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Abstract

Relation extraction has evolved from super-
vised relation extraction to zero-shot setting
due to the continuous emergence of newly
generated relations. Some pioneering works
handle zero-shot relation extraction by refor-
mulating it into proxy tasks, such as reading
comprehension and textual entailment. None-
theless, the divergence in proxy task formu-
lations from relation extraction hinders the
acquisition of informative semantic represen-
tations, leading to subpar performance. There-
fore, in this paper, we take a data-driven view
to handle zero-shot relation extraction un-
der a three-step paradigm, including encoder
training, relation clustering, and summariza-
tion. Specifically, to train a discriminative re-
lational encoder, we propose a novel selective
contrastive learning framework, namely, SCL,
where selective importance scores are assigned
to distinguish the importance of different neg-
ative contrastive instances. During testing, the
prompt-based encoder is employed to map
test samples into representation vectors, which
are then clustered into several groups. Typi-
cal samples closest to the cluster centroid are
selected for summarization to generate the pre-
dicted relation for all samples in the cluster.
Moreover, we design a simple non-parametric
threshold plugin to reduce false-positive er-
rors in inference on unseen relation repre-
sentations. Our experiments demonstrate that
SCL outperforms the current state-of-the-art
method by over 3% across all metrics.

1 Introduction

Relation extraction (RE) aims to infer the relation
between a pair of entities from text, which is a vi-
tal step for automatic knowledge graph construc-

∗Corresponding author.

tion (Zeng et al., 2014). Recent supervised efforts
define relation extraction (Zeng et al., 2014, 2015;
Zhou et al., 2016) as a multi-class classification
task, and select the most appropriate relation la-
bel from a pre-defined set of relations for the tar-
get entity pair. However, in practice, the training
data often fails to cover all relations, and thus
supervised RE methods may not be well suited for
recognizing unobserved relations during training.

To eliminate labor-intensive annotation for
emergent relations, open relation extraction
(OpenRE) was first proposed to discover fresh
relations by clustering without using any prior
knowledge of scope and distribution (Banko et al.,
2007; Bollegala et al., 2010). However, OpenRE
approaches (Hu et al., 2020; Liu et al., 2022)
fail to take advantage of relational knowledge
in previously accumulated relations. Confronted
with this limitation, zero-shot relation extraction
(ZSRE) has come as a remedy to train a model on
historical relations with annotated instances and
generalize it to extract relations that have never
been seen during training (Levy et al., 2017).
Since training and testing relations are disjoint
under the zero-shot setting, ZSRE models have
no access to supervised signals for test relations.
Therefore, zero-shot learning represents a long-
standing challenge in transferring knowledge from
training data to test data (Levy et al., 2017).

To meet the challenge of knowledge transfer,
some previous research handles ZSRE by for-
mulating it into a proxy task formulation, such as
reading comprehension (Levy et al., 2017), textual
entailment (Obamuyide and Vlachos, 2018), and
attribute representation matching (Chen and Li,
2021). Since they are required to define answer-
ing templates or relation descriptions, searching
for suitable and effective options imposes a bur-
den. Additionally, these methods are based on the
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Figure 1: The data-driven paradigm of ZSRE, includ-
ing seen relation training, unseen relation clustering,
and emergent relation discovery.

assumption that humans know what new relations
need to be extracted in advance, which is easy to
violate in real applications since new relations are
always summarized from corresponding emergent
instances. That is, we contend that ZSRE mod-
els are expected to be data-driven rather than
human-guided. As a pioneering work, Wang et al.
(2022) have adopted this idea, but fail to com-
prehensively define how to perform data-driven
ZSRE.

In this paper, we further formulate the data-
driven paradigm of ZSRE, the workflow of which
is depicted in Figure 1. In this formulation, we
first train a relational encoder on instances of seen
relations and employ it to map test samples into
an embedding space. The embeddings of these
test samples are clustered into several groups,
and high-quality samples within each cluster are
chosen for summarization by ChatGPT (OpenAI,
2022), generating a new relation name assigned to
the corresponding cluster as the predicted label.

Therefore, the key to solving data-driven ZSRE
lies in learning an effective projection function
that can map instances of the same relation nearby
and instances of different relations far apart in
the embedding space. Considering the success of
contrastive learning in capturing discriminative
representations (Chen et al., 2020; Gao et al.,
2021b), Wang et al. (2022) harness an instance-
level self-supervised contrastive method to train
the relational encoder to better learn subtle differ-
ences between instances. However, there are still
three drawbacks in existing methods when ad-
dressing the aforementioned paradigm of ZSRE:

• Drawback 1: Most existing RE models adopt
the entity-marker encoder to capture the se-
mantics of an instance, which falls short
of employing prompts to elicit relational

knowledge embedded within the pre-trained
language models.

• Drawback 2: Although contrastive learn-
ing has been successfully applied to RE,
previous work fails to distinguish different
contrastive negatives and further improve
the generalization ability in encoding unseen
relations.

• Drawback 3: during inference, test samples
are partitioned into several clusters, where
each cluster will inevitably contain some
false positive samples; however, there have
been few research attempts to filter out these
false positives.

To address the drawbacks, we design a novel
selective contrastive learning framework, SCL,
to handle data-driven ZSRE. (1) At the training
stage, we employ prompt learning (Gao et al.,
2021a) and adapt it to the task of ZSRE. By
bridging the gap between pre-training objective
and downstream task, prompt-tuning can take full
advantage of knowledge in pre-trained language
models. Additionally, to learn better separation of
relations, we propose to perform in-batch selective
contrastive learning. For a batch of instances, we
augment them with a different prompt template
to construct another view as positive contrastive
instances. It is noteworthy that we assign se-
lective importance scores for various contrastive
instances of an anchor, where we dynamically em-
phasize hard negatives since they are more useful
for learning discriminative representations. (2) At
the test stage, by following Wang et al. (2022),
we use the well-learned model to project all test
samples into the representation space and separate
them into several clusters by clustering algorithms
(Hartigan and Wong, 1979; Malzer and Baum,
2020). High-quality samples around the centroid
of each cluster are selected for summarization
as the prediction for all instances. Based on the
observation that in each cluster, false positives
always have a greater distance to their centroid,
we propose a post-processing method to detect
these false-positive instances. Specifically, we de-
sign a simple but effective threshold criterion to
determine if a test instance is false positive or not.
Previous ZSRE works have never investigated
this non-parametric method to improve perfor-
mance, indicating that the seemingly simple idea
is non-trivial.
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Contribution. In this paper, we re-investigate
the task of ZSRE, and the contributions are at
least threefold:

• We propose to jointly train an encoder via
prompt learning and selective contrastive
learning, which can generate more compact
relation representations for better separation
of relations.

• A post-processing method is designed to fil-
ter out mispredicted instances in each cluster.
With a non-parametric threshold criterion,
we can detect false positives to improve the
precision of our proposed ZSRE model.

• To validate the effectiveness of the proposed
solution, we conduct extensive experiments
on three real-world datasets, and the superi-
ority of SCL in effectiveness is confirmed
throughout the comparison with current
ZSRE methods.

2 Related Work

In this section, we review the related work from
three perspective: zero-shot relation extraction,
relational representation learning, and contrastive
learning.

2.1 Zero-shot Relation Extraction

Relation extraction (RE) is defined as determining
the relation between two entities given a sen-
tence. To get rid of the cost of annotating training
instances for fresh relations, open relation extrac-
tion (OpenRE) is proposed (Banko et al., 2007;
Bollegala et al., 2010). OpenRE aims to learn a
general model of how relations are expressed in
a particular language, enabling the extraction of a
large set of relational triplets without the need for
any human input. Based on human-selected fea-
tures or automatic features from linguistic parsing
techniques, clustering algorithms are employed to
cluster instances that describe a particular rela-
tion (Bollegala et al., 2010; Liu et al., 2022).

However, since these OpenRE methods fail to
take advantage of relational knowledge in pre-
viously accumulated relations, recent research
efforts resort to exploring ZSRE. Since there are
no training instances for test relations, existing
methods depend on annotating auxiliary infor-
mation for input and converting RE into proxy
tasks, such as reading comprehension (Levy et al.,

2017) and sentence entailment (Obamuyide and
Vlachos, 2018).

To make use of knowledge in the pre-trained
BERT model directly, Chen and Li (2021) propose
a ZS-BERT model to handle ZSRE via attribute
representation learning. The representations for
instances and relation descriptions can be derived
from the BERT model, and ZS-BERT learns to
match instance representations with description
representations. Given the advances of prompt
learning, Xu et al. (2023) design multiple prompt
templates for an instance and derive multiple rep-
resentations. These representations are then fused
via an attention mechanism and matched with the
representations of relation descriptions.

Similar to OpenRE, we utilize the idea of clus-
tering for discovering novel relations. However,
our method differs in that it leverages the his-
toric relational knowledge to aid in distinguishing
unknown relations. Unlike existing ZSRE meth-
ods, our approach refrains from assuming a priori
knowledge of which unknown relations to extract.
Instead, we embrace a data-driven paradigm for
discovering emerging relations.

2.2 Relational Representation Learning

Deep learning has sparked interest in utilizing
neural networks for relation extraction, where a
key step involves acquiring effective relational
representations from raw text. Early efforts fo-
cused on employing various neural networks, in-
cluding CNN (Zeng et al., 2014) and LSTM (Miwa
and Bansal, 2016), to automatically learn the rep-
resentations of relations. To improve the relational
representations, universal schema (Riedel et al.,
2013; Verga et al., 2016) jointly embed knowl-
edge bases and textual patterns. During ZSRE,
emerging relations do not currently exist within
the existing knowledge bases. Consequently, it
is not feasible to employ universal schema tech-
niques for jointly learning the representations of
these relations that need to be extracted.

With the advance of language models, it be-
comes standard to fine-tune a BERT-like model
with additional layers for downstream tasks. To
bridge the gap between pre-training and fine-
tuning, the prompt-tuning paradigm is proposed
by formulating downstream tasks as a cloze-style
task. Fueled by the birth of GPT (Brown et al.,
2020), prompt learning is popular among a wide
range of natural language processing tasks, such
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as text classification (Schick et al., 2020) and en-
tity typing (Ding et al., 2022).

Prompt learning is also investigated in the
task of RE, which has achieved significant per-
formance improvements over previous methods.
Among these approaches, Han et al. (2021) pro-
pose a PTR model to creatively apply logic rules
and decompose the prompt into several sub-
prompts. To further utilize external knowledge, a
KnowPrompt model is proposed to inject entity
and relation knowledge into pre-trained language
models (Chen et al., 2022). Nevertheless, existing
prompt-based RE approaches are tailored for su-
pervised or few-shot relation extraction. In this
paper, we adapt prompt learning to learn discrim-
inative relational representations for ZSRE.

2.3 Contrastive Learning
In the field of computer vision, contrastive learn-
ing has attracted a lot of attention (He et al.,
2020; Chen et al., 2020). The underlying idea of
contrastive learning is to pull data points from
the same class together and push non-neighboring
data points away. Intrinsically, contrastive learn-
ing enables instance representations from the neu-
ral model to be compact and better separated.

Recently, contrastive learning is also employed
to pre-train language models in the field of nat-
ural language processing. Inspired by SimCLR
(Chen et al., 2020), Gao et al. (2021b) propose
a framework named SimCSE for sentence repre-
sentation learning where positive contrastive pairs
are constructed with the use of two independently
sampled dropout masks. As a more comprehen-
sive study, ConSERT investigates different data
augmentation strategies for learning sentence rep-
resentations by contrastive learning (Yan et al.,
2021). Different from the aforementioned con-
trastive learning methods, we augment data with
different prompt templates to construct contrastive
positives. Furthermore, instead of considering
each contrastive sample equally important, we
assign varying degrees of importance to different
negative contrastive samples.

3 Preliminary

This section defines the task of data-driven ZSRE,
and then overviews our proposed SCL method.

3.1 Task Definition
Given a piece of text, also known as an instance
x mentioning a pair of entities (eh, et), relation

extraction aims at recognizing the semantic rela-
tion r between head entity eh and tail entity et
based on the contextual clues.

In ZSRE, there are a set of training texts D =
{(xi, ri)}Di=1 (i.e., instances with annotated rela-
tion ri) and a target set of test texts T = {x′

j}Tj=1,
where D (resp. T ) is the number of instances
in D (resp. T ). D covers a set of seen relations
Rs = {rs1, · · · , rsn}, while T covers another set
of unseen relations Ru = {ru1 , · · · , rum}, where
n (resp. m) is the cardinality of Rs (resp. Ru).
It should be noted that these two sets of relations
are disjoint, i.e., Rs ∩Ru = ∅.

As introduced above, we formally define the
approach of solving the ZSRE task in three steps.
At the first step, our goal is to train a relation
extraction model on the training data D, which
consists of an encoder E and a classifier g, i.e.,
g(E(xi)) → r ∈ Rs. At the second stage, we har-
ness the well-trained encoder E to map the test set
T = {x′

j}Tj=1 into an embedding space, denoted
as E(T ) → {r′j}Tj=1. These instance embeddings
are clustered into m groups by a cluster algo-
rithm, i.e., Cluster({r′j}Tj=1) → {C1, · · · , Cm}.
In the third phase, we select some typical sam-
ples closest to the centroid of each Ci for summa-
rization by ChatGPT to generate a relation name,
denoted as Summarize(Ci) → r′. This gener-
ated relation name is then assigned as the label
for all instances within that cluster Ci.

3.2 Overview
We propose a new selective contrastive learning
framework SCL to solve relation extraction in
a zero-shot setting. As depicted in Figure 2, it
comprises three key components: A prompt-tuning
module, a contrastive learning module, and a re-
lation inference module.

During training, we employ a pre-trained lan-
guage model as the backbone relational encoder.
Given a batch of instances concerning two enti-
ties, we augment them with two distinct prompt
templates and feed them to the language model to
generate instance representations. These repre-
sentations are then sent into the prompt-tuning
module and contrastive learning module. For the
prompt-tuning module, we expand the language
model with a set of extra tokens to represent the
seen relations. Prompt-tuning aims to find the most
appropriate token to fill into the masked position
in the prompt template. For the contrastive learn-
ing module, the goal is to find the counterpart of
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Figure 2: The workflow of our SCL when handling zero-shot relation extraction.

each instance between two views. To highlight
the role of hard contrastive pairs, we propose to
dynamically emphasize these hard pairs, which
facilitates the improved discrimination of rela-
tions in the representation space. At the inference
stage, we first employ the well-learned relational
encoder to generate instance representations of
unseen relations. These representations can be
clustered into m groups by clustering algorithms.
For each cluster, the top-k samples closest to the
centroids are selected for summarization to dis-
cover emergent relations as predicted labels. Be-
sides, we observe that false positives tend to be
distributed on the boundary of each cluster due
to subtle differences between various relations.
Therefore, for a target relation, we reassign a
smaller cluster boundary to exclude the out-
of-distribution instances and reduce the false-
positive risk.

4 Methodology

This section introduces our proposed method,
namely, SCL, to accomplish zero-shot relation
extraction. In the following, we describe our
prompt-based encoder in Section 4.1, prompt-
tuning module in Section 4.2, contrastive learn-
ing module in Section 4.3, and relation inference
module in Section 4.4.

4.1 Prompt-based Encoder

In this paper, we employ a pre-trained language
model as our backbone relational encoder, de-
noted as E . Since prompt-tuning shows a power-
ful ability to facilitate the acquisition of relational
knowledge embedded within language models
(Chen et al., 2022; Zhang et al., 2022), we adopt

the prompt-based encoder and adapt it to ZSRE
in this work.

To assist prompt-tuning, we need to formulate
RE as a cloze-style masked language prediction
task (Han et al., 2021; Chen et al., 2022). To
achieve this goal, we augment data samples with
an appropriate template T (·) to prompt the in-
stance x, where a [MASK] token is necessarily
held in the prompt template. We manually define
the prompt template in our model as: 1

T (eh, et) = ‘‘We think that eh is [MASK] of et’’,
(1)

where eh and et are head and tail entity men-
tions. Sequentially, we equip s with the template
and generate the prompt input as:

x̃(eh, et) = “[CLS]x[SEP]T (eh, et)[SEP]
′′.

(2)
By feeding x̃(eh, et) into the pre-trained lan-

guage model, we can obtain the hidden vector
corresponding to the [MASK] position:

r = E(x̃(eh, et)). (3)

In the following, we use the notation r, which
is the hidden vector associated with the [MASK]
position, to represent relational representation of
an instance x for prompt-tuning and contrastive
learning.

4.2 Prompt-tuning Module

In the prompt-tuning module, the language model
E is tasked with predicting which word is appro-
priate to fill in the [MASK] position for relation

1Other templates can also be used in augmentation. Since
we do not focus on prompt engineering, we only manually
define one template for instance augmentation.
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extraction. To predict the target relation based on
the relational representation r from Equation (3),
relational tokens are introduced to represent the
relation labels to be detected.

To eliminate labor-intensive verbalizer engi-
neering, we expand E with a set of learnable
virtual relation tokens V to fully represent the cor-
responding seen relations Rs. Instead of using a
regular verbalizer that maps each relation label to
a single label word in the vocabulary, we assume
that each virtual token vi ∈ V can describe the
implicit semantics of relation ri ∈ Rs. To lever-
age the semantic information in relation ri, we
initialize the virtual token embeddings with the
average token embeddings of a relation name. For
example, the virtual token v1 which corresponds
to relation ‘‘born in’’ is initialized as:

v1 = (Embborn + Embin)/2, (4)

where Embborn (resp. Embin) is the embeddings
of token ‘‘born’’ (resp. ‘‘in’’) in the embedding
layer of language model.

The MLM head layer in the language model
is used to recover the [MASK] token from the
set of relation tokens based on the inner product
similarity:

p(ri | x) =
exp(v	

i r)∑
rj∈Rs exp(v	

j r)
. (5)

The MLM head layer corresponds to the rela-
tion classifier g mentioned in Section 3.

With access to the training set D =
{(xi, ri)}Di=1, the language model E is optimized
by minimizing the cross-entropy loss:

LCE =
1

D

∑

xi∈D
log p(ri | xi). (6)

4.3 Contrastive Learning Module

In the contrastive learning module, given a batch
of instances {xi}Bi=1, where B is the batch size,
following Gao et al. (2021b) and Wang et al.
(2022), we need to construct an augmented view
for instance-level contrastive learning. Diverging
from the prior approaches (Gao et al., 2021b;
Wang et al., 2022) that utilize dropout for con-
structing augmented views, we construct positive
contrastive instances by concatenating different
prompt templates for each individual instance.

Take an instance x concerning (eh, et), for exam-
ple; its original view is shown in Equation (2),
and its augmented view is

x̂ = ‘‘[CLS] x [SEP] T̂ (eh, et) [SEP]’’, (7)

where T̂ (eh, et) is another template manually
defined as:

T̂ (eh, et) = ‘‘The relation between eh and
et is [MASK]’’.

(8)

By augmenting the batch of instances {xi}Bi=1

with different prompt templates, we can derive
two views of instance representations {ri}Bi=1 and
{r̂i}Bi=1 by Equation (3).

The original instance-level contrastive learn-
ing (Gao et al., 2021b; Wang et al., 2022)
defines the contrastive learning loss by taking a
temperature-scaled cross-entropy objective with
in-batch negatives as:

LCL = − log
exp(sim(ri, r̂i)/τ)∑B
j=1 exp(sim(ri, r̂j)/τ)

, (9)

where τ is the adjustable temperature parameter,
B is the batch size, and sim(r1, r2) =

r	1 r2
‖r1‖·‖r2‖

is the cosine similarity. In contrast to the original
contrastive learning approach, our selective con-
trastive learning not only takes into account the
label signals but also selectively assigns different
importance scores to negative samples.

Specifically, for an anchor representation ri, we
only take its counterpart augmented view r̂i as the
positive contrastive instance. All instances with a
different relation in the augmented set are taken
as contrastive negatives, denoted as {r̂−k }Nk=1.
Mathematically, we measure the importance of
a negative contrastive instance by calculating its
distance to the anchor, where a smaller distance
indicates a harder negative contrastive instance.
Therefore, we define the selective importance
score assigned to a contrastive instance as:

wij =
N · exp(−‖ri − r̂−j ‖)∑N
k=1 exp(−‖ri − r̂−k ‖)

, (10)

where ‖ri − r̂−k ‖ is the Euclidean distance be-
tween ri and r̂−k . After obtaining the importance
scores, we define our selective contrastive loss as:

LSCL = − log
exp(sim(ri, r̂i)/τ)∑N

j=1 wij · exp(sim(ri, r̂−j )/τ)
.

(11)
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More details about the definitions of our proposed
importance score and selective contrastive loss
can be seen in Appendix A.

Finally, we optimize the ZSRE model, espe-
cially the encoder E with a joint loss:

L = λ1 · LCE + λ2 · LSCL, (12)

where λ1 and λ2 are two weights for different
constitute losses.

4.4 Relation Inference Module

At the test phase, we send incoming instances
T = {x′

j}Tj=1 of unseen relations into the
well-learned encoder E to generate their repre-
sentations {r′j}Tj=1. When the number of unseen
relations m (defined in Section 3) is unknown, we
harness the density-based HDBSCAN algorithm
(Malzer and Baum, 2020) to automatically deter-
mine the number of clusters and assign samples
to corresponding clusters. When the value of m is
known in advance, following Wang et al. (2022),
we apply the partition-based K-means algorithm
to cluster the representations intoK groups, where
K = m. The clustering process can be denoted
as Cluster({r′j}Tj=1) → {C1, · · · , Cm}, where
each cluster Ci contains a set of test samples.

Since the relation name of each cluster is un-
known, we resort to a ChatGPT annotator to
summarize a relation r′ from typical samples and
assign it to the cluster Ci. In our implementation,
we select the sample closest to the centroid of each
cluster as a typical sample for summarization.
Specifically, we generate the relation description
by inputting the prompt ‘‘Based on the text that
x(eh, et), please summarize the relation between
eh and et." into ChatGPT. More details about
the generated results can be found in Section 5.7.
Test samples within Ci will be assigned r′ as the
predicted relation. For the evaluation purpose, we
manually map the generated relation name r′ onto
the most appropriate relation label ru in the test
relation set Ru.

By visualizing in a 2-D space, we find that many
false-positive samples are distributed on the edge
of a cluster. For the target-predicted relation, these
false positives are considered out-of-distribution
(OOD) samples. Therefore, the performance of
the ZSRE model can be significantly improved
by detecting and removing these OOD samples.

When employing the HDBSCAN algorithm,
detected noisy points can be considered OOD

samples. For the K-means algorithm, we intro-
duce a simple yet effective false-positive detection
method with an OOD boundary. Specifically, for
an instance in a cluster, we compute its distance
to the centroid, and use a simple threshold cri-
terion to determine if it is OOD or not. For i-th
cluster Ci = {r̄1, r̄2, · · · , r̄|C|} where r̄ = r′

‖r′‖ , the
cluster centroid is computed as the average of all
normalized instance embeddings:

r̄∗ =
1

|C|

|C|∑

i=1

r̄i. (13)

The instance-level Euclidean distance to the
centroid is computed by:

d(r̄i, r̄∗) = ‖r̄i − r̄∗‖. (14)

The radius of the relation cluster is defined as:

d∗ = max
i

{d(r̄i, r̄∗)}. (15)

The decision function for an OOD sample is
given by:

G(r̄i) = 1{d(r̄i, r̄∗) > δ · d∗}, (16)

where δ is a hyper-parameter that determines the
threshold of OOD boundary and 1{·} is an indi-
cator function. The δ is set manually by searching
on the validation set, with a detailed discussion
provided in Section 5.5.

Remark. Despite the HDBSCAN algorithm not
requiring priori knowledge of the number of un-
seen relations, we opt to consider the K-means
algorithm as an alternative method for relation
inference. This choice stems from the tendency
of HDBSCAN clustering to yield a greater num-
ber of clusters than the count of unseen relations
in the test data, potentially leading to higher test
performance, which may not be entirely fair in
comparison to other methods. When using the
HDBSCAN algorithm for relation inference, noise
points might be assigned to the nearest cluster if
OOD sample detection is not applied.

5 Experiments

In this section, we first describe the experimental
setup and then present the experiment results with
an in-depth analysis.
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5.1 Benchmarks and Evaluation Metrics
Benchmarks. Experiments are conducted on
three benchmark relation extraction datasets:
FewRel (Gao et al., 2019) is a manually an-

notated dataset built on texts from Wikipedia,
which contains 80 relations with 700 instances
per relation. We randomly select 40 relations as
seen relations for training, while selecting m re-
lations from the remaining 40 as unseen relations
for testing where m varies in {20, 30, 35, 40}.
When conducting testing with 20 relations, the
remaining 20 relations can be utilized as a
validation set.
Wiki-ZSL (Chen and Li, 2021) is a distantly

supervised dataset which was derived by aligning
Wiki-KB with texts from Wikipedia. This data-
set consists of 113 relations and a total of 94,383
instances. To assist ZSRE, we randomly select
the entire samples of 73 relations as training data,
while using the remaining 40 relations for test-
ing. We vary the number of unseen relations in
{20, 30, 35, 40} to evaluate ZSRE models under
different settings. Similar to FewRel, when 20
unseen relations are used for testing, the remain-
ing 20 relations can be utilized as a validation set.
TACRED (Zhang et al., 2017) contains 42 re-

lations and was constructed via crowd-sourcing.
In our experiments, we use a revised version of
TACRED (Cui et al., 2021), which contains 40 re-
lations. Additionally, to reduce the impact of sam-
ple imbalance on test performance, we limit the
number of instances per relation to 1,000. We keep
20 random relations for training and the remain-
ing 20 relations for testing. We vary the number
of unseen relations m in {15, 20} for TACRED.
When 15 unseen relations are used for testing, the
remaining 5 relations can serve as a validation set.

Evaluation Metrics. The data-driven ZSRE in
our work aims to assist humans in discovering
novel relations. Since the clustering algorithm can
only generate one virtual label for each cluster, it
is necessary to assign a real relation name to each
cluster for evaluation, which needs to compare
predicted labels with ground truths. To convert
the pseudo labels predicted by clustering into real
relation labels, we select typical samples near the
clustering centroids and employ a ChatGPT-based
annotation method to generate relation names.
By setting the number of typical samples to 1,
we ensure that the workload for summarization
would be similar to or even smaller than previous

methods (Obamuyide and Vlachos, 2018; Chen
and Li, 2021). After that, for automatic evaluation
purposes, we manually select the most appropriate
pre-defined relation label in the test set for each
cluster according to the corresponding generated
relation name.

For evaluation metrics, we utilize the widely
used accuracy and standard F1 score for assessing
the performance of ZSRE models. To be specific,
for each cluster, there are four types of predic-
tions: true positives, true negatives, false positives,
and false negatives. If the predicted relation of a
test sample matches its ground truth, it is a true
prediction; otherwise, it is deemed false. Sam-
ples within the OOD boundary are considered
positives, while those outside are considered neg-
atives. Accuracy and F1 score can be calculated
based on the counts of different predictions. Be-
sides, since our proposal is a cluster-based method,
we also employ B3F1 score and normalized mutual
information (NMI) to evaluate the effectiveness
of model clustering (Wang et al., 2022).

5.2 Model Settings and Baselines

Model Settings. In experiments, we implement
SCL and competing methods based on the Trans-
formers package2 (Wolf et al., 2020), where we
employ the base version of the pre-trained BERT
model (Devlin et al., 2019) as the backbone en-
coder for them. When the minimum value of m
is used in testing, the remaining unseen relations
can serve as validation data for hyper-parameter
search. When a hyper-parameter combination is
found to perform well across all three datasets,
we fix these hyper-parameters and use them to
test other settings (i.e., test with more unseen re-
lations) without further fine-tuning. This better
demonstrates the insensitivity of our method to
parameters across different settings.

Specifically, we set the maximum sentence
length to 120 for both the FewRel and Wiki-
ZSL datasets, while for the TACRED dataset, we
set it to 200. The training epoch is set to 4 and we
use an Adam optimizer (Kingma and Ba, 2015)
with a batch size of 64. The learning rate is set to
1e-5 with a 0.1 weight decay. The scaled temper-
ature τ in contrastive loss is set to 0.05, and we
set λ1 to 1 and λ2 to 0.2 across all datasets. The
δ is set to 0.75. When the number of unseen re-
lations is assumed to be known in advance, we

2https://github.com/huggingface/transformers.

1727

https://github.com/huggingface/transformers


Methods
m = 20 m = 30 m = 35 m = 40

NMI B3F1 Acc F1 NMI B3F1 Acc F1 NMI B3F1 Acc F1 NMI B3F1 Acc F1
CIM — — 52.42 45.86 — — 41.56 34.24 — — 36.43 32.85 — — 35.61 30.72
QARE — — 55.76 52.49 — — 45.83 42.75 — — 43.28 40.71 — — 40.63 37.95
MTB 82.75 78.76 79.55 75.83 76.82 60.26 68.26 63.58 75.92 58.41 64.58 62.42 76.90 55.87 65.86 64.29
RCL 80.60 72.82 77.21 73.31 77.52 63.53 70.49 65.95 77.50 63.08 71.40 68.30 77.53 63.26 72.41 70.62
ZS-BERT 71.57 60.84 67.84 65.35 63.76 45.78 52.62 48.97 69.22 47.14 55.86 49.35 65.43 43.86 53.55 47.88
RelationPrompt — — 76.45 74.35 — — 67.13 65.89 — — 64.07 62.37 — — 64.72 61.88
MultiPrompt 78.96 75.48 76.94 73.49 77.21 64.56 67.82 63.89 77.84 57.15 61.58 60.43 76.92 59.89 63.77 61.97

SCL +K-means 86.66 80.56 85.31 83.39 83.90 73.60 78.50 76.73 82.33 69.75 73.93 72.13 81.99 67.97 75.28 74.18
w/ OOD 95.21 91.64 88.90 85.12 90.24 81.71 82.48 78.01 89.85 80.88 80.54 76.71 89.70 80.05 82.12 79.21

SCL +HDBSCAN 77.56 64.23 86.83 84.94 76.18 61.30 77.46 74.31 76.12 61.33 76.54 73.39 76.16 60.13 76.28 73.08
w/ OOD 84.73 76.77 88.11 88.15 82.88 71.91 78.16 77.29 82.92 71.64 77.48 77.15 83.25 71.33 77.39 77.02

Table 1: Performance (%) on FewRel dataset.

Methods
m = 20 m = 30 m = 35 m = 40

NMI B3F1 Acc F1 NMI B3F1 Acc F1 NMI B3F1 Acc F1 NMI B3F1 Acc F1
CIM — — 43.37 40.75 — — 36.52 32.18 — — 32.49 29.63 — — 31.28 26.58
QARE — — 47.95 47.08 — — 38.97 35.31 — — 34.05 30.84 — — 35.83 32.49
MTB 70.42 61.39 70.18 68.61 70.66 56.27 68.55 66.41 67.52 52.20 65.31 62.14 65.80 51.58 62.76 59.44
RCL 68.65 57.28 68.75 65.15 69.09 54.83 67.35 63.46 69.14 55.31 68.94 63.69 69.44 53.28 65.43 61.36
ZS-BERT 62.45 50.72 55.24 53.80 54.71 41.08 46.34 43.16 54.96 42.58 48.50 44.70 48.25 38.42 40.73 42.15
RelationPrompt — — 67.30 65.85 — — 62.40 60.07 — — 57.48 55.10 — — 54.25 52.90
MultiPrompt 65.48 56.30 60.38 55.80 64.10 54.06 57.68 53.03 60.49 51.20 54.66 53.78 56.48 45.28 50.75 46.40
SCL +K-means 74.36 65.24 74.13 70.88 74.72 62.61 70.69 67.35 75.14 62.59 71.24 66.02 74.47 59.74 71.56 65.18

w/ OOD 85.63 78.44 83.05 74.13 87.48 80.16 84.59 73.26 85.57 77.06 82.92 70.86 86.70 78.12 84.22 74.73
SCL +HDBSCAN 68.34 48.26 81.63 80.88 66.66 42.93 74.32 71.37 66.58 33.50 75.75 73.71 66.58 28.09 76.51 76.26

w/ OOD 71.15 51.73 92.08 90.48 74.50 54.27 85.90 78.78 74.15 42.23 85.24 81.00 74.29 38.01 86.72 82.02

Table 2: Performance (%) on Wiki-ZSL dataset.

employ the K-means algorithm for inference,
where the hyper-parameter K is set to m for fair
comparison with competing methods. Since OOD
detection in the relation inference module is a
plugin strategy, we analyze it separately in Sec-
tion 5.5. This strategy is not employed in the
experiments conducted in the remaining sections.

Baselines. In experiments, we compare our pro-
posal with a variety of strong baselines. Among the
baselines, several approaches transform the task of
ZSRE into alternative task formulations. These
approaches include a text entailment-based CIM
model (Obamuyide and Vlachos, 2018), and a
reading comprehension-based QARE model (Levy
et al., 2017). Furthermore, two representation-
based methods, namely, MTB (Soares et al., 2019)
and RCL (Wang et al., 2022), are also incorporated
for comparative analysis. These methods learn
discriminative representations for relations and
employ the strategy of predicting relations through
clustering. ZS-BERT (Chen and Li, 2021) is cho-
sen as a competitor that predicts the target relation
by identifying the closest description to a given in-
stance. Additionally, we introduce prompt-based

techniques as competing methods, leveraging in-
ternal knowledge within pre-trained language
models for ZSRE. Specifically, these techniques
encompass RelationPrompt (Chia et al., 2022)
and MultiPrompt (Xu et al., 2023). All exper-
iments were conducted five times, and average
results are reported.

5.3 Overall Performance
RQ1: Does SCL perform better in zero-shot
relation extraction than competing methods?

To answer RQ1, we show the overall results of
SCL and competing methods on three datasets in
Tables 1, 2, and 3, where we test the models with
different numbers of unseen relations. Consider-
ing both scenarios where the number of unseen
relations is known and unknown, we evaluate the
performance of our proposed SCL using both the
K-means and HDBSCAN algorithms for infer-
ence, and showcases the results with a gray shade.
Higher evaluation metric values correspond to
superior model performance. The optimal result
is bolded and the second-best result is indicated
with an underline. Additionally, to validate the
idea of excluding false positives, we integrate the
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Methods
m = 15 m = 20

NMI B3F1 Acc F1 NMI B3F1 Acc F1
CIM — — 52.88 38.60 — — 48.61 35.44
QARE — — 55.42 41.09 — — 52.75 38.20
MTB 68.58 60.72 76.14 63.02 63.24 56.80 71.95 55.61
RCL 70.40 62.89 79.74 66.34 71.46 60.74 78.28 57.25
ZS-BERT 67.34 58.45 73.08 61.25 60.04 52.60 67.59 51.75
RelationPrompt — — 74.85 63.60 — — 68.32 56.04
MultiPrompt 72.08 65.28 80.60 65.46 67.35 54.53 75.48 61.85
SCL +K-means 78.49 71.67 85.70 68.81 81.29 77.67 83.29 63.51

w/ OOD 90.83 88.83 87.90 68.31 89.25 86.58 88.54 65.52
SCL +HDBSCAN 77.62 72.90 86.78 73.91 65.23 46.59 83.18 67.37

w/ OOD 86.84 84.83 94.10 80.91 75.20 62.14 90.12 75.33

Table 3: Performance (%) on TACRED dataset.

OOD detection plugin into SCL+K-means and
SCL+HDBSCAN and evaluate the performance
(the ‘‘w/ OOD’’ lines).

From the results in Tables 1, 2, and 3, it
can be observed that: (1) CIM, QARE, and
ZS-BERT obtain inferior performance since the
disparity in task formulations hinders relation
extraction models from acquiring informative se-
mantic representations. (2) When evaluating MTB
and RCL, we employ their encoders and utilize the
K-means algorithm for relation inference. How-
ever, the inferior performance compared to our
approach indicates that these encoders are unable
to capture more discriminative representations of
relations. (3) RelationPrompt performs ZSRE in
a generative approach and exhibits the poorest per-
formance among all prompt-based methods due to
the intrinsic difficulty of its task formulation. Ow-
ing to the utilization of multi-prompt learning,
MultiPrompt, which employs a nearest-neighbor
search to identify the relation, achieves promising
performance among baselines. (4) Our proposed
SCL with both K-means and HDBSCAN algo-
rithms consistently surpasses the performance of
all comparative methods under different settings.
When using the HDBSCAN algorithm for re-
lation prediction, it typically achieves optimal
performance on F1 and accuracy, but it tends to
perform poorly on the NMI and B3F1 metrics.
This is because the HDBSCAN algorithm often
generates more clusters than the actual number of
unseen relations in the test data. On the FewRel,
Wiki-ZSL, and TACRED datasets, HDBSCAN
algorithm usually generates over 100, 200, and 40
clusters, respectively, much more than the num-
ber of unseen relations. Therefore, it achieves
higher accuracy and F1 scores than the K-means
algorithm. However, this clustering distribution
does not align well with the true data distribu-
tion, resulting in lower NMI and B3F1 scores. (5)
When SCL is combined with the OOD detection

FewRel

Methods
m = 30 m = 40

NMI B3F1 Acc F1 NMI B3F1 Acc F1
NoCon 82.23 69.81 74.73 71.86 81.10 66.66 73.89 70.25
SelfCon 81.49 68.22 73.57 71.66 81.73 67.69 75.11 72.04
SupCon 81.43 68.16 72.61 68.27 81.23 66.59 71.60 67.85
SCL 83.90 73.60 78.50 76.73 81.99 67.97 75.28 74.18

Wiki-ZSL

Methods
m = 30 m = 40

NMI B3F1 Acc F1 NMI B3F1 Acc F1
NoCon 73.65 61.05 71.65 65.90 74.22 59.33 70.43 64.58
SelfCon 74.07 61.32 72.07 65.88 73.83 59.16 68.85 64.28
SupCon 72.45 59.20 69.31 65.87 73.19 58.06 69.20 61.91
SCL 74.72 62.61 70.69 67.35 74.47 59.74 71.56 65.18

TACRED

Methods
m = 15 m = 20

NMI B3F1 Acc F1 NMI B3F1 Acc F1
NoCon 77.81 70.60 84.57 67.49 75.96 66.53 82.58 62.73
SelfCon 76.34 69.47 85.35 68.44 75.35 65.55 82.49 61.44
SupCon 78.58 71.25 83.84 66.77 76.71 66.51 82.25 62.87
SCL 78.49 71.67 85.70 68.81 81.29 77.67 83.29 63.51

Table 4: The experimental results (%) when em-
ploying different contrastive learning methods.

plugin to remove false positives, all metrics
show improvement.

Discussion. When using the K-means algorithm
for clustering, it requires prior knowledge of the
number of unseen relations. Besides, when using
the HDBSCAN algorithm for clustering, it tends
to generate more clusters than the number of
unseen relations, leading to more labeling efforts.
These constitute a limitation of this study. In the
following experiments, we harness the K-means
algorithm for relation inference.

5.4 Analysis of Contrastive Module

RQ2: What are the effects of different contrastive
learning methods on the performance of ZSRE?

To further validate our proposed SCL, we con-
duct an analysis study by replacing the SCL with
three variants that combine no contrastive learn-
ing (NoCon), self-supervised contrastive learning
(SelfCon) (Gao et al., 2021b), and supervised con-
trastive learning (SupCon) (Khosla et al., 2020).
The results are shown in Table 4, where the highest
values are represented in bold.

We can conclude from the results in Table 4
that: (1) By comparing SelfCon to NoCon, we
observe that almost all indicators of the model
have been improved. The improvements signify
that additional contrastive learning loss can en-
hance the representation of instances of unseen
relations. (2) Interestingly, compared with Self-
Con, SupCon experiences some performance
degradation. The underlying cause may be that
SupCon on seen relations deteriorates the model’s
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Figure 3: The F1 scores with the variations of the proportion of preserved samples on three datasets.

ability to generalize to unseen relations. (3) Our
proposed SCL removes redundant negative sam-
ples and distinguishes true negative examples with
different difficulty. These designs can further as-
sist the model in capturing differences between
similar samples, thereby enhancing its represen-
tation capability for unseen relations. Therefore,
the proposed SCL achieves the best performance
in nearly all settings.

5.5 Analysis of OOD Detection

RQ3: What are the effects of different OOD
boundaries on the performance of ZSRE?

To reduce the risk of false-positives, we pro-
pose a non-parametric OOD detection method in
Section 4.4 to filter out certain false-positive sam-
ples. The hyper-parameter δ controls the size of
the OOD boundary of each cluster, with sam-
ples distributed outside this boundary predicted
as false positives. A smaller value of δ corre-
sponds to a smaller cluster radius and excludes
more samples. We vary the value of δ in {0.50,
0.55, 0.60, · · · , 0.85, 0.90, 0.95} and observe the
changes in the F1 scores of SCL.

Figure 3 shows that as the value of δ increases,
the overall F1 scores decrease for the Wiki-ZSL
and TACRED datasets. This is because larger val-
ues of δ are less effective at excluding more false
positives, leading to lower precision scores. On the
FewRel dataset, the F1 scores initially increase
and then decreases under four settings. This trend
is due to the fact that, although false positives
are excluded, some true positive samples that are
farther from the cluster centers are also removed,
which lowers recall scores. Therefore, it is impor-
tant to maintain a balance between precision and
recall. In our implementation, we found that set-

ting the value of δ to be 0.75 obviously improves
the F1 scores across all three datasets.

5.6 Analysis of Data Size

RQ4: What are the effects of different data sizes
of each training relation on the performance of
ZSRE?

This section aims to analyze whether utiliz-
ing the entire labeled data for training yields the
best generalization capability for separating un-
seen relations. Therefore, on three datasets, we
set the training sample quantity for each seen re-
lation to {5, 50, 100, 200, Full} and observe the
performance variations of SCL. The results are
presented in Figure 4, where we utilize the Least
Squares Method (LSM) to fit the F1 scores to
illustrate the trend of performance changes.

From the results, we have the following ob-
servations: (1) Based on the linear regression
analysis using LSM, as the number of training
samples increases, the overall performance of
the model exhibits an upward trend. This ob-
servation suggests that effectively utilizing the
accumulated labeled data of seen relations for
training the model plays a crucial role in facilitat-
ing the discovery of new relations. (2) Compared
to the testing scenarios with 20 unseen relations on
the FewRel and Wiki-ZSL datasets, as well as
15 unseen relations on the TACRED dataset, the
rate of performance improvement for the model,
indicated by the slope of the fitted lines, is higher
for the remaining unseen relations in terms of
their quantity. This is because as the number of
unseen relations increases, the difficulty of testing
also intensifies. In such cases, an ample amount
of training data becomes particularly vital for the
model to learn sufficient semantic information.
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Figure 4: The F1 score variations under different training shots. The triangle markers present the metric values
under different settings. Bold lines are the results fitted by LSM.

Typical samples ChatGPT annotations Gold relation label

Case I

Top-1: he scored the most goals in [eh] azerbaijani premier league [/eh] with

It indicates the specific time or
timeframe when the event of
winning the prize occurred.

sports season of
competition or
league

inter baku in [et] 2007 - 08 [/et] season. (Distance: 0.4153)
Top-2: in total, obradović won with panathinaikos, 11 greek league championships,
7 greek cups and 5 [eh] euroleague [/eh] titles [et] 2011 [/et]. (Distance: 0.4163)
Top-3: e helped the newly promoted [eh] chinese super league [/eh] side to the
third place in [et] 2009 [/et], and consistently ranked amongst the competition ’s
top scorers in the following campaigns. (Distance: 0.4250)

Case II

Top-1: [eh] nydalen [/eh] is a rapid transit station on the [et] ring line [/et] of

The association between a
specific location and its position
within the transportation
network

connecting line

the oslo metro. (Distance: 0.1862)
Top-2: [eh] sinsen [/eh] is a rapid transit station on the [et] ring line [/et] of the
oslo metro. (Distance: 0.1994)
Top-3: the building is directly connected to the [eh] mcgill station[/eh] of the
montreal metro s [et] green line [/et]. (Distance: 0.2051)

Table 5: Study cases from FewRel and Wiki-ZSL to show how to generate emergent relation
names. In each sample, eh denotes the head entity while et denotes the tail entity.

5.7 Emergent Relation Generation

RQ5: How can we convert the virtual labels of
each cluster into real semantic relation labels?

Unlike previous zero-shot relation extraction
methods that use a predefined set of relations,
we derive new relation concepts by clustering
samples and summarizing them. Specifically, we
select the Top-1 closest sample to the centroid
of each cluster and generate new relations using
both ChatGPT (OpenAI, 2022) and human an-
notation methods. To demonstrate the process of
generating relations, we select two cases from the
FewRel (Case I) and Wiki-ZSL (Case II) under
the setting of 20 unseen relations to showcase the
new relations summarized by ChatGPT and gold
relation labels in Table 5.

When employing the ChatGPT to summarize,
we invoke the API3 and input the prompt ‘‘Based
on the text that x(eh, et), please summarize the
relation between eh and et." to generate a rela-
tion description. If mentions of entities eh and et
exist in the description, we replace these men-

3https://openai.com/blog/chatgpt.

tions with their entity types to make the definition
more general. According to the generated relation
name, we manually map it onto a gold relation
label in the test set.

In Table 5, except for the Top-1 sample for
summarization, we also show two other typi-
cal samples to illustrate whether the generated
relation name or description can define the un-
derlying semantic information in them. Through
observation, we have found that the relation anno-
tated by ChatGPT exhibits semantic correlations
or even equivalence with the gold relation label.
Besides, the relations from ChatGPT can cover
the relational semantics of other typical samples.

6 Conclusion

In this paper, we re-investigate the task of zero-
shot relation extraction (ZSRE) and propose a
training method SCL to transfer relational knowl-
edge learned from seen relations to unseen rela-
tions. We formally define a three-step paradigm
to perform data-driven relation extraction under a
zero-shot setting, including encoder training, rela-
tion clustering, and summarization. Specifically,
to train a discriminative relational encoder, we
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propose a selective contrastive learning approach
based on prompt-tuning, where false negative
examples are removed and different importance
scores are assigned to emphasize the importance
of different negative samples. During the testing
phase, we cluster the encoded test samples. To
convert the virtual labels of the clustering results
into relation labels, we select typical samples and
summarize relation names from them.
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A Explanation on the Definitions of
Importance Score and Selective
Contrastive Loss

In the original definition of contrastive loss in
Equation (9), all negative instances are of equal
importance. In this study, we posit that hard nega-
tives play a more important role in representation
learning, thereby distinguishing the importance of
different contrastive pairs.

Therefore, we propose to use the Euclidean
distance to assess the importance score of each
negative contrastive instance:

wij =
N · exp(−‖ri − r̂−j ‖)∑N
k=1 exp(−‖ri − r̂−k ‖)

. (17)
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Based on the distances between negative con-
trastive instances and the anchor instance, we
can assess the difficulty of pushing each nega-
tive contrastive instance away from the anchor.
The closer the distance, the more difficult the
negative sample, indicating its higher importance
in the contrastive loss. It is noteworthy that the
importance score here is computed based on the
relation representation of the instances rather than
hyperparameters or learnable parameters.

After evaluating the importance scores of dif-
ferent negative instances, we can then obtain the
selective contrastive learning loss:

LSCL = − log
exp(sim(ri, r̂i)/τ)∑N

j=1 wij · exp(sim(ri, r̂−j )/τ)
.

(18)

Substituting Equation (2) into Equation (3) will
yield:

LSCL =

− log

∑N
k=1 exp(sim(ri, r̂i)/τ − ‖ri − r̂−k ‖)∑N

j=1 N · exp(sim(ri, r̂−j )/τ − ‖ri − r̂−j ‖)
.

(19)

In this view, the selective contrastive loss seems
to be a combination of two similarities. We did not
directly employ Equation (19) to introduce the loss
LSCL because this form is less conducive to un-
derstanding its meaning. Therefore, we compute
the importance score and selective contrastive loss
via Equations (17) and (18), respectively, to bet-
ter illustrate how we assess the importance score
of a negative contrastive instance and how this
importance score is reflected in the loss.
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