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Abstract
Training a task-oriented dialogue policy using
deep reinforcement learning is promising but
requires extensive environment exploration.
The amount of wasted invalid exploration
makes policy learning inefficient. In this pa-
per, we define and argue that dead-end states
are important reasons for invalid exploration.
When a conversation enters a dead-end state,
regardless of the actions taken afterward, it
will continue in a dead-end trajectory until
the agent reaches a termination state or maxi-
mum turn. We propose a Dead-end Detection
and Resurrection (DDR) method that detects
dead-end states in an efficient manner and
provides a rescue action to guide and correct
the exploration direction. To prevent dialogue
policies from repeating errors, DDR also per-
forms dialogue data augmentation by adding
relevant experiences that include dead-end
states and penalties into the experience pool.
We first validate the dead-end detection reli-
ability and then demonstrate the effectiveness
and generality of the method across various
domains through experiments on four public
dialogue datasets.

1 Introduction

Task-oriented dialogue (TOD) systems are de-
signed to help users perform a specific task (also
referred to as the user goal), such as booking a
restaurant or movie ticket (Wu et al., 2021). Typ-
ically, TOD systems are built on a structured da-
tabase (DB) containing many task-related entries,
where entries are potential solutions to the task at
hand (Li et al., 2021). Every entry of DB is rep-
resented in terms of a set of attributes (known as
slots) and their values. For example, in the movie
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domain, slots for the movie entry include movie
name, theater, and date. In order to interact with
users, TOD systems require a dialogue policy
(DP) that determines how the system should reply
to the user’s input (Kwan et al., 2022). A well-
performing DP is expected to gather as much user
requirements as possible in as few dialogue turns
as possible and, by using these requirements as
constraints, to find matching entries in the DB to
accomplish user goals (Geishauser et al., 2021).

According to TOD system construction, DP op-
erates in two ways: through pipeline or end-to-
end architectures. Pipeline architecture separates
DP from Natural Language Understanding, Dia-
logue State Tracking, and Natural Language Gen-
eration modules (Ohashi and Higashinaka, 2022).
End-to-end architecture integrates all or some
of these modules into one sequence-to-sequence
task but raises concerns about interpretability and
controllability (Zhao et al., 2019; Kwan et al.,
2022). In this paper, we focus on pipeline-based
architecture with better controllability.

Partially Observable Markov Decision Process
provides a natural way of modeling TOD, where
the DP is often optimized using Deep Reinforce-
ment Learning (Peng et al., 2018; Takanobu et al.,
2020). However, in many real-world dialogue
scenarios, transition probabilities or rewarding
transitions are not known in advance, such that
dialogue agents usually require extensive explo-
ration of the environment (Li et al., 2016; Kwan
et al., 2022). Some of these explorations are valid,
and some are not, and the more invalid explo-
rations there are, the less effective learning of
dialogue policies becomes (Wu et al., 2019; Wu
and Rasmussen, 2021). A dialogue segment con-
stitutes an invalid exploration due to the effect of

1578

Transactions of the Association for Computational Linguistics, vol. 12, pp. 1578–1596, 2024. https://doi.org/10.1162/tacl a 00717
Action Editor: Kam-Fai Wong. Submission batch: 1/2024; Revision batch: 6/2024; Published 11/2024.

c© 2024 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:yyz@csust.edu.cn
mailto:M.M.Dastani@uu.nl
mailto:longjc1226@163.com
mailto:s.wang2@uu.nl
https://doi.org/10.1162/tacl_a_00717


Figure 1: Illustration of invalid exploration (a), and our two DDR algorithms (b and c).

Task: When a user wants to book two tickets for the movie ’Creed’ for tomorrow in the
LA city and requests to know the theater that runs the movie Creed. We may get the
following dialogues (where U represents the user and S represents the system).

Example 1 Example 2

U0: Which theater will creed run? U0: Can I get some tickets for Creed?
S1: Which city would you like? S1: How many tickets do you need?
U2: I want to watch at LA. U2: I want 2 tickets, please!
S3: How many tickets do you need? S3: What date would you like to watch it?
U4: I want 2 tikets please! U4: Tomorrow.

S5: What city would you like?

S5: Carmike summit 16 is available. U6: LA (slot and value error from
(decision failures: inform the highest upstream modules: ’LA’ is misrecognized
count in the database) as ’CA’)
U6: Could you help me to book the S7: Sorry, there is no ticket available.
tickets? U8: Can I get two tickets?
S7: Okay, you purchase of 2 tickets at S9: Do you have any constraints on the
carmike summit 16 for creed today at price?
LA is confirmed. U10: I do not care.
U8: Oh, sorry! This is the wrong tickets! S11: Do you want to purchase the tickets?
S9: Yes, please! U12: Yes, i want.
U10: I want to set it up tomorrow. S13: Oh sorry, there is no ticket available.
S11: Date is not available! ....
....

Table 1: Examples of two dead-end dialogues
(invalid exploration starting from the blue text).

dead-ends.1 As shown in Figure 1a, a dialogue
agent can enter a dead-end due to its decision
failures (Example 1 of Table 1) or accumulation
of errors in upstream modules (Example 2 of
Table 1). After reaching a dead-end state, the
agent inevitably ends at a failed terminal state after
some steps, regardless of what action it chooses.
Such dialogue segments that start from a dead-end
state cause invalid explorations, thus less effec-
tive learning of dialogue policies. Furthermore,
such invalid explorations inherently produce a
tremendously large number of training steps with-
out getting useful information to achieve the goal
state. In other words, it makes the dialogue longer

1See Section 3.1 for a formal definition.

by having a trajectory of unnecessary interactions,
which makes it more difficult for the dialogue
agent to learn which responses are bad among a
lengthy dialogue.

This paper defines dead-end states and intro-
duces a Dead-end Detection and Resurrection
(DDR) method. DDR efficiently identifies dead-
end states and provides rescue actions to guide
exploration. By mitigating the adverse effects of
dead-ends, DDR enhances exploration efficiency
and generates more diverse training samples.
Specifically, we define a reliable dead-end de-
tection criterion for TOD systems. The state is
considered a dead-end state if all trajectories start-
ing from this state fail with probability one after
a pre-defined number of dialogue turns. Once
a certain dead-end is detected, a rescue module
in DDR is activated, which transfers the cur-
rent dead-end state to the previous safe state and
provides rescue guidance. DDR comprises two
types of rescue guidance: one that provides ex-
plicit rescue actions with maximum information
gain (Figure 1b) and the other blocks incorrect
paths, enabling diverse exploration (Figure 1c).
We conducted extensive experiments to evaluate
the advantages and applicability of the two types
of rescue guidance.

To prevent repetitive mistakes, we employ
a Dialogue Data Augmentation (DDA) module,
introducing an experience pool with warning ex-
periences, which consist of dead-end states and
associated penalties. The effectiveness of DDR
was validated on four public datasets, demonstrat-
ing its robustness even in noisy environments.
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Notably, DDR is a model-agnostic algorithm ap-
plicable to various RL-based DP methods. In
summary, our contributions are as follows:

• Defining the concept of the dead-end state
for dialogue policy exploration.

• Proposing and verifying a reliable dead-end
detection criterion.

• Developing the DDR method to rescue
conversations from dead-ends effectively.

• Demonstrating the dead-end state’s impact
on learning efficiency, and validating the
effectiveness and generalizability of DDR
across multiple datasets.

2 Related Work

Learning Efficiency. Our work connects to
several research attempts to apply RL to learn dia-
logue policies for TOD systems. We touch on the
research works aiming to make RL learning ef-
ficient by improving sample efficiency through
I) generating effective exploration strategies, and
II) manipulating generated training samples.

Type I: Research in the field of RL has de-
veloped many studies on general and effective
exploration strategies to address the issue of sam-
ple efficiency, e.g., the ε-greedy (Sutton, 1995),
Boltzmann exploration (Kaelbling et al., 1996),
Upper confidence bounds (Lai and Robbins,
1985), and Gaussian exploration (Lillicrap et al.,
2015). Given that both our DDR and baseline
methods have the potential to combine with these
exploration strategies, resulting in a more efficient
learning process, we conduct comparisons in our
experiments based on the same exploration strat-
egy for all baseline methods, rather than directly
comparing with exploration strategies.

Type II: Some RL studies applied to TOD poli-
cies improve sample efficiency by manipulating
the training samples. Companion learning intro-
duced by Chen et al. (2017a,b) provides necessary
guidance for dialogue policies, but it also transfers
the training burden to the design of the teacher
model (Zhao et al., 2021). Hindsight Experience
Replay (HER) (Andrychowicz et al., 2017; Lu
et al., 2019) extracts partial success segments from
failed dialogues to synthesize successful artificial
dialogues, but the quality of synthetic experi-
ence impacts HER’s effectiveness (Cao et al.,
2020). Trainable-Action-Mask (TAM) (Wu et al.,

2019) learns action masks to block ineffective
actions for generating more informative samples.
Loop-Clipping Policy Optimisation (LCPO) (Wu
and Rasmussen, 2021) clips useless trajectories to
improve sample efficiency. However, both LCPO
and HER may involve artificial synthesis and pa-
rameter tuning, leading to potential limitations in
generating diverse and high-quality dialogues. Es-
sentially, they only process the dialogue segments
after the conversation ends, while our DDR detects
and fixes the dialogue during the conversation.

Besides the above methods, there are non-deep
learning-based planning methods for dialogue
management (Ardissono et al., 1998; Ludwig,
2006; Teixeira and Dragoni, 2022). These ap-
proaches utilize domain knowledge to orga-
nize domain actions in a rational order, aiming
to recover from misunderstandings. However,
planning-based approaches, while successful in
certain domains, often lack scalability and rely
on expert-designed heuristics. In contrast, our
method avoids these challenges, distinguishing
it fundamentally from the mentioned approaches.

Dead-end. Kolobov et al. (2012) introduced
and formalized the theory of dead-ends in Sto-
chastic Shortest Path MDPs. Subsequently, Fatemi
et al. (2019) extended this theory to the Atari
gaming domain, introducing the concept of dead-
ends along with corresponding safety conditions.
In their work, undesirable terminal states were
identified as dead-ends, representing situations
where the game agent is compelled to terminate
or restart before achieving its goals. Addition-
ally, Irpan et al. (2019) introduced concepts re-
lated to dead-ends, with a primary focus on policy
evaluation. They proposed the notion of feasible
states—the states in which the agent has a non-zero
probability of achieving success according to an
optimal policy and does not face immediate de-
feat. Our definition of dead-ends draws inspira-
tion from the aforementioned studies and applies
it to the domain of TOD. It should be noted
that due to unique characteristics in different do-
mains, these studies are not applicable in the di-
alogue domain.

In the dialogue domain, Bui et al. (2004) pro-
posed a simple solution (RDPM) to deal with
dead-ends by relaxing one of the user’s con-
straints as unknown. This approach heavily relies
on manual intervention to select acceptable al-
ternatives and cannot learn from past dead-end
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Figure 2: Illustration for dialogue policy optimization
using proposed DDR method.

experiences. Consequently, it often faces recur-
ring dead-end problems repeatedly and is limited
to simple dialogue scenarios. In contrast, our
approach can automatically evaluate and select
appropriate recovery actions. In Hierarchical Re-
inforcement Learning With Guidance (HRLG), a
related concept of confounded state was intro-
duced, representing a situation within a dialogue
where the same state appears three or more times
(Rohmatillah and Chien, 2023). This differs from
our notion of a dead-end state. We concentrate on
the states where, if the dialogue continues from
that state, it inevitably fails (invalid explorations),
regardless of the chosen actions. In such cases,
actions and states are not necessarily repeated.
In other words, dead-end states cover the con-
founded states, but not vice versa.2 Additionally,
HRLG focuses on multi-domain dialogue tasks
rather than invalid exploration issues.

3 Method

As illustrated in Figure 2, DDR consists of three
main stages: 1) Dead-end Detection process auto-
matically detects whether the current conversation
with the original action ao leads to a dead-end.
If so, 2) Rescue process transfers the current
dead-end state back to the previous safe state and

2From our study, we found that the occurrence of re-
peated states within overall dead-ends is rare. For instance,
within 10K randomly sampled dialogues with dead-ends,
only about 17.6% are related to repeated states.

provides a rescue action ar as the system action
as for the response. And 3) Dialogue Data Aug-
ment process is performed by adding a warn-
ing experience containing this dead-end state and
warning penalties into the experience buffer to
prevent the dialogue policy from repeatedly mak-
ing the same mistake. If ao does not lead to a
dead-end state, ao is transferred directly to the
user simulator as a as without Rescue and Dia-
logue Data Augment stages. These stages are de-
scribed in detail in the following subsections.3

3.1 Dead-end States and Their Detection

When a conversation enters a dead-end state s,
regardless of actions taken afterward, it will con-
tinue in a dead-end trajectory until the agent
reaches a failed termination state or maximum
turn. Thus, if a state is a dead-end state, all pos-
sible states following this state are also dead-end
states. We use dead-end to denote the trajectory
from the initial dead-end state to the failed termi-
nation state (the end state of failing trajectory) of
this conversation trajectory. To this end, we need
to detect the initial dead-end state (referred to as
dead-end detection) to avoid invalid exploration.

Definition 1. (Dead-end State). A state s is a
dead-end state if all trajectories starting from this
state fail with probability one after a pre-defined
number of turns.

Database entries and user queries can be used
to assist TOD in identifying matching entries for
providing the expected actions or information.
The purpose of the dialogue agent is to obtain the
user’s constraints through interactions and find
entries from the database that meet these con-
straints to accomplish the user goal. The number
of matching entries, denoted as n, changes dur-
ing the conversation as the user provides more
constraints. Therefore, n serves as an important
indicator to detect whether a dialogue action will
lead to a dead-end.4 When n disappears (i.e.,

3When describing the relationship with policies, we im-
plicitly employ deep Q-networks (DQN) as the foundation
for implementing the policy. However, it should be noted
that our approach is generalizable and can be extended to
other RL-based algorithms, as discussed in Section 4.8.

4The number of matching entries n is also used as a fea-
ture of the dialogue state, obtained by querying the database.
The dialogue state serves as the input for the dialogue policy,
acquiring n easily attainable.
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nt−1 �= 0 and nt = 0 and dialogue end flag =
False), it indicates that the dialogue has entered
a dead-end. This situation arises because the user
goal has transitioned from a solvable state to an
unsolvable one, preventing the dialogue policy
from finding entries that meet the user’s needs.
In this way, our dead-end detection enables the
identification of dead-ends in real-time during the
dialogue, without requiring human intervention.5

3.2 Rescue
In the rescue phase, we consider two approaches
of exploration guidance: Information Gain Rescue
and Self-resimulation Rescue. The former directly
provides an explicit exploration guidance, while
the latter only blocks wrong exploration paths, al-
lowing explore diverse paths.

3.2.1 Information Gain Rescue
The main objective of TOD systems is to help
users accomplish their specified tasks, of which
acquiring information through dialogue interac-
tions is the first important aspect (Geishauser
et al., 2021). Therefore, optimal dialogue policies
are expected to gain maximal information on the
user’s needs by asking targeted questions. In-
formation gain (IG) is a promising measure for
evaluating the system actions as it determines the
amount of information that can be obtained by
a system action if it is performed in a particular
state (Kent, 1983). Inspired by the usage of IG
in dialogue systems (Padmakumar and Mooney,
2021; White et al., 2021), we construct an infor-
mation gain rescue approach that provides explicit
exploration guidance on the database (Figure 1b).

Specifically, IG allows a better assessment of
the amount of information carried or gained by
knowing a certain slot-value. Prioritizing queries
for slots with more IG can help the dialogue policy
accomplish user goals efficiently. Formally, the IG
at the current state for each query action a of the
form request(slot) is:

IG(N, a) = H(N)−H(N |Va) (1)

= H(N)−
∑

v∈Va

p(Nv)H(Nv|Va = v)

H(N) = −
∑

ni∈N
p(ni)log p(ni) (2)

5While our dead-end concept broadly encompasses all
dead-end scenarios, this paper focuses on those that the
dialogue policy can resolve. For more details, please refer to
Section 5.

where N denotes a set of entries in the database,
ni denotes the ith entry in N , Va is a variable
whose values v are the possible answers that
the user can provide after executing the system
action a, and Nv is a subset of N filtered by
v. p(Nv) denotes the probability that an entry in
N contains the value v, while p(ni) represents
the probability of entry ni appeared in N . H(N)
and H(N |Va) denote the information entropy and
conditional entropy before and after executing
action a, respectively. The difference between
these two denotes the information gain IG(N, a).

Since other types of actions (e.g., inform, bye,
hello, etc.) tend to be less helpful in filtering
entries in DB, the information gains of those types
of action are always more minor compared to
the request type. It leads to the possibility that the
dialogue agent is biased toward the request action,
which is obviously not reasonable. To correct this
bias, the type of action needs to be chosen first
based on the number of matching entries n and
the user’s action before computing IG.

When the constraints provided by the user
are challenging to target specific entries in the
database, the system needs to guide the user in
providing more constraints through a request, de-
noted as as = request(slot). The specific slot
for the request is determined by selecting the
one with the maximum IG according to Eq.
(1). When user constraints are sufficient to fil-
ter specific entries in the database, the system can
provide the information the user wants to know
(as = inform(slot)), or perform the action the
user has asked for, for example, to book a ticket
(as = booking confirmed).

Compared with the work by Geishauser et al.
(2021), our information gain rescue consid-
ers the variation of the probability distribution
over all slots, which covers complete informa-
tion gain. Moreover, previous studies that utilize
information gain or maximum entropy are of-
ten focused on other types of dialogue systems
such as question-answering systems (one-turn)
(Padmakumar and Mooney, 2021; White et al.,
2021), and recommender systems (lack of clear
user goal) (Lei et al., 2020; Deng et al., 2021; Kim
et al., 2023), which are outside the scope of our
focus area (multi-turn and specific user goal).

3.2.2 Self-resimulation Rescue
As shown in Figure 1c, rather than directly
providing an explicit exploration direction, this
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rescue guidance shields dialog policy from
wrong paths and allows them to explore more
diverse directions.

In each step, the dialogue policy observes
a state s and selects an action as using an
ε-greedy policy, where a random action is selected
with ε probability, or otherwise, a greedy ac-
tion is selected, as = argmaxaQ(s, a; θQ), where
Q(s, a; θQ) is the approximated value function that
is implemented as a Multi-Layer Perceptron with
parameter θQ. It should be noted that even if the
dead-end state has been detected and restored to a
safe state, the direct use of the initial DQN with-
out additional training will always select the same
action. Instead, we set the probability of select-
ing the action, which leads the conversation to a
dead-end to 0. We then perform a self-resimulation
by using the dialogue policy to re-select from the
action space, excluding the action that causes the
dead-end state. It is worth noting that the used
self-resimulation differs from the dialogue rollout
(Lewis et al., 2017). Dialogue rollout does looka-
head for all unexecuted actions in the candidate
set, while our approach focuses on the already ex-
ecuted actions. It eliminates the need to evaluate
candidate actions one by one (and therefore also
does not have evaluation errors caused by that).
Moreover, it blocks a dead-end path and allows
dialogue agents to explore more freely than the
information gain-based exploration guidance.

3.3 Dialogue Data Augmentation

Self-reflection aids in averting recurring errors
among humans (Farthing, 1992). Inspired by it,
we added a Dialogue Data Augmentation module
to prevent dialogue policies from continually mak-
ing the same mistakes. This is done by introducing
an experience replay buffer that contains three
types of experiences: Original experience, rescue
experience, and warning experience. Leveraging
these experiences, we can improve the value func-
tions Q(·) of DDR agents by minimizing the
mean-squared loss function.

For state s, the dialogue agent performs the
(original) action ao, observes the updated state s′,
and receives the reward r. If state s is detected
as an dead-end state, the rescue experience Er ←
{s, ar, sr, rr} and the warning experience Ew ←
{s, ao, s′, r + rw} are stored in the experience
replay buffer. In the rescue experience, the original
action ao is replaced with a rescue action ar,

and their corresponding reward and next state
update are adjusted accordingly. In the warning
experience, the original action ao is retained, but a
penalty rw is added. Otherwise, only the original
experience Eo ← {s, ao, s′, r} is stored.

During the random sampling process, if the
sampled experience includes a dead-end state,
both the dead-end experience and its corre-
sponding warning experience will be sampled
simultaneously. If the sampled experience does
not contain a dead-end state, only the original
experience will be sampled.

4 Experiments

Our experiments have five objectives: I) Verify-
ing the effectiveness of our DDR in simulated
(Section 4.4) and human (Section 4.9) exper-
iments; II) Investigating the advantages and
applicability of two rescue modules (Section 4.5);
III) Analyzing the efficiency of the dead-end de-
tection (Section 4.6); IV) Evaluating the individual
contribution of the different modules in our DDR
(Section 4.7), and V) Validating the generality of
our DDR (Section 4.8).6

4.1 Datasets
The experiments were performed on the MS
Dialogue Challenge,7 which provided three stan-
dard datasets, user simulators, and a unified
experimental environment for collaboration and
benchmarking in the dialogue research commu-
nity (Li et al., 2016, 2018). Further validation was
conducted on a complex multi-domain dataset,
MultiWOZ 2.1 (Budzianowski et al., 2018) pro-
vided by the ConvLab-2 platform.8 The number of
slots in user goals affects dataset difficulty, with
more domains leading to more slots. ConvLab-2’s
default user goals involve 1–3 domains, similar
to the Restaurant dataset. To highlight differences
among the four datasets, we increased the Multi-
WOZ dataset’s difficulty by generating user goals
with 5–7 domains, introducing more challeng-
ing features. Simulated evaluation employs three
publicly available and widely accepted criteria:
success rate, average turns, and average reward.
The human evaluation utilized established metrics
consistent with our study’s datasets and commonly

6https://github.com/zhaoyangyangHH/DDR
/tree/main.

7https://github.com/xiul-msr/e2e dialog
challenge/tree/master.

8https://github.com/thu-coai/ConvLab-2.

1583

https://github.com/zhaoyangyangHH/DDR/tree/main
https://github.com/zhaoyangyangHH/DDR/tree/main
https://github.com/xiul-msr/e2e_dialog_challenge/tree/master
https://github.com/xiul-msr/e2e_dialog_challenge/tree/master
https://github.com/thu-coai/ConvLab-2


used ones (e.g., Liu et al., 2021; Wang et al., 2020;
Tang et al., 2018): success rate (SR) and average
scores (AS) ranging from 1 to 5. These metrics as-
sess naturalness, coherence, and task completion
capability.

To simulate realistic dialogue scenarios, all
datasets include a minority of unresolvable user
goals, where the user’s request genuinely cannot
be fulfilled due to the absence of matching en-
tries in the database. MultiWOZ datas et allows
providing alternative inform slot values to find al-
ternative solutions. We ensured that the proportion
of unresolvable user goals was consistent across
the different datasets. Additionally, we introduced
similar scenarios in human evaluations.

4.2 Baselines

We compare our approach with different dia-
logue agents that make RL effective and efficient
by similarly manipulating training samples as
baselines:9

DQN agent learned with one standard Deep
Q-network (Mnih et al., 2015). RDPM agent
conducts dialogues based on the designed global
dialogue flow management (Bui et al., 2004).
When encountering a dead-end, it relaxes one of
the user’s constraints as unknown. HER agent
is learned from synthesized successful dialogues,
which are created by extracting successful dia-
logue segments from failed dialogues (Lu et al.,
2019). LCPO agent is learned from clipped dia-
logue trajectories (Wu and Rasmussen, 2021).10

DDR-IG agent is learned with a DQN that incor-
porates proposed dead-end detection, information
gain rescue, and dialogue data augmentation.
DDR-SE agent is similar to DDR-IG except that
the rescue module is based on self-resimulation.

4.3 Settings

For a fair comparison, all dialogue agents are
trained using RL’s typical representative DQN,
except for the non-RL based RDPM method. It
is worth noting that our method is general, so
in the General Evaluation section, we substituted

9It is worth noting that we do not consider methods
that use additional human intervention since an important
advantage of our approach is that it does not require any
human intervention (Ardissono et al., 1998; Ludwig, 2006;
Teixeira and Dragoni, 2022).

10Since Wu and Rasmussen (2021) demonstrated the supe-
riority of the LCPO compared to TAM (Wu et al., 2019), we
only use the better-performing LCPO as the baseline model.

other RL algorithms for the training network ar-
chitecture. Each policy network consists of one
hidden layer with 80 nodes. Common parameters
are standardized across all models, while unique
optimal parameters are selected for each model.11

The learning rate is 0.001, and the batch size is
16. The optimizer is Adam. ε-greedy is always ap-
plied for exploration with 0.1 and decayed to 0.01
during training. All baselines employ ε-greedy to
select actions, whereas our DDR-∗ utilizes either
IG or SE to select recovery actions when encoun-
tering a dead-end. For other non-recovery cases,
the actions of both DDR-∗ are selected through the
default ε-greedy strategy (same as the baselines).
The buffer size D is set to 10000, and the number
of warm start epochs is 120. The reward function
provides a large bonus of 2L for success and a
penalty of −L for failure. Additionally, a fixed
penalty of −1 is given for each turn to encourage
short interactions. All agents are limited to the
same number of turns (L = 30 for single domains
and L = 40 for multi-domains), and their discount
factor is set to 0.95.

All results are averaged from ten runs of 1,000
dialogues each, using different random seeds,
following training on one dialogue.

4.4 Effectiveness Evaluation
This section validates our methods with simulated
experiments and the case study.

4.4.1 Simulated Experiments
To verify the effectiveness of our method, we con-
duct experiments on three single-domain datasets
in a normal environment (without noise). Table 2
reports the main result of different agents. The re-
sults show that both our DDR methods outperform
other baselines with a statistically significant mar-
gin. While HER shows significant improvement
in the movie and restaurant domains compared to
DQN, it performs poorly in the taxi domain. The
complexity of the taxi domain resulted in fewer
successful dialogues early on, leading to fewer
synthesized experiences in HER. Additionally,
some synthesized experiences lacked coherence,

11Please be aware that for the dead-end management
threshold in RDPM, we did not choose the value that was
optimal for the simulation experiments. Instead, we selected
the optimal value of 10 based on a combination of simulated
and human experiments. Even if we had chosen the best
parameter of RDPM from the simulation experiments, our
DDR-IG still outperforms RDPM. Detailed experimental
results are provided in Appendix A.
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Domain Agent
Epoch = 150 Epoch = 350 Epoch = 500

Success ↑ Reward↑ Turns↓ Success↑ Reward↑ Turns ↓ Success↑ Reward↑ Turns ↓

Movie

DQN 0.1546 −25.51 20.34 0.5402 10.15 18.42 0.5746 13.30 18.32
RDPM 0.3788 −8.57 29.60 0.7003 25.03 20.01 0.7679 30.74 18.80
HER 0.4490 0.38 21.57 0.6388 20.05 16.38 0.7104 27.57 14.24
LCPO 0.4108 −1.22 21.33 0.6024 19.85 16.12 0.7258 29.74 14.35

DDR-IG 0.4731 3.02 18.04 0.7567 31.92 12.30 0.8021 36.37 11.34
DDR-SE 0.5329 8.53 20.36 0.7115 27.27 15.02 0.7585 32.17 13.70

Restaurant

DQN 0.0530 −39.30 29.75 0.1971 −24.22 25.92 0.4110 −3.52 23.02
RDPM 0.0974 −35.66 26.46 0.4993 2.02 24.63 0.7166 24.86 22.88
HER 0.1022 −33.70 27.79 0.4840 4.01 21.10 0.6664 22.10 17.75
LCPO 0.0903 −35.65 27.64 0.4831 3.74 21.30 0.6949 27.69 16.94

DDR-IG 0.1038 −33.26 26.22 0.6230 17.32 17.79 0.7582 30.74 15.44
DDR-SE 0.1064 −32.79 26.73 0.4970 4.82 21.83 0.7716 32.25 16.38

Taxi

DQN 0.0548 −37.5 26.85 0.2707 −16.05 22.82 0.6300 18.31 18.78
RDPM 0.0532 −37.96 27.50 0.3894 −6.24 24.41 0.6625 19.24 20.77
HER 0.0359 −40.51 29.47 0.1786 −25.27 24.64 0.5003 8.49 25.15
LCPO 0.0674 36.65 27.79 0.3565 5.38 21.90 0.6404 19.69 19.01

DDR-IG 0.0984 −33.96 25.14 0.5299 9.55 16.83 0.7821 32.90 14.85
DDR-SE 0.0790 −35.57 27.35 0.3974 −3.21 19.95 0.6654 21.64 18.49

Table 2: Results of different agents on three datasets in the normal environment. The highest performance
in each column is highlighted. The difference between results of all agent pairs evaluated at the same
epoch is statistically significant with a t-test (p < 0.05). These specific epochs were chosen to
demonstrate the model’s performance at different training stages (150 = early training stage, 350 =
mid-training stage, 500 = performance after convergence).

resulting in poor-quality dialogues. Similarly,
LCPO demonstrated improvements in the movie
and restaurant domains but had limited impact in
the taxi domain. Dialogues in LCPO were con-
cise, leading to shorter average dialogue turns, but
dead-end dialogues still struggled to be resolved.
Although RDPM could alleviate dead-ends by re-
laxing one of the user’s constraints, it fails to learn
from past dead-ends, often encountering the same
dead-ends repeatedly, leading to dialogue fail-
ures due to excessive turns. In contrast, our two
DDR methods effectively and diversely explore by
promptly detecting and recovering from dead-ends
and learning from past dead-end experiences.

Further validation was also performed on the
complex multi-domain MultiWOZ dataset, where
each agent was trained for 1000 epochs. Results in
Table 3 demonstrate better performance achieved
by our two DDR methods, consistent with the
single-domain results. Thus, our DDR methods
are widely applicable in various scenarios.

4.4.2 Case Study
Table 4 shows how our DDR-IG method handles
the same dead-end dialogue issues encountered
by DQN agents. For a comparison with DQN’s

Agents Success ↑ Reward ↑ Turns ↓
DQN 0.0726 −48.83 37.08
RDPM 0.1166 −44.56 38.63
HER 0.0862 −47.04 36.76
LCPO 0.1008 −40.71 34.53
DDR-SE 0.1793 −33.85 32.72
DDR-IG 0.2010 −31.01 32.27

Table 3: Results of different agents on the
MultiWOZ dataset.

dialogue, refer to Example 1 in Table 1. In the
DQN example, the agent preemptively provides
the highest-count theater value (inform theater =
Carmike summit 16) in ‘S5’ based on available
constraints and ignoring the subsequent date con-
straint. Consequently, none of the movie items in
the database matching all the constraints speci-
fied in the user goal were provided after a new
constraint was added (n = 0). In contrast, our
DDR-IG method, as shown in Table 4, detected
a conflicting action when obtaining the date con-
straint ‘‘date=tomorrow’’ and identified a conflict
with the constraint ‘‘theater=carmike summit 16’’,
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Task:
A user wants to book two ‘creed’ tickets for
tomorrow in the LA city and request to know
the theater that the show is playing in.

DDR-IG

U0: Which theater will creed play?
S1: Which city would you like?
U2: I want to watch at LA.
S3: How many tickets do you need?
U4: I want 2 tikets please!
S5: Carmike summit 16 is available.
U6: Could you help me to book the tickets?
S7: Okay, you purchase of 2 tickets at carmike
summit 16 for creed today at LA is confirmed.
U8: Oh, sorry! This is the wrong tickets!
S9: Which data would you like?
U10: I want to set it up tomorrow.
S11: Science Park is available.
U12: Could you help me to book the tickets?
S13: Okay, you purchase of 2 tickets at science
park for creed tomorrow at LA is confirmed.
U14: Thanks, bye.
S15: Bye.

Table 4: Examples of dialogue encountering
dead-end problems by DDR-IG, where we use
U and S to indicate user and system turns
respectively.

despite this value having the highest count in the
database. The DDR-IG method detected that the
conversation had reached a dead-end and restored
the dialogue to the turn that produced the con-
flicting action, ‘S5’. It selected the action with
the maximum information gain, ‘‘request(date)’’,
i.e., asking for the date, and then provided the
booking information, thus resolving the dead-end
dialogue.

4.5 Robustness Evaluation

As illustrated by Example 2 in Table 1, real-life
dialogue environments often feature noise from
upstream modules and ambiguous user utterances,
exacerbating dead-end issues in dialogues (Zhao
et al., 2020). A dialogue policy should sustain
conversations despite these inaccuracies. To eval-
uate the robustness of our methods in addressing
dead-ends caused by noisy environments, we con-
ducted experiments with slot and value error rates

of 0%, 5%, 15%, and 25% within the error model
for simulating noise.

The results, shown in Figure 3–Figure 6, re-
veal that as noise levels increase, the performance
of all agents declines, but to varying degrees.12

Notably, DQN and HER exhibit significant drops
and unstable performance, especially in the more
challenging Taxi dataset. Despite LCPO’s per-
formance being relatively stable compared to
HER, it still shows a significant decline. RDPM
shows substantial performance improvement in
noise-free and low-noise environments, partic-
ularly in the simpler Movie dataset, but its
performance advantage diminishes as noise in-
creases. This may be due to noise exacerbating
dead-end problems, highlighting RDPM’s dif-
ficulty in learning from dead-end experiences.
Additionally, in more complex datasets with nu-
merous database entries, the number of entries
after releasing a user constraint often exceeds the
dead-end management threshold. Consequently,
RDPM frequently releases random user con-
straints, which may be satisfactory to the user,
leading to dialogue failure due to exceeding
the maximum number of turns. In contrast, our
DDR-SE maintains the best performance in noisy
environments through exploration and data aug-
mentation, despite a decrease in success rate.
DDR-IG performs best in noise-free environments
but shows a marked performance decline under
noisy conditions, similar to baseline models. We
attribute this disparity to the utilization of in-
formation gain for action selection, which helps
DDR-IG avoid suboptimal actions, enhancing
its efficiency in noise-free conditions. However,
DDR-IG’s usability is constrained by its inabil-
ity to estimate information gains in the presence
of noise accurately. Conversely, DDR-SE exhib-
ited greater adaptability in handling noise effects
through exploration, allowing it to mitigate the
impact of noise effectively. This flexibility in
navigating noisy environments enabled DDR-SE
to outperform DDR-IG in such conditions.

4.6 Effectiveness of DDR for Dead-ends

We examined the percentage of dead-end con-
versations among the failed ones for different

12Results of the robustness experiments for all error rates
including those of 0%, 5%, 10%, 15%, 20%, 25%, and 30%
are shown in Appendix B. Since all methods tend to fail to
learn above a 30% error rate, we limited our tests to these
values.
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Figure 3: Results of different agents on three datasets in environment with 0% noise.

Figure 4: Results of different agents on three datasets in environment with 5% noise.

Figure 5: Results of different agents on three datasets in environment with 15% noise.

Figure 6: Results of different agents on three datasets in environment with 25% noise.

dialogue agents. Higher percentages indicate a
higher generation of low-quality conversations
with dead-ends. As shown in Table 5, both DDR
methods significantly alleviate this problem. This
demonstrates that our two DDR methods accu-
rately identify dead-ends with high probability
and rescue them instead of continuing meaningless
conversations.

Furthermore, to further interpret the effective-
ness of DDR for dead-ends, we randomly selected
three user goals in the movie domain to visualize
the changes in the average value of n for each
agent over different dialogue turns during testing,
as depicted in Figure 7. In the ideal case, n

Agent Movie Restaurant Taxi MultiWOZ

DQN 64.29% ± 11.06% 82.58% ± 5.06% 88.36% ± 5.58% 73.41% ± 6.55%
RDPM 24.91% ± 5.31% 36.24% ± 6.96% 31. 05% ± 7.57% 35.20% ± 12.63%
HER 37.35% ± 9.88% 56.19% ± 10.33% 71.28% ± 9.18% 60.73% ± 14.25%
LCPO 36.22% ± 8.09% 44.50% ± 4.26% 50.88% ± 5.57% 49.32% ± 8.66%

DDR-SE 23.25% ± 6.34% 30.04% ± 3.31% 29.22% ± 2.09% 26.259% ± 7.26%
DDR-IG 3.32% ± 0.75% 7.40% ± 1.82% 8.21% ± 1.15% 16.80% ± 5.76%

Table 5: Statistics on the percentage of failed
conversations with dead-ends for different agents
in three domains.± is the mean standard deviation
of the average of 10 runs with different seeds.

rapidly diminishes to a non-zero value and even-
tually disappears. This indicates the dialogue agent
efficiently targets the matching entries through ef-
fective interactions, achieving the user goal. When
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Figure 7: Visualization of the variation of n with turns of interaction for different user goals. All results are the
average values from 10 runs with different random seeds.

Figure 8: The ablation experiment of our DDR methods in Movie, Restaurant, and Taxi domains.

the value of n remains 0 for an extended period
while the conversation continues, it indicates that
the dialogue has entered a dead-end. Taking
Figure 7a as an example, for DQN, n drops to
0 at turn 12, but the conversation continues un-
til turn 15, indicating the dialogue encountered a
dead-end during this period. In contrast, for HER,
n decreases to a certain range at the turn 11, but
the conversation extends until turn 14, indicating
that although the conversation did not reach a
dead-end, it possibly encountered repetitive states
between turns 11 and 14. This is a common oc-
currence in HER due to the inclusion of repetitive
dialogues in its synthesized successful dialogues,
leading to verbosity. For RDPM, although the di-
alogue often enters a dead-end by turn 7 and is
promptly rescued, the significant fluctuations in n
could result in the deletion of valuable information
during the dialogue, prolonging the process be-
fore achieving success. LCPO effectively avoids
repetitive state dilemmas like HER by trimming
dialogues. Our approaches (yellow and orange)
consistently demonstrate a faster understanding of
user needs and more effective conversations, suc-
cessfully targeting matching entries to accomplish
user goals by turns 4 and 6, respectively. As a
result, their average performance does not exhibit
the fluctuations seen in RDPM.

Those results are consistent with the case study
analysis in Section 4.4.2, further showcasing the

effectiveness of our approach in dealing with the
dead-end issue.

4.7 Ablation Evaluation

To evaluate the impact of the Dialogue Data
Augmentation (DDA) module and the Dead-end
Detection and Recovery (DR) module individually
in our DDR-∗ methods, we conducted an ablation
study. The results of the ablation study for the two
DDR methods on three domains are presented in
Figure 8. We set up three versions of DDR: 1) with
nothing (gray) actually refers to DQN, which lacks
both the DDA and DR modules. 2) with DR (yel-
low) is the DDR-* method without DDA, meaning
it only detects and recovers from dead-ends but
does not augment dialogue data based on dead-end
experiences. 3) with DR and DDA (blue) repre-
sents the DDR-* method proposed in the paper,
incorporating both DDR and DR modules. As the
experience utilized for DDA was a byproduct of
the DR process, we did not include the DDA
module as a standalone component. We found
that both the DR and DDA modules had a pos-
itive impact on the DDR methods, with the DR
module showing a more pronounced improvement
in performance. The most significant decrease in
performance occurred when both modules were
removed. Combining both modules resulted in the
highest overall performance for DDR-∗ methods.
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Figure 9: Incorporating different RL algorithms (Double DQN (van Hasselt et al., 2015), Dueling DQN (Wang
et al., 2016), REINFORCE (Williams, 1992), A2C (Fatemi et al., 2016)) with our two methods on three datasets.
The standalone results obtained are shown in Appendix D.

In summary, our ablation study confirms the im-
portance of each module in the DDR methods
and highlights the necessity of integrating both
modules to achieve optimal performance.

To further validate these findings, we integrated
our two modules into two other methods (Dueling
DQN and A2C) and found similar trends. The
results are provided in Appendix C.

4.8 Generality Evaluation
In previous experiments, all baseline and DDR
agents were trained using a typical representative
of reinforcement learning, DQN, for a fair com-
parison. We aim to verify that our DDR methods
are valid not only on the DQN, but also on other
RL-based methods. Thus, we use four other com-
monly used RL algorithms in combination with
our two DDR methods in this generality eval-
uation. Figure 9 shows their learning curves in
three domains. It is evident that integrating our
DDR methods improves their learning efficiency
to varying degrees. This observation allows us to
conclude that our approach generalizes effectively
to different RL-based dialogue policy algorithms.

4.9 Human Evaluation
Since user simulators do not fully capture the
complexity of human interactions, we evaluated
the feasibility of DDR-* methods in real-world
scenarios. Based on the publicly available hu-
man evaluation settings provided by the dataset
platform, we employed 68 human evaluators for

Model Movie Restaurant Taxi MultiWOZ

SR AS SR AS SR AS SR AS

DQN 0.3764 2.31 0.2724 2.16 0.3494 2.41 0.0824 1.54
RDPM 0.4206 2.25 0.3181 1.95 0.3390 2.14 0.0647 1.29
HER 0.4059 2.30 0.3599 2.35 0.2484 1.95 0.0676 1.31
LCPO 0.4235 2.60 0.3328 2.44 0.3527 2.51 0.1088 1.72

DDR-IG 0.5000 3.14 0.3913 2.71 0.4412 2.91 0.1794 2.04
DDR-SE 0.4824 2.90 0.3639 2.52 0.3711 2.50 0.1265 1.75

Table 6: Human evaluation of different agents
in different domains. The metrics for hu-
man evaluation (SR and AS) are described in
Section 4.1.

human evaluation. Each agent underwent eval-
uation with users randomly selecting five goals
without knowing the agent’s identity. To ap-
proximate realistic dialogue scenarios, four goals
directly matched database entries, while the re-
maining goal initially had no match, allowing the
system to provide alternative answers to meet the
user’s alternative requirements. Users could ter-
minate the dialogue at any time if it was deemed
unproductive. Each agent collected 340 valid dia-
logues (5 per user) per domain. Human evaluation
results in Table 6 showed superior performance
of our methods over the baselines, consistent with
simulated experiment outcomes. DQN is often
terminated early due to a lack of progress, lead-
ing to a lower SR and AS. RDPM and HER
received low AS ratings due to excessive dia-
logue length. Although LCPO was more concise
than the previous agents, it still struggled with
dead-ends. In contrast, our DDR-* methods, par-
ticularly DDR-IG, excelled by actively resolving
dead-ends, demonstrating outstanding performance.
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5 Conclusion and Future Work

This paper identifies the dead-end as a critical
source for invalid exploration of task-oriented di-
alogue policies and proposes a novel dead-end
detection and rescue method (DDR). The method
effectively rescues conversations from dead-ends.
Dead-end detection in DDR introduces an effi-
cient criterion for detecting dead-ends, and its
effectiveness has been experimentally verified.
Once a certain dead-end is detected, rescue in
DDR provides rescue exploration guidance for
avoiding invalid exploration and thus generates
more high-quality and diverse conversations. In
addition, the experience containing dead-ends is
added for DDA to prevent the same mistakes from
occurring in the dialogue policy. The extensive
results demonstrate the superiority and generality
of our approach.

Although our DDR algorithm is efficient and
very general to be used with different RL algo-
rithms on TOD systems, it has two main lim-
itations: 1) our method is challenging to use for
other types of dialogue systems where the database
is not accessible. Even though this paper focuses
on TOD systems that work on the database, it is
undeniable that other types of dialogue systems,
such as chatbots or recommendation systems, may
also have dead-end problems. Future efforts will
extend our method to accommodate these inacces-
sible database scenarios. 2) The scope of dead-end
rescue addressed in this paper pertains to the cate-
gory of dead-ends resolvable by dialogue policies,
while our defined dead-end concept can gener-
ally cover all dead-end situations. It struggles to
handle dead-ends arising from reasons beyond
dialogue policies, such as cases where user re-
quests cannot be fulfilled due to absence from the
database. While our DDR techniques effectively
mitigate many dead-ends, some persist, as illus-
trated in Table 5. Future research aims to bolster
the system’s ability to handle these situations more
effectively.
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A The Impact of Different dead-end management threshold on RDPM

Figure 10: Results of PDRM with different dead-end management thresholds.

B Robustness Evaluation under All Error Rates

Figure 11: Results of different agents on three datasets in environment with 0% noise.

Figure 12: Results of different agents on three datasets in environment with 5% noise.

Figure 13: Results of different agents on three datasets in environment with 10% noise.
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Figure 14: Results of different agents on three datasets in environment with 15% noise.

Figure 15: Results of different agents on three datasets in environment with 20% noise.

Figure 16: Results of different agents on three datasets in environment with 25% noise.

Figure 17: Results of different agents on three datasets in environment with 30% noise.

C Ablation Evaluation based on Other Methods

Figure 18: The ablation experiment of Dueling DDR-* methods in Movie, Restaurant, and Taxi domains.
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Figure 19: The ablation experiment of A2C DDR-* methods in Movie, Restaurant, and Taxi domains.

D Generality Evaluation

Figure 20: Incorporating different RL algorithms (Double DQN (van Hasselt et al., 2015), Dueling DQN (Wang
et al., 2016), REINFORCE (Williams, 1992), A2C (Fatemi et al., 2016)) with our two methods on three datasets.
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