setup

We evaluate FINCH using a variety of datasets
and NLP tasks, with a focus on its applica-
tion to the Llama 2 7B-chat (Touvron et al.,
2023b) and the Mistral 7B-Instruct-v0.2 (Jiang
et al., 2023a) models. Experiments are con-
ducted with 4-bit NormalFloat Quantization and
Double Quantization (Dettmers et al., 2023).
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Method Compl. per Layer Seq. Ops Initial Cache Size Cache Growth/Op.

Vanilla O(cd) O(a) c = n Δc = 1

FINCH O(cd) O(a) c = n
σ Δc = 1

Table 2: Complexity comparison between the Vanilla transformer and FINCH in the Generation stage.

Unless otherwise noted, the experiments are
conducted in a zero-shot setting.4 Experiments
are structured around three public datasets and
four baseline methods.5

SQuADv2: For an assessment of FINCH’s ability
to preserve quality when compressing according
to Equation 1, we use short texts that let us run
the entire document as input. We use SQuAD
v2 (Rajpurkar et al., 2018), a benchmark which
includes both questions that can and cannot be
answered with the given documents. We measure
how our model maintains or improves its accu-
racy, despite having reduced context, against two
baselines. First, we report for Vanilla, the standard
model configuration which has access to the full
context. Second, a Truncate strategy that reduces
the input to the same size used by FINCH. Given
a budget, we truncate the input after a number
of tokens equal to half the reduced context both
from the start and from the end, i.e., we take the
beginning and the end of the document.

LongBench: To assess the robustness of our
method with long documents and a variety of
tasks, we also evaluate on the LongBench bench-
mark (Bai et al., 2024). This is a suite of
tasks that involve extended contexts, includ-
ing single-document question answering (QA),
multi-document QA, document summarization,
few-shot learning, code completion, and a syn-
thetic task. The tasks span 16 datasets and presents
a challenge due to the length of the input texts; for
the size of the output, we use the original values in
the dataset. For this dataset, our model is also com-
pared against a third baseline, LongLLMLingua
(Jiang et al., 2024), a state-of-the-art method for
compression of long input texts. For LongLLM-
Lingua, we use phi-2 (Li et al., 2023) as the
compressor and Llama 2 7B-chat (or Mistral

4 FINCH’s code and datasets are available at https://
github.com/giulio98/context-compression/.

5Details on the inference hyperparameters and on the
chunk size m per every dataset are provided in the Appendix
of the extended version of this paper (Corallo and Papotti,
2024).

7B-Instruct-v0.2), quantized at 4 bits with double
quantization, as the generator. Unlike LongLLM-
Lingua, our method does not use an external model
for compression. For question answering tasks, a
natural baseline is a Retrieval Augmented Gen-
eration (RAG) solution (Lewis et al., 2020). In
our implementation of RAG, we segment the long
text into chunks of 256 tokens each. To identify
the most relevant chunks, we calculate the co-
sine similarity between the embeddings of these
chunks and the embedding of the prompt. We
use the all-mpnet-base-v2 model from Sentence
Transformers (Reimers and Gurevych, 2019) for
generating these embeddings.

Lost in the Middle: A critical challenge for
LLMs is the ‘‘lost in the middle’’ issue (Liu
et al., 2024), where models exhibit degraded per-
formance if relevant information is situated in the
middle of long contexts. We evaluate the robust-
ness of our compression technique also in their
dataset.

7 Results and Discussion

We discuss five questions over our results.

1. Does FINCH’s compression preserve the rel-
evant information? Our evaluation on SQuAD
v2 measures how FINCH retains pertinent infor-
mation in a compressed format. We compare the
Vanilla approach (Llama 2 provided with full
documents), FINCH constrained to target tokens
size k, and the truncation strategy. We choose
five values of target tokens sizes, corresponding
to different average compression ratios; we obtain
the latter by dividing the average number of to-
kens in the SQuAD tests (document and prompt)
by the average number of tokens that FINCH uses
according to the given target tokens size. Specif-
ically, 384 target tokens corresponds to an aver-
age σ of 1.1x, 256 tokens to 1.53x, 192 tokens to
2.35x, 160 to 3.03x and 144 tokens to 3.76x.

The results in Figure 4 show that FINCH not only
consistently outperforms the truncation strategy
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Figure 4: Performance results for SQuAD v2 for the
Llama 2 Vanilla model, FINCH, and the truncation
baseline. We report Exact Match (EM) and F1 scores
for tests without answers (top), tests with answers
(middle) and average across all tests.

across all token lengths but also, in certain cases,
exceeds the quality performance of the Vanilla
approach. This is evident in the F1 NoAns and
Exact Match (EM) NoAns scores, where FINCH’s
ability to prevent responses based on irrelevant or
non-existent evidence suggests that it eliminates
extraneous content that could potentially mislead
the model.

The overall EM and F1 scores indicate that
FINCH maintains the integrity of the context as it
is compressed. Even as the target tokens size k
decreases, FINCH holds onto essential information,
enabling the model to generate accurate responses
with significantly less input data. In this dataset,

Model Idx 0 Idx 4 Idx 9 Idx 14 Idx 19

Vanilla 24.7% 25.2% 28.2% 29.7% 40.0%
FINCH 38.0% 36.4% 38.2% 41.1% 46.2%

Table 3: ‘‘Lost in the middle’’ comparison of
FINCH and Vanilla (Llama 2). Accuracy of return-
ing the correct answer when the position of the
document containing it varies across the model’s
input (n = 4096, m = 256). FINCH’s σ = 4.

Figure 5: Impact of chunk and target tokens size k
on decoding time for SQuAD v2; Finch’s prefill (dark
color) and generation (light color) times vs Llama 2
Vanilla (dotted red line: prefill+generation).

the loss of quality compared to the full context
becomes more significant starting with an average
compression of 3.7x.

To further illustrate the impact of our compres-
sion, we run the ‘‘lost in the middle’’ experiment,
where the position of the information to answer
the user question changes within the input docu-
ment. It has been shown that this position has a
significant impact on the model’s accuracy (Liu
et al., 2024). We compare again our solution
against the original Vanilla model on the dataset
from the paper reporting this problem. Results in
Table 3 show that FINCH significantly outperforms
the baseline across the different positions, with
up to 13.3 absolute points gain when the correct
answer is in the first document (Idx 0) and the
compression ratio is 4x. The results also show
that our method mitigates the original ‘‘lost in the
middle’’ issue with 9.8 absolute points difference
between the best and worst accuracy for FINCH,
rather than 15.3 points for Vanilla.

2. How fast is FINCH compared to Vanilla self
attention? Analysis of FINCH’s efficiency, de-
tailed in Figure 5, highlights a reduction on the
overall time w.r.t. the Vanilla when the chunk
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512 target tokens 1000 target tokens 2000 target tokens

Task (metric) Dataset Vanilla Truncate FINCH LINGUA avg(σ) Truncate FINCH LINGUA avg(σ) Truncate FINCH LINGUA avg(σ)

Single-Doc QA
(F1 score ↑)

NarrativeQA 21.64 9.84 17.85 9.13 77.50x 11.28 20.38 9.13 37.16x 14.72 17.60 9.24 18.1x
Qasper 24.93 9.23 19.59 9.71 13.68x 12.52 22.18 12.36 6.51x 16.50 23.19 15.62 3.40x
MultiFieldQA 45.13 29.56 37.47 23.31 16.7x 36.8 42.11 24.60 8.52x 41.44 44.13 29.70 4.42x

Overall 30.57 16.21 24.97 14.05 20.20 28.22 15.36 24.22 28.30 18.18

Multi-Doc QA
(F1 score ↑)

HotpotQA 17.15 19.20 29.89 18.28 34.38x 22.62 33.41 18.91 16.81x 26.43 33.21 25.01 8.42x
MultihopQA 21.65 13.62 16.17 12.51 19.63x 14.79 18.42 13.74 9.85x 16.26 25.28 14.15 5.20x
MuSiQue 19.25 7.58 12.43 6.09 39.96x 9.23 15.7 6.47 19.40x 11.94 17.86 8.23 9.64x

Overall 19.35 13.47 19.49 12.29 15.55 22.51 13.09 18.21 25.45 15.80

Summarization
(Rouge-L ↑)

GovReport 24.24 18.70 19.05 18.16 25.1x 20.07 20.12 18.46 12.64x 21.36 21.05 19.03 6.50x
QMSum 20.52 17.95 19.86 18.20 33.84x 18.86 20.04 18.03 16.72x 18.80 20.08 18.43 8.52x
MultiNews 18.58 16.85 16.95 16.39 7.32x 17.94 17.79 16.89 3.89x 18.47 18.31 18.40 2.16x

Overall 21.11 17.83 18.62 17.58 18.96 19.31 17.79 19.54 19.81 18.62

Few-shot Learn
(Accuracy ↑)

TREC 29.79 40.39 36.75 17.17 16.47x 43.14 43.68 10.08 8.37x 44.43 47.41 16.62 4.47x

Synthetic Task
(Accuracy ↑)

PassageCount 0.96 0.25 1.35 3.00 41.61x 0.96 2.41 2.00 19.08x 2.25 2.81 2.21 9.33x

Code Complete
(Edit Sim ↑)

LCC 26.01 18.97 31.93 15.08 9.78x 22.74 33.34 15.55 5.20x 24.31 34.59 18.56 2.91x
RepoBench-p 25.65 18.51 24.19 15.64 28.65x 21.21 25.26 16.46 14.62x 23.34 25.63 18.60 7.55x

Overall 25.83 18.74 28.06 15.36 21.98 29.30 16.01 23.83 30.11 18.58

Table 4: Mistral results’ comparison for the full context (Vanilla), truncation (Truncate), FINCH

and LongLLMLingua (LINGUA) compression for different target tokens sizes (512/1000/2000) across
datasets for six tasks. Best result per task and target tokens size in bold, second best in italic.

size is greater than 128 on Llama 2. This ob-
servation aligns with the complexity study in
Section 5.2. Although FINCH introduces additional
sequential operations in the Prefill stage, these
are offset by the reduced complexity per layer,
which is contingent on the chunk size m rather
than the full context size n. This approach allows
FINCH to handle each chunk with a complexity
of O(mcd + m2d) as opposed to the Vanilla
complexity per layer O(n2d). With larger chunk
sizes, FINCH demonstrates improved speed over
Vanilla self-attention. In the generation phase,
the distinction in performance becomes more pro-
nounced, as in Table 2. FINCH benefits from a
smaller initial cache size, which is a function of
the compression ratio σ. Such a configuration is
advantageous in real-world applications where the
response time is key and the volume of text to be
processed is substantial.

3. How does FINCH perform on documents
larger than the model context? To study how
our method handles long input documents, we
focus on the LongBench benchmark. As for the
SQuADv2 experiment, we set the target tokens
sizes and we feed the input document in chunks,
while reserving space for the prompt and the out-
put generation. We compare FINCH also against the
state-of-the-art compression model LongLLM-

Lingua.6 As shown in Table 4 and Table 5, FINCH

outperforms LongLLMLingua across five of the
six tasks on Mistral and four out of six on Llama 2.
The benefit of our solution is clear with different
datasets and compression ratios, with a boost up
to 8.8 absolute points of accuracy for question
answering w.r.t. the best baseline (Truncate) on
Mistral. Experiments on Llama 2 reports similar
patterns, with a an improvement up to 6.3 points
over the best QA baseline.

FINCH outperforms also the Vanilla baseline
using the full document as input in the model
context in 12 of the 18 experiments (overall results
across 6 tasks and 3 target tokens sizes) on Mistral
and in 15 over 18 on Llama 2. This is remarkable
when considering that the compression ratio varies
between 2.23x and 93.17x.

The baselines beat our method in 4 out of 6
experiments in the Synthetic task, where all meth-
ods report very low results. We explain this by
the limits of the LLM with 7B parameters, since
the tasks demands deep contextual understand-
ing. FINCH shows better performance according to
increasing target tokens sizes (512, 1000, 2000).
In the question answering tasks, FINCH with a

6Results for LongLLMLingua are lower than those re-
ported in their paper, where they use larger models such as
ChatGPT (Jiang et al., 2024).
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512 target tokens 1000 target tokens 2000 target tokens

Task (metric) Dataset Vanilla Truncate FINCH LINGUA avg(σ) Truncate FINCH LINGUA avg(σ) Truncate FINCH LINGUA avg(σ)

Single-Doc QA
(F1 score ↑)

Narrative 16.69 11.14 19.10 10.56 93.17x 14.15 18.15 10.51 40.92x 15.45 19.45 11.68 19.37x
Qasper 12.53 11.81 19.39 12.10 15.62x 12.27 20.25 11.82 7.00x 12.78 22.95 12.70 3.46x
MultiField 34.50 30.26 33.47 21.87 17.86x 32.67 33.88 23.18 8.85x 38.43 34.67 27.35 4.50x

Overall 21.24 17.74 23.99 14.84 19.70 24.09 15.17 22.22 25.69 17.24

Multi-Doc QA
(F1 score ↑)

Hotpot 30.46 25.31 36.75 26.13 38.64x 29.47 36.48 27.29 17.90x 30.07 34.29 28.32 8.71x
Multihop 26.47 22.04 28.81 25.34 21.07x 22.90 27.96 24.64 10.24x 26.78 30.22 25.72 5.13x
MuSiQue 10.54 9.41 14.12 9.43 45.97x 9.41 13.93 9.61 20.66x 8.25 12.58 10.21 10.03x

Overall 22.49 18.92 26.56 20.30 20.59 26.12 20.51 21.70 25.10 21.42

Summarization
(Rouge-L ↑)

GovReport 18.02 17.79 18.20 17.27 28.30x 18.61 18.41 17.32 13.73x 19.19 18.79 17.86 6.84x
QMSum 19.29 18.41 19.80 19.01 37.02x 18.47 19.63 18.86 17.38x 19.56 19.99 19.37 8.74x
MultiNews 16.70 16.89 16.57 15.97 7.82x 17.29 17.22 16.61 4.11x 17.62 17.52 17.57 2.23x

Overall 18.00 17.70 18.19 17.42 18.12 18.42 17.60 18.80 18.77 18.26

Few-shot Learn
(Accuracy ↑)

TREC 15.00 24.25 23.75 6.50 17.75x 25.00 26.00 6.50 8.78x 32.50 29.00 8.00 4.57x

Synthetic Task
(Accuracy ↑)

P. Count 4.25 5.17 2.45 4.50 43.58x 3.17 2.32 3.00 19.65x 2.60 1.67 2.00 9.52x

Code Complete
(Edit Sim ↑)

LCC 21.16 25.52 26.02 25.02 10.21x 25.06 25.79 22.14 5.32x 24.64 24.64 20.45 2.98x
R. Bench 23.00 24.23 25.88 26.73 29.84x 23.33 24.67 24.11 14.97x 23.34 23.46 21.14 7.65x

Overall 23.28 24.88 25.95 25.88 24.20 25.23 23.13 24.00 24.05 20.80

Table 5: Llama 2 results’ comparison for the full context (Vanilla), truncation (Truncate), FINCH

and LongLLMLingua (LINGUA) compression for different target tokens sizes (512/1000/2000) across
datasets for six tasks. Best result per task and target tokens size in bold, second best in italic.

Figure 6: Impact of three types of condition in FINCH in
all LongBench tasks on Mistral.

compression at 512 target tokens beats Truncate
and LongLLMLingua with 1000 and 2000 target
tokens, both with Llama 2 and Mistral.

We use the LongBench datasets also to validate
our idea that conditioning the compression guided
by the prompt is more effective than analyzing the
self attention scores on the entire input (prompt
and document) or on the document only. Results
in Figure 6 show that over all the six tasks, the
prompt guided solution leads to the best quality.

Finally, Figure 7 shows how FINCH outperforms
the RAG baseline both on Mistral and Llama 2
at different compression rates in 10 over 12 ques-
tion answering experiments. Compressing with

FINCH, using the LLM KV cache, offers superior
reliability w.r.t. a RAG solution, which suffers
from increased latency and fragility due to its
dependency on external retrieval mechanisms.

4. What is the effect of the chunk size?
Figure 8 shows the impact of the chunk size m,
i.e., the number of tokens into which the input
context is divided for sequential processing by
the model. Results show nuanced effects on qual-
ity performance. Larger chunk sizes (1024) yield
better performance in single-document question
answering, while smaller sizes (256) are more ef-
fective in multi-document settings. This can be
attributed to the compression algorithm of retriev-
ing a fixed number of top r tokens per iteration. In
noisy multi-document contexts, a smaller chunk
size enables better discrimination between rel-
evant and irrelevant content, enhancing overall
model performance. Chunk size has also an im-
pact on the execution times. As expected, larger
chunks lead to faster end-to-end execution be-
cause of the smaller number of iterations. These
positive results are especially important for use
cases that require longer outputs generated by
the LLMs. As the user requires a bigger out-
put, the space available for input processing gets
smaller, thus reducing the size of the chunks in
the Prefill stage.
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Figure 7: Comparison of FINCH and RAG in Mistral and Llama 2 for the QA tasks of LongBench.

Figure 8: Ablation study for the impact of three chunk sizes in FINCH in all LongBench tasks on Llama 2 with
a target tokens size of 512. Left: quality score. Right: inference Prefill (dark color) and Generation (light color)
execution times.

Method Model (GB) KV Cache (GB)

Vanilla 4.33 4.52
FINCH (σ = 2) 4.33 2.38
FINCH (σ = 4) 4.33 1.30
FINCH (σ = 8) 4.33 0.60

Table 6: Memory consumption of Vanilla and
FINCH at the beginning of the Generation stage.

5. What is the benefit in terms of GPU mem-
ory? Table 6 reports the memory consumed
by FINCH (different compression rates) and the
Vanilla model for the NarrativeQA (LongBench)
dataset (truncated at n = 4096). Results show
that our approach delivers a significant reduction
in the initial KV cache size at the beginning of
the Generation stage. Unlike the Vanilla model,
FINCH achieves substantial memory savings by re-
ducing the required cache size in proportion to
the compression ratio, confirming the results in
Table 2. This benefit enhances model scalability

and makes FINCH a practical choice for deploy-
ment in resource-constrained environments.

8 Conclusion and Future Work

We have shown how attention can be used
to identify and prioritize important informa-
tion within the input data, effectively reducing
the need for truncation. FINCH tackles the lim-
itations of LLMs in processing large inputs,
offering a balance between computational ef-
ficiency and maintaining high language model
quality. Our solution leverages the pre-trained
model weights of the self-attention mechanism
to provide an economically feasible method
for operating LLMs.

As future work, we envision a dynamic thresh-
old mechanism to avoid that a fixed amount of
KV states are selected in every chunk of the Prefill
stage, exploiting the fact that some chunks are not
relevant and can be compressed more. Another
interesting research question is about the use of
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the proposed method to compress the generated
output tokens. This extension would be especially
valuable in settings where the LLM is requested
to generate long outputs, such as chain-of-thought
reasoning. Our approach could be used to identify
the important tokens to preserve in the generation
step - this is aligned with results showing that
preserving a fraction of the original context is
sufficient to obtain high quality generated outputs
(Xiao et al., 2024; Han et al., 2024).

Finally, we are interested in studying how cache
compression techniques can be extended to struc-
tured data, e.g., for replacing the current data
retrieval and filtering solution in table question
answering (Badaro et al., 2023).
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