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Abstract
With the rise of Large Language Models (LLMs), the NLP community is increasingly aware of the environmental
consequences of model development due to the energy consumed for training and running these models. This
study investigates the energy consumption and environmental impact of systems participating in the MentalRiskES
shared task, at the Iberian Language Evaluation Forum (IberLEF) in the year 2023, which focuses on early risk
identification of mental disorders in Spanish comments. Participants were asked to submit, for each prediction, a set
of efficiency metrics, being carbon dioxide emissions among them. We conduct an empirical analysis of the data
submitted considering model architecture, task complexity, and dataset characteristics, covering a spectrum from
traditional Machine Learning (ML) models to advanced LLMs. Our findings contribute to understanding the ecological
footprint of NLP systems and advocate for prioritizing environmental impact assessment in shared tasks to foster
sustainability across diverse model types and approaches, being evaluation campaigns an adequate framework for
this kind of analysis.
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1. Introduction

With the advent of Large Language Models (LLMs),
the Natural Language Processing (NLP) community
is increasingly recognizing the importance of ad-
dressing and mitigating the environmental impact
of these models. The lifecycle of an NLP model,
including data ingestion, pre-training, fine-tuning,
and inference, significantly contributes to energy
consumption and emissions.

This concern amplifies when developing shared
tasks, i.e., competitions where different teams are
encouraged to develop different systems to address
a specific NLP task. For instance, MentalRiskES
(Mármol-Romero et al., 2023) is a recent task on
early risk identification of mental disorders in Span-
ish comments from Telegram users. The organiz-
ers of this shared task encourage teams to submit
their energy and environmental impact consump-
tion alongside their prediction systems. This shared
task consists of an online problem where partici-
pants detect a potential risk (eating disorders (EDs),
depression, and anxiety) as early as possible in a
continuous stream of data. A total of 16 teams
participated in submitting more than 130 runs.

In this work, we perform an empirical study to
quantify the energy consumption and environmen-
tal impact of the systems participating in the Men-
talRiskES shared task. While this may seem like
it should be a straightforward calculation, several

variables can influence compute time and energy
consumption, ranging from (1) the type of model
architecture used for addressing the tasks; (2) the
type of task and the type of computation required
to carry it out; and (3) intrinsic characteristics of the
dataset, such as average sequence length, number
of users, etc.

In this paper, we are among the first to study
the environmental impact of the different systems
developed for a shared task. We focus on the Men-
talRiskES shared task, as it stands out as one of
the few reporting the energy consumption of partic-
ipants. The systems submitted for this task range
from traditional ML models to state-of-the-art LLMs.
Our study aims to comprehensively evaluate the
ecological footprint across all model types involved
in the competition.

Furthermore, we advocate for shared task orga-
nizers to prioritize and promote the crucial practice
of environmental impact measurement. This proac-
tive approach fosters sustainability in the NLP com-
munity and encourages environmentally conscious
methodologies across diverse model types.

2. The Environmental Cost of NLP
Systems

Digitization has sometimes been seen as a green
solution, mainly because of the reduction of phys-
ical resources, like paper. But any software sys-
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tem is undoubtedly linked to hardware, the physical
counterpart, and, even more, to the amount of en-
ergy needed to power these systems. Computing
already demands 1% of the total energy gener-
ated in the world according to a recent report (IEA,
2023), which also found that current Artificial In-
telligence (AI) advancements have come with the
side effect of a high increase in power consumption
and, therefore, an impact on greenhouse gases
emissions. This is significant, especially consid-
ering that these systems are primarily operated in
the cloud, meaning they often run in data centres
specifically designed for energy efficiency (Dodge
et al., 2022).

When dealing with LLMs, the related impact on
CO2 emissions can be significant. It has been es-
timated that the training of a large model like the
BLOOM model (Le Scao et al., 2022) emitted about
24.7 tonnes of CO2 considering only power con-
sumption, and more than 50 tonnes if all processes
involved are considered (from equipment manu-
facturing to energy-based operational consump-
tion) (Luccioni et al., 2023). That is equivalent to
300,000 km drive of a diesel car. BLOOM has 176
billion parameters, so we can imagine the equiva-
lent emissions to train GPT-4, which is estimated to
be around 1.76 trillion (1,000 diesel cars over their
whole lifetime).

The concept Sustainable AI has emerged to dis-
cuss, in the words of Van Wynsberghe (2021), “how
to develop AI that is compatible with sustaining en-
vironmental resources for current and future gener-
ations”. As such, it is more a matter of being sure
that AI advances are sustainable, rather than find-
ing sustainable means to maintain AI technologies.

Therefore, AI systems must be limited in their
carbon footprint and every research activity where
deep learning is involved should report on this is-
sue. Fortunately, several libraries have emerged to
help in the measurement of the environmental im-
pact of the execution of deep learning models, like
ML CO2 Impact Tools (Lacoste et al., 2019) or the
more recent Eco2AI tool (Budennyy et al., 2022).
But one that has been found to be very effective is
the CodeCarbon1 tool, as it considers where exe-
cutions take place so energy sources can be better
estimated. This tool has been designed according
to the work by (Kirkpatrick, 2023).

3. Objectives

In this paper, we address three main different ob-
jectives related to environmental impact:

1. Estimate how different ML approaches (mainly
shallow learning vs. deep learning ones) im-
pact the overall demand for computing re-

1https://codecarbon.io/

sources and power consumption when dealing
with early risk prediction over the internet.

2. Evaluate the amount of greenhouse gases as-
sociated with an evaluation campaign for a bet-
ter understanding of the environmental cost of
this kind of scientific and research forums in
the scope of artificial intelligence applied to
mental health.

3. Promote a responsible design of algorithms
and techniques to mitigate or reduce the en-
ergy and emissions associated, identifying
the most promising solutions with a balanced
trade-off between performance and efficiency.

4. Data acquisition process

MentalRiskES (Mármol-Romero et al., 2023) is a
task on early risk identification of mental disorders
in Spanish comments from Telegram users. Given
a history of messages about a user, the goal is to
identify whether the user suffers from the disorder
or not, and his/her attitude to it. The task must be
resolved as an online problem, that is, messages
per subject are provided in a sequence of rounds
and the systems must submit a prediction for each
round. Therefore, the performance not only de-
pends on the accuracy of the systems but also on
how fast the problem is detected. For this shared
task edition, the disorders considered are eating
disorders (task 1), depression (task 2), and an un-
known one (task 3) which later revealed itself as
anxiety. In this paper, we focus on tasks 1 and 2
and subtasks 1a, 1b, 2a, 2b.

For task 1, eating disorder detection, teams had
to detect if the user suffered from anorexia or bu-
limia (task 1a - binary classification) and provide
a probability for the user to suffer anorexia or bu-
limia (task 1b - simple regression). For task 2, de-
pression detection, teams had to detect if the user
suffered from depression (task 2a - binary classi-
fication) and provide a probability for the user to
suffer depression (task 2b - simple regression).

In addition, as early detection is the main goal
of this evaluation campaign, teams were provided
with access to a server to which they had to connect
to read messages and send predictions simulating
a system that aims to predict mental problems in
social networks and in real-time. Therefore, pre-
dictions are sent per round, each round being the
access to a new message from the subjects’ his-
tory. Therefore, the later the round, the more user
messages the teams will have available, with the
first round being the first message of each subject’s
history.
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4.1. How CodeCarbon Works
To conduct the CO2 tracking analysis, the CodeCar-
bon2 package in its 2.1.4 version is used. CodeCar-
bon calculates the carbon intensity of the consumed
electricity as a weighted average of the emissions
from the different energy sources. Each way of
generating electricity (fossil fuels coal, petroleum,
natural gas, and renewable or low-carbon) is asso-
ciated with specific carbon intensities. Based on
the mix of energy sources in the local grid, CodeCar-
bon calculates the carbon intensity of the electricity
consumed.

4.2. Sending Dynamics
In the MentalRiskES competition, for each task,
participants were asked to submit some information
to measure the impact of their systems in terms
of resources needed and environmental issues,
with the aim of recognizing those systems that can
perform the task with minimal resource demand.

In particular, participants submitted the following
metrics as part of the metadata in every prediction
(for each round):

• Duration: Duration of the compute, in seconds.

• Emissions: System emissions as CO2 equiva-
lents [CO2eq], in kg.

• Energy used per CPU: Power consumption per
CPU in kWh.

• Energy used per GPU: Power consumption
per GPU in kWh.

• Energy used per RAM: Power consumption
per RAM in kWh.

• Total energy used: Total power consumption in
kWh. The sum of CPU, GPU, and RAM energy
used in kWh.

The participants submitted together with their
system predictions the accumulated of each metric,
that is, each submission of the different rounds has
the previous one added, so the difference gives
the measurement for the interval. In this way, the
metrics are known in each submission and we can
calculate the mean and standard deviation for each
metric. The participants also submitted information
about their hardware:

• CPU count: number of CPU.

• GPU count: number of GPU.

• CPU model: example Intel(R) Core(TM) i7-
1065G7 CPU @ 1.30GHz.

2https://mlco2.github.io/codecarbon/

• GPU model: example 1 x NVIDIA GeForce
GTX 1080 Ti.

• RAM total size: total RAM available.

5. Results and Discussion

This section presents the results obtained in some
subtasks of the MentalRiskES (Mármol-Romero
et al., 2023) competition (binary classification and
simple regression) for tasks 1 and 2 (eating dis-
orders and depression detection), as well as the
corresponding environmental values. This section
also includes the comparison and analysis of these
two aspects of the systems grouped according to
the type of algorithm used: (1) Classical ML for
systems using algorithms such as Support Vec-
tor Machine (SVM) or Random Forest (RF), Deep
Learning (DL) for systems using algorithms such
as LSTMs or CNNs, and LLM for systems using
large language models such as BERT or GPT.

Throughout this section, performance metrics
such as Macro-F1 and Early Risk Detection Error
(Losada and Crestani, 2016) at round 30 (ERDE30)
established in the competition will be discussed. In
addition, the energy values refer to the sum of CPU,
GPU, and RAM energy in kWh (Energy) and the
average emissions as CO2 equivalents, in kg per
round (Emissions).

These values are obtained from those provided
by the competition organizers (Mármol-Romero
et al., 2023) and from all papers published by the
sixteen teams. Note that teams had the possibility
to submit predictions from three different systems.
In some cases, teams submitted predictions from
the same system as three different systems, which
led to their consolidation within the same line in
some of the following tables. This conclusion was
reached after seeing that all three alleged systems
provided the same predictions and gave the same
emission values.

5.1. Binary Classification
The results obtained with the environmental data
for subtask 1a (ED) and subtask 2a (depression)
are compared below. For this type of task, most
systems used LLM to resolve the problem although
not always obtain the best scores.

For subtask 1a, about eating disorders (ED),
10 teams participated and there are 20 systems.
There were only two systems that used classical
ML and four that used DL. The Macro-F1 and
ERDE30 results obtained by the teams’ systems
are shown in Figure 1. Despite the popularity of
the use of LLM systems, fourteen systems in total,
the best score was obtained by the team CIMAT-
NLP-GTO (Echeverría-Barú et al., 2023), with the

https://mlco2.github.io/codecarbon/


64

system that used a classical Naïve Bayes algo-
rithm with a value of 0.966 for the Macro-F1 met-
ric, 0.048 points ahead of the second-best system,
UMUTeam (Pan et al., 2023), that used a LLM,
MarIA model (Gutiérrez-Fandiño et al., 2021). Also,
the best system in the F1 metric obtained the best
score in the ERDE30 metric with the lowest value
of 0.018.

Figure 1: Macro-F1 and ERDE30 scores obtained
by the systems sorted by the F1 metric. The y-axis
represents the team’s name followed by a number
representing the system used.

Subfigures 2a and 2b show the emissions and
energy values of the systems across the different
teams. Although, in general, the systems do not
consume excessive energy in calculating predic-
tions in a single round, LLMs occupy lower positions
in the graph, which translates into higher values
of energy consumption. This is very clear to see
in Figure 3 (which shows the energy consumption
per model type). The last four systems used the
RoBERTuito model (Pérez et al., 2021) followed
by a Naive Bayes algorithm which obtained the
best Macro-F1 and ERDE30 scores. On the other
hand, the second-best system in the F1 score is in
the second place in the emissions ranking which
shows that it is possible to have a good prediction
and be friendly with the environment. The aver-
age value obtained by the teams’ systems in task
1a for several metrics the organisers asked for re-
lated to environmental impact are shown in Table 1,
Appendix A.1.

In Figure 4 systems are visualised according to
their ranking, energy consumed and emissions pro-
duced. In this case, the systems that consume
the most energy are also the ones that produce
the most emissions. Moreover, some systems con-
sume very little and with a very small sphere (low
emissions) that obtains a very high F1 value.

For subtask 2a, about depression, 14 teams par-
ticipated and there are 26 systems. In this subtask
six systems used classical ML, two used DL and

(a) Mean energy consumed per round sorted by emis-
sions.

(b) Mean emissions emitted per round sorted by emis-
sions.

Figure 2: Average values obtained per round by
the systems for subtask 1a on environmental friend-
liness. The y-axis represents the team’s name fol-
lowed by a number representing the system used.

Figure 3: Boxplot of energy consumption (KWh) of
each prediction in task 1a by model type.

sixteen LLM systems. In this case, the first five
systems have a similar score in the Macro-F1 met-
ric although the first, obtained by UMUTeam, has
a very high ERDE30 score (0.358) compared to
the best (0.140) in the fifth position, SINAI-SELA



65

Figure 4: Distribution of the systems for task 1a.
The size of the marks is by the emissions produced.
The emissions were scaled and a logarithmic nor-
malisation in base 2 was performed for better vi-
sualisation. The colour scale corresponds to the
actual values of CO2 emissions in kilograms.

(González-Silot et al., 2023), that used a BERT-
based model (Devlin et al., 2018). These values
are shown in Figure 5.

Figure 5: Macro-F1 and ERDE30 scores obtained
by the systems sorted by the F1 metric. The y-axis
represents the team’s name followed by a number
representing the system used.

The values obtained in this subtask show that
there is no relationship between emissions and en-
ergy used in the prediction because models based
on BERT like Bertin (De la Rosa et al., 2022),
trained with Spanish language data, consumed a
lot of energy but were not among the systems that
emitted more CO2. This is represented in Figure 7.
RoBERTuito-based systems again occupy the low-
est position in the charts shown in Subfigures 6a
and 6b. The average value obtained by the teams’
systems in task 2a for several metrics the organis-
ers asked for related to environmental impact are
shown in Table 2, Appendix A.1.

In Figure 8 systems are visualised according to

(a) Mean energy consumed per round sorted by emis-
sions.

(b) Mean emissions emitted per round sorted by emis-
sions.

Figure 6: Average values obtained per round by
the systems for subtask 2a on environmental friend-
liness. The y-axis represents the team’s name fol-
lowed by a number representing the system used.

Figure 7: Boxplot of energy consumption (KWh) of
each prediction in task 2a by model type.

their ranking, energy consumed and emissions pro-
duced. This image clearly shows how energy con-
sumption does not necessarily have to be directly
related to CO2 emissions produced, as the source
of this energy can be renewable.
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Figure 8: Distribution of the systems for task 2a.
The size of the marks is by the emissions produced.
The emissions were scaled and a logarithmic nor-
malisation in base 2 was performed for better vi-
sualisation. The colour scale corresponds to the
actual values of CO2 emissions in kilograms.

In general terms, the application of LLM has been
the most predominant in this type of task (binary
classification). In general, the energy consumption
needed to make the predictions can be considered
low and the CO2 emissions emitted per round to
make the prediction have not been very high ei-
ther, with a few exceptions. It is shown that an
environmentally friendly system can achieve good
results in the experiments and that LLMs, in gen-
eral, consume more energy as shown in Figures 3
and 7.

5.2. Simple Regression
The results obtained with the environmental data
for subtask 1b (ED) and subtask 2b (depression)
are compared below. For this task, most systems
used, again, LLM to resolve the problem.

For subtask 1b, about ED, there was precision at
30 (P@30) and Root Mean Square Error (RMSE)
results obtained by teams are shown in Figure 9.
Eight teams participated in this subtask and there
are fifteen different systems. Two systems used
classical ML systems (the best uses Gradient Boost
Regressor (GBR) and the second Naive Bayes),
four apply DL techniques and the rest, nine, use
LLM systems. For this regression task, LLM-based
systems seem to perform better as they are at the
top of the ranking except for the system based on
Sentence-BERT (SBERT), used by team Xabi IXA
(Larrayoz et al., 2023).

Energy consumption and emissions, shown in
Subfigures 10a and 10b respectively, for this task,
are similar to those of the binary classification task.
As in the previous figures, DL-based systems are
always at the top of the graph, showing their low
environmental impact. This is very noticeable in
the graph in Figure 11. The average value obtained
by the teams’ systems in task 1b for several metrics

Figure 9: Precision at 30 and RMSE scores ob-
tained by the systems sorted by RMSE metric. The
y-axis represents the team’s name followed by a
number representing the system used.

the organisers asked for related to environmental
impact are shown in Table 3, Appendix A.1.

In Figure 12 systems are visualised according
to their ranking, energy consumed and emissions
produced.

For subtask 2b, about depression, there was
P@30 and RMSE results obtained by teams are
shown in Figure 13. For this subtask, 7 teams par-
ticipated and there are 12 different systems. Three
systems use classical ML, and the best of them, ob-
tained by the PLN-CMM team (Guerra et al., 2023),
applies a Linear Regression. Moreover, two sys-
tems of the NLP-UNED team (Fabregat et al., 2023)
used DL systems (ANN) and six applied LLM. There
is a system that we do not know the type of algo-
rithm they apply located between the two DL-based
systems. The ML system that obtains the best re-
sults is in the top 3 systems that emit the most
emissions, as shown in Subfigures 14a and 14b.
Again, Figure 15 shows that LLM uses much more
energy than other types of systems.

The average value obtained by the teams’ sys-
tems in task 2b for several metrics the organis-
ers asked for related to environmental impact are
shown in Table 4, Appendix A.1.

In Figure 16 systems are visualised according
to their ranking, energy consumed and emissions
produced. This figure shows that there is a system
that consumes more energy than the rest and emits
more kilograms of CO2 per prediction and that also
obtains the worst result according to the RMSE
metric.

LLM seems to have triumphed for this type of
task (simple regression), in addition to being the
most energy-consuming and emission-intensive for
forecasting, although there are also environmen-



67

(a) Mean energy consumed per round sorted by emis-
sions.

(b) Mean emissions emitted per round sorted by emis-
sions.

Figure 10: Average values obtained per round by
the systems for subtask 1b on environmental friend-
liness. The y-axis represents the team’s name fol-
lowed by a number representing the system used.

Figure 11: Boxplot of energy consumption (KWh)
of each prediction in task 1b by model type.

tally friendly systems that apply LLM. It is possible
to use these models without emitting large amounts
of CO2 as shown in Figures 10b, 14b, 12 and 16.

Figure 12: Distribution of the systems for task 1b.
The size of the marks is by the emissions produced.
The emissions were scaled and a logarithmic nor-
malisation in base 2 was performed for better vi-
sualisation. The colour scale corresponds to the
actual values of CO2 emissions in kilograms.

Figure 13: Precision at 30 and RMSE scores ob-
tained by the systems sorted by RMSE metric. The
y-axis represents the team’s name followed by a
number representing the system used.

6. Discussion

From the previous analysis, it is clear that LLMs are
among the solutions with a more demanding need
of power consumption and, therefore, associated
CO2 emissions. The RoBERTuito model was found
to be the one with a major impact in terms of emis-
sions, but this fact has to be considered carefully
for two main reasons: (1) we cannot guarantee the
confidence of the reported values by participants,
and (2) the validity of the measurements computed
by Code Carbon may be biased according to loca-
tion. In any case, despite this potential weakness
in our methodology, if we trust the data, some in-
teresting facts arise:

• Performance is not always linked to complexity.
Some classical machine learning systems with
very low carbon footprint exhibited superior
results.
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(a) Mean energy consumed per round sorted by emis-
sions.

(b) Mean emissions emitted per round sorted by emis-
sions.

Figure 14: Average values obtained per round by
the systems for subtask 2b on environmental friend-
liness. The y-axis represents the team’s name fol-
lowed by a number representing the system used.

Figure 15: Boxplot of energy consumption (KWh)
of each prediction in task 2b by model type.

• Similar systems may lead to very different en-
ergy consumption values or emissions. The
source of the energy and the efficiency of the
computing infrastructure may play a crucial
role here.

Figure 16: Distribution of the systems for task 2b.
The size of the marks is by the emissions produced.
The emissions were scaled and a logarithmic nor-
malisation in base 2 was performed for better vi-
sualisation. The colour scale corresponds to the
actual values of CO2 emissions in kilograms.

7. Conclusions

This work is, to the best of our knowledge, the first
attempt to introduce environmental impact analysis
in an evaluation campaign. In this paper, we focus
on performing this analysis in the MentalRiskES
shared task (Mármol-Romero et al., 2023), a com-
petition about detecting early mental risk disorders
in Spanish. Participants reported several efficiency
metrics when submitting their results. We use these
metrics to conduct our analysis. Based on our re-
sults, we found that systems based on DL models,
as expected, count for the major impact in terms of
carbon dioxide emissions. This is even more dra-
matic when LLMs are involved. Nonetheless, the
source of the energy consumed or the efficiency
of the computing infrastructure can mitigate this
negative impact Besides, in many cases there exist
alternatives based on less demanding approaches
that can produce high performances in the task of
early prediction of mental disorders.

Given the importance of assessing the environ-
mental impact of NLP systems, we strongly ad-
vocate for shared task organizers to prioritize the
essential practice of environmental impact mea-
surement. This proactive stance not only promotes
sustainability within the NLP community but also
encourages the adoption of environmentally con-
scious methodologies across a wide range of model
types.
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A. Appendix

A.1. Emissions values
This section contains the official competition en-
vironmental impact data tables for the tasks ad-
dressed in this document.
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team_run algorithm duration (s) emissions (kg) cpu_E (kWh) gpu_E (kWh) ram_E (kWh) E_consumed (kWh)
2 UMUTeam_0 LLM 11.51 7.01E-08 2.28E-07 1.40E-07 1.02E-09 3.69E-07
4 UMUTeam_1 LLM 11.51 7.01E-08 2.28E-07 1.40E-07 1.02E-09 3.69E-07
12 NLP-UNED_0 DL 0.61 1.62E-06 2.98E-06 5.45E-06 1.13E-07 8.54E-06
14 NLP-UNED_1 DL 0.61 1.62E-06 2.98E-06 5.45E-06 1.13E-07 8.54E-06
15 Xabi IXA_1 DL 2.04 6.51E-06 3.36E-05 0.00E+00 6.50E-07 3.43E-05
17 Xabi IXA_2 DL 2.04 6.51E-06 3.36E-05 0.00E+00 6.50E-07 3.43E-05
18 Xabi IXA_0 LLM 2.04 6.51E-06 3.36E-05 0.00E+00 6.50E-07 3.43E-05
9 plncmm_0 ML 2.80 8.11E-06 2.10E-05 1.24E-06 1.46E-07 2.23E-05
20, 21, 22 UPM_0 LLM 303.05 1.51E-05 7.93E-05 0.00E+00 1.49E-07 7.94E-05
13 UNSL_0 LLM 4.63 2.77E-05 6.11E-05 0.00E+00 1.34E-06 6.24E-05
3 UNSL_1 LLM 4.64 2.78E-05 6.13E-05 0.00E+00 1.34E-06 6.26E-05
7 VICOM-nlp_0 LLM 3.63 4.56E-05 8.86E-05 1.50E-04 1.41E-06 2.40E-04
6 VICOM-nlp_1 LLM 3.62 4.66E-05 8.85E-05 1.55E-04 1.41E-06 2.45E-04
5 VICOM-nlp_2 LLM 3.61 4.71E-05 8.83E-05 1.58E-04 1.42E-06 2.48E-04
1 CIMAT-NLP-GTO_0 ML 3.29 2.56E-04 1.80E-04 3.42E-04 5.67E-07 5.23E-04
8 CIMAT-NLP-GTO_1 LLM 3.29 2.56E-04 1.80E-04 3.42E-04 5.67E-07 5.23E-04
16 CIMAT-NLP-GTO_2 LLM 3.29 2.56E-04 1.80E-04 3.42E-04 5.67E-07 5.23E-04
19 I2C-UHU_0 LLM 75.73 3.19E-04 8.94E-04 0.00E+00 1.90E-05 9.13E-04
11 CIMAT-NLP_0 LLM 35.01 3.53E-03 2.59E-03 4.59E-03 3.58E-05 7.22E-03
10 CIMAT-NLP_1 LLM 35.45 3.58E-03 2.63E-03 4.66E-03 3.63E-05 7.32E-03

Table 1: Emission values obtained for task1a ranked according to the average emitted emissions. The
first column indicates the ranking obtained according to the value of Macro-F1. The team_run column is
the team’s name followed by a number representing the system it used. Some teams such as UPM seem
to have used the same system on different runs as they have the same values in all metrics and variables.

team_run algorithm duration (s) emissions (kg) cpu_E (kWh) gpu_E (kWh) ram_E (kWh) E_consumed (kWh)
1 UMUTeam_0 LLM 19.49 5.52E-08 1.02E-07 1.88E-07 7.73E-10 2.91E-07
6 UMUTeam_1 LLM 19.49 5.52E-08 1.02E-07 1.88E-07 7.73E-10 2.91E-07
16 GetitDone_0 LLM 11.73 2.25E-07 7.33E-05 2.01E-05 1.16E-06 9.45E-05
25, 26, 27 DepNLP UC3M GURUDASI_0 Unknown 15.07 4.35E-07 5.70E-07 9.28E-07 2.50E-08 1.52E-06
9 NLP-UNED_1 DL 0.73 1.64E-06 3.56E-06 4.96E-06 1.37E-07 8.65E-06
14 NLP-UNED_0 DL 0.73 1.64E-06 3.56E-06 4.96E-06 1.37E-07 8.65E-06
4 TextualTherapists_1 ML 25.78 3.23E-06 1.67E-05 0.00E+00 3.15E-07 1.70E-05
8 TextualTherapists_0 ML 25.77 3.23E-06 1.67E-05 0.00E+00 3.15E-07 1.70E-05
23 TextualTherapists_2 ML 25.78 3.23E-06 1.67E-05 0.00E+00 3.15E-07 1.70E-05
5 SINAI-SELA_0 LLM 30.58 9.17E-06 8.68E-06 1.13E-05 3.01E-07 2.03E-05
7 SINAI-SELA_1 LLM 31.06 9.17E-06 8.68E-06 1.13E-05 3.01E-07 2.03E-05
24 plncmm_0 ML 4.27 1.25E-05 3.20E-05 2.16E-06 2.34E-07 3.44E-05
3 UNSL_0 LLM 3.35 2.01E-05 4.42E-05 0.00E+00 9.98E-07 4.51E-05
2 UNSL_1 LLM 3.35 2.01E-05 4.42E-05 0.00E+00 9.98E-07 4.52E-05
12 VICOM-nlp_2 LLM 3.01 3.79E-05 7.35E-05 1.25E-04 1.18E-06 1.99E-04
15 VICOM-nlp_1 LLM 3.27 3.86E-05 7.90E-05 1.23E-04 1.27E-06 2.03E-04
19 VICOM-nlp_0 LLM 3.38 4.13E-05 8.13E-05 1.35E-04 1.35E-06 2.17E-04
11 CIMAT-NLP-GTO_0 ML 1.54 1.20E-04 8.46E-05 1.61E-04 2.66E-07 2.46E-04
13 CIMAT-NLP-GTO_1 LLM 1.54 1.20E-04 8.46E-05 1.61E-04 2.66E-07 2.46E-04
17 CIMAT-NLP-GTO_2 LLM 1.54 1.20E-04 8.46E-05 1.61E-04 2.66E-07 2.46E-04
18 Ana Laura Lezama Sánchez_0 Unknown 9.72 1.45E-04 1.42E-04 1.52E-04 3.77E-06 2.98E-04
20, 21, 22 NLPUTB_0 ML 105.80 3.74E-04 1.69E-03 0.00E+00 2.72E-05 1.72E-03
30 SPIN_0 LLM 184.64 2.58E-03 0.00E+00 1.35E-02 8.63E-05 1.36E-02
28 SPIN_1 LLM 185.12 2.59E-03 0.00E+00 1.36E-02 8.65E-05 1.36E-02
29 CIMAT-NLP_0 LLM 41.21 4.04E-03 2.83E-03 5.41E-03 4.20E-05 8.28E-03
10 CIMAT-NLP_1 LLM 41.42 4.06E-03 2.84E-03 5.44E-03 4.22E-05 8.32E-03

Table 2: Emission values obtained for task2a ranked according to the average emitted emissions. The
first column indicates the ranking obtained according to the value of Macro-F1. The team_run column is
the team’s name followed by a number representing the system it used.

team_run algorithm duration (s) emissions (kg) cpu_E (kWh) gpu_E (kWh) ram_E (kWh) E_consumed (kWh)
6 UMUTeam_1 LLM 11.27 6.86E-08 2.23E-07 1.37E-07 9.93E-10 3.61E-07
7 UMUTeam_0 LLM 11.51 7.01E-08 2.28E-07 1.40E-07 1.02E-09 3.69E-07
13 NLP-UNED_0 DL 0.61 1.62E-06 2.98E-06 5.45E-06 1.13E-07 8.54E-06
16 NLP-UNED_1 DL 0.61 1.62E-06 2.98E-06 5.45E-06 1.13E-07 8.54E-06
14 Xabi IXA_1 DL 2.04 6.51E-06 3.36E-05 0.00E+00 6.50E-07 3.43E-05
15 Xabi IXA_0 LLM 2.04 6.51E-06 3.36E-05 0.00E+00 6.50E-07 3.43E-05
17 Xabi IXA_2 DL 2.04 6.51E-06 3.36E-05 0.00E+00 6.50E-07 3.43E-05
5 plncmm_0 ML 2.80 8.11E-06 2.10E-05 1.24E-06 1.46E-07 2.23E-05
9, 10, 11 UPM_0 LLM 303.33 1.51E-05 7.93E-05 0.00E+00 1.49E-07 7.94E-05
1 CIMAT-NLP-GTO_1 LLM 3.29 2.56E-04 1.80E-04 3.42E-04 5.67E-07 5.23E-04
2 CIMAT-NLP-GTO_2 LLM 3.29 2.56E-04 1.80E-04 3.42E-04 5.67E-07 5.23E-04
12 CIMAT-NLP-GTO_0 ML 3.29 2.56E-04 1.80E-04 3.42E-04 5.67E-07 5.23E-04
4 I2C-UHU_0 LLM 75.73 3.19E-04 8.94E-04 0.00E+00 1.90E-05 9.13E-04
8 CIMAT-NLP_0 LLM 35.01 3.53E-03 2.59E-03 4.59E-03 3.58E-05 7.22E-03
3 CIMAT-NLP_1 LLM 35.45 3.58E-03 2.63E-03 4.66E-03 3.63E-05 7.32E-03

Table 3: Emission values obtained for task1b ranked according to the average emitted emissions. The
first column indicates the ranking obtained according to the value of Root Mean Square Error (RMSE).
The team_run column is the team’s name followed by a number representing the system it used.
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team_run algorithm duration (s) emissions (kg) cpu_E (kWh) gpu_E (kWh) ram_E (kWh) E_consumed (kWh)
4 UMUTeam_1 LLM 19.49 5.52E-08 1.02E-07 1.88E-07 7.73E-10 2.91E-07
5 UMUTeam_0 LLM 19.49 5.52E-08 1.02E-07 1.88E-07 7.73E-10 2.91E-07
12, 13, 14 DepNLP UC3M GURUDASI_0 Unknown 15.07 4.35E-07 5.70E-07 9.28E-07 2.50E-08 1.52E-06
11 NLP-UNED_0 DL 0.73 1.64E-06 3.56E-06 4.96E-06 1.37E-07 8.65E-06
15 NLP-UNED_1 DL 0.73 1.64E-06 3.56E-06 4.96E-06 1.37E-07 8.65E-06
3 plncmm_0 ML 4.27 1.25E-05 3.20E-05 2.16E-06 2.34E-07 3.44E-05
1 CIMAT-NLP-GTO_1 LLM 1.54 1.20E-04 8.46E-05 1.61E-04 2.66E-07 2.46E-04
2 CIMAT-NLP-GTO_2 LLM 1.54 1.20E-04 8.46E-05 1.61E-04 2.66E-07 2.46E-04
7 CIMAT-NLP-GTO_0 ML 1.54 1.20E-04 8.46E-05 1.61E-04 2.66E-07 2.46E-04
8, 9, 10 NLPUTB_0 ML 109.60 3.88E-04 1.75E-03 0.00E+00 2.87E-05 1.78E-03
16 CIMAT-NLP_0 LLM 41.21 4.04E-03 2.83E-03 5.41E-03 4.20E-05 8.28E-03
6 CIMAT-NLP_1 LLM 41.42 4.06E-03 2.84E-03 5.44E-03 4.22E-05 8.32E-03

Table 4: Emission values obtained for task2b ranked according to the average emitted emissions. The
first column indicates the ranking obtained according to the value of Root Mean Square Error (RMSE).
The team_run column is the team’s name followed by a number representing the system it used.
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