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Abstract
The rapid advancements and the widespread
transformation of Large Language Models,
have made it necessary to incorporate these
cutting-edge techniques into the educational
curricula of Natural Language Processing
(NLP) with limited computing resources. This
paper presents an applied NLP course designed
for upper-year computer science undergradu-
ate students on state-of-the-art techniques with
an emphasis on multilinguality and language
diversity. We hope to empower learners in ad-
vancing their language community.

1 Introduction to Pedagogical Approach

We present a newly designed Natural Language
Processing (NLP) course for upper-year computer
science students at a primarily undergraduate teach-
ing institution of a diverse multicultural audi-
ence. The rapid advancement in the field poses
a significant challenge for educators to adequately
cover both traditional linguistic techniques in ad-
dition to the latest neural techniques and large
language model (LLM) developments (Goldberg,
2016; Santra et al., 2023). Therefore, to ad-
dress these challenges, our course emphasizes self-
directed learning by incorporating hands-on labs,
assignments1, and two exams, all designed to pro-
mote in-depth and robust life-long learning.
Target Audience: Demographically, the local
region is known for multiculturalism where the
institution is composed of a high proportion of
first-generation immigrants who speak their na-
tive tongue. Turning challenges into opportunities,
this course covers multilinguality and language di-
versity, which is ideal for empowering the local
student population. Furtheremore, this course is
designed for senior undergraduate students in com-
puter science, with the prerequisites of linear alge-
bra, calculus, probabilities, and most importantly

1Public Access of the Course Assignments can be found
at https://github.com/Kosei1227/OTU-LLM-Course

machine learning (introductory). Some junior grad-
uate students may also join the course if they have
an interest in NLP research.
Learning Outcomes The learning outcomes of
the course are: 1) Understanding and knowing
the NLP concepts, terminology, tasks, methods,
and techniques; 2) Modifying and debugging NLP
code with comfort and proficiency; 3) Applying
advanced NLP techniques in building and extend-
ing LLMs; 4) Connecting personal cultural and
personal experiences to the latest work in multilin-
guality and language diversity.

2 Course Structure and Content

The course is 12 weeks long with 9 weeks of lec-
tures and 3 weeks for invited speakers who are
working in multilinguality and language diversity
(Table 1). There are weekly in-person labs with
optional TA assistance, where students run Python
notebooks and answer short quiz questions related
to the code. Then there are 3 assignments, each de-
signed to complement the materials covered in the
lecture. The lectures are used to cover the problems
and methods of the assignments at a high level and
then allow learners to have hands-on implemen-
tation of the material. The course has a midterm
exam and a final exam to ensure learners grasp the
foundations of the materials.
Assignment 1: A Journey through Language
Modelling. This assignment introduces students to
the foundations of language modelling applied to
low-resource languages. The goal is to introduce
a series of language models that are increasing in
complexity (Gaddy et al., 2021). Students will gain
experience loading datasets of low-resource lan-
guages, which they will process, tokenize, and use
to construct custom vocabularies (Schmidt et al.,
2024). First, students begin by implementing a ba-
sic statistical n-gram model (Brown et al., 1992),
followed by a feed-forward neural n-gram model,
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Week Lecture Topics Lab Notebooks Assignments
1 Course Introduction Python and Regex
2 Corpus Statistics and n-Gram Language Model N-Gram Language Modelling
3 Entropy Decisions PyTorch Introduction A1
4 Machine Learning and Feature Classification Naive Bayes and Text Classification
5 Neural Language Models Word Embeddings and Vector Semantics
6 MIDTERM EXAM RNN MIDTERM
SB STUDY BREAK
8 Attention and Transformers Pytorch and Attention A2
9 Large Language Models Transformer (Illustrated and Annotated)
10 Multilinguality and Language Diversity HuggingFace1
11 Multilinguality and Language Diversity HuggingFace2 A3
12 Multilinguality and Language Diversity Transfer Learning

FINAL EXAM FINAL

Table 1: Contents of the weekly lectures and corresponding lab notebooks.

and finally, the transformer language model (Vig
and Belinkov, 2019). After the series of imple-
mentations, students conduct an open-ended explo-
ration, attempting to improve results beyond the
given exercise, either from a list of provided ideas
or based on their intuition. 2

Assignment 2: Neural Machine Translation with
Custom Vocabulary Building & Transformer.
This assignment covers the foundational principles
of neural machine translation (NMT), through the
integration of a custom transformer architecture.
After the hands-on processing of low-resource lan-
guages, students implement a custom transformer
(Vaswani et al., 2023) class through the use of Py-
Torch modules and layers (Radford et al., 2023),
exposing students to the architecture’s inner work-
ings. The model’s construction will conclude by
integrating forward and masking methods with Py-
Torch classes. Following the creation of their mod-
els, students craft a custom training loop, where
they gain hands-on experience working with gra-
dient descent optimization (Robbins, 1951), back-
propagation (Rumelhart et al., 1986), and loss func-
tions (LeCun et al., 2015). Finally, the assignment
will conclude by allowing students to evaluate the
translation performance of their hand-crafted mod-
els, through the use of industry-standard metrics,
such as the BLEU score (Papineni et al., 2002).
Upon completion of this assignment, students will
have developed a holistic understanding of core
NLP principles along with a strengthened machine
learning foundation.
Assignment 3: Adapting Languages with Fine-
Tuning. This assignment guides students through
the process of adapting existing language models to

2This assignment is from UC Berkeley’s Computer Sci-
ence graduate NLP course (cs288) Interactive Assignments
for Teaching Structured Neural NLP, Project 1: Language
Modeling https://sites.google.com/view/nlp-assignments

a low-resource language, providing hands-on expe-
rience with modern neural machine translation tech-
niques and transfer learning strategies. Students
will begin by selecting a low-resource language,
leveraging datasets from prior NMT research, and
exploring various fine-tuning methods, such as full
parameter fine-tuning, LoRA (Hu et al., 2021), and
prompt tuning (Lester et al., 2021). The rationale
for the chosen strategy must be discussed, empha-
sizing efficiency and effectiveness given the con-
straints of limited computational resources. Using
appropriate software and repositories, students will
fine-tune the language models and develop custom
benchmarks to evaluate performance. The assign-
ment will culminate in a comprehensive evaluation
of the adapted models against baseline models, en-
abling students to critically analyze and understand
the impact of their modifications. This assignment
builds upon students’ knowledge of neural architec-
tures, such as Transformers (Vaswani et al., 2023),
and equips them with the skills to undertake re-
search in NLP by focusing on real-world applica-
tions and interactive learning methods.

3 Conclusion

A recent challenge in NLP pedagogy is the rapid
advancement of LLMs and the consequent surge in
computational requirements(Kaplan et al., 2020).
In light of those challenges, our course is designed
to ensure learners remain abreast of the latest tech-
niques emphasizing multilinguality and language
diversity to empower students and their communi-
ties of the institutional and local demographic. We
hope to cultivate essential lifelong learning skills
that empower them to adapt to the ever-evolving
landscape.
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A Appendix

Technical Stack All technical and teaching ma-
terials are integrated into a cloud environment ac-
cessible by internal students. The libraries and
packages used for the environment are: 1) Debian
OS - TensorFlow Jupyter Notebook with CUDA
driver installed so that it can utilize the server GPU
hardware; 2) Python libraries installed are: NLTK,
Gensim, SciPy, PyTorch, Portalocker, tqdm, and
scikit-learn. 3 3) Regarding the NLTK and Gen-
sim libraries, it has datasets/models already baked
into the image. The students/users won’t need to
download them, it saves up storage space.

The current jupyter environment load all the lab
contents the moment a user logins into the hubdev.
Student can login now and test it. There are some
behaviours applied to for the sake of the student
and ease-ability of updating the lab content: The
lab content files in the student’s home directory
will always get updated to match that from the
Docker image. If in the middle of the semester you
want to change the lab content, it will be easier
to just update the docker image and all students
will receive the updated lab in their home directory
(as long as they log out / restart their notebook).
The lab content (.ipynb, .csv, and .txt files) are all
"read-only" files. Students have to save-as a new
.ipynb file for saving their lab progress. Jupyter
will alert them to save-as. This is to avoid cases
where a student accidentally deleted or modified
the original lab content. So that there will not be
the case where a student is messaging the prof in
the middle of the night just because they made a
mistake and asks for a copy of the original file. If a
student deleted the lab content file (they really have
to work out of their way to do this), they will just
need to restart their notebook and the lab content
will be there again.

3More libraries or packages can be added if the assign-
ments/labs are updated.
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