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Abstract

We introduce Holmes, a new benchmark
designed to assess language models’ (LMs’)
linguistic competence—their unconscious un-
derstanding of linguistic phenomena. Specif-
ically, we use classifier-based probing to
examine LMs’ internal representations re-
garding distinct linguistic phenomena (e.g.,
part-of-speech tagging). As a result, we meet
recent calls to disentangle LMs’ linguistic
competence from other cognitive abilities,
such as following instructions in prompting-
based evaluations. Composing Holmes, we
review over 270 probing studies and include
more than 200 datasets to assess syntax, mor-
phology, semantics, reasoning, and discourse
phenomena. Analyzing over 50 LMs reveals
that, aligned with known trends, their linguis-
tic competence correlates with model size.
However, surprisingly, model architecture and
instruction tuning also significantly influence
performance, particularly in morphology and
syntax. Finally, we propose FlashHolmes,
a streamlined version that reduces the com-
putation load while maintaining high-ranking
precision.

1 Introduction

Linguistic competence is the unconscious under-
standing of language (Chomsky, 1965), like the
syntactic structure of a sentence. As language
models (LMs) are trained on simple tasks such
as next word prediction (Brown et al., 2020),
one might naturally wonder: What is the linguis-
tic competence of LMs, and how do they differ?
To answer such questions, contemporary bench-
marks estimate cognitive abilities, as done for
mathematical reasoning (Cobbe et al., 2021) or

∗Corresponding author andreas.waldis@live.com.

factual knowledge (Petroni et al., 2019b, 2020).
However, such benchmarks rely on LMs’ use of
language (textual responses), known as linguis-
tic performance (Matthews, 2014). As a result,
they conflate abilities tested with specific instruc-
tions, as done for syntactic phenomena in Blevins
et al. (2023), with latent abilities like producing
coherent text or following instructions. As this
entanglement makes it infeasible to draw defini-
tive conclusions (Hu and Levy, 2023; Liang et al.,
2023; Perlitz et al., 2024), recent studies call to
assess LMs’ linguistic competence comprehen-
sively and isolated (Lu et al., 2023; Mahowald
et al., 2024).

In this work, we introduce Holmes
(Figure 2), a benchmark to assess the linguistic
competence of LMs (Figure 7) regarding nu-
merous linguistic phenomena. To disentangle
LMs’ understanding of these phenomena from
their linguistic performance, we assess the
LMs’ internals using classifier-based probing
(Tenney et al., 2019a; Hewitt and Manning,
2019; Belinkov, 2022). As illustrated in Figure 1
for probing the part-of-speech (POS) tags for
words, we first train linear models (probes)
using the internal representations of text inputs
from the last model layer to predict the specific
phenomena aspects. We then approximate the
LMs’ grasp of these phenomena using the probes’
performance, rigorously verified using control
tasks (Hewitt and Liang, 2019) and from an
information theory perspective (Voita and Titov,
2020). With this particular and comprehensive
scope, we thoroughly address the initially raised
questions as follows:

Meta-Study (§ 3) The review of over 270 prob-
ing studies reveals a gap in comprehensively
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Figure 1: In Holmes, we encode examples of probing
datasets using frozen LMs. Then, we train probes (linear
models) with labels representing the specific linguistic
phenomenon under test. Finally, we use the results of
testing the probes to approximate the LMs’ linguistic
competence regarding the tested phenomena.

evaluating linguistic competence. Despite cov-
ering over 200 probing tasks and 150 LMs,
individual studies focus on particular tasks and
LMs. As a result, only three LMs were probed
on over 20% of the tasks, and only one task
(POS) was evaluated for more than 20% of the
LMs. Notably, recent large LMs are significantly
underrepresented.

Benchmark (§ 4) Addressing these identified
deficiencies, Holmes offers a structured way
to assess LMs’ English linguistic competence
comprehensively. It features 208 distinct datasets
covering morphology, syntax, semantics, rea-
soning, and discourse phenomena, including
previously underrepresented ones like negation
or rhetoric.

Results and Analysis (§ 5) From assessing 59
LMs, we find that no LM consistently excels over
the others. Further, linguistic competence is more
pronounced for morphology and syntax than the
other types of phenomena, and LMs’ linguistic
competence is fundamentally affected by model
size, model architecture, and instruction tuning.

First, we generalize previous findings (Tenney
et al., 2019b; Zhang et al., 2021) and show that
LMs’ linguistic competence, particularly mor-
phology and syntax, scales beyond 350 million
parameters. Second, contrary to the prompting
evaluations (Lu et al., 2023) and aligned with
Waldis et al. (2024a) and Gautam et al. (2024),
model architecture is critical. The linguistic
competence of decoder-only LMs lags behind
encoder-only ones. Not even 70 billion decoders

produce representations for words with the same
stability as encoders with 110 million parameters.
Third, while instruction tuning (Ouyang et al.,
2022; Touvron et al., 2023; Zhou et al., 2023)
aims to align LMs with human interactions, we
focus for the first time on its effect on linguis-
tic competence. We found that instruction tuning
improves morphology and syntax but has mixed
effects on other phenomena types, hinting at a su-
perficial alignment. Lastly, we compare Holmes
with other benchmarks. While LM rankings of
reasoning-intense downstream tasks (Beeching
et al., 2023) correlate with reasoning phenom-
ena, explicitly prompting for linguistic phenomena
(Liang et al., 2023) leads to unreliable results.
As these results show that Holmes aligns with
other benchmarks, its probing-based evaluation is
indispensable for explicitly testing LMs’ linguis-
tic competence disentangled from their linguistic
performance.

Efficiency (§ 6) Finally, to mitigate the heavy
computational burden of evaluating a new LM
on Holmes, we form the streamlined version
FlashHolmes by selectively excluding sam-
ples not significantly influencing overall rankings
(Perlitz et al., 2023). Specifically, Flash-
Holmes approximates Holmes rankings with
high precision while requiring only ∼3% of the
computation.

Contributions With Holmes, we introduce a
comprehensive and thorough benchmark to assess
LMs’ linguistic competence, providing ground to
evaluate them more holistically. Extensive exper-
iments on Holmes reveal that LMs’ linguistic
competence is manifold and more pronounced
for phenomena targeting words and syntactic
structure than semantic, reasoning, or discourse.
LMs properties like size or architecture crucially
account for differences among LMs. Fostering
further research, we provide interactive tools to
explore Holmes and straightforward evaluation
code for upcoming LMs with efficiency in mind.

2 Preliminaries

Language Models (LMs) Language models
compute probabilities for word sequences i,
enabling tasks such as classifying i, textual com-
parisons between i and another sequence i′,
and text generation based on i. We consider
LMs as any model producing representations
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Figure 2: Overview of Holmes (left) with the five phenomena types (right) and an example of probing-based
evaluations for part-of-speech: encoding the input tokens and predicting the POS tag for cucumber, here NN.

of i, regardless of their specific type: sparse
like bag-of-words (Harris, 1954); static such as
GloVe (Pennington et al., 2014); or contextu-
alized transformers (Devlin et al., 2019; Raffel
et al., 2020).

Linguistic Competence and Performance For
centuries (Robins, 2013), linguists have been fas-
cinated by the processes of language learning,
usage, and evolution. One specific discussion is
the differentiation between knowing and using a
language. de Saussure (1916) distinguished be-
tween language with specific rules and words
(langue) as an ongoing negotiated fulfillment of
the societal need for communication and its us-
age (parole). Similarly, Chomsky (1965) uses the
term linguistic competence for the unconscious
understanding of language and linguistic perfor-
mance for using languages in any utterance. In
this work, we follow Chomsky’s terminology and
treat LMs as static artifacts of a certain time,
omitting ongoing processes of the society consid-
ered by de Saussure. Specifically, we focus on
assessing the linguistic competence of LMs, in-
cluding specific linguistic phenomena like word
dependencies and their distinct POSs. Opposed,
contemporary benchmarks (Cobbe et al., 2021;
Petroni et al., 2019b, 2020) assess linguistic per-
formance by providing textual instructions and
verifying LMs’ textual responses. Note that this
evaluation protocol can also verify an understand-
ing of specific linguistic phenomena, as done
in Blevins et al. (2023) or Liang et al. (2023) for
syntactic structure. However, such evaluation pro-
tocols conflate LMs’ linguistic competence with
latent abilities (like following instructions). Thus,
Holmes unique evaluation perspective is indis-
pensable to assess linguistic phenomena isolated
to assess LMs comprehensively.

Linguistic Phenomena We define the linguistic
competence of LMs as their ability to understand
a diversity of linguistic phenomena. Specifically,

we focus on five phenomena types: morphology,
the structure of words; syntax, the structure of
sentences; semantics, the meaning of words; rea-
soning, the use of words in logical deduction and
other related phenomena like negation or specula-
tion; discourse, the context in text like rhetorical
structure. Following Mahowald et al. (2024), we
categorize these phenomena types into two groups:
morphology and syntax are formal phenomena,
which include understanding grammatical rules
and statistical patterns, while functional ones
(semantics, reasoning, and discourse) focus on
practical abilities like interpreting text sentiment
or detecting the existence of speculation.

Datasets We define a dataset as text examples
and labels covering a specific aspect of a linguistic
phenomenon, like words and their POS tags. Typ-
ically, these labels are unambiguous, enabling us
to assess the specific aspect under test in isolation.

Probes Using probes, we empirically assess
the linguistic competence of LMs regarding the
featured linguistic phenomena in Holmes. We
design probing tasks using the widely recog-
nized classifier-based probing method (Tenney
et al., 2019a; Hewitt and Manning, 2019;
Belinkov, 2022) also known as diagnostic clas-
sifiers (Veldhoen et al., 2016; Giulianelli et al.,
2018). Running such a probing task involves train-
ing a probe (linear model) using the specific
dataset to test a distinct aspect of a linguistic
phenomenon in isolation. To do this, we encode
the text examples of a dataset with a given LM
and use them to train the probe regarding the
specific labels representing the tested linguistic
phenomenon. The probe’s performance is then
used to approximate the LM’s understanding of
the specific phenomenon. A higher score indi-
cates that LMs capture patterns relevant to this
phenomenon internally, which in turn enhances
the accuracy (Tenney et al., 2019b).
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3 Meta-Study

This section summarizes our survey of 274 studies
(§ 3.1) probing LMs’ linguistic competence. We
analyze them regarding their evolution, probing
tasks and LMs addressed (§ 3.2), and identify the
need to consolidate existing resources (§ 3.3).

3.1 Scope

We analyze 28k papers (P ) from 2015 to August
2023 of major NLP conferences (TACL, ACL,
AACL, COLING, EACL, EMNLP, NAACL,
and the corresponding workshops) expanded
with selected work from other venues such as
ICLR. To identify relevant work, we employ a
semi-automatic approach. First, we use automated
filtering based on paper metadata and full text,1

grounded in the occurrence of established termi-
nology related to the specific focus of Holmes,
namely, disentangling the linguistic competence
of LMs by studying their internal representations.
This terminology, including probing and probe,
is commonly found in influential literature sur-
veys (Rogers et al., 2020; Belinkov, 2022) and
diverse investigation settings, such as analyzing
internal representations using linear classifiers
(Tenney et al., 2019b; Conneau et al., 2018;
Elazar et al., 2021) or masked-based approaches
focusing on lexical knowledge of LMs (Petroni
et al., 2019a; Talmor et al., 2020a; Kassner et al.,
2021; Peng et al., 2022). Specifically, we de-
fine three criteria to identify relevant papers:
P ′ = {∀p ∈ P |p ∈ P1 ∪ p ∈ P2 ∪ p ∈ P3},
where:

P1: papers with probing or probe in the title.
P2: papers with probing or probe in the abstract

and at least five occurrences in the main content.
P3: papers with probing or probe occurring at

least ten times in the main content.

We identified 493 matching papers (P ′) by ap-
plying these criteria. We then manually review
the automatically generated candidate list (P ′)
and select studies that examined LMs with one or
more specific linguistic phenomena as part of their
analysis or as a primary contribution. This process
involves filtering out papers using the term prob-
ing in other senses, such as probing hash tables in

1We use PyPDF2 v3.0.0, DBLP and semanticscholar API.

Figure 3: Citation analysis considering probing cita-
tions originating from the set of relevant work and
every other citation (general citations). The color scale
indicates the ratio (α) between them.

Bogoychev and Lopez (2016). Moreover, we sup-
plement the candidates with a curated selection of
highly relevant studies that do not meet the above
criteria. For example, seminal works published
before 2019 which employ terms like ‘‘diagnostic
classifier’’ (Giulianelli et al., 2018; Hupkes and
Zuidema, 2018), as well as other notable studies
(Gupta et al., 2015; Shi et al., 2016). This compre-
hensive approach yields 274 relevant papers (Pr),
which we further analyze subsequently.

3.2 Analysis
i) Scattered Evolution Calls for Consolidation.
We begin by examining the evolution of relevant
studies in the field, illustrated in Figure 3. We
analyze the citation patterns among these studies,
distinguishing between probing citations (Cp),
which represent citations between them, and gen-
eral citations (Cg), which encompass all other
citations. The colorized ratio α =

|Cp|+1
|Cg |+1 visually

relates these two measures. This analysis reveals
that only a small fraction of the works have gar-
nered broad recognition, with 16 papers exceeding
200 general citations. Furthermore, probing works
cite each other relatively infrequently, with an av-
erage probing citation ratio of α = 0.1. This
suggests that other fields have paid limited atten-
tion to LMs’ linguistic competence. The scattered
citation patterns and lack of engagement with this
topic underscore the need to consolidate exist-
ing resources and establish a solid foundation to
bootstrap research in this area.

ii) Probing Work Prioritizes Tasks and
Analytics over Methods. We categorize the se-
lected work according to their probing focus into
three categories: methodological, which intro-
duces new methods, such as control tasks (Hewitt
and Liang, 2019) or minimum description length
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Figure 4: Categorization of the selected studies by their
focus and their conducted probing method.

(Voita and Titov, 2020); task-focused, which
assesses specific linguistic phenomena as main
contributions, such as discourse relations in text
(Koto et al., 2021); and analytical, which uses
probing tasks to analyze LMs, such as the im-
pact of pre-training data (Zhang et al., 2021). As
shown in Figure 4, the majority of studies (51.8%)
focus on specific probing tasks, such as numeric
scales (Zhang et al., 2020), or morphosyntactic
analysis (Shapiro et al., 2021). A significant pro-
portion (35.7%) use probing as a supplementary
analytical tool, for example, to analyze the effect
of fine-tuning (Mosbach et al., 2020a; Zhu et al.,
2022a). The remaining 12.5% address method-
ological problems related to probing (Wu et al.,
2020; Immer et al., 2022; Zhu et al., 2022b).

iii) The Dominance of Classifier-based
Probing. Next, we analyze the specific em-
ployed probing method regarding four categories:
(1) classifier-based probing, which uses linear or
shallow models to probe internal representations
of LMs; (2) mask-based probing, where LMs
fill gaps to verify linguistic phenomena; (3)
attention-based probing, which relies on atten-
tion patterns; and (4) other methods that do not
fit into the previous three categories. Our analysis
indicates that most studies (74%) utilize the
classifier-based probing method, as exemplified
in Tenney et al. (2019a). Additionally, 20% of
studies conduct mask-based probing, as shown
in Talmor et al. (2020b). In contrast, only a
small portion of work (∼ 3%) considers attention
patterns or other approaches, such as bridging
(Pandit and Hou, 2021) or dimension selection
(Torroba Hennigen et al., 2020).

iv) Tasks and LMs Are Barely Broadly
Evaluated. Finally, we examine the tasks
and LMs investigated by the relevant studies.
For example, Tenney et al. (2019b) explore
BERT on various tasks, including POS tagging,

Figure 5: Overview of how many tasks single LMs
cover and vice versa. Single examples are highlighted.

Figure 6: Cumulative coverage of LMs and tasks,
considering all relevant studies and their focus.

semantic-role labeling (SRL), and others. Our
analysis reveals that, collectively, these studies
cover a remarkable 289 unique tasks and 161
distinct LMs, demonstrating a broad scope of in-
vestigation. Below, we delve into the details and
highlight noteworthy findings.

We analyze how LMs and tasks are considered
jointly in Figure 5. Despite the broad coverage,
single studies, including fundamental ones, main-
tain a particular focus and consider only a fraction
of LMs and tasks. For example, while most tasks
(72%) were assessed on BERT, RoBERTa’s cov-
erage has already declined to 42%. Conversely,
POS tagging, the most probed task, was only
evaluated on 23% of the LMs, excluding promi-
nent examples like BART (Lewis et al., 2020). In
particular, more recently released larger and pow-
erful LMs, like Pythia (Biderman et al., 2023),
UL2 (Tay et al., 2023), or LLAMA-2 (Touvron
et al., 2023), as well as instruction-tuned LMs like
FLAN-T5 (Chung et al., 2022) or LLAMA-2-Chat
(Touvron et al., 2023), are missing almost en-
tirely, with only a few recent exceptions (Hu and
Levy, 2023; Waldis et al., 2024a). Again, these
insights underscore the need to consolidate exist-
ing resources for more comprehensive coverage.

Figure 6 further highlights this point by sort-
ing LMs and tasks according to their frequency
of mention in relevant works and plotting their
cumulative coverage. For example, considering
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Type Phenomena Example Label

Morphology Subject-Verb Agreement
And then, the cucumber was hurled into the air. Correct
And then, the cucumber were hurled into the air. Wrong

Syntax Part-of-Speech And then, the cucumber was hurled into the air. NN (Noun Singular)
Semantic Semantic Roles And then, the cucumber was hurled into the air. Direction
Reasoning Negation And then, the cucumber was hurled into the air. No Negation
Discourse Node Type in Rhetorical Tree And then, the cucumber was hurled into the air. Satellite

Table 1: Example instance of Holmes datasets for every type of linguistic phenomena. The relevant
part of the example for the specific label is underlined.

all studies (red line), the top-10 most mentioned
LMs account for 80% of all LMs mentions (black
dot), while the remaining 151 unique LMs account
for only 40%. A comparison of the paper’s focus
reveals that methodological studies rely only on
a limited set of 24 LMs and 36 tasks. In con-
trast, task-focused and analytical work cover a
similar number of LMs (91 and 99, respectively).
However, due to their distinct focus, task-focused
studies cover a significantly larger number of tasks
(202) than analytical ones (115).

3.3 Summary

Our meta-study emphasizes the need to con-
solidate existing resources for a comprehensive
assessment of the linguistic competence of LMs
—a manifold but rather a blind spot in evaluation
research. Apart from more thorough evaluations,
such a stimulus can significantly boost future
research, as happened in computer vision with
ImageNet (Deng et al., 2009) or in NLP with
GLUE and SuperGLUE (Wang et al., 2019a,b).

4 Holmes Benchmark

With Holmes, we provide an extensive ground to
tackle these identified deficiencies in the existing
literature and comprehensively investigate the En-
glish linguistic competence of LMs. Specifically,
Holmes features 208 datasets addressing distinct
aspects of 66 phenomena covering morphology,
syntax, semantic, reasoning, and discourse.

4.1 Datasets

We provide a comprehensive coverage of linguis-
tic phenomena by covering 208 unique datasets.
We leverage existing and established resources
like OntoNotes (Weischedel et al., 2013), En-
glish Web Treebank (Silveira et al., 2014), or
BLiMP (Warstadt et al., 2020) to create datasets
addressing phenomena like the POS of words,

their dependencies or the linguistic acceptabil-
ity of sentences. Further, we include a range of
less employed data, addressing contextualization
of words (Klafka and Ettinger, 2020), reasoning
(Talmor et al., 2020b), semantic decomposition
(White et al., 2016; Rudinger et al., 2018a,b;
Govindarajan et al., 2019; Vashishtha et al., 2019),
grammatical knowledge (Huebner et al., 2021),
bridging (Pandit and Hou, 2021), and rhetorical
(Carlson et al., 2001) and discourse (Webber et al.,
2019) structure in text. Finally, we cover rarely
probed phenomena like negation (Szarvas et al.,
2008; Konstantinova et al., 2012; Vahtola et al.,
2022), or word complexity (Paetzold and Specia,
2016).

4.2 Structure

Apart from the comprehensive scope, Holmes
provides a clear structure for specific evaluations
on different levels of aggregation. We first group
the datasets according to the linguistic phenomena
addressed. Next we categorize these phenomena
into their previously defined five phenomena types
(see § 2): morphology, like the agreement of sub-
ject and verb; syntax, such as the part-of-speech
of words; semantics, like semantic roles of words;
reasoning, such as detecting a negated sentence;
and discourse, like selecting the correct following
sentence. Table 1 provides examples for every
type of phenomenon. Note that we rely on the
categorization provided by the specific studies
whenever given (more details in the Appendix
§ A.3). For example, Conneau et al. (2018) cate-
gorized the tense of the main clause as semantic.
This phenomenon could also be categorized as
syntax if we test the detection of incorrect formu-
lations given a specific tense. However, we follow
the authors’ suggestion and test the detection of
the tense on a sentence level, which represents
semantic aspects.
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4.3 Experimental Setup
Holmes evaluation follows the primarily used
classifier-based probing paradigm, as described
in § 2, to analyze the internal representations of
the last layer of LMs.2 Thereby, we maximally
disentangle the understanding of distinct linguis-
tic phenomena from each other and from other
cognitive abilities, such as following textual in-
structions. Further, this method allows us to assess
any LM type, including sparse, static, or contex-
tualized ones. Based on the specific dataset, we
either select the embeddings of the specific in-
put tokens (like single words for POS tagging) or
average embeddings across a span or the whole
sentence. We define a probing task as training
a probe fp (linear model without intermediate
layers) using these embeddings as inputs and
the dataset labels as training signals. If not de-
fined in the original data, we divide the dataset
samples into train/dev/test split following a ra-
tio of 70/10/20. We repeat this procedure five
times using different random seeds for a robust
measurement.

4.4 Evaluations
We approximate how well an LM encodes specific
linguistic phenomena using the absolute predic-
tion performance of the probes. In addition, we
rigorously evaluate the reliability of probing re-
sults using control tasks and from an information
theory perspective (Voita and Titov, 2020; Hewitt
and Liang, 2019). Different from commonly used
prompting assessments, this particular evaluation
protocol refrains from known fallacies in which
the results and conclusions are sensible with spe-
cific instructions (Mizrahi et al., 2024; Min et al.,
2022) or few-shot examples (Lu et al., 2023).

Task Score Metric Based on a dataset’s specific
task type, we use a corresponding performance
measure, macro F1 for classification or Pearson
correlation for regression. In addition, we calcu-
late the standard deviation σ of the probe across
multiple seeds. A lower σ indicates a better en-
coding of a given linguistic phenomenon since the
measurement is robust to noise. Further, we use
the task score for ranking-based evaluation of all
evaluated LMs L = {l1, . . . , lm} within Holmes.
We calculate the mean winning rate mwr (in per-
centage), telling us how many times one LM l1

2Please refer to Appendix § A.4 and Figure 14 for more
details about the composition of the internal representations.

wins against others (Liang et al., 2023). With a
higher mwr, we assume an LM encodes tested
linguistic phenomena better than others.

Compression Next, we evaluate the probes’
reliability from an information-theoretic perspec-
tive. Following Voita and Titov (2020), we use
the compression I . It is the ratio between the
minimum description length mdl of encoding n
instances with a label space of K compared to
applying a uniform encoding I = u

mdl . A higher
I means fewer bits are needed to encode the in-
stance and their labels, indicating that the given
linguistic phenomenon is more clearly encoded in
the internal representation of LMs.

Selectivity A reliable probe should grasp pat-
terns relevant to the tested phenomena in the
internal representations of LMs but should not
be able to learn anything else. Therefore, we
expect high performance when evaluating the
specific dataset but low performance when we
randomize training signals. We check this us-
ing control tasks introduced in Hewitt and Liang
(2019). Specifically, we calculate the selectivity
S = F1(y, ŷ) − F1(y

′, ŷ′) as the difference be-
tween the probe trained with the original labels
y and the control task where we train the probe
with randomly assigned labels y′. With a higher
S, we assume the detected patterns are relevant
for the specific phenomena under test, as random
patterns do not lead to similar performance.

5 Holmes Results

Using Holmes, we evaluate a diverse collection
of 59 LMs.3 Using the results of these extensive
experiments, we first answer the research ques-
tion: What is the linguistic competence of LMs? In
doing so, we discuss the reliability of results (i) and
the linguistic competence of LMs concerning the
unique structure of Holmes (ii). Subsequently,
we examine how linguistic competence varies
among LMs, as we find LMs prevailing for dif-
ferent types of linguistic phenomena (Figure 7)
and delve into the effects of model architecture
(iii), size (iv), and instruction tuning (v). Finally,
we show how Holmes’ results relate to the lin-
guistic performance of LMs by comparing them
with the OpenLLM benchmark (vi) and further
experiments with the HELM benchmark (vii).

3Please refer to Appendix § A.2 for a complete list.
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Figure 7: A subset of Holmes rankings (↓) for various
evaluated LMs. FLAN-UL2 outperforms the others
overall, while different LMs prevail for the five distinct
types of linguistic phenomena.

Figure 8: Reliability evaluation Holmes results to
ensure low deviation across random seeds, high infor-
mation compression (log), and high selectivity. Every
dot represents the averaged results of one probing
dataset across LMs. The x-axis represents the task
metrics (either person correlation or macro F1).

i) Holmes Results Are Reliable. Figure 8
shows the reliability of probing-based evalua-
tions using averaged results across random seeds
and LMs. Single outliers are datasets that are too
hard for all LMs, either because the sample size
is too small or the linguistic phenomena under
test are too complex. First, a low average devia-
tion (σ = 0.02) across five seeds underscores the
reliability of probing-based measures. These re-
sults also highlight the stability of probing results
over prompting-based evaluations, where prompt
paraphrasing leads to deviations of σ = 0.07 re-
ported in Mizrahi et al. (2024). Next, substantial
compression (average I = 1.9) and selectivity
(average S = 0.31) further confirm the probes’
reliability. Note, for selectivity, we consider only
base-sized model (10m–200m parameters) for
computational efficiency. Interestingly, two par-
allel trends emerge. More challenging datasets
with many labels, like POS tagging, are arranged
around a selectivity of 0.1 to 0.4 and a task metric
of 0.3. In contrast, for easier binary classification
tasks (such as linguistic applicability), we observe
selectivity around 0.2 to 0.5 and a task metric of
0.6 to 0.9. Furthermore, our analysis reveals a

Figure 9: Average task metric, difficulty, and discrim-
inability for each phenomena type. The dashed lines
show the average measure over all datasets.

statistically significant positive correlation (p <
0.05) between the task metrics and both compres-
sion (τ = 0.64) and selectivity (τ = 0.65). This
finding provides strong evidence for the reliability
of our task metric, thereby justifying its use as the
primary evaluation measure in our study.

ii) LMs’ Linguistic Competence is Manifold.
We focus on what Holmes tells us in general
and regarding formal and functional phenom-
ena, as defined in § 2. We report in Figure 9
the task metric, discriminability, and selectivity,
averaged for every phenomena type. Note, dis-
criminability (Rodriguez et al., 2021) quantifies
the alignment of LMs ranking of one specific
dataset compared to the overall rankings using the
Kendall Tau correlation. Considering these three
metrics, all tested LMs strongly encode formal
phenomena (morphology and syntax), which of-
ten depend on the local neighborhood of words.
Therefore, we assume that LMs approximate these
co-occurrences during pre-training with high pre-
cision. For example, the specific POS tag of a
word, like man (noun), primarily depends on its
surroundings, such as the frequent predecessor the.
In contrast, LMs encode less information about
functional phenomena (semantics, reasoning, and
discourse) since they show a relatively low per-
formance regarding the task metric. For these
functional phenomena, we assume more complex
co-occurrences are required to capture the broad
context in language, such as the rhetorical relation
of two distant text spans. Despite these differences
between formal and functional phenomena types,
they contribute to the benchmark in a balanced
way. A low to medium discriminability indicates
that none of these linguistic phenomenon types
dominates the overall LM rankings.

This balanced influence of the five phenom-
ena types is further visible when considering their
ranking correlations (Figure 10, left). A high aver-
age correlation of 68.4±7.5with the overall results
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Figure 10: Kendall-tau correlation within Holmes
(left) and compared to OpenLLM (right). Green stars
indicate significant correlations (p < 0.05).

(last column/row) hints that they are facets of a
broader occurrence but share common character-
istics. Still, breaking into categories is meaningful,
as the phenomena types (first five columns/rows)
are medium correlated (average of 54.7 ± 13.9).
Analyzing the results of phenomena types fur-
ther highlights the value of this distinction. While
results of semantics and reasoning are similarly
correlated with the overall results (73.9 and 75.6),
their direct correlation (58.4) indicates their sup-
plementary nature. Further, discourse results show
the lowest correlation with others (44.4 ± 14.7),
indicating a particular scope.

iii) Encoder Architecture Equips LMs with
High Linguistic Competence. Next, we dis-
cuss the impact of model architecture on the
linguistic competence of LMs. In Figure 11 (left),
we compare encoder and decoder LMs. Due to
the absence of big encoder LMs, we consider
five encoder and six decoder LMs with up to
220m parameters. Encoder LMs show a higher
mwr of 52% than decoder LMs (21%). This ob-
servation is the most saturated for morphology
or syntax, encompassing a variety of token-level
phenomena, like part-of-speech. We assume that
the missing bi-directional encoding of decoder
LMs causes this lower performance because the
available context of one token heavily depends
on its position. Thus, even common tokens, like
the, have different potential representations—at
the beginning or middle of a sentence. These in-
stabilities are further evident when considering
Figure 11 (right), which reports the accuracy for
the top-20 most common POS tokens (such as
the) based on the pos, xpos, upos dataset. Given
their high frequency, one expects stable prediction
performance. Surprisingly, encoder LMs (BERT

Figure 11: Comparison of the phenomenon types for
encoder and decoder LMs (left) and on the right, the
accuracy of the top-20 most common tokens of the three
part-of-speech probing datasets for BERT, RoBERTa,
GPT2, Pythia, and Llama-2.

and RoBERTa) show higher median accuracy and
lower deviations compared to the same-size de-
coder counterpart (GPT2). While scaling model
size to 12B (Pythia) and 70B (Llama-2) allows for
improved accuracy and lower deviations, decoder
LMs do not match the encoder performance, even
up to 700 times bigger.

iv) More Parameters Improve LMs’
Linguistic Competence. We discuss how
the number of parameters influences the lin-
guistic competence of LMs. Given the variety
of LMs of different sizes, we focus on the
Pythia (decoder-only) and T5 (encoder-decoder)
families. From Figure 12, we observe for both
Pythia and T5 that the linguistic competence
scales with model size, and it is particularly
pronounced after exceeding 0.5B (Pythia) and
1.0B (T5) parameters. Again, model architecture
is crucial, as T5 LMs (encoder-decoder) exhibit
a clearly higher mean winning rate of 40–70%
than Pythia (decoder-only) ones with mwr of
20–60%. Further, we found formal phenomena
evolving differently with increased model size
than functional ones. Specifically, morphology
and syntax start at a lower level, with an apparent
performance jump after 0.5B (Pythia) and 1.0B
(T5) parameters, followed by slow but steady
growth. Differently, semantics, reasoning, and
discourse start at a higher mwr, followed by
a continuous improvement as the model size
grows. From these results, we assume that more
parameters enable language models to better
approximate simple word co-occurrences
in nearby contexts. While handling formal
phenomena like word dependencies, they struggle
with more distant and complex co-occurrences,
such as rhetorical relations.
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Figure 12: Effect of scaling LM parameters considering the T5 and Pythia model families providing eight and five
different sizes. We address the overall scope (left) and the different types of linguistic phenomena (right).

Model Morphology Syntax Semantics Reasoning Discourse Overall

Comparison against Llama-2 with 7 billion parameters
Llama-2-Chat −8% +5% −6% −8% −2% −2%

Comparison against T5 with 11 billion parameters
FLAN-T5 +9% +1% −3% +6% 0% +1%

Comparison against Pythia with 12 billion parameters
Dolly-v2 +4% −1% −9% −2% +2% −3%

Comparison against Llama-2 with 13 billion parameters
Tülu-2 +6% +3% −13% +1% −13% −4%
Orca-2 0% −4% −6% +3% −2% −3%
Llama-2-chat +9% +6% 0% +7% +1% +4%
Vicuna-v1.5 +26% +9% 0% +8% +2% +7%

Comparison against UL2 with 20 billion parameters
FLAN-UL2 +41% +15% +6% +11% −1% +12%

Comparison against Mixtral with ∼47 billion parameters
Mixtral-Instruct +6% +4% +1% +9% +3% +4%

Comparison against Llama-2 with 70 billion parameters
Tülu-2 +14% 0% −9% −4% +1% −2%
Llama-2-Chat +24% +13% +3% +3% +13% +10%

Average +10% +5% −3% +4% −1% +2%

Table 2: The mixed effect of instruction tuning on
the mean winning rate compared to the pre-trained
LMs.

v) Instruction-tuned LMs Get Better at
Mimicking Language than Understanding it.
We focus on how instruction tuning affects
LMs’ linguistic competence and compare tuned
and pre-trained LMs, for example, FLAN-UL2
vs. UL2. Table 2 shows less saturated effects
for the overall scope while being more pro-
nounced for the five phenomenon types - again
emphasizing the structured and comprehensive
evaluation of linguistic competence. On aver-
age, we found instruction tuning has the highest
effect on morphology (+10%) followed by syn-
tax (+5%), reasoning (+4%), and a negative
effect for semantics −3% and discourse −1%.
These results confirm previous assumptions that
instruction tuning updates are often superfi-
cial (Yadav et al., 2023; Hershcovitch et al.,
2024; Sharma et al., 2023) and that LMs get bet-
ter at mimicking language (formal phenomena)
than understanding it, measured with functional
phenomena (Mahowald et al., 2024). Further,

larger models benefit more from instruction tun-
ing. Llama-2-70b-Chat and FLAN-UL2 gain up
to +24% and +41% for morphology and +10%
and +12% on average. When comparing LMs
based on Llama-2-13B, we see that specific
fine-tuning methods shape the LMs differently.
The top-ranked 13B LM for Holmes and Open-
LLM, Vicuna, was trained on fewer instructions
than others (125k) but of higher quality. This high
quality seems important as LMs with more in-
structions but lower quality (Tülu with approx.
330k instructions) lose performance, the same
for 70B versions. Further and aligned with the
previous comparison with OpenLLM results, rea-
soning specialization (Orca-2) is reflected in the
corresponding phenomena. These insights show
again that while providing a particular perspec-
tive,Holmes shows apparent differences between
LMs and allows us to map them to methodological
decisions.

vi) Internals of LMs are Partly Aligned with
their Linguistic Performance. We analyze the
alignment of the probing-based LM rankings
of Holmes with prompting-based ones when
evaluating downstream using the LMs responses
(linguistic performance). Specifically, we com-
pare against OpenLLM (Beeching et al., 2023).4

Figure 10 (right) shows Holmes and OpenLLM
rankings of jointly evaluated LMs are medium cor-
related, hinting that LMs’ linguistic competence
is partly reflected in their language utterances
when solving concrete tasks. While syntax, se-
mantics, and discourse show similar correlation
(54.7 to 58.0), morphology and reasoning exhibit
a substantially higher one of 65.3 and 77.5. These
results suggest that LMs’ reasoning abilities are

4Unlike other benchmarks like HELM (Liang et al., 2023),
OpenLLM covers many open LMs’ leading to high overlap
with Holmes.
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reflected in their internal representations when
evaluating related phenomena like identifying the
cause of negations. These correlation patterns are
consistent across the three most meaningful Open-
LLM datasets (MMLU, TruthfulQA, and GSM8K).
As TruthfulQA shows lower correlations with the
linguistic phenomena and other datasets within
OpenLLM, we presume this dataset captures
distinctly different skills (possibly knowledge).

vii) Prompting is not a Substitute for Prob-
ing When Evaluating LMs’ Linguistic Com-
petence. Finally, we compare probing- and
prompting-based LM rankings on the jointly
evaluated BLiMP tasks (Warstadt et al., 2020)
of Holmes and HELM (Liang et al., 2023).
Results (Appendix, Figure 15) show apparent
discrepancies (rank correlation τ = 0.05) when
evaluating LMs’ internal representations or their
responses (linguistic performance) to HELM in-
structions. As most prompting-based results from
HELM fall below the random baseline, only
probing-based evaluation can effectively iso-
late the assessment of linguistic phenomena. In
contrast, prompting-based methods mix this as-
sessment with other abilities, such as instruction
following. Similar to Hu and Levy (2023), these
insights show the need for a more comprehensive
comparison of different evaluation protocols like
probing, prompting, or log-probabilities (used in
HELM in Figure 33 on page 58 as a workaround
for BLiMP). Nevertheless, probing provides a uni-
fied evaluation protocol assessing the diversity of
linguistic phenomena using representations of to-
kens, spans, or whole texts beyond minimal pair
tasks testing whether correct or wrong sentences
are preferred.

6 Efficiency

Seamless, easy, cost-effective integration of new
LMs is crucial to adopting benchmarks widely.
As Holmes covers many datasets and examples,
it is computationally heavy in encoding text and
training the probes. It takes ∼ 6 GPU days to
encode the 70 million tokens (∼230k pages) and
two days to run the 208 probes for a 70b model.
To account for this issue, we introduce Flash-
Holmes, a streamlined version of Holmes, to
evaluate new LMs with a fraction of the compute
while maintaining evaluation integrity.

Besides excluding licensed data (18 probing
datasets), we analyze the effect of discarding

Figure 13: Analysis of the reliability vs. efficiency
trade-off when reducing the number of training data.

training instances. As a result, we reduce the
computation for encoding and the actual probing
simultaneously. We follow Perlitz et al. (2023) and
calculate the rank resolution, 95% CI of model
rank difference. This measure indicates the maxi-
mum expected rank deviation from evaluating an
LM on FlashHolmes compared to Holmes.
For example, a rank resolution of one means
that an LM evaluated on FlashHolmes and
Holmes has the same rank or switch place with
its neighbors with a probability of 95%. Figure 13
shows the resulting rank resolution when train-
ing only on a fraction of the instances, from 1/2
to 1/512. Solely focusing on efficiency (1/512)
still provides a decent rank resolution of ∼2.6.
In contrast, considering 1/2 of the training data
results in the best reliability of ∼0.9. To balance
benchmark reliability and efficiency, we com-
pose FlashHolmes using 1/32 of the training
instances. Precisely, it reduces the computation
expenses of evaluating LMs to ∼3% of what
Holmes would have required while preserving a
high rank-correlation of ∼1.5.

7 Related Work

Benchmarking LMs Benchmarks approximate
LMs abilities like general language understanding
(Wang et al., 2019a,b), out-of-distribution gener-
alization (Yang et al., 2023; Waldis et al., 2024b),
real-world knowledge contradiction (Hou et al.,
2024), adversarial scenarios (Nie et al., 2020;
Wang et al., 2021), or retrieval (Thakur et al.,
2021; Muennighoff et al., 2023). With the recent
advent of large LMs, the predominant method has
shifted to evaluate the obtained linguistic perfor-
mance of LMs when providing textual instructions
(Brown et al., 2020; Hendrycks et al., 2021;
Srivastava et al., 2022). While LMs show sub-
stantial performance on application-oriented tasks
(Liang et al., 2023) or mathematical reasoning
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(Cobbe et al., 2021), such evaluations are sensible
to specific formulations (Mizrahi et al., 2024) or
metrics (Schaeffer et al., 2023) employed. Thus,
results of different benchmarks were found to
disagree substantially (Yuan et al., 2024; Perlitz
et al., 2024).

Assessing the Linguistic Competence of LMs
Analyzing LMs’ linguistic competence started
with static word vectors (Köhn, 2015), sentence
embeddings (Conneau et al., 2018; Adi et al.,
2017), the internals of translation models (Shi
et al., 2016; Bau et al., 2019), or contextualized
LMs (Tenney et al., 2019b,a; Hewitt and Manning,
2019). Other methodological work addressed the
validity of obtained results with control tasks
(Hewitt and Liang, 2019) or from an informa-
tion theory perspective (Voita and Titov, 2020;
Pimentel et al., 2020), or studied causal effects
(Elazar et al., 2021). While further studies focus
on whether LMs follow human understanding
of linguistic competence when solving down-
stream tasks (Belinkov, 2022; Aw et al., 2023;
Mahowald et al., 2024), Mosbach et al. (2020b)
and Waldis et al. (2024a) found that down-
stream task fine-tuning hurts the understanding
of linguistic phenomena.

In contrast to prior studies, Holmes assesses
the linguistic competence of an extensive set
of contemporary LMs covering a comprehensive
collection of linguistic phenomena. Unlike other
work evaluating linguistic phenomena (Blevins
et al., 2023; Amouyal et al., 2024) using prompt-
ing leading to unreliable results (Liang et al.,
2023), probing allows Holmes to reliably and
comprehensively compare LMs regardless of ar-
chitecture or pre-training. As a result, Holmes
can address recent calls to thoroughly and explic-
itly evaluate linguistic phenomena (Hu and Levy,
2023; Lu et al., 2023; Mahowald et al., 2024).

8 Conclusion

Holmes marks the most up-to-date and extensive
consolidation of existing resources addressing the
need to assess the linguistic competence of LMs
in isolation. Our experiments demonstrate that
LMs’ linguistic competence is pronounced regard-
ing formal phenomena but lacks functional ones
when information about broader textual contexts,
such as rhetorical structure, is required. Simulta-
neously, size, architecture, and instruction tuning
are crucial factors for differences among LMs.

As LM and resources in linguistics constantly
grow, we will actively extend Holmes with new
datasets and upcoming LMs.

Ethical Considerations and Limitations

Language Holmes as well as FlashHolmes
solely assess linguistic phenomena for the English
language. As we plan to expand the benchmark
and scope of multilingual data, we focus at the mo-
ment on English because of the widespread avail-
ability of resources, including curated corpora and
the diversity of available LMs.

Last Layer Internal Representation Given the
extensive scope of the analysis presented in this
work, we focus on examining the internal rep-
resentation of LMs through the output of their
last layer. While this analysis provides valuable
insights, it only partially captures the complexity
inherent in LMs across all their layers. To facilitate
further research into the comprehensive analysis
of LMs, we see Holmes providing groundwork,
including the release of the specific tasks in a uni-
fying format and corresponding evaluation code,
which can be easily adapted to investigate specific
layers of LMs.

Coverage We agree with Liang et al. (2023)
and see one fundamental aspect in composing
a benchmark in acknowledging its incomplete-
ness. Linguistic phenomena, LMs, and underlying
meta-studies are a subset of the variety of avail-
able resources. We consolidated them carefully
to provide a comprehensive scope of the lin-
guistic competence and various LMs. However,
as benchmarks evolve as tools to assess LMs,
we will further expand Holmes both with the
existing and upcoming LMs and data resources.

Data Availability Linguistic annotations, in
particular more complex ones targeting phenom-
ena like discourse, are money and time-wise
expensive. Out of 208 datasets included in
Holmes, 18 probing datasets are based on
licensed resources and are not freely avail-
able. However, with FlashHolmes, we provide
an effective and efficient alternative based on
open-access resources. Furthermore, upon con-
firming the granted access, we are happy to share
our probing datasets, including those based on the
licensed resources.
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Bias As Holmes relies on existing resources,
it inherits the bias embodied in these datasets.
Examples of such bias are gender equality or
gender fairness, like the use of neo pronouns such
as em in Lauscher et al. (2023).

Dataset Contamination Holmes encompasses
a large collection of established datasets, like
OntoNotes (Weischedel et al., 2013). While we
solely rely on LMs with open-sourced weights, the
training or instruction-tuning data is not known
for all of them, as for the Llama-2 (Touvron
et al., 2023), Mixtral (Jiang et al., 2024), or
Wizard (Xu et al., 2023) LMs. Therefore, we
need to expect that some texts were part of
the LMs’ pre-training corpora and that specific
tasks, such as named-entity recognition (NER),
were used during instruction tuning. However,
instruction-tuning aligns LMs’ linguistic perfor-
mance to produce coherent text responding to
specific textual instruction provided and does
not align LMs’ internal representations explicitly
(Brown et al., 2020; Touvron et al., 2023; Jiang
et al., 2024). As Holmes evaluates the linguistic
competence using LMs’ internal representations,
it retains its validity even under potential data
contamination (Balloccu et al., 2024). Build-
ing upon our results, showing that downstream
abilities are partly reflected in LMs’ inter-
nal representations, one could examine whether
instruction-tuning injects task-specific informa-
tion into LMs’ internal representations, thereby
detecting task contamination.
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A Additional Details of Holmes

A.1 Additional Details on the Evolution of
Probing Literature

We analyze publication trends by year and venue
as shown in Table 3. Less work was pub-
lished between 2015-2018 (earlier) focusing on
LSTM-based (Linzen et al., 2016; Conneau et al.,
2018) and static LMs (Köhn, 2015; Linzen et al.,
2016; Belinkov et al., 2017; Conneau et al., 2018).
With the release of BERT (Devlin et al., 2019)
in 2019, we note increasing attention to analyzing
linguistic abilities within LMs, with a peak of 90
papers in 2022. Considering the venue, more than
half of the relevant work (149 papers) was pub-
lished at major conferences (ACL and EMNLP),
and 68 papers were published at AACL, EACL,
NAACL, and COLING.5 In addition, we observe
a constant contribution of TACL, various work-
shops, such as Analyzing and Interpreting Neural

5Note that EMNLP-23 and AACL-23 proceedings were
not published when conducting this meta-study.

earlier 2019 2020 2021 2022 2023 Total

ACL 2 10 12 9 34 25 92
AACL – – – – 1 – 1
COLING – – 10 – 9 – 19
EACL – – – 7 – 15 22
EMNLP 2 4 13 17 21 – 57
NAACL – 3 – 9 14 – 26
TACL 1 1 2 3 3 1 11
Workshops 4 4 10 10 7 1 36
Other 1 2 1 1 1 4 10

Probing 10 24 48 56 90 46 274
All Papers 8,056 3,111 3,822 4,294 5,133 3,647 28,063

Table 3: Evolution of probing studies. Note that
EMNLP-23 and AACL-23 proceedings were not
published when conducting this meta-study.

Networks for NLP or Representation Learning for
NLP.

A.2 Experimental Details

Probing Hyperparameters Following previ-
ous work (Hewitt and Liang, 2019; Voita and
Titov, 2020), we use fixed hyperparameters for
training the probes: 20 epochs, where we find the
best one using dev instances; AdamW (Loshchilov
and Hutter, 2019) as optimizer; a batch size of 64;
a learning rate of 0.0005; a dropout rate of 0.2; a
warmup rate of 10% of the steps; random seeds:
[0, 1, 2, 3, 4]

Hardware We run all of our experiments us-
ing 12 Nvidia RTX A6000 GPUs. Every GPU
provides 48GB of memory and 10752 CUDA
Cores.

Considered LMs Table 9 outlines the details of
the LMs we evaluate on Holmes in this work.

A.3 Probing Datasets Categorization

We show in Table 4, Table 5, Table 8, Table 6,
and Table 7 which resources Holmes use to
cover morphology, syntax, semantics, reasoning,
and discourse phenomena. Further, we provide il-
lustrative examples of the phenomena. We rely on
33 works providing the data, the specific linguistic
phenomena, or both. For example, for readability,
we use the data of Weischedel et al. (2013) and
calculated the Flesch score (Flesch, 1948).

Morphology First, we feature 19 tasks verify-
ing morphology phenomena: Anaphor agreement,
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determiner noun agreement, subject-verb agree-
ment and irregular forms (Warstadt et al., 2020;
Huebner et al., 2021).

Syntax The second group of 75 tasks verifies
the following syntax phenomena: Part-of-speech
and constituent labeling (Weischedel et al.,
2013); dependency labeling (Silveira et al., 2014);
bigram-shift (whether two words were shifted),
tree-depth (the depth of a sentence constituency
tree), top-constituent-task (top constituency tag),
and sentence-length (Conneau et al., 2018);
subject- & object-number (singular/plural), and
deoncausative-inchoative alternation (interac-
tion of a verb with its context) based on
Klafka and Ettinger (2020); binding, con-
trol/raising, negative polarity item licensing,
island-effects, argument-structure, ellipsis, and
filler-gap (Warstadt et al., 2020; Huebner et al.,
2021).

Semantics Third, consider 67 datasets cover-
ing semantics phenomena: Named-entity labeling
and semantic-role labeling (Weischedel et al.,
2013); tense, semantic odd man out, word
content, and coordination inversion (Conneau
et al., 2018); semantic relation classification
(Hendrickx et al., 2010); semantic proto-roles
(Rudinger et al., 2018a); factuality (if a span
is factual or not) (Rudinger et al., 2018b);
genericity (whether a span is generic or not)
(Govindarajan et al., 2019); event structure (Gantt
et al., 2022); time (time dimension of a span)
(Vashishtha et al., 2019); word sense (White
et al., 2016); sentiment analysis (Socher et al.,
2013); object- and subject-animacy (whether a
entity is animate, like human, or not, such as
cars), object- and subject-gender (male/female),
verb-tense, and verb-dynamic Klafka and Ettinger
(2020); metaphor (Mohler et al., 2016; Birke
and Sarkar, 2006; Steen et al., 2010); com-
plex word identification (whether the word
is complex or not) (Paetzold and Specia,
2016); and passive (Krasnowska-Kieraś and
Wróblewska, 2019). In addition, we derive
an synonym-/antonym-detection dataset using
WordNet (Miller, 1995) and the texts from
OntoNotes v5 Weischedel et al. (2013).

Reasoning Forth, 19 datasets cover reason-
ing phenomena: Paraphrasticity with negation
and antonyms (Vahtola et al., 2022); negation
detection (Szarvas et al., 2008; Konstantinova

et al., 2012; Morante and Blanco, 2012);
negation-span classification (does a span cause
a negation) (Szarvas et al., 2008; Konstantinova
et al., 2012); negation-correspondence (the
target span of a negation) (Szarvas et al.,
2008; Konstantinova et al., 2012); specula-
tion detection, speculation-span classification,
and speculation-correspondence (the target span
of a sepculation) (Szarvas et al., 2008); and
always-never, age comparison, objects compar-
ison, antonym negation, property conjunction,
taxonomy connection, and multi-hop composition
(Talmor et al., 2020b).

Discourse Finally, Holmes embodies 28
datasets addressing discourse phenomena:
Co-reference resolution Weischedel et al. (2013);
bridging (Hou, 2018, 2020; Pandit and Hou,
2021); discourse connective (Nie et al., 2019);
sentence order and next-sentence prediction
(Narayan et al., 2018); Given discourse tree,
whether two nodes correspond (discourse cor-
respondence), the correct order of two nodes
(discourse order), node-node relation (discourse
relation), distance between two nodes (discourse
distance), explicit node class discourse explicit
classes, implicit node class discourse implicit
classes (Webber et al., 2019; Kurfalı and Östling,
2021); and given a rhetorical tree with the
number of child nodes (rst-count), the node
depth (rst-depth), distance between two nodes
rst-distance, node-node relation (rst-relation),
node-node relation group (rst-relation-group), ap-
pear two nodes after each other (rst-successively),
node type (rst-type) (Carlson et al., 2001;
Koto et al., 2021; Kurfalı and Östling, 2021;
Zeldes, 2017).

A.4 Details of Probing Dataset Composition

Whenever possible, we rely on established probing
datasets and transform instances into a unified
format: 1) an inputxwhich is either one or a pair of
span(s) or sentence(s), including the string and an
optional starting and ending index in the context
c when task type is either a span or span-pair
classification; 2) an optional textual context c to
encodex, for example the sentence in which a span
occurs; and 3) a corresponding label y. Figure 14
shows the composition of the specific probing
input x for these four tasks using the internal
representation of the last layer of LMs. Note that
additional averaging operations are required if
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anaphor agreement Katherine can’t help herself*/himself. 3 � �
determiner noun agreement Craig explored that grocery store*/stores. 10 � �
irregular forms Edward hid*/hidden the cats. 3 � �
subject-verb agreement A sketch of lights does not*/do not appear. 10 � �

Table 4: Overview of resources and linguistic phenomena mapping for morphology. We give an
illustrative example for each phenomenon (*indicates the right option, if options are given) and the
number of datasets for the phenomenon by dataset type.

Phenomena Illustrative Example T
ex

t
T

ex
t-

Pa
ir

Sp
an

Sp
an

-P
ai

r
W

ei
sc

he
de

le
ta

l.
(2

01
3)

Si
lv

ei
ra

et
al

.(
20

14
)

C
on

ne
au

et
al

.(
20

18
)

Fl
es

ch
(1

94
8)

K
la

fk
a

an
d

E
tti

ng
er

(2
02

0)
W

ar
st

ad
te

ta
l.

(2
02

0)
H

ue
bn

er
et

al
.(

20
21

)

argument-structure Most cashiers are disliked*/flirted. 20 � �
bigram-shift What are you*/you are doing out there? 1 �
binding Carlos said that Lori helped him*/himself. 8 � �
case-subjective-pronoun He brought the pig this suit.*/The pig brought he this suit. 1 �
constituent parsing sees Bill ⇒ VP 2 1 �
control/raising Julia wasn’t fun*/unlikely to talk to. 5 � �
deoncausative-inchoative alternation The warden melted the ice.*/The warden bought the ice. 1 �
dependency parsing (into, air) ⇒ pobj 1 �
ellipsis He cleans one important book and Stacey cleans a few.*/He cleans one book and Stacey cleans a few important. 3 � �
filler-gap Brett knew what many waiters find.*/Brett knew that many waiters find. 9 � �
island-effects Which bikes is John fixing?*/Which is John fixing bikes? 10 � �
local attractor Can the access work?*/ Can the access works? 1 �
object-number Oh gods! ⇒ Plural 2 � �
part-of-speech cucumber ⇒ NN (Noun Singular) 3 � �
readability Curriculums need selling points. ⇒ 50.5 (middle) 1 � �
sentence-length Oh gods! ⇒ 3 words 1 �
subject-number Things are going to be noticed. Rightarrow Plural 2 � �
top-constituent Did it all matter? Rightarrow VBD NP VP 1 �
tree-depth Where do you want it? ⇒ 6 1 �

Table 5: Overview of resources and linguistic phenomena mapping for syntax. We give an illustrative
example for each phenomenon (*indicates the right option, if options are given) and the number of
datasets for the phenomenon by dataset type.

words are tokenized into multiple tokens to get
one average vector representing one word, for
example, when probing for the part-of-speech tag
of a rare word.

If given, we use the original train/dev/test splits.
However, if this division does not exist, we use a
70/10/20 ratio to form these splits. Furthermore,
we adapted the design of some data to map our
dataset format. Exemplary, for the oLMmpics
(Talmor et al., 2020b) dataset, we transform
the mask-filling tasks into a binary classification
where the correct label corresponds to a sentence
with a correctly filled mask and incorrect to a
sentence where the mask was filled wrongly.

OnToNotes Following Tenney et al. (2019b,a),
we use the OntoNotes (Weischedel et al.,
2013) dataset to derive part-of-speech tagging,
constituent labeling, named-entity labeling, se-
mantic role, and co-reference resolution probing
datasets. Further, we consider with constituent
maximum depth and constituent node length fur-
ther properties of the constituent tree this dataset
OntoNotes.

Dependency Corpus As in Tenney et al.
(2019b,a), we use Universal Dependencies an-
notations of the English Web Treebank to form a
dependency labeling datasets.
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age comparison 21 years old is older than 35 years fold.*/21 years old is younger than 35 years fold. 1 �
always-never Horses have always*/never four legs. 1 �
antonym negation It was not*/really hot, it was cold. 1 �
multi-hop composition Comparing a 23, a 38 and a 31 year old, the last*/first is oldest. 1 �
negation I don’t like bananas. ⇒ Negation 3 1 2 2 � � � �
objects comparison An airplane is bigger*/smaller than a pen. 1 �
property conjunction A pen*/computer is usually located at hand and used for writing. 1 �
speculation Just about every PC can be upgraded. ⇒ Speculation 1 1 1 �
taxonomy connection Ferry and floatplane are both boats*/airplaines. 1 �

Table 6: Overview of resources and linguistic phenomena mapping for reasoning. We give an illustrative
example for each phenomenon (*indicates the right option, if options are given) and the number of
datasets for the phenomenon by dataset type.
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bridging The disease and symptoms of advanced infection. ⇒ Valid Bridge 1 1 �
co-reference resolution National Taiwan University opened the doors of five of its graduate schools. ⇒ Valid Co-Reference 1 �
discourse connective Leaning against his hip. He reclined with his feet up on the table. ⇒ when 1 �
discourse representation theory This is an old story. We’re talking about years ago. ⇒ Implicit Relation 8 �
next-sentence prediction Sentence A, Sentence B ⇒ Valid Next Sentence 1 �
rethorical structure theory The statistics quoted by the ‘‘ new ’’ Census Bureau report ⇒ Elaboration 6 8 � �
sentence order Given Sentence B, C, and D ⇒ C is at position 2 1 �

Table 7: Overview of resources and linguistic phenomena mapping for discourse. We give an illustrative
example for each phenomenon (*indicates the right option, if options are given) and the number of
datasets for the phenomenon by dataset type.

Context Probes Presented in Klafka and
Ettinger, (2020), we compose the nine datasets
verifying LMs’ knowledge about the context of
words. For example, is a word animate (like
animals or humans) or inanimate (like buildings
or vehicles), or is a verb static or dynamic

BLiMP Dataset Using the data presented in the
BLiMP benchmark (Warstadt et al., 2020), we
derive 67 probing datasets verifying specific phe-
nomena, like island effect, covering morphology,
syntax, and semantics. Unlike the original version,
we compose a binary classification task for every
phenomenon, either accepting a valid sentence
or rejecting one that violates the given linguistic
phenomenon.

Zorro Dataset As for the BLiMP tasks, we
convert the 21 distinct Zorro tasks into a bi-

nary classification task on whether a sentence ac-
cepts or rejects the given linguistic phenomena is
violated.

SemEval-2010 Task 8 For semantic relation
classification, we rely on the dataset of Hendrickx
et al. (2010).

Decompositional Semantics Initiative The De-
compositional Semantics Initiative6 provides a
large number of datasets to verify semantic phe-
nomena. Apart from the common use semantic
proto-roles (Rudinger et al., 2018a), we use their
collection of works to compose probing datasets
for factuality (Rudinger et al., 2018b), generic-
ity (Govindarajan et al., 2019), event structure
(Vashishtha et al., 2019), time (Vashishtha et al.,
2019), and word sense (White et al., 2016).

6https://decomp.io/.
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complex word identification membrane ⇒ Complex, his ⇒ Simple 1 �
coordination inversion He knew it, and he deserved no answer. ⇒ Inversion 1 �
event structure Give them to a library or burn them. ⇒ Distributive 4 2 �
factuality I ran across this item on the Internet. ⇒ Factual 1 �
genericity I assume you mean the crazy horse memorial. ⇒ Not Dynamic 6 �
metaphor After all, morons pay taxes, too. ⇒ Valid Metaphor 4 � � �
named-entity labeling Paris ⇒ City 1 �
negative polarity item licensing Only/Even Bill would ever complain. 4 � �
object-animacy The rhino fined the pumpkin. ⇒ Animate 1 �
object-gender The princess uncovered the heiress. ⇒ Feminine 1 �
passive He is considered a European poet through and through. ⇒ Passive Sentence 1 �
quantifiers There aren’t many*/all lights darkening. 6 �
semantic relation classification Those cancers were caused by radiation exposures. ⇒ Cause-Effect 1 �
semantic proto-roles These look fine to me. ⇒ Exists as physical 20 �
semantic odd man out I wanted to know if it was real or a ploy. ⇒ Original 1 �
semantic-role labeling And what effect does their return have on campus? ⇒ ARGM-ADV 1 �
sentiment analysis You ’ll probably love it. ⇒ Positive 1 �
subject-animacy The turtle betrayed the judge. ⇒ Animate 1 �
subject-gender The waitress betrayed the judge. ⇒ Feminine 1 �
synonym-/antonym-detection Is the degree really that important → unimportant to them? ⇒ Antonym Replacement 1 �
tense I quietly snuck up to him and pulled at his sleeve. → Present 2 � �
time His mother was also killed in the attack. ⇒ Minutes 1 �
verb-dynamic The lawyer found the judge. ⇒ Dynamic Verb 1 �
word content You mean Alice. ⇒ Contains Word Alice 1 �
word sense His mother was also killed in the attack. ⇒ Supersense Noun Person 1 �

Table 8: Overview of resources and linguistic phenomena mapping for semantics. We give an illustrative
example for each phenomenon (*indicates the right option, if options are given) and the number of
datasets for the phenomenon by dataset type.

Sentiment Analysis We use the commonly used
work of Socher et al. (2013) and form a probing
dataset targeting sentiment.

Metaphor As in Aghazadeh et al. (2022), we
use the data from Mohler et al. (2016); Birke and
Sarkar (2006); Steen et al. (2010) to form three
metaphor datasets.

Complex Word Identification We consider
word complexity for the first time and use the
data presented in Paetzold and Specia (2016).
It provides annotations for different complexity
levels of words.

Passive We use data from Krasnowska-Kieraś
and Wróblewska (2019) to form a probing dataset
assessing knowledge about passive language.
Synonym / Antonym Replacement Using the
text of the OntoNotes (Weischedel et al., 2013)
and Wordnet (Miller, 1995), we form a probing
dataset to detect synonym and antonym replace-
ment. Specifically, the binary classification task
is: given two texts (the original and an updated

one), was the updated one changed by replacing a
word with its synonym or antonym?

Negation With this work, we verify for the
first time negation based on human annotated
datasets (Vahtola et al., 2022; Szarvas et al., 2008;
Konstantinova et al., 2012). Specifically, we form
different probing datasets.

• Is a text negated or not?

• Given two text spans, does the negation
within the first one correspond to the second
one?

• Given a text span, is it the cue or the scope
of the negation?

oLMmpics We form probing datasets address-
ing different lexical reasoning using the data
presented in Talmor et al. (2020b). As they
provide multiple choices, we form correct in-
stances by filling the gap with the correct
option and wrong ones by filling in the
other options. Specifically, we form dataset for
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Model Citation Size Pre-Training Objective Pre-Training Data Huggingface Tag

Encoder-Only Language Models
ALBERT Lan et al. (2020) 10 million MLM+SOP 16GB albert-base-v2
BERT Tenney et al. (2019a) 110 million MLM+NSP 16GB bert-base-uncased
DeBERTa He et al. (2021) 100 million MLM 80GB microsoft/deberta-base
DeBERTa-v3 He et al. (2023) 86 million MLM+DISC 160GB microsoft/deberta-v3-base
ELECTRA Clark et al. (2020) 110 million MLM 16GB google/electra-base-discriminator
RoBERTa Liu et al. (2019) 110 million MLM+DISC 160GB roberta-base

Decoder-Only Language Models
GPT2 Radford et al. (2019) 117 million LM 40GB gpt2
Pythia-70m Biderman et al. (2023) 70 million LM 300 billion tokens EleutherAI/pythia-70m
Pythia-160m Biderman et al. (2023) 160 million LM 300 billion tokens EleutherAI/pythia-160m
Pythia-410m Biderman et al. (2023) 410 million LM 300 billion tokens EleutherAI/pythia-410m
Pythia-1b Biderman et al. (2023) 1 billion LM 300 billion tokens EleutherAI/pythia-1B
Pythia-1.4b Biderman et al. (2023) 1.4 billion LM 300 billion tokens EleutherAI/pythia-1.4B
Pythia-2.8b Biderman et al. (2023) 2.8 billion LM 300 billion tokens EleutherAI/pythia-2.8B
Pythia-6.9b Biderman et al. (2023) 6.9 billion LM 300 billion tokens EleutherAI/pythia-6.9B
Pythia-12b Biderman et al. (2023) 12 billion LM 300 billion tokens EleutherAI/pythia-12B
Pythia-70m-dedup Biderman et al. (2023) 70 million LM 207 billion tokens EleutherAI/pythia-70m-deduped
Pythia-160m-dedup Biderman et al. (2023) 160 million LM 207 billion tokens EleutherAI/pythia-160m-deduped
Pythia-410m-dedup Biderman et al. (2023) 410 million LM 207 billion tokens EleutherAI/pythia-410m-deduped
Pythia-1b-dedup Biderman et al. (2023) 1 billion LM 207 billion tokens EleutherAI/pythia-1B-deduped
Pythia-1.4b-dedup Biderman et al. (2023) 1.4 billion LM 207 billion tokens EleutherAI/pythia-1.4B-deduped
Pythia-2.8b-dedup Biderman et al. (2023) 2.8 billion LM 207 billion tokens EleutherAI/pythia-2.8B-deduped
Pythia-6.9b-dedup Biderman et al. (2023) 6.9 billion LM 207 billion tokens EleutherAI/pythia-6.9B-deduped
Pythia-12b-dedup Biderman et al. (2023) 12 billion LM 207 billion tokens EleutherAI/pythia-12B-deduped
Dolly-v2 Conover et al. (2023) 12 billion LM+IT 300 billion token + 15K instructions databricks/dolly-v2-12b
Llama-2-7b Touvron et al. (2023) 7 billion LM 2.4 trillion tokens meta-llama/Llama-2-7b-hf
Llama-2-13b Touvron et al. (2023) 13 billion LM 2.4 trillion tokens meta-llama/Llama-2-13b-hf
Llama-2-70b Touvron et al. (2023) 70 billion LM 2.4 trillion tokens meta-llama/Llama-2-70b-hf
Llama-2-7b-chat Touvron et al. (2023) 7 billion LM+IT 2.4 trillion tokens + 27,5K instructions meta-llama/Llama-2-7b-chat-hf
Llama-2-13b-chat Touvron et al. (2023) 13 billion LM+IT 2.4 trillion tokens + 27,5K instructions meta-llama/Llama-2-13b-chat-hf
Llama-2-70b-chat Touvron et al. (2023) 70 billion LM+IT 2.4 trillion tokens + 27,5K instructions meta-llama/Llama-2-70b-chat-hf
IBM-Merlinite Sudalairaj et al. (2024) 7 billion LM+IT 2.4 trillion tokens + 1400k instructions ibm/merlinite-7b
IBM-Labradorite Sudalairaj et al. (2024) 13 billion LM+IT 2.4 trillion tokens + 1400k instructions ibm/labradorite-13b
Vicuna-13b-v1.5 Zheng et al. (2023) 13 billion LM+IT 2.4 trillion tokens + 125k instructions lmsys/vicuna-13b-v1.5
Orca-2-13b Mitra et al. (2023) 13 billion LM+IT 2.4 trillion tokens + 817K instructions microsoft/Orca-2-13b
Wizard-13B-v1.2 Xu et al. (2023) 13 billion LM unknown WizardLM/WizardLM-13B-V1.2
Tülu-2-13b Wang et al. (2023) 13 billion LM+IT 2.4 trillion tokens + 330k instructions allenai/tulu-2-13b
Tülu-2-dpo-13b Wang et al. (2023) 13 billion LM+IT 2.4 trillion tokens + 330k instructions tulu-2-dpo-13b
Tülu-2-70b Wang et al. (2023) 70 billion LM+IT 2.4 trillion tokens + 330k instructions allenai/tulu-2-70b
Tülu-2-dpo-70b Wang et al. (2023) 70 billion LM+IT 2.4 trillion tokens + 330k instructions tulu-2-dpo-70b
Mistral-7b Jiang et al. (2023) 7 billion LM unknown mistralai/Mistral-7B-v0.1
Mistral-7b-Inst Jiang et al. (2023) 7 billion LM unknown mistralai/Mistral-7B-Instruct-v0.1
Mixtral-8×7b Jiang et al. (2024) 47 billion LM unknown mistralai/Mixtral-8×7B-v0.1
Mixtral-8×7b-Inst Jiang et al. (2024) 47 billion LM unknown mistralai/Mistral-7B-v0.1

Encoder-Decoder Language Models
BART Lewis et al. (2020) 121 million DAE 160GB google/facebook/bart-base
T5-small Raffel et al. (2020) 60 million DAE 800GB google/t5-small-lm-adapt
T5-base Raffel et al. (2020) 220 million DAE 800GB google/t5-base-lm-adapt
T5-large Raffel et al. (2020) 770 million DAE 800GB google/t5-large-lm-adapt
T5-xl Raffel et al. (2020) 3 billion DAE 800GB google/t5-xl-lm-adapt
T5-xxl Raffel et al. (2020) 11 billion DAE 800GB google/t5-xxl-lm-adapt
FLAN-T5-small Raffel et al. (2020) 60 million DAE+IT 800GB + 1.8k tasks google/t5-small-lm-adapt
FLAN-T5-base Raffel et al. (2020) 220 million DAE+IT 800GB + 1.8k tasks google/t5-base-lm-adapt
FLAN-T5-large Raffel et al. (2020) 770 million DAE+IT 800GB + 1.8k tasks google/t5-large-lm-adapt
FLAN-T5-xl Raffel et al. (2020) 3 billion DAE+IT 800GB + 1.8k tasks google/t5-xl-lm-adapt
FLAN-T5-xxl Raffel et al. (2020) 11 billion DAE+IT 800GB + 1.8k tasks google/t5-xxl-lm-adapt
TK-Instruct Wang et al. (2022) 11 billion DAE+IT 800GB + 1.6k tasks allenai/tk-instruct-11b-def
UL2 Tay et al. (2023) 20 billion DAE 800GB google/ul2
FLAN-UL2 Tay et al. (2023) 20 billion DAE+IT 800GB + 100k instructions google/flan-ul2

Static Language Models
Glove-6B Pennington et al. (2014) – WP 6 billion tokens glove.6B.300d
Glove-840B Pennington et al. (2014) – WP 840 billion tokens glove.840B.300d

Table 9: Overview of the evaluated LMS covering the corresponding citation, model size, model
architecture, pre-training objective & data, and the Huggingface model tag. Regarding the pre-training
objective, we distinguish between masked language modeling (MLM), sentence order prediction (SOP),
next sentence prediction (NSP), next word prediction (LM), instruction fine-tuning (IT), word denoising
(DAE), and word probabilities from word co-occurrences (WP). For pre-training data, we report known
numbers, either as the size of the corpora in gigabytes (GB), the number of pre-training tokens, the
number of instructions for fine-tuning, or the number of tasks for instruction fine-tuning.

always-never, age comparison, objects compar-
ison, antonym-negation, multi-hop composition
property conjunction, taxonomy conjunction, and
encyclopedic composition.

Bridging We rely on the data presented in
Pandit and Hou (2021) and form two probing
datasets. One is to verify whether a text is linguisti-
cally applicable, considering bridging (antecedent

matches anaphora). And a second one to verify
whether an antecedent and anaphora match.

Discourse Connective Using data from Nie
et al. (2019), we form a probing dataset to as-
sess whether a given connective marker matches
the discourse of the given text.
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Figure 14: Overview of the composition of the probing input x based on the given text the four types of tasks
using concatenating and averaging. In case a tokenizer splits one word into multiple tokens and applies additional
averaging operations, such as when probing the part-of-speech phenomenon.

Sentence Order and Next Sentence Prediction
Following Narayan et al. (2018), we form two
datasets to verify the order of good or badness of
a given sentence and whether two sentences occur
after each other.

Discourse Representation Theory We use data
from Webber et al. (2019) to compose eight prob-
ing datasets addressing discourse representation
theory:

• Four probing dataset predicting the class of
a given span. We distinguish between im-
plicit, explicit, implicit-coarse, and explicit-
coarse.

• The absolute distance, number of words,
between two spans in the text.

• Whether the order of two spans is correct
or not.

• Whether two spans have discourse relation
or not.

• The specific discourse relation of two spans.

Rhetorical Structure Theory Using annota-
tions from Carlson et al. (2001); Zeldes (2017), we
compose 14 probing datasets addressing rhetori-
cal theory. Specifically, we compose the following
seven types of datasets for both works:

• The rhetorical type of a text span, either
nucleus or satellite.

• The number of children of a text span within
the rhetorical tree of the text.

• The depth of a text span within the rhetorical
tree of the text.

• The number of edges between two text spans
within the rhetorical tree.

• The specific rhetorical relation between two
text spans like conclusion.

• The relation group of a specific rhetorical re-
lation between two text spans like evaluation
for the relation conclusion.

• Whether two text spans occur after each other
in the rhetorical tree.
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Figure 15: Detailed Holmes vs. HELM (Liang et al., 2023) comparison for 40 open decoder models and 22 Blimp
datasets covering quantifier, island effects, irregular forms, and binding phenomena. We use the evaluation code
of HELM and run the prompting-based adaption (multiple joice joined). The Holmes and Helm results for 40
open decoder models. These results show the advantage of disentangled evaluation (Holmes) over entanglement
evaluations (like in HELM), which intertwine the understanding of specific linguistic phenomena and other
abilities (like following instructions or answering precisely) in HELM. Most HELM results are below the random
baseline, underscoring the necessity to measure linguistic phenomena directly in isolation within LMs.
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