
Proceedings of the Sixth Workshop on Teaching NLP, pages 7–22
August 15, 2024 ©2024 Association for Computational Linguistics

Industry vs Academia: Running a Course on Transformers in Two Setups

Irina Nikishina1*, Maria Tikhonova2,3 ∗, Viktoriia Chekalina4,5, Alexey Zaytsev4,
Artem Vazhentsev4,5, and Alexander Panchenko4,5

1Universität Hamburg, 2HSE University, 3SaluteDevices, 4Skoltech, 5AIRI
irina.nikishina@uni-hamburg.de, a.panchenko@skol.tech

Abstract

This paper presents a course on neural networks
based on the Transformer architecture targeted
at diverse groups of people from academia and
industry with experience in Python, Machine
Learning, and Deep Learning but little or no ex-
perience with Transformers. The course covers
a comprehensive overview of the Transform-
ers NLP applications and their use for other
data types. The course features 15 sessions,
each consisting of a lecture and a practical part,
and two homework assignments organized as
CodaLab competitions. The first six sessions
of the course are devoted to the Transformer
and the variations of this architecture (e.g., en-
coders, decoders, encoder-decoders) as well
as different techniques of model tuning. Sub-
sequent sessions are devoted to multilingual-
ism, multimodality (e.g., texts and images), ef-
ficiency, event sequences, and tabular data.

We ran the course for different audiences: aca-
demic students and people from industry. The
first run was held in 2022. During the subse-
quent iterations until 2024, it was constantly
updated and extended with recently emerged
findings on GPT-4, LLMs, RLHF, etc. Overall,
it has been ran six times (6 times in industry
and 3 times in academia) and received positive
feedback from academic and industry students.

1 Introduction

The Transformer (Vaswani et al., 2017) is a versa-
tile neural network model that can be successfully
used in various modalities, such as text, images, net-
works, or sequences of events. Transformer-based
models have reached a pinnacle of popularity: they
have established state-of-the-art performance in
various text processing applications and come with
user-friendly wrappers on numerous data science
platforms. Therefore, many industrial applications
rely on Transformer models.

* Equal contribution.

Figure 1: A course instructor (Maria Tikhonova) gives
a lecture for students.

Although current computer science students may
study Transformers in their university courses,
many machine learning engineers often lack a thor-
ough understanding of the underlying mechanisms
of these models. This gap in knowledge can hin-
der their ability to fully leverage the potential of
Transformers, resulting in decreased efficiency and
quality in their work.

In this paper, we present an overview of a course
on transformer-based models (see Figure 1), which
bridges the gap between academic training and
industry needs thanks to the balanced program in-
corporating both theoretical knowledge and a large
spectrum of practical use-cases which can be di-
rectly used for industrial needs. Therefore, it can
be successfully taught in academic and corporate
environments. The course seeks to concisely con-
dense and present a vast amount of information on
this topic, specifically targeting individuals with
ML expertise but limited knowledge of NLP. It
aims to provide a comprehensive understanding
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of the Transformer architectures including the re-
cently emerged topics connected with Large Lan-
guage Models’ (LLMs) theory and their applica-
tion, enabling students to tackle the challenges that
arise when working with them effectively. The
course not only gives the theoretical knowledge
of this model set but also provides studies with
various practical scenarios and use cases they can
encounter in industrial applications.

The course was developed and served first in July
2022 and substantially updated in the subsequent
runs. Currently, the course has been held six times:
6 times in a corporate environment (data scientists
and trained engineers from a large IT company)
and 3 times in an academic institution.

The contributions of this paper are as follows:

• We present the syllabus of a modern course on
transformer-based models, aimed at broad het-
erogeneous audiences both in academia and in
the industry, which combines deep theoretical
knowledge with modern practical applications
of the Transformer models;

• We release the materials from the academic
course run, which are available in our repo1;

• We combine recent NLP trends and latest ap-
proaches with other best practices, such as
fine-tuning of the pre-trained Transformers,
multimodality, prompt-tuning, model com-
pression, etc.;

• The course program includes a comprehensive
set of Transformer applications, not only the
NLP domain but also other modalities.

2 Related NLP Courses

Over the past two decades, dozens of classes on
NLP emerged. With the “deep learning revolu-
tion” starting around 2017, almost every program
in computer science (academic or industrial) fea-
tures a class on NLP. Modern courses, such as
CS224N2, are focused on the use of deep learning
models as the most efficient methodology allow-
ing to obtain state-of-the-art results in a range of
tasks. Most currently best-performing models for
NLP are based on the Transformer architecture. Be-
sides, Transformer architecture is widely adopted
in other domains such as computer vision, tabular
data processing, event, and sequence processing.

1https://github.com/s-nlp/transformers-course
2https://web.stanford.edu/class/cs224n

Our course is therefore centered around the Trans-
former architecture, but in contrast to CS253, our
course has more focus on NLP, Computer Vision,
and applications to tabular and event data while not
covering robotics and neuroscience.

The published works on teaching NLP consider
different scales and scenarios. Some papers con-
sider the design of extensive programs related to
computational linguistics and NLP (Reiter et al.,
2017). Other papers describe specific parts of
courses, including competitions (Barteld and Flick,
2017; Bozhanov and Derzhanski, 2013). Generally,
courses on NLP are either industry- or academia-
oriented and target different audiences (Vajjala,
2021), can be held online (Artemova et al., 2021),
offline, or in hybrid mode.

We consider a different course objective.
Namely, we aim to provide one of the first courses
focused on the specifics of Transformer architec-
ture, how it can be applied to solve various prob-
lems in NLP, and how it can be used in other do-
mains (e.g., for images, tabular data). The chal-
lenge here is how to embed various innovations
related to this architecture into a single course. The
course can be taken in two scenarios: as part of a
computer science master’s program or as an addi-
tional education course for an industrial audience.

3 Course Overview

The course comprises 15 sessions (two sessions
per week) and assignments, which include two
homeworks, a final quiz, and bonus lecture quizzes
and practical tasks after each session. The course
program, presented in Table 1, can be split into
two main parts, which cover (i) basic Transformer
architectures and models, (ii) the application of
Transformers to different modalities, and efficient
training procedures.

The course is based on the following prerequi-
sites: (1) advanced mathematics: calculus, lin-
ear algebra, and statistics; (2) data science: clas-
sic machine learning methods, basic deep learning
methods, and basic knowledge of natural language
processing.

Every session consists of a lecture and a prac-
tical seminar. Lectures are presented with slides,
while practical sessions are real-time coding ses-
sions. The instructor demonstrates code snippets
in Jupyter Notebooks and explains them in detail.
Both home assignments are started simultaneously

3https://web.stanford.edu/class/cs25
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Session Description
1 The Transformer: motivation, original architecture, and attention mechanism.
2 Transformer-based Encoders. Masked language models based on the Transformer architecture. BERT and related models.
3 Classification and sequence tagging with Transformers. Using encoders to generate feature representation for various NLU tasks.
4 Transformer-based Decoders. Generation of text using Transformers. GPT and related decoders.
5 Prompt and instruction tuning. Reinforcement Learning from Human Feedback (RLHF), ChatGPT, and related models.
6 Sequence to sequence tasks: machine translation, text detoxification, question answering, dialogue. Technical tricks for training and inference.
7 Multilingual language models based on the Transformer architecture.
8 Uncertainty estimation for Transformers and NLP.
9 Efficient Transformers.
10 Compression of Transformer models and low-rank approaches.
11 Network encoders with Transformers
12 Multimodal and Vision Transformers.
13 Transformers for event sequences.
14 Transformers for tabular data.
15 Deadline for both assignments. Final quiz.

Table 1: Course structure: each session, except the last one, dedicated to the final quiz, features lecture material and
a seminar with code snippets.

from the beginning so that students may plan their
time accordingly and try any transformer-based
architecture they find applicable to any assignment.

The total score Total is calculated according to
the following formula:

Total = 0.4 ·A1+0.4 ·A2+0.2 ·Q+LQ+ST ,

where Ai is the score for the i-th home assignment,
Q is the score for the final quiz, LQ and ST are
the extra points for bonus lecture quizzes and prac-
tical tasks, respectively. The total score is then
uniformly mapped into the grading scale.

As was already mentioned, the course is suitable
for both academic and industrial audiences. While
the general course program and structure are sim-
ilar in both environments, the presentation of the
material differs, adapting to the audience’s needs
and objectives. In academic runs, we concentrate
more on the theoretical material, giving more math-
ematical formulas and explanations. In contrast,
during the industrial runs, we provide more practi-
cal examples, illustrating all methods with as many
use cases and business applications as possible.

It is worth noting that the course can be con-
ducted both online and offline. For industrial ses-
sions, the course is delivered online, whereas at the
university, we adopt a hybrid approach.

4 Syllabus

The following paragraphs describe each session in
more details.

Session 1. The Transformer: motivation, orig-
inal architecture, and attention mechanism.
The first introductory lecture is devoted to the
vanilla Transformer architecture (Vaswani et al.,
2017), introduced for the Machine Translation
(MT) task following the traditional approach.

First, we formulate the MT task and present a
historical overview of the area. Next, we describe
the idea of encoder-decoder or seq2seq architec-
ture, starting with RNN-based models (Sutskever
et al., 2014) and then introduce the concept of at-
tention (Bahdanau et al., 2015). That brings us
to the Transformer model, which we explain step
by step. During the academic runs, we pay spe-
cial attention to the theoretical background behind
the Transformer architecture and its mathematical
explanations.

We conclude the lecture with a short recap of
the language modeling task and how the idea of
attention can be transferred from MT to this field.

The practical session is based on Harvard NLP
tutorial “Annotated Transformer”4, that presents
the PyTorch5 implementation of the Transformer
architecture. Thus, following the outline of the tu-
torial, we first go through the Transformer code
step by step and then show how it works for
WMT14 (Bojar et al., 2014) English-to-French
translation task: we train and test the model and
allow students to experiment with model training
to achieve better scores.

Session 2. Transformer-based Encoders.
Masked language models based on the Trans-
former architecture. BERT and related models.
The lecture is devoted to the transformer-based
Encoders. We begin with discussing most classical
encoder-based models, such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), and discuss
the peculiarities of their architecture and training.
For academic students, we pay particular attention
to analyzing the results of the original scientific pa-
pers, while for the industrial runs, we concentrate

4http://nlp.seas.harvard.edu/annotated-transformer
5https://pytorch.org
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more on the use cases students can encounter in
their practice.

The aim of the practical session is to teach stu-
dents how to work with Transformer models using
Transformers library6 and how to utilize pre-trained
models and other instruments from HuggingFace
Hub7. Namely, we show students how to tokenize
the data, visualize attention maps, and apply trained
models on the example of the BERT model fine-
tuned for the sentiment analysis task.

Session 3. Classification and sequence tagging
with Transformers. Using encoders to generate
feature representation for various NLU tasks.
This session focuses on Natural Language Un-
derstanding (NLU) applications of Transformers,
namely, tasks that need to extract implicit meta-
data from the text. In the lecture, we consider
text classification for Sentiment Analysis and Nat-
ural Language Inference and the token classifica-
tion for Named Entity Recognition and Extractive
Question-Answering tasks. For the industrial runs,
we elaborate more on the practical applications de-
rived from these tasks and the use cases. We study
various approaches to sentence encoders in detail
and then delve into the realm of dialogue systems.

In the practical session, we fine-tune the
transformer-based model for entity recognition
in the Russian-language drug review corpus (Tu-
tubalina et al., 2020) using a Russian-language
compressed version of the BERT8 for it.

Session 4. Transformer-based Decoders. Gener-
ation of text using Transformers. GPT and re-
lated decoders. This session is devoted to Gener-
ative Pre-trained Transformer (GPT) models based
on the Transformer decoders and various text gen-
eration strategies.

In the first part of the lecture, we briefly re-
cap various types of language models, emphasiz-
ing decoder-based Transformer models. Then, we
carefully study GPT models (GPT-1,2,3, and 3.5),
focusing on GPT-3 (Winata et al., 2021) and intro-
ducing the concept of few-shot learning.

Additionally, we explore the strategies for token
sampling and text generation (e.g., BeamSearch,
Sampling, Nucleus Sampling). For the academic
students, we concentrate more on the theoretical as-
pects, while with the industrial students, we discuss

6https://pypi.org/project/transformers
7https://huggingface.co
8https://huggingface.co/cointegrated/rubert-tiny

what generation strategies in business applications
from their work experience are preferred.

In the second part, we consider examples of con-
trollable text generation where we aim to generate
text with specific desired properties at the model
level. Then, starting with an additional steering
layer (Dathathri et al., 2019), we come to the con-
cept of a Generative Adversarial Network in the
model GeDi (Krause et al., 2021).

In the practical session, we provide guidance
on introductory text generation and sampling strate-
gies and experiment with various methods. Exper-
iments are set on the encoder-based Transformer
model sourced from the HuggingFace library (e.g.,
GPT-29) and aim to analyze the impact of gener-
ation hyperparameters on text quality and styling.
Upon request, we can develop a straightforward
chatbot utilizing the model and explore its practical
relevance in industry and startup contexts.

Session 5. Prompt and instruction tuning. Re-
inforcement Learning from Human Feedback
(RLHF), ChatGPT, and related models. This
section continues the exploration of advanced text
generation models, specifically focusing on the con-
cept of Reinforcement Learning from Human Feed-
back (RLHF). RLFH involves incorporating hu-
man feedback into the learning process to establish
an optimal starting point for the further model’s
training for the given task. As an example, we
consider the task of summarization with human
feedback (Stiennon et al., 2020) and analyze the
concept (Ouyang et al., 2022) of the modern LLM
training which underlies the power of such models
as ChatGPT10 or GPT-411 models. For the aca-
demic runs, we pay special attention to the theory
behind the RLHF method and its potential develop-
ment. In the industrial runs, we discuss the practi-
cal difficulties (e.g., data collection, computational
resources, cost) of RLHF LLM training.

The next part is devoted to prompt-tuning meth-
ods (Li and Liang, 2021; Lester et al., 2021; Liu
et al., 2021; Konodyuk and Tikhonova, 2021), for
automatically learning language model prompts.

We conclude the lecture by discussing the emerg-
ing variety of LLMs (LLaMA-2 (Touvron et al.,

9https://huggingface.co/gpt2
10https://openai.com/blog/chatgpt
11https://openai.com/gpt-4
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2023)12, Mistral13, Mixtral14, etc., their indus-
trial application scenarios, possible downsides con-
nected with their usage, and the overall impact.
This list is updated each run with newly released
models.

The practical session is devoted to prompt-
tuning methods. We allow students to experi-
ment with ruPrompts15, a convenient library for
fast language model tuning via automatic prompt
search, and use it to solve the Russe Detoxification
task (Dementieva et al., 2022).

Session 6. Sequence to sequence tasks: ma-
chine translation, text detoxification, question
answering, dialogue. Technical tricks for train-
ing and inference: infrastructure and perfor-
mance. During the lecture, students’ attention
is drawn to the models with the standard Trans-
former Encoder-Decoder architectures, which are
aimed at solving sequence-to-sequence tasks such
as machine translation, summarization, question
answering, etc. In the first part of the lecture, we
discuss the existing sequence-to-sequence models
such as BART (Lewis et al., 2019), T5 (Raffel et al.,
2020a) and PEGASUS (Zhang et al., 2019). With
the industrial students, we discuss possible applica-
tions of these models in their business practice.

The lecture’s second part is devoted to optimiz-
ing the Transformers’ training process. We dis-
cuss such optimization techniques as gradient accu-
mulation, training of only some layers, Adafac-
tor optimizer (Shazeer and Stern, 2018), quan-
tization (Hawks et al., 2021) and mixed preci-
sion (Micikevicius et al., 2018), gradient check-
pointing (Chen et al., 2016), optimized padding,
and ONNX runtime (developers, 2021).

The practical session for the sequence-to-
sequence Transformers aims to solve the Hyper-
nym Prediction task using the T5 (Raffel et al.,
2020b) model. Students are expected to experi-
ment with the zero-shot and few-shot setups and
compare them with fine-tuning.

Session 7. Multilingual language models based
on the Transformer architecture. This session
is devoted to multilingual language modeling. We
begin the lecture by discussing the specifics of
this phenomenon, a short overview of the MT ap-

12https://ai.meta.com/research/publications/llama-2-open-
foundation-and-fine-tuned-chat-models

13https://mistral.ai/news/announcing-mistral-7b
14https://ollama.com/library/mixtral
15https://github.com/ai-forever/ru-prompts

proaches, and methods for parallel corpora creation.
Then, we switch to the multilingual transformer
models and discuss such models as mBERT16,
XGLM (Newson, 2016), BLOOM (Scao et al.,
2022), and mGPT (Shliazhko et al., 2022). In
addition, we discuss possible ways to add a new
language to the Transformer model (e.g., mBERT).

In the practical session we fine-tune XLM-
R (Zhuang et al., 2021) for multilingual and cross-
lingual word-in-context disambiguation (MCL-
WiC), proposed for the SemEval2021 competition
(task2) (Martelli et al., 2021).

Session 8. Uncertainty estimation for Trans-
formers and NLP. This session aims to provide
a general introduction to the uncertainty estimation
(UE) field and methods and their application to
NLP, especially transformer-based models.

The lecture begins with highlighting the impor-
tance of uncertainty estimation and introducing
standard and well-established methods, such as
Softmax Response (Geifman and El-Yaniv, 2017)
and Monte-Carlo (MC) Dropout (Gal, 2016). We
also cover various regularization techniques (Xin
et al., 2021), density-based methods (Lee et al.,
2018), and also state-of-the-art UE methods for
the classification task (Yoo et al., 2022). Next, we
show the importance of uncertainty estimation for
LLMs, e.g., to avoid hallucinations. We discuss the
most advanced techniques, including both white-
box methods (Kuhn et al., 2023), applicable for any
open-sourced model, and black-box methods (Lin
et al., 2023), which are useful for closed-sourced
models available via API. We conclude the lecture
by discussing the practical application of uncer-
tainty estimation for active learning (Settles, 2009),
out-of-distribution (OOD) detection, etc.

In the practical session, we implement several
UE methods, such as Mahalanobis distance (Lee
et al., 2018), MC Dropout, and HUQ (Vazhentsev
et al., 2023), and apply them for the selective clas-
sification and OOD detection tasks. In addition, we
study two baseline methods (Sequence Probability
and Lexical Similarity) (Fomicheva et al., 2020) for
UE of LLMs and use them to detect factual errors
in the summarization task.

Session 9. Efficient Transformers. LLMs im-
pose high memory requirements, and this, conse-
quently, leads to substantial energy costs and note-
worthy CO2 emissions (Rae et al., 2021) through-

16https://huggingface.co/bert-base-multilingual-cased

11

https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models
https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models
https://mistral.ai/news/announcing-mistral-7b
https://ollama.com/library/mixtral
https://github.com/ai-forever/ru-prompts
https://huggingface.co/bert-base-multilingual-cased


out the training and inference process.
In the lecture, we explore various approaches to

reduce the model size without compromising qual-
ity. We delve into pruning (Sanh et al., 2020), (La-
gunas et al., 2021), quantization (Hawks et al.,
2021), (Wang et al., 2022b), and distillation (Hin-
ton et al., 2015). In the academic runs, we spend
more time on the theory behind these methods,
while in the industrial runs, we concentrate more
on the practical applications of these methods.

We also examine methods that aim to reduce
the computational complexity of the attention
layer (Tay et al., 2020). It includes approaches
that simplify the calculation procedure, such as the
kernel method, techniques that decrease the input
sequence size, and techniques for selecting a subset
of tokens for attention computation (learnable or
fixed patterns).

Finally, we overview two approaches to par-
allelism during training: model- and data-level
parallelism. Using the examples of the Megar-
ton (Shoeybi et al., 2019) and Varuna (Athlur et al.,
2021) pipelines, we explore options for distributed
computing across multiple GPU cards and nodes
and the concomitant challenges. We touch upon
the topic of the impact of model training processes
on the environment and methods for its evaluation,
which is relevant to the industry.

During the practical session, students will con-
struct their own layer, based on torch.nn.Linear
incorporating a quantization mechanism. The ob-
jective is to minimize the total memory footprint
of the model by representing several layers in a
compressed bit format.

Session 10. Compression of Transformer mod-
els and low-rank approaches. In this session,
we explore methods for decreasing the number of
parameters by representing layer weights in a more
compressed way. Focusing on the representation by
SVD, Kronecker decomposition, and Tensor Train
Matrix (TTM) (Oseledets, 2011) decomposition;
we study the peculiarities of the structure of such
layers and the propagation of signals within them.

For the practical session, students are offered
a layer implementation based on SVD and TTM
decomposition. The objective is to assess the per-
formance of a compressed model achieved by sub-
stituting fully connected layers with algebraic struc-
tures based on the compression rank.

Session 11. Network encoders with Transform-
ers This lecture starts with a short recap of graph

theory. Then we introduce Graph Convolutional
Networks (GCNs) (Kipf and Welling, 2016) and
analyze those that are related to Transformers:
GAT (Yun et al., 2022), Graph BERT (Zhang et al.,
2020), and GreaseLM (Zhang et al., 2022). We
also discuss how such models could be applied and
for which NLP tasks.

In the practical session, we discuss the Taxon-
omy Enrichment task using Graph Transformers
(GCN, GAT, and Graph-BERT). We also revise the
code of GAT-v2 (Brody et al., 2022) and make a
quick overview of the OpenHGNN library17 with
the implementation of Graph-based models.

Session 12. Multimodal and vision Transform-
ers. Multimodal Transformer architectures are
significant as they generate representations of lan-
guage concepts by leveraging textual data and in-
formation from diverse sources such as images,
videos, and knowledge bases.

We start the lecture with the CLIP (Rad-
ford et al., 2021) model architecture analysis,
which provides a joint embedding for words
and pictures representing this word. Then go
through all the most important and relevant multi-
modal models (DALLE, DALLE-2 (Ramesh et al.,
2022), VQ-VAE (van den Oord et al., 2017),
Rudolph (AIRI, 2022), Fromage (Koh et al., 2023),
Flamingo (Alayrac et al., 2022), OFA (Wang et al.,
2022a), Kandinsky (Razzhigaev et al., 2023), Im-
ageBind (Girdhar et al., 2023)). We discuss the
possible use cases of these models with the indus-
trial students in their work practice.

During the practical session, we made a zero-
shot classifier with CLIP and implemented a visual
saliency map. We also studied how Kandindky18

works for generating images by text.

Session 13. Transformers for event sequences.
Another essential data modality in modern applica-
tions is event sequences. We consider a sequence
of events with features or marks provided for each
event. The model can be used end-to-end or as an
encoder to get embeddings of a sequence (Zhuzhel
et al., 2021; Babaev et al., 2022). We also note
that in this topic, we describe a connection be-
tween these models and temporal point random
processes (Shchur et al., 2021). During the lec-
ture, we study the adaptation of the Transformer
architecture to this problem and compare it to other

17https://github.com/BUPT-GAMMA/OpenHGNN
18https://huggingface.co/ai-forever/Kandinsky3.1
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approaches. During the practical session, we train
from scratch a Transformer model (Zuo et al., 2020)
for processing open-sourced financial transactions
data (Fursov et al., 2021), a modality that is widely
used in major banks (Babaev et al., 2022).

Session 14. Transformers for tabular data. In
this session, we step aside from classical Trans-
former applications and discuss their use for tabular
data. It is a new but quite promising area.

The lecture is based on three papers devoted to
this subject. We start with (Huang et al., 2020),
which proposes the TabTrasformer model, apply-
ing the attention mechanism for categorical feature
embeddings. Then, we walk through (Gorishniy
et al., 2021), which extends the idea of the attention
mechanism to numerical features by embedding
them via linear transformation and subsequently
applying the Transformer block. We also study
various embedding types for numerical features
proposed in (Gorishniy et al., 2022) and how they
can be combined with the Transformer block. Fi-
nally, we discuss practical applications and how
the architectures can be adapted to industrial needs
(we pay special attention to this part of the lecture
during industrial runs).

In the practical session, we study the described
transformer-based tabular models implemented in
PytorchTabular19 Python library and apply them
for one of the classical tabular datasets (e. g., Bank
Marketing Data Set20).

Session 15. Deadline for both assignments. Fi-
nal quiz. During the final session, students are
expected to share their feedback on the course and
discuss their solutions for the home assignments.
We first discuss each task’s strengths, weaknesses,
and difficulties and the time spent developing the
method that outperforms the baseline. Afterward,
we split students into groups to discuss the devel-
oped methods and to share their experiences. Each
group is asked to present one method for each task
to share with other groups.

5 Assessment

5.1 Home assignments
We provide two home assignments for the course
described in sub-subsections 5.1.1 and 5.1.2.

For both tasks, students are expected to pro-
vide a technical report (max 10 points) and code

19https://github.com/manujosephv/pytorch_tabular
20https://archive.ics.uci.edu/ml/datasets/bank+marketing

(max 10 points) and submit the results of the best-
performing model to the CodaLab competition
leaderboard (max 15 points) (see Appendix A for
the detailed grading criteria). They should also
write a technical report in the provided IPynb tem-
plate describing the method used in their solution
and the analysis of the obtained results. In the code
section, students are expected to develop a solution
and provide a reproducible code in the provided
template. Then, the (best) model output is expected
to be submitted to the CodaLab platform21 with the
name of the user for evaluation.

There is no formal difference in assignments
or grading criteria for the academic and industrial
runs. However, during the academic runs, we stimu-
late students to concentrate more on the theoretical
analysis of their results and the scientific conclu-
sions they can draw from them, while in industrial
runs, we ask students to elaborate more on practical
effects that can be inferred from the results they
obtained in the assignments.

We chose these assignments since they cover the
two most widespread tasks in NLP: classification
and generation. In the classification task, we ask to
perform sequence tagging which is a token classifi-
cation task using any Encoder Transformer model,
while text detoxification assignment is one of the
text generation tasks to be solved with Decoder or
Encoder-decoder models.

Each assignment involves a deep dive into the
task, offering the opportunity to try several differ-
ent approaches to solving it, carefully considering
and discussing their advantages, disadvantages, and
possible modifications. Such an assignment closely
models the process of solving real-world problems
and takes at least a month to complete. Therefore,
the number of assignments is selected given the
course’s total length and ability to cover the basic
use cases for Transformers.

5.1.1 Assignment 1: Semantic Role Labelling
The first assignment is to perform semantic role
labelling for comparisons. Task is formulated as a
classical sequence tagging organized in the form
of CodaLab competition22. The main goal is iden-
tifying objects, aspects, and predicates given an
input sentence. For instance: [Python=OBJECT] is
[better=PREDICATE] than [Matlab=OBJECT] for [Deep
Learning=ASPECT]. Such kind of semantic role la-
belling is usually applied for comparative argument

21https://codalab.lisn.upsaclay.fr
22https://codalab.lisn.upsaclay.fr/competitions/531
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mining (Schildwächter et al., 2019).
Students are required to train a sequence label-

ing model on a provided labeled dataset. For this
task, they can use any transformer-based model and
experiment with different types of embedding ini-
tialization and the fine-tuning procedure. The pro-
vided data files are in CoNLL-U format. Each line
contains one word, and its label is in BIO format
for predicting “Objects”, “Aspects” and “Predicates
in the sentence”.

In the latest edition of the course, this task was
replaced by the KGQA task which is a binary clas-
sification, so, in principle the new assignment can
nicely complement the sequence tagging task.23

5.1.2 Assignment 2: Text Detoxification

For the second assignment, students participate
in the competition of automatic text detoxifica-
tion (Dementieva et al., 2022). This task is seq2seq
style transfer task: its required to paraphrase a sen-
tence from the toxic (i.e. rude) to the non-toxic (ie.
neutral) style while preserving its meaning. Such
textual style transfer can be used to process toxic
content on social media.

In the assignment context, students need to train
a model and submit its output to the CodaLab com-
petition24. They are free to use any methods and/or
models for style transfer or pre-trained models for
text generation (GPT (Radford et al., 2019), T5
(Raffel et al., 2020a), etc.). The competition pro-
vides baselines that may be improved. Otherwise,
the students are allowed to rely on them when com-
posing their own solutions.

In the last edition of the course, the students were
asked to participate in the multilingual text detoxifi-
cation shared task at CLEF 2024 (Bevendorff et al.,
2024) where 9 languages to be supported instead
of a single one.25

5.2 Final Quiz

The final session is followed by a comprehensive
quiz covering all topics studied. It consists of 26
multiple-choice questions (1 point for each ques-
tion). Each topic covered in the course is presented
in the quiz with one or two questions. We keep the
list of questions closed to avoid revealing them to
the current running of the course.

23https://codalab.lisn.upsaclay.fr/competitions/18214
24https://codalab.lisn.upsaclay.fr/competitions/642
25https://codalab.lisn.upsaclay.fr/competitions/18243

5.3 Bonus Lecture Quizzes and Practical
Tasks

After each session, students are given a lecture quiz
consisting of ten multiple-choice questions on the
topic and a short practical task, which usually in-
cludes several simple experiments. Such activities
allow students to revise the material and gain small
extra points (1 point maximum for each lecture
quiz or practical task).26

6 Expected Outcomes

First, we expect the students to acquire a com-
prehensive understanding of the transformer-based
models and the underlying mechanisms and to get
acquainted with a diverse set of Transformer archi-
tectures. Second, we expect them to learn how to
train and apply Transformers to multiple NLP tasks
and how to adapt them to other domains. Third,
we anticipate that the students will be able to use
pre-trained models from the HuggingFace library
and to employ other tools or datasets from the Hug-
gingFace project.

7 Formal Course Evaluation

At the end of each running of the course, we collect
feedback by asking students to complete a short
survey. Figure 2 presents the aggregated results for
all industrial runs. We can see that most students
are satisfied with the course and find it quite engag-
ing. The average rating is 8.5 out of 10, and the
highest grade of 10 accounts for 44 percent of all
ratings. The feedback from the academic run is also
strongly positive (See Appendix B); all students
note clear objectives and explanations, challenging
enough content, and grading criteria. Both industry
(94%) and academia (100%) respondents note the
usefulness of practical skills and the quality of the
course organization and teaching (87% for industry
and 89% for academia).

8 Academic vs Industrial Students

We summarize qualitative differences in expecta-
tions of the course between students from industry
and academia below (based on obtained feedback
and evaluation comments):

• Students from industry demand more practical
programming materials and sessions, being

26We provide free access to quizzes and tasks upon a request
from an academic email to professors, lecturers, and teachers.
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Figure 2: Students feedback for the course in the indus-
trial setup. 10 is the maximum, 1 is the minimum score.

less happy with dense lectures than academic
students who are used to such format.

• Professionals asked for a translation of terms
and materials to their native language, while
academics didn’t mind English.

• Industrial students were asking more ques-
tions during lectures and chat discussions.

• In competition results (e.g., for the shared task
on text detoxification), the leaderboard was a
mixture of industrial and academic students
with no apparent leader.

• Attendance in percentage was more significant
for industrial students (while industrial ses-
sions were in the working days afternoon, 18-
21 time slot while for academic students were
during the day, usually 16-19 time slot), indi-
cating overall greater motivation/commitment
of professionals.

• Industrial students often are determined and
specifically seeking for application of a partic-
ular task (e.g., motivated by the job project).
In contrast, academic students do not have
such “extra” learning goals, with a few excep-
tions where it is required for their research.

• For both types of students, not as much the
topic matter so much its presentation. Even
“hottest” lecture on how ChatGPT works may
get very variable levels of student involve-
ment, depending on the instructor.

9 Conclusion

This paper describes a course on Transformer mod-
els, initially designed in early 2022 and updated in
the subsequent runs. During lectures and practical
sessions, we present a comprehensive overview of
transformer-related concepts and a variety of Trans-
former applications, including practical industrial
use cases, covering both NLP and language mod-
eling, as well as other domains, such as computer
vision and processing of event sequences. The
course was run several times for both academic and
industrial audiences.

The theoretical outcome of the course for the stu-
dents is a deep understanding of the Transformer
architecture, the attention mechanism, and knowl-
edge of a diverse set of transformer-based mod-
els and their adaptations for various domains. As
a practical outcome, the students acquire diverse
skills in working with all types of transformer-
based models and using Transformers for other
modalities and domains. The feedback about the
course from the students from both industry and
academia was generally positive yet different in var-
ious aspects, such as the desired balance between
theory and practice (with industrial learners being
more proactive and demanding hands-on skills).

In the future, we plan to add lectures related to
newer Transformer models and more applications
to other modalities and domains.
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A Assessment criteria

A.1 Technical Report Grading Criteria

The technical report is evaluated via the two criteria:

• Methodology (5 points): description of all methods they try and the best method. Here, students can
include some tricks with pre-processing, a description of the models and motivation of their usage,
and details of the training process (train-test split, cross-validation, etc.).

• Discussion of results (5 points): here, we expect the final comparison table. Even if some methods
did not bring students to the top of the leaderboard, they should nevertheless indicate this result and
a discussion of why, in their opinion, some approaches work while others fail.

A.2 Code Grading Criteria

The code of the students is graded according to the following criteria:

• Readability (5 points): code should be well-structured, preferably with indicated parts of your
approach (Pre-processing, Model training, Evaluation, etc.).

• Reproducibility (5 points): code should be reproduced without any mistakes with the “Run all” mode
(obtaining experimental part).

A.3 CodaLab Competition Grading Criteria

Students get points for participating in the corresponding CodaLab competition. For example, a student
receives 5 points for outperforming the baseline, an additional 5 points for being in the top 20% on
the leaderboard, or an additional 10 points for being top−1. As a result, students may get 0-15 points
depending on their performance.

B Feedback
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Figure 3: Students feedback for the course in academic setup.

After the academic running of the course (2023), students were asked to provide feedback. Figure 3
demonstrates the statistics of students’ feedback for each question, which are listed below:

1. Course objectives were clear to me.

2. Key concepts and theories were well explained by the Course instructor(s).

3. Course content was difficult enough to be challenging.

4. I regularly received feedback on my performance.
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5. Grading criteria were well explained, and I understood what action was required to achieve each of
the performance levels.

6. The course was useful in developing practical skills.

7. The Course atmosphere was inspiring for active learning.
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