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Abstract

Cold-start active learning (CSAL) selects valu-
able instances from an unlabeled dataset for
manual annotation. It provides high-quality
data at a low annotation cost for label-scarce
text classification. However, existing CSAL
methods overlook weak classes and hard rep-
resentative examples, resulting in biased learn-
ing. To address these issues, this paper pro-
poses a novel dual-diversity enhancing and
uncertainty-aware (DEUCE) framework for
CSAL. Specifically, DEUCE leverages a pre-
trained language model (PLM) to efficiently
extract textual representations, class predic-
tions, and predictive uncertainty. Then, it
constructs a Dual-Neighbor Graph (DNG) to
combine information on both textual diver-
sity and class diversity, ensuring a balanced
data distribution. It further propagates uncer-
tainty information via density-based clustering
to select hard representative instances. DEUCE

performs well in selecting class-balanced and
hard representative data by dual-diversity and
informativeness. Experiments on six NLP da-
tasets demonstrate the superiority and effi-
ciency of DEUCE.

1 Introduction

Cold-start active learning (CSAL; Yuan et al.,
2020a; Zhang et al., 2022b) has gained much at-
tention for efficiently labeling large corpora from
zero. Given an unlabeled corpus (i.e., the ‘‘cold-
start’’ stage), it aims to acquire a small subset (seed
set) for annotation. Such absence of labels can
happen due to data privacy concerns (Holzinger,

∗ Tong Zhang is the corresponding author.

2016; Li et al., 2023), limited domain experts1

(Wu et al., 2022), labeling difficulty (Herde et al.,
2021), quick expiration of labels (Yuan et al.,
2020b; Zhang et al., 2021), etc. In real-world
tasks with specialized domains (e.g., medical re-
port classification with rare diseases; De Angeli
et al., 2021), the complete absence of labels and
lack of a posteriori knowledge pose challenges
to CSAL.

While active learning (AL) has been studied for
a wide range of NLP tasks (Zhang et al., 2022b),
the cold-start problem has been hardly addressed.
At the cold-start stage, the model is untrained
and no labeled data are available for validation.
Traditional CSAL applies random sampling (Ash
et al., 2020; Margatina et al., 2021), diversity
sampling (Yu et al., 2019; Chang et al., 2021), or
uncertainty sampling (Schröder et al., 2022). How-
ever, random sampling suffers from high variance
(Rudolph et al., 2023); diversity sampling is prone
to easy examples and vector space noise (Eklund
and Forsman, 2022); and uncertainty sampling is
prone to redundant examples, outliers, and unre-
liable metrics (Wójcik et al., 2022). Moreover,
existing methods ignore class diversity, where the
sampling bias often results in class imbalance
(Krishnan et al., 2021). At worst, the missed clus-
ter effect (Schütze et al., 2006; Yu et al., 2019)
can happen, i.e., clusters of weak classes are ne-
glected. Tomanek et al. (2009) showed that an
unrepresentative seed set gives rise to this effect.
Learning is misguided, if started unfavorably.

1Recent studies (Lu et al., 2023; Naeini et al., 2023; Zhang
et al., 2023) have shown that state-of-the-art PLMs still un-
derperform human experts in difficult tasks.
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The key challenge for CSAL lies in how to
acquire a diverse and informative seed set. As a
general heuristic (Dasgupta, 2011), a proper seed
set should strike a balance between exploring the
input space for instance regions (e.g., diversity
sampling) and exploiting the version space for
decision boundaries (e.g., uncertainty sampling).
Such hybrid CSAL strategies have been proposed
based on combinations of neighbor-awareness
(Hacohen et al., 2022; Su et al., 2023; Yu et al.,
2023), clustering (Yuan et al., 2020a; Agarwal
et al., 2021; Müller et al., 2022; Brangbour et al.,
2022; Shnarch et al., 2022; Yu et al., 2023), and
uncertainty estimation (Dligach and Palmer, 2011;
Yuan et al., 2020a; Müller et al., 2022; Yu et al.,
2023). However, existing methods fail to explore
the label space to enhance class diversity and
mitigate imbalance. Moreover, most methods per-
form diversity sampling followed by uncertainty
sampling, treating both aspects in isolation.

To address these challenges, this paper
presents DEUCE, a dual-diversity enhancing and
uncertainty-aware framework for CSAL. It adopts
a graph-based hybrid strategy to enhance diversity
and informativeness. Different from previous
works, DEUCE not only emphasizes the diversity
in textual contents (textual diversity), but also di-
versity in class predictions (class diversity). This
is termed dual-diversity in this paper. To achieve
this in the cold-start stage, it exploits the rich rep-
resentational and predictive capabilities of PLMs.
For informativeness, the predictive uncertainty is
estimated from a one-vs-all (OVA) perspective.
This helps mining informative ‘‘hard examples’’
for learning. Then, DEUCE further employs man-
ifold learning techniques (McInnes et al., 2020)
to derive dual-diversity information. This results
in the novel construction of a Dual-Neighbor
Graph (DNG). Finally, DEUCE performs density-
based uncertainty propagation and Farthest Point
Sampling (FPS) on the DNG. While propagation
prioritizes representatively uncertain (RU) in-
stances, FPS enhances the dual-diversity. Overall,
DEUCE ensures a more diverse and informative
acquisition.

The merits of DEUCE are attributed to the fol-
lowing contributions:

• The dual-diversity enhancing and uncertainty
aware (DEUCE) framework adopts a novel
hybrid acquisition strategy. It effectively se-

lects class-balanced and hard representative
instances, achieving a good balance between
exploration and exploitation in CSAL.

• This paper proposes a graph-based dual-
diversity enhancement mechanism to select
diverse instances with textual diversity and
class diversity, tackling class imbalance in
CSAL.

• This paper presents an embedding-based
uncertainty-aware prediction mechanism to
effectively select hard representative in-
stances according to predictive uncertainty.

2 Related Work

2.1 Cold-start Active Learning (CSAL)

According to the taxonomy of Zhang et al. (2022b),
CSAL research for NLP can be categorized as
informativeness-based, representativeness-based,
and hybrid. As most methods are hybrid, the
techniques and challenges for informativeness or
representativeness are elucidated below.

2.1.1 Informativeness
Uncertainty. The main metric for informative-
ness in CSAL is uncertainty, as it is more tractable
in cold-start stages than others (e.g., gradients).
High predictive uncertainty indicates difficulty for
the model, thus valuable for annotation. Most ex-
isting methods use language models (LMs) for
estimation. Common estimators include entropy
(Zhu et al., 2008; Yu et al., 2023), LM probabil-
ity (Dligach and Palmer, 2011), LM loss (Yuan
et al., 2020a), and probability margin (Müller
et al., 2022). However, several challenges exist in
uncertainty estimation: (a) Often, a closed-world
assumption is imposed. In other words, predic-
tions are normalized such that they sum to 1. This
hinders the expression of uncertainty, as it forces
mapping to one of the known classes, ignoring op-
tions such as ‘‘none of the above’’ (Padhy et al.,
2020). (b) PLMs suffer from overconfidence (Park
and Caragea, 2022; Wang, 2024). This requires
calibration for more robust uncertainty estimation
(Yu et al., 2023). (c) Task information is hardly
considered. As a result, the uncertainty will not
be related to the downstream task (output uncer-
tainty), but rather its intrinsic perplexity (input
uncertainty) (Jiang et al., 2021). PATRON (Yu et al.,
2023) uses task-related prompts to tackle this
issue.
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2.1.2 Representativeness

Density. To avoid outliers, density-based CSAL
methods prefer ‘‘typical’’ instances. The method
of Zhu et al. (2008) and TypiClust (Hacohen et al.,
2022) prioritize instances with high kNN density.
Uncertainty propagation (Yu et al., 2023) is also
useful in aggregating density information. A typ-
ical group of uncertain examples indicates a re-
gion where the model’s knowledge is lacking.

Discriminative. Some CSAL methods acquire
sequentially or iteratively. They thus discriminate,
i.e., prefer an instance if it differs the most from se-
lected ones. Coreset selection (Sener and Savarese,
2018) selects an instance (cover-point) such that
its minimum distance to selected instances is max-
imized. VOTE-k (Su et al., 2023) adopts a greedy
approach to select remote instances on a kNN
graph.

Batch Diversity. It is more efficient to acquire
in batch mode (Settles, 2009), i.e., to select mul-
tiple instances at each step. Clustering has been a
common technique to enhance batch diversity and
avoid redundancy in CSAL. It helps structure the
unlabeled dataset by grouping similar instances
together. Nguyen and Smeulders (2004) and Kang
et al. (2004) first proposed pre-clustering the input
space to select representatives from each cluster.
Dasgupta and Ng (2009) used spectral clustering
on the similarity matrix of documents. Hu et al.
(2010) and Yu et al. (2019) used hierarchical clus-
tering to stabilize the process. Zhu et al. (2008)
and more recent works (Yuan et al., 2020a; Chang
et al., 2021; Agarwal et al., 2021; Müller et al.,
2022; Hacohen et al., 2022; Yu et al., 2023) have
commonly used k-MEANS for its simplicity and ef-
ficiency. However, these clustering methods can
be sensitive to outliers. Moreover, clustering in the
input space only contributes to textual diversity,
regardless of other aspects.

2.2 Missed Cluster Effect

The missed cluster effect (Schütze et al., 2006;
Tomanek et al., 2009) is an extreme case of class
imbalance. It refers to when an AL strategy ne-
glects certain classes (or clusters within classes).
Schütze et al. (2006) first recognized the missed
cluster effect in the context of text classification.
They suggested more use of domain knowledge.
Knowledge extraction from PLMs is in harmony

with this suggestion. Dligach and Palmer (2011)
proposed an uncertainty-based approach to avoid
the missed cluster effect in word sense disam-
biguation (WSD). However, it is based on task-
agnostic LM probability. Marcheggiani and
Artières (2014) showed that labeling relevant in-
stances, which reduces the labeling noise, also
helps mitigate the missed cluster effect. Label cali-
bration aligns with this finding. While many works
are devoted to addressing the missed cluster effect
or general class imbalance (e.g., Aggarwal et al.,
2020; Fairstein et al., 2024) for general AL, they
often rely on a labeled subset. Class diversity en-
hancement would help mitigate class imbalance
issues, but it remains an open question for CSAL.

3 Methodology

In this section, the methodology of the proposed
DEUCE is introduced. Section 3.1 first defines
CSAL and declares the notations for the rest of
this paper. The framework of DEUCE is then elab-
orated in Section 3.2.

3.1 Problem Formulation

This paper considers CSAL in a pool-based man-
ner. Learning is initiated with a set of N unlabeled
documents, X := {xi}Ni=1. A C-way text clas-
sification task is defined by a set of classes
Y := {yj}Cj=1 taking values in a domain Y.

Given a labeling budget b � N , a CSAL strat-
egy acquires a subset Xs ⊂ X with a fixed size
|Xs| = b, such that the labeled subset X ′

s boosts
most performance when used as a training seed
set. The performance is evaluated by fine-tuning
a PLM Mθ with X ′

s, and testing for its accuracy.

3.2 The DEUCE Framework

The proposed DEUCE framework is illustrated in
Figure 1. Overall, the components of DEUCE serve
the same goal—to produce a seed set with high
dual-diversity and informativeness.

3.2.1 Embedding Module

In CSAL, data selection starts with only an
unlabeled corpus. DEUCE leverages PLM embed-
dings, which guide the selection process towards
more diverse and informative samples.

Specifically, the embedding module imple-
ments a prompt-based, verbalizer-free approach
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Figure 1: The proposed DEUCE framework.

(Jiang et al., 2022). This requires only a single
inference pass per document.

Textual and Predictive Embedding. In a
masked PLM, the bidirectional semantics can be
condensed into a [MASK] token. In light of this,
DEUCE extends Jiang et al. (2022)’s template with
double [MASK] tokens:

Tx :=
This sentence: ‘‘[X]’’ means [MASK].
Its [DOMAIN] is [MASK].

,

where [DOMAIN] is the target domain Y, such
as ‘‘sentiment’’. The hidden representations of
[MASK] tokens are extracted as the textual zxi

and predictive embeddings zŷ|xi
. They capture the

intrinsic and task-related semantics.
However, raw embeddings suffer from template

bias and length bias (Miao et al., 2023). DEUCE

further applies template denoising (Jiang et al.,
2022) to obtain the denoised embeddings z̃.

Class Embedding. Predictions need to be paired
with the known classes. Class embeddings z̃yj

are generated from a prompt template Ty, similar
to Tx:

Ty := This [DOMAIN]: ‘‘[Y]’’ means [MASK]. ,

where [Y] is the placeholder for a class yj .

3.2.2 Prediction Module

This module aims to produce uncertainty-aware
labels. With class information, DEUCE gains prior
knowledge about potential data distributions. With
uncertainty information, DEUCE is informed of
potential labeling gain.

Label Vector. For better uncertainty estimation,
DEUCE adopts an OVA setup, such that labels ŷi

do not necessarily sum to 1. First, it computes
the inner product ωij for each pair of predictive
and class embeddings:

Ω =
[
z̃ŷ|x

1
· · · z̃ŷ|x

N

]� [
z̃y

1
· · · z̃y

C

]
:=

[
ωij

]N,C

i=1,j=1
.
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Ideally, similarity ωij can be linearly trans-
formed to class label ŷij . However, high
anisotropy (Gao et al., 2019) was observed in
preliminary experiments. As a result, ωij has a
non-uniform distribution over [−1, 1]. To tackle
this issue, DEUCE uses the empirical distribution
function (e.d.f.) of Ω to give a calibrated estimate
of labels Ŷ:

ŷij = F̂Ω(ωij) =
1

NC

N∑
m=1

C∑
n=1

1[ωmn ≤ ωij ],

where 1[·] is the indicator function. This gives
ŷij ∼ U(0, 1) regardless of the embedding
distribution.

Predictive Uncertainty. In CSAL, uncertainty
represents the difficulty of an instance. DEUCE

adapts entropy, a common measure of uncertainty
(§2.1.1).

In information theory, entropy is the expected
self-information I of possible events. In an OVA
setup, possible events {Ei} are ‘‘xi has a high
predictive score for exactly one class’’. The prob-
ability of event Ei is given by Wójcik et al.
(2022):

p(Ei) = max
j

ŷij

C∏
l=1
l �=j

(1− ŷil).

Therefore, DEUCE adopts the entropy from {Ei}
as the uncertainty estimate u:

ui = I(Ei) = − log p(Ei).

3.2.3 Dual-Neighbor Graph (DNG) Module

Graphs serve as a powerful tool for data selec-
tion by explicitly modeling data interrelationship.
This enables the propagation of valuable infor-
mation (e.g., uncertainty) and the selection of
more diverse samples. To integrate textual and
class diversity, DEUCE leverages manifold learning
techniques (McInnes et al., 2020) on k-Nearest-
Neighbor (kNN) graphs of both spaces.2

2It is worth noting that DEUCE does not utilize or optimize
any Graph Neural Network (GNN). With the rich represen-
tational capability of PLMs, DEUCE does not require GNNs
to learn data representations.

kNN Graph. The use of kNN arises from
the neighborhood perspective of diversity. DEUCE

aims to avoid selecting neighboring instances. In
a kNN graph, an instance xi is connected with
its k nearest neighbors {xij} under some distance
function Δ(·, ·). Formally, the two metric spaces
of kNN are defined as follows.

• The textual space (X ,Δz̃) is defined by
textual embeddings under cosine distance,
Δz̃(xi, xj) =

1
π arccos

(
z̃�xi

z̃xj

)
;

• The label space (X ,Δŷ) is defined by la-
bel vectors under �1 distance, Δŷ(xi, xj) =
‖ŷi − ŷj‖1.

The kNN graph from each space is denoted by
Gz̃ and Gŷ, respectively.

Graph Normalization. To unify textual and
class diversity, DEUCE merges the two kNN
graphs into one for graph-based sampling. How-
ever, across two distinct spaces, it is necessary
to first normalize the distances (McInnes et al.,
2020).

To ease notation, this part omits the subscript
as G ∈ {Gz̃,Gŷ}. For each xi, DEUCE finds a nor-
malization factor τi > 0 that satisfies the equation

k∑
j=1

exp

(
−
Δ(xi, xij )− ρi

τi

)
= log2k,

where ρi denotes xi’s distance to its nearest
neighbor. The weights w̃ of the normalized (di-
rected) kNN graph G, denoted by G̃, is defined by

w̃
(〈
xi, xij

〉)
:= exp

(
−
Δ
(
xi, xij

)
− ρi

τi

)
.

After normalization, the original kNN weights
w ∈ [0,∞) are transformed to w̃ ∈ (0, 1].

Symmetrization. To identify representative in-
stances, DEUCE performs graph clustering. This
requires symmetric kNN graphs.

Let W̃ denote the sparse weight matrix of G̃.
Since weights w̃ ∈ [0, 1], they can be interpreted
as fuzzy memberships of neighborhood. Hence,
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symmetrizingW̃ is equivalent to finding the fuzzy
union (Dubois and Prade, 1982) of the neighbors
W̃ and reverse neighbors W̃�:

W̃sym = W̃ + W̃� − W̃ � W̃�,

where � is the Hadamard product. W̃sym defines
the weights of the symmetric kNN graph G̃sym.
Its edges are denoted by Ẽsym.

Merging. It is now appropriate to merge the
two kNN graphs. This unifies textual and class
diversity in one graph.

As merged, the DNG is an undirected graph
Gdual = (V , E , wdual). The edges E are the union
of edges in G̃z̃,sym and G̃ŷ,sym. Moreover, E is di-
vided into two types:

• E1 represents edges which only appear in
either kNN graph, called single-neighbor
edges;

• E2 represents edges which appear in both
kNN graphs, called dual-neighbor edges.
They connect neighboring documents which
are similar in both textual semantics and class
predictions.

The weight wdual of an undirected edge {xi, xj} ∈
E is thereby defined as

wdual :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃z̃,symw̃ŷ,sym + γ

if {xi, xj} ∈ E2,
w̃z̃,sym

if {xi, xj} ∈ Ẽz̃,sym \ Ẽŷ,sym︸ ︷︷ ︸
⊂ E1

,

w̃ŷ,sym

if {xi, xj} ∈ Ẽŷ,sym \ Ẽz̃,sym︸ ︷︷ ︸
⊂ E1

;

where γ is a threshold to distinguish dual-
neighbor edges E2 from single-neighbor edges
E1. In essence, DNG assigns greater weights to
dual-neighbor edges. As a result, during the sub-
sequent graph clustering and traversal, DEUCE can
avoid selecting textual and class neighbors.

3.2.4 Acquisition Module

DEUCE adopts a hybrid acquisition strategy. Over-
all, the goal is to produce a diverse and infor-

mative seed set. To achieve this, the acquisition
module performs graph clustering, propagation,
and traversal on DNG.

HDBSCAN*. A group of similar documents with
high predictive uncertainty indicates an area where
the model’s knowledge is lacking. By labeling one
of the documents, the model predictions can be
improved for similar ones in the area. Therefore,
it is valuable to identify and prioritize such rep-
resentatively uncertain (RU) groups for CSAL.

Clustering has been a common technique to
group similar instances (§2.1.2). However, tra-
ditional clustering methods (e.g., k-MEANS) are
ill-suited, as the number of RU groups is unknown.
Moreover, they force every instance into a clus-
ter, while some instances may not belong to any
RU group. Instead, DEUCE adopts density-based
clustering, which identifies RU groups with a
sufficient density (≥ kr similar documents).

Specifically, DEUCE applies HDBSCAN*
(Campello et al., 2013, 2015) on the DNG, with
minimum cluster size kr. A document xi is ei-
ther (a) clustered in an RU group cl with mem-
bership pi, or (b) excluded as a non-RU outlier.

Uncertainty Propagation. To prioritize RU
documents, uncertainty information (§3.2.2) is
propagated and aggregated in RU groups. This
is formulated as a single step of message
propagation:

ũi = ui +
∑

xj∈cl\{xi}
wdual({xi, xj}) pjuj .

FPS. The final acquisition adopts a combination
of diversity sampling and uncertainty sampling.
First, DEUCE runs Farthest Point Sampling (FPS;
Eldar et al., 1994) on the DNG. As the result
only depends on the initial point, FPS is started
from documents xi with top-k degrees. Each
produces a candidate seed set X (i)

c , which con-
tains b dually diverse samples. Finally, DEUCE

chooses the candidate with the highest propa-
gated uncertainty:

Xs = argmax
X (i)
c

∑
xj∈X (i)

c

ũj .

The whole process is described in Algorithm 1.
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4 Experiments and Results

4.1 Experimental Setup

Datasets. DEUCE is evaluated on six text clas-
sification datasets: IMDb (Maas et al., 2011),
Yelpfull (Meng et al., 2019), AG’s News (Zhang
et al., 2015), Yahoo! Answers (Zhang et al., 2015),
DBpedia (Lehmann et al., 2015), and TREC (Li
and Roth, 2002). Dataset statistics are shown in
Table 1. All the datasets used in the experiments
are publicly accessible. The original labels are re-
moved to create a cold-start scenario.

Evaluation Metric. To evaluate the perfor-
mance of the acquired seed set Xs, it is labeled
and used for fine-tuning the PLM. The original la-
bels of the seed set are revealed. The accuracy of
the fine-tuned PLM on the test set is then reported.
To be consistent with previous methods (Yu et al.,
2023), the experiments adopt RoBERTa-base (Liu
et al., 2019) as the backbone PLM.

Analysis Metrics. To analyze the effect of
dual-diversity enhancement, the class imbalance
(IMB) and textual-diversity value of seed sets are
reported. Both metrics are computed under budget
b = 128. IMB (Yu et al., 2023) is defined as:

IMB =
maxCj=1 nj

minCj=1 nj

,

where nj is the number of instances from class
yj . Textual-diversity value (Ein-Dor et al., 2020;
Yu et al., 2023) is defined as:

D =

⎛
⎝ 1

|X \ Xs|
∑

xi∈X\Xs

min
xj∈Xs

Δ(xi, xj)

⎞
⎠−1

,

where Δ(xi, xj) is the Euclidean distance of
SimCSE embeddings (Gao et al., 2021) of xi
and xj .

Implementation Details. The fine-tuning setup
and hyperparameters are the same as PATRON’s
(Yu et al., 2023). Notably, the experiment code
transplants the original implementation of graph
normalization (McInnes et al., 2018) to GPU for
acceleration. For DEUCE, k = 500, kr = 3, and
γ = 1.0 (since w̃sym ≤ 1.0) are taken. All exper-
iments are run on a machine with a single NVIDIA

A800 GPU with 80 GB of VRAM.

Baselines. The following CSAL baseline meth-
ods are considered:

• Random sampling selects uniformly.

• Entropy-based uncertainty sampling (revis-
ited by Schröder et al., 2022) selects data
with the highest predictive entropy.

• Coreset selection (Sener and Savarese, 2018)
iteratively selects data whose minimum
distance to the selected data is maximized.

• ALPS (Yuan et al., 2020a) computes surprisal
embeddings from BERT loss as uncertainty.
They are then clustered with k-MEANS. Data
closest to each centroid are selected.

• FEW-SELECTOR (Chang et al., 2021) clusters
the text embeddings with k-MEANS.

• TypiClust (Hacohen et al., 2022) clusters the
text embeddings with k-MEANS, and selects
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Dataset Source domain Target domain Y #Class C #Unlabeled|X | #Test Label distribution (bar chart) and names yj

IMDb Movie review Sentiment 2 25,000 25,000 Negative, Positive
Yelpfull Review Rating 5 38,352 10,000 1 star, 2 stars, 3 stars, 4 stars, 5 stars
AG’s News News Category 4 120,000 7,600 World, Sports, Business, Sci/Tech
Yahoo! Answers Web Q&A Category 10 300,000† 60,000 Society & Culture, Science & Mathematics, Health,

Education & Reference, Computers & Internet, Sports, Business
& Finance, Entertainment & Music, Family & Relationships,
Politics & Government

DBpedia Wikipedia lead section Category 14 420,000† 70,000 Company, Educational institution, Artist, Athlete, Of-
fice holder, Mean of transportation, Building, Natural place,
Village, Animal, Plant, Album, Film, Written work

TREC Question Category 6 5,452 500 ‡ Abbreviation, Entity, Description and abstract concept,
Human being, Location, Numeric value

Table 1: Statistics of evaluation datasets. †Yahoo! and DBpedia are the truncated version with 30k
samples per class by Yu et al. (2023). ‡TREC is an imbalanced dataset.

Method Informativeness Representativeness

Uncertainty Density Textual Class
diversity diversity

Random ✗ ✗ ✗ ✗
Entropy ✓ ✗ ✗ ✗
Coreset ✗ ✗ ✓ ✗
ALPS ✓ ✗ ✓ ✗
FEW-S. ✗ ✗ ✓ ✗
TypiCl. ✗ ✓ ✓ ✗
PATRON ✓ ✓ ✓ ✗
VOTE-k ✗ ✓ ✓ ✗

DEUCE ✓ ✓ ✓ ✓

Table 2: Comparisons of CSAL methods, which
adapt the taxonomy of Zhang et al. (2022b) (§2.1).

data with the highest typicality, i.e., kNN
density, from each cluster.

• PATRON (Yu et al., 2023) clusters the text
embeddings with k-MEANS, and selects from
each cluster data with the highest propagated
uncertainty. It then iteratively updates the set
to refine inter-sample distances.

• VOTE-k (Su et al., 2023) iteratively assigns a
high score if a data is far from selected data.

Comparisons of the CSAL baselines and DEUCE

are presented in Table 2.

4.2 Accuracy Improvement

The main quantitative results of PLM fine-tuning
performance with DEUCE and baseline CSAL
methods are shown in Table 3. Results for base-
lines other than VOTE-k are from Yu et al. (2023).
To report the standard deviation, each setup is
repeated with 10 different random seeds. Figure 2
demonstrates a qualitative visualization of the
b = 128 seed set from IMDb dataset, acquired
by the latest baseline method VOTE-k and the pro-
posed DEUCE. The t-SNE (van der Maaten and
Hinton, 2008) method is used for visualization.

From results in Table 3, it can be seen that
DEUCE consistently outperforms other baselines,
achieving up to a 2.5% gain on balanced datasets
and up to 6.2% on the imbalanced dataset, TREC.
DEUCE mainly benefits from that it enhances the
class diversity as well as textual diversity. This
can be concluded from the larger improvements
on TREC. In over half of the setups, DEUCE also
achieves the lowest standard deviation. In addi-
tion, DEUCE improves most when b is small. This
aligns with the fundamental goal of AL, which
is to maximize performance gains with minimal
labeled data. Furthermore, from the visualization
in Figure 2, it can be seen that DEUCE’s enhance-
ment of dual-diversity leads to a broader and more
balanced coverage of both input space and la-
bel space. As DEUCE adopts a highest-uncertainty
strategy, such coverage also exhibits high pre-
dictive uncertainty, thus including more ‘‘hard
examples’’ which are valuable for annotation.

4.3 Enhancement of Class Diversity
To verify the enhancement of class diversity, the
class imbalance value (Yu et al., 2023) under
b = 128 is reported in Table 4.

From Table 4, it can be seen that DEUCE

achieves the lowest average IMB value. This in-
dicates that DEUCE enhances class diversity prop-
erly. In contrast, an IMB of ∞ emerges in the pure
uncertainty-based (Entropy) and textual-diversity-
based (Coreset) method. This indicates the missed
cluster effect happens in their acquisition.

4.4 Enhancement of Textual Diversity
To measure the textual diversity of seed sets, the
textual-diversity value (Ein-Dor et al., 2020; Yu
et al., 2023) under b = 128 is reported in Table 5.

Table 5 shows that DEUCE also achieves the
highest average textual-diversity value. This indi-
cates that DEUCE also enhances textual diversity
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Dataset b Random Entropy Coreset ALPS FEW-S. TypiCl. PATRON VOTE-k DEUCE

IMDb
32 80.2±2.5 81.9±2.7 74.5±2.9 82.2±3.0 79.2±1.6 82.8±2.2 85.5±1.5 85.6±1.8 86.9±0.9
64 82.6±1.4 84.7±1.5 82.8±2.5 86.1±0.9 84.9±1.5 84.0±0.9 87.3±1.0 88.0±1.2 88.5±0.7

128 86.6±1.7 87.1±0.7 87.8±0.8 87.5±0.8 88.5±1.6 88.1±1.4 89.6±0.4 89.1±0.7 90.0±0.3

Yelpfull

32 30.2±4.5 32.7±1.0 32.9±2.8 36.8±1.8 35.2±1.0 32.6±1.5 35.9±1.6 40.1±2.2 42.6±1.1
64 42.5±1.7 36.8±2.1 39.9±3.4 40.3±2.6 39.3±1.0 39.7±1.8 44.4±1.1 49.3±1.6 49.8±1.2

128 47.7±2.1 41.3±1.9 49.4±1.6 45.1±1.0 46.4±1.3 46.8±1.6 51.2±0.8 50.8±1.5 53.4±0.7

AG’s News
32 73.7±4.6 73.7±3.0 78.6±1.6 78.4±2.3 79.1±2.7 80.7±1.8 83.2±0.9 81.8±1.3 83.7±0.8
64 80.0±2.5 80.0±2.2 82.0±1.5 82.6±2.5 82.4±2.0 83.0±2.4 85.3±0.7 84.7±1.3 86.3±0.6

128 84.5±1.7 82.5±0.8 85.2±0.6 84.3±1.7 85.6±0.8 85.7±0.3 87.0±0.6 86.2±1.2 87.5±0.4

Yahoo! Answers
32 43.5±4.0 23.0±1.6 22.0±2.3 47.7±2.3 46.8±2.1 36.9±1.8 56.8±1.0 54.5±1.6 58.0±1.5
64 53.1±3.1 37.6±2.0 45.7±3.7 55.3±1.8 52.9±1.6 54.0±1.6 61.9±0.7 60.8±1.4 62.8±1.3

128 60.2±1.5 41.8±1.9 56.9±2.5 60.8±1.9 61.3±1.0 58.2±1.5 65.1±0.6 64.3±0.9 66.2±0.9

DBpedia
32 67.1±3.2 18.9±2.4 64.0±2.8 77.5±4.0 83.3±1.0 78.2±1.8 85.3±0.9 78.1±2.6 86.0±1.7
64 86.2±2.4 37.5±3.0 85.2±0.8 89.7±1.1 92.7±0.9 88.5±0.7 93.6±0.4 92.7±1.3 94.1±0.9

128 95.0±1.5 47.5±2.3 89.4±1.5 95.7±0.4 96.5±0.5 95.7±0.6 97.0±0.2 96.4±0.4 97.3±0.3

TREC
32 49.0±3.5 46.6±1.4 47.1±3.6 60.5±3.7 60.3±1.5 42.0±4.4 64.0±1.2 57.6±2.9 70.2±1.7
64 69.1±3.4 59.8±4.2 75.7±3.0 73.0±2.0 77.3±2.0 72.6±2.1 78.6±1.6 81.8±3.1 82.2±1.5

128 85.6±2.8 75.0±1.8 87.6±3.0 87.3±3.6 87.7±1.5 83.0±3.8 91.1±0.8 89.7±2.6 92.1±0.8

Average
32 57.2±3.8 46.1±2.1 53.2±2.7 63.9±3.0 64.0±1.8 58.9±2.5 68.4±1.2 66.3±2.1 71.2±1.3
64 68.9±2.5 56.1±2.7 68.5±2.7 71.2±1.9 71.6±1.6 70.3±1.7 75.2±1.0 76.2±1.8 77.3±1.1

128 76.6±1.9 62.5±1.7 76.1±1.9 76.8±1.9 77.6±1.2 76.3±1.9 80.2±0.6 79.4±1.4 81.1±0.6

Table 3: Evaluation results of DEUCE and CSAL baselines on six datasets and three budgets (denoted
by b), each with 10 repetitions. Accuracy (%) of one-round fine-tuned PLM is reported in the format of
avg±std. The best and second best results per setup are emboldened and underlined, respectively.

Figure 2: The t-SNE visualization of the acquired seed
set (b = 128) on IMDb dataset. Text embeddings are
colored by their true labels.

properly. The improvement of textual-diversity
value is not significant, compared to IMB value’s
(Table 4). This signals that DEUCE enhances more
of class diversity than textual diversity, compared
to other baselines. Such difference can be ex-
plained by the highest-uncertainty-candidate strat-
egy, which acquires more information from the
label space.

4.5 Quality of Textual Embedding

To analyze the quality of DEUCE’s prompt-based,
unsupervised text embeddings z̃xi (§3.2.1), they
are compared with the supervised Sentence Trans-
former embeddings (Sentence Transformers,

2024) used in VOTE-k (Su et al., 2023). The
correlations are computed across all the possible(
N
2

)
pairs of their cosine similarity.3 Results on

three datasets are reported in Table 6.
From Table 6, a weak positive correlation is

observed. Moreover, template denoising produces
better embeddings, as it removes the biases from
raw embeddings. Overall, the quality of textual
embeddings is acceptable and adequate for cold-
start acquisition.

4.6 Quality of Class Prediction

To analyze the quality of embedding-based class
prediction ŷi (§3.2.2), they are compared with gold
labels. As uncertainty indicates unstable predic-
tions, labels are arranged from the most confident
(lowest ui) to the least. Results are demonstrated
in Figure 3.

From Figure 3, a high accuracy of class pre-
dictions is consistently observed with high con-
fidence and with denoised embeddings, and vice
versa. This demonstrates the good quality of e.d.f.
predictions and the derived uncertainty metric.

3Semantic similarity benchmarks (e.g., STS) cannot be
used here, as the prompt Tx requires a task domain Y.
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Dataset Random Entropy Coreset ALPS FEW-S. TypiCl. PATRON VOTE-k DEUCE

IMDb 1.207 6.111 1.000 1.783 1.286 2.765 1.286 1.065 1.169
Yelpfull 1.778 3.800 6.000 2.833 2.000 5.200 2.250 1.273 1.450
AG’s News 1.462 28.000 2.000 1.667 1.500 1.818 1.500 2.200 1.133
Yahoo! Answers 3.000 12.000 7.000 5.500 2.250 3.333 5.500 3.333 2.125
DBpedia 3.500 ∞ 9.000 9.000 3.500 9.000 2.333 2.800 3.250
TREC 8.000 16.000 ∞ 9.500 10.500 21.000 15.000 11.333 6.000
Harmonic avg. 2.128 9.863 3.124 3.138 2.166 3.839 2.338 2.052 1.779

Table 4: Label imbalance value (IMB) of acquired seed sets (b = 128). Smaller value indicates better
class diversity and balance. An IMB of ∞ indicates that the missed cluster effect happens.

Dataset Random Entropy Coreset ALPS FEW-S. TypiCl. PATRON VOTE-k DEUCE

IMDb 0.646 0.647 0.643 0.647 0.687 0.648 0.684 0.669 0.670
Yelpfull 0.645 0.626 0.456 0.680 0.685 0.677 0.685 0.657 0.679
AG’s News 0.354 0.295 0.340 0.385 0.436 0.376 0.423 0.370 0.448
Yahoo! Answers 0.430 0.375 0.400 0.441 0.470 0.438 0.486 0.451 0.491
DBpedia 0.402 0.316 0.381 0.420 0.461 0.399 0.459 0.434 0.476
TREC 0.301 0.298 0.298 0.339 0.337 0.326 0.338 0.346 0.353
Average 0.463 0.426 0.420 0.485 0.513 0.477 0.512 0.488 0.520

Table 5: Textual diversity value D of acquired seed sets (b = 128). Larger values indicate better textual
diversity.

Dataset Pearson Spearman
correlation r correlation ρ

IMDb 0.1651 0.1636
w/ denoising 0.1980 0.1889

Yelpfull 0.1424 0.1440
w/ denoising 0.3072 0.2984

TREC 0.4271 0.4000
w/ denoising 0.4662 0.4368

Table 6: The quality of textual embeddings, with-
out and with template denoising (Jiang et al.,
2022). Both correlation metrics are over [−1, 1];
higher values indicate better quality.

5 Discussion

5.1 Comparison with LLM-based Methods

The landscape of NLP is rapidly evolving with
generative large language models (LLMs). This
section evaluates two potential LLM-based alter-
natives to DEUCE: serialization for acquisition and
zero-shot Chain-of-Thought prompting. The fol-
lowing experiments are conducted with LLAMA 2
7B (Touvron et al., 2023).

5.1.1 Serialization for Acquisition
Inspired by the work of Hegselmann et al. (2023),
class and uncertainty information can be serialized

Figure 3: The quality of class predictions with respect
to predictive uncertainty ui. Dataset: IMDb (left) and
TREC (right).

into natural language for LLM-based acquisition.
The process is designed to involve three passes.
In the first pass, each unlabeled text is formal-
ized as a multiple-choice problem for LLM. The
prompt template T1 is used to collect class and
uncertainty information:

T1 :=
This sentence: ‘‘[X]’’ What is its [DOMAIN]?
Answer Choices: (A) [CLASS A] (B) . . .
Answer: (

In the second pass, LLM decides on whether each
text should be selected. Predictive uncertainty is
estimated by the entropy of first-pass predictions,
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Method b IMDb Yelpfull AG’s News Yahoo! DBpedia TREC Average

Serialization
32 81.7 44.5 25.2 38.8 62.6 28.4 46.9
64 83.8 51.2 53.4 55.7 45.9 27.8 53.0

128 89.6 56.9 83.7 63.4 58.6 35.6 64.6

DEUCE

32 86.9 42.6 83.7 58.0 86.0 70.2 71.2
64 88.5 49.8 86.3 62.8 94.1 82.2 77.3

128 90.0 53.4 87.5 66.2 97.3 92.1 81.1

Table 7: Fine-tuning results of DEUCE (RoBERTa-base) and LLM serialization (LLAMA 2 7B).

Method IMDb Yelpfull AG’s News Yahoo! DBpedia TREC Average
0-shot CoT, w/o choices 63.6 9.2 34.7 23.7 37.1 12.6 32.0
0-shot CoT, w/ choices 72.1 25.4 60.2 43.6 32.3 24.2 43.0
DEUCE, b = 32 86.9 42.6 83.7 58.0 86.0 70.2 71.2

Table 8: Evaluation results of DEUCE (b = 32, RoBERTa-base) and zero-shot Chain-of-Thought
prompting (Kojima et al., 2022; LLAMA 2 7B).

bounded by logC. The extended template T2 is
used to combine multiple information:

T2 :=

This sentence: ‘‘[X]’’ What is its [DOMAIN]?
Answer Choices: (A) [CLASS A] (B) . . .
Answer: ([ANSWER]) [CLASS]
Uncertainty: [UNCERTAINTY %]
Is it valuable for annotation? Yes or no?
Answer:

In the third pass, texts with top-b probabilities of
T2 answered ‘‘yes’’ are selected as the seed set.
LLM is then fine-tuned with the seed set under
T1. Finally, T1 is applied on the fine-tuned LLM
to report the test set accuracy.

Due to resource constraints, LoRA (Hu et al.,
2022) is used for fine-tuning, with r = α = 64.
Results are reported in Table 7. Despite utilizing a
mid-sized PLM, DEUCE outperforms serialization
with LLM in most datasets. The decision process
of LLM is also black-box. In contrast, DEUCE

adopts graphs to explicitly capture the interplay of
information, offering better interpretability.

5.1.2 Zero-shot Chain-of-Thought

Zero-shot Chain-of-Thought (CoT) prompting
(Kojima et al., 2022) with LLMs has emerged
as a promising method in cold-start scenarios.
This paper tests zero-shot CoT without and with
explicit choices in prompts. The temperature of
generation is set to 0, and a maximum of 256 to-
kens are generated. Results are shown in Table 8.

Stage 0-shot CoT DEUCE

Energy (kJ) Time (sec) Energy (kJ) Time (sec)
Acquisition – 59.82 81.00
Fine-tuning – 225.77 208.89
Prediction 2561.58 1967.23 41.99 24.27
Total 2561.58 1967.23 327.58 314.16

Table 9: Energy consumption and time usage of
DEUCE (b = 32, RoBERTa-base) and zero-shot
Chain-of-Thought prompting (Kojima et al., 2022;
LLAMA 2 7B), under the same data amount of
25000.

From the results, fine-tuning PLM with DEUCE still
outperforms 0-shot LLM predictions. In class-
imbalanced and difficult datasets, performance
gaps are greater. Lemon-picking shows that the
LLM failed to output a final answer within 256
tokens for many test instances.

In addition, the average total GPU and CPU
energy consumption and time usage are measured
using Alizadeh and Castor’s (2024) method. Re-
sults are reported in Table 9. There is a 7.82×
difference in energy consumption and 6.26× in
time consumption. While increasing the number of
output tokens might improve, the added resource
consumption cannot be neglected. DEUCE provides
an efficient solution for low-resource scenarios.

5.2 Effect of Labeling Noise
Real-world annotations often involve noise.
Northcutt et al. (2021) estimated an average of
2.6% labeling errors across 3 commonly used
NLP datasets. To evaluate DEUCE under labeling
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DEUCE b IMDb Yelpfull AG’s News Yahoo! DBpedia TREC Average

w/o noise
32 86.9±0.9 42.6±1.1 83.7±0.8 58.0±1.5 86.0±1.7 70.2±1.7 71.2±1.3

64 88.5±0.7 49.8±1.2 86.3±0.6 62.8±1.3 94.1±0.9 82.2±1.5 77.2±1.1

128 90.0±0.3 53.4±0.7 87.5±0.4 66.2±0.9 97.3±0.3 92.1±0.8 81.1±0.6

w/ noise
32 67.8±4.3 38.7±3.0 72.5±1.0 49.7±7.2 61.5±2.0 69.6±0.6 60.0±1.5

64 83.4±1.3 41.0±2.7 82.6±1.4 53.4±2.7 87.5±3.3 78.7±3.3 71.1±1.1

128 82.9±6.3 45.1±1.7 84.7±2.4 62.7±1.3 89.2±3.7 82.5±3.8 74.5±1.5

Table 10: Evaluation results of DEUCE, compared under an expected labeling noise level of 7%.

b IMDb Yelpfull AG’s News Yahoo! DBpedia TREC Average

Coreset
32 74.5±2.9 32.9±2.8 78.6±1.6 22.0±2.3 64.0±2.8 47.1±3.6 53.2±2.7
64 82.8±2.5 39.9±3.4 82.0±1.5 45.7±3.7 85.2±0.8 75.7±3.0 68.5±2.7

128 87.8±0.8 49.4±1.6 85.2±0.6 56.9±2.5 89.4±1.5 87.6±3.0 76.1±1.9

DEUCE w/ rand. pred.
32 83.3±4.1 44.1±0.7 83.4±2.0 52.3±3.9 63.2±1.1 64.9±3.9 65.2±1.2
64 85.9±4.5 48.0±0.3 84.6±1.2 60.0±0.6 82.9±1.7 78.2±2.0 73.3±0.9

128 86.6±2.5 49.5±0.4 87.2±0.4 63.4±1.3 96.8±0.1 86.8±1.3 78.4±0.5

Table 11: Ablation results of DEUCE with random class predictions, compared with Coreset selection
(Sener and Savarese, 2018). In this case, the class and uncertainty information are disarranged.

noise, experiments with artificial errors are con-
ducted. As the gold labels may already contain
around 3% errors, 7% of seed labels are randomly
replaced by wrong labels. The final sets are ex-
pected to exhibit an error level of 4–10%. Results
are reported in Table 10.

From the results, a decrease in accuracy and an
increase in standard deviation occur as expected.
However, DEUCE still outperforms 0-shot CoT
(Table 8) in nearly all setups, despite the added
noise. This shows the robustness of DEUCE for
fine-tuning to labeling noise.

5.3 Effect of Class Prediction Failure
For real-world cold-start tasks, the knowledge
about classes might not be well exploited by
the PLM. In the worst case, the PLM can fail to
generate meaningful class predictions. To simulate
this scenario, ablation experiments with random
class predictions are conducted. In this setup,
the predictive embeddings zŷ|xi

are replaced with
random vectors. This ablates class predictions.
Results are reported in Table 11.

As class and uncertainty information are dis-
arranged, DEUCE degenerates to single textual
diversity and performance degradation occurs as
expected. Nonetheless, DEUCE still outperforms
Coreset selection (Sener and Savarese, 2018), a
CSAL baseline which also purely utilizes textual
diversity. This demonstrates DEUCE’s effective-
ness in real-world cold-start scenarios.

Method 4-shot 8-shot Average
Random 25.1 24.3 24.7
DEUCE 25.8 27.4 26.6

Table 12: Evaluation results of DEUCE (RoBERTa-
base) with few-shot Chain-of-Thought prompt-
ing (Wei et al., 2022; LLAMA 2 7B) on GSM8K
dataset (Cobbe et al., 2021), compared to random
sampling.

5.4 Performance of Few-shot
Math Reasoning

DEUCE has the potential to generalize on other
NLP tasks. To demonstrate this, DEUCE is tested
on GSM8K (Cobbe et al., 2021), a dataset of
math word problems. However, directly adapting
RoBERTa to solving math problems is difficult
due to its masked modeling nature. Instead, DEUCE

is applied with RoBERTa to produce a seed set.4

Then, the seeds are taken as examples for few-shot
Chain-of-Thought prompting (Wei et al., 2022)
with LLAMA 2 7B. From the results, as reported in
Table 12, DEUCE is still effective in few-shot math
problem solving, compared to random sampling.

4For open questions like math problems, there are no
concepts of ‘‘classes’’. Instead, the predictive embeddings
z̃ ŷ|xi

are clustered with HDBSCAN*. The cluster centroids are
taken as meta-class embeddings zŷ .
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6 Conclusion

This paper presents DEUCE, a dual-diversity en-
hancing and uncertainty-aware CSAL framework
via a prompt-based and graph-based approach.
Different from previous works, it emphasizes
dual-diversity (i.e., textual diversity and class
diversity) to ensure a balanced acquisition. This
is achieved by the novel construction of Dual-
Neighbor Graph (DNG) and Farthest Point Sam-
pling (FPS). DNG leverages the kNN graph
structure of textual space and label space from a
PLM. In addition, DEUCE prioritizes hard repre-
sentative examples, so as to ensure an informative
acquisition. This leverages density-based cluster-
ing and uncertainty propagation on the DNG.
Experiments show the effectiveness of DEUCE’s
dual-diversity enhancement and uncertainty-aware
mechanism. It offers an efficient solution for low-
resource data acquisition. Overall, DEUCE’s hy-
brid strategy strikes an important balance between
exploration and exploitation in CSAL.

Limitations

Backbone LM. DEUCE leverages a discrimina-
tive PLM. However, state-of-the-art PLMs are
primarily generative. Generative embedding mod-
els (e.g., Jiang et al., 2023) or adaptations (Yang
et al., 2019; Gong et al., 2019; Zhang et al., 2022a)
can be investigated and combined with DEUCE.
For such approaches, their quality and efficiency
should be carefully minded.

External Knowledge. In DEUCE, the only source
of external knowledge is the language model.
Incorporation of more domain knowledge, if
possible, can improve the performance in the
cold-start stage. As DEUCE adopts a prompt-based
and graph-based acquisition, prompt engineering
and knowledge graphs (Pan et al., 2024) can be
investigated.
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