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Abstract

In this work, we present a collaboratively and
continuously developed open-source educa-
tional resource (OSER) for teaching natural lan-
guage processing at two different universities.
We shed light on the principles we followed for
the initial design of the course and the ratio-
nale for ongoing developments, followed by a
reflection on the inter-university collaboration
for designing and maintaining teaching mate-
rial. When reflecting on the latter, we explicitly
emphasize the considerations that need to be
made when facing heterogeneous groups and
when having to accommodate multiple exam-
ination regulations within one single course
framework. Relying on the fundamental princi-
ples of OSER developments as defined by Both-
mann et al. (2023) proved to be an important
guideline during this process. The final part
pertains to open-sourcing our teaching material,
coping with the increasing speed of develop-
ments in the field, and integrating the course
digitally, also addressing conflicting priorities
and challenges we are currently facing.

1 Introduction

The rapid acceleration of developments in natu-
ral language processing (NLP) research, starting
with the introduction of the Transformer (Vaswani
et al., 2017) in 2017, also poses a challenge to de-
signing appropriate curricula for formal education
in this area. Numerous longstanding paradigms
have been replaced by new technologies enabled
by a new class of (autoregressive) large language
models (LLM; OpenAI, 2022, 2023; Anil et al.,
2023; Touvron et al., 2023; AI@Meta, 2024) along-
side massively increased computational capacities.
The curriculum of deep learning (DL) courses for
NLP before 2017 mostly consisted of teaching

different types of word embedding models (e.g.
Mikolov et al., 2013; Pennington et al., 2014; Bo-
janowski et al., 2017) as building blocks within
specialized neural network architectures. This of-
ten pertained to employing and tuning recurrent
neural networks (RNN) for solving various kinds
of token- or sequence-level tasks. With the ad-
vent of transformer-based transfer learning models
(Radford et al., 2018; Devlin et al., 2019; Raffel
et al., 2020) developments sped up, the field has be-
come a lot more diverse,1 and hence course curric-
ula require significant updates/enhancements more
and more frequently. We believe that collaboration
across and within universities (across different fac-
ulties and departments) can be one way to combat
the resulting challenges. Furthermore, bringing to-
gether researchers with multifaceted backgrounds
and different levels of seniority for co-creating
lecture material can help create a more inclusive
course suitable for a broad audience of undergradu-
ate and graduate-level students from various fields.

2 Related work

Open Educational Resources. The number of
Massive Open Online Courses has been rapidly
increasing over the past decade, be it in machine
learning (ML; Ng, 2021; Google, 2023) in general
or in NLP specifically. Probably one of the most no-
table applied NLP courses is courtesy of Hugging
Face (Hugging Face, 2022). It provides a hands-
on introduction to the state-of-the-art (SOTA) soft-
ware package for NLP, but in doing so it does
not discuss the theoretical foundations in much
detail. Other popular and very well-taught courses,

1This refers to both the kind of problem statements tackled
with NLP technology and the academic audience of students
and researchers interested in taking NLP-related courses.
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like e.g. the Stanford CS224N lecture (Stanford
NLP Group, 2024) or the deeplearning.ai NLP
course (DeepLearning.AI, 2023) provide great the-
oretical (and applied) introductions to NLP, but
are not truly open source: Neither do any of these
courses provide open and modifiable sources of
their lectures, nor do they explicitly specify the
license(s) under which their material is released.
The latter even requires registering at a platform
and only provides the material as videos, not even
releasing versions of their lecture material as PDFs.
So while these courses can be considered open,
they are unfortunately not fully open-source (Both-
mann et al., 2023).

Open Source Educational Resources. Accord-
ing to Bothmann et al. (2023), open source educa-
tional resources (OSER) are characterized by a set
of core principles (which also served as guidelines
for the development of our course) motivated by
best practices from open source software develop-
ment. This is very well reflected in the following
principles:

• Develop course material collaboratively.

• Make your sources open and modifiable and
use open licenses.

• Release well-defined versions and maintain
change logs.

Other principles Bothmann et al. (2023) define
in their work are more focussed on pedagogical
aspects and on the goal of enabling as many people
as possible to learn from the developed material in
their own way and at their own speed:

• Modularization: Structure the material in
small chunks and disentangle theory and im-
plementation

• Define prerequisites and learning goals

• Foster self-regulated learning and enable feed-
back from everyone

A notable NLP OSER is the course created for
the software library spaCy (Montani, 2019), where
developers comply with most of the OSER prin-
ciples. A drawback of this course, however, is its
high entanglements with one specific software li-
brary (spaCy), severely limiting the modular reuse
of the resources. Further, “Deep Learning for
Coders with Fastai and PyTorch” (Howard and

Gugger, 2020) presents a fully open-source and
modifiable online course (fast.ai, 2020) with exten-
sive coverage of various DL applications, it focuses
on NLP in just one chapter. Consequently, it falls
short of delivering the comprehensive depth ex-
pected from a university-level NLP lecture series.

Course creation: Machine Learning vs. NLP.
Further challenges going along with working on
creating/teaching courses for NLP compared to ML
pertain to the rapid speed of developments. In typ-
ical ML courses, there is a more or less agreed-
upon set of topics being taught in most of the
introductory/basic courses, including supervised
learning methods (classification/regression), unsu-
pervised learning, tree-based methods as well as
approaches for hyperparameter tuning or resam-
pling strategies. Building upon this foundation,
various special topics such as, e.g., boosting, gaus-
sian processes, or even neural networks can be
flexibly added/exchanged, depending on the focus
of the respective target audience or tailored to a
certain program of studies. A prime example is the
“Introduction to Machine Learning (I2ML)” course
by Bischl et al. (2022), a collection of three ML
courses taught at LMU Munich. The creators rely
on the stable content of their undergraduate-level
course, build up two M.Sc. level courses on top
of this foundation, and open-source everything on
one central platform.2 This course perfectly shows
the stability of the fundamentals for teaching ML
while simultaneously stressing the modular exten-
sions one can build upon these fundamentals. In
NLP, however, the fundamentals are to some extent
subject to change, since new training techniques
and new model capabilities are constantly emerg-
ing, given the fluid fast-moving nature of the field.
In the subsequent chapters, we will thus describe
the rationale behind our design choices, try to make
the underlying thought processes transparent, and
illustrate the resulting OSER we created.

3 Course Design Principles

The design of our OSER relies on a set of principles
laid out in greater detail in the following subchap-
ters: First, we want the course to be created as a
modular system allowing every partnering institu-
tion to adjust the teaching material to their specific
needs and to change it between different iterations
of the course. This encompasses a set of core mod-
ules (e.g. the Transformer) as well as a multitude

2https://slds-lmu.github.io/i2ml/
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of more elaborated, rather optional, and audience-
specific modules (e.g. Multilinguality). Second,
we intend to provide the students with a set of chal-
lenging (programming) assignments while trying
to balance the trade-off of the following question:
What are longstanding and established concepts
that need to be taught to students, and which are
just of short-term importance?

Additionally, we want the students to be well-
prepared for our course and to have the right expec-
tations: Figure 1 shows our "Module 0", directing
the students to several core chapters of the I2ML
course (Bischl et al., 2022) for getting familiar with
the machine learning basics.

3.1 Modularity of Teaching Material
Bringing together different universities or study
programs for a joint teaching project inherently
requires building a modular system. This enables
every party involved in this endeavor (“inside use”),
as well as everyone else (“outside use”) to pick out
the parts that are relevant for this specific party in
specific situations. For the inside use, we further de-
fine a set of core modules taught at every institution
allowing for sharing the work when creating exams.
This most likely results in (a) more comparable
examinations ensuring (b) a higher quality of the
exam questions while (c) gaining time efficiency
during the creation of the exams. The second part
of the optional modules pertains to topics that are
either just targeted at a specific subgroup of the
target audience or that are considered “hot topics”
that need(ed) to be addressed at a certain point in
time. This leads to a larger and more stable set of
core modules, while the pool of optional ones is (a)
smaller (but potentially growing over time) and (b)
more fluid than the former (some modules might be
deprecated over time). The second form of modu-
larity pertains to disentangling theoretical concepts
and implementation details (Bothmann et al., 2023).
The slide sets we provide the audience with contain
explanations and mathematical formulas, but rarely
Python code. All programming-related tasks and
explanations are outsourced to the programming
assignments and the corresponding exercise ses-
sions (cf. Sec. 3.3). This modular composition
allows the audience to also use our slides alongside
other, more software-centric tutorials (e.g. Hug-
ging Face, 2022), to extract suitable parts for com-
bining it with their own teaching material (without
having to disentangle it with our code chunks or
similar), and helps us in maintaining the material

as we do not run into problems with dependencies
or debugging (“Do not use literate programming
systems everywhere”, Bothmann et al., 2023).

3.2 Lecture Content

Figure 1: Referencing the prerequisites for the course.

Figure 2: First lecture block – Providing the heteroge-
nous target group with a unified foundation.

Figure 3: Second lecture block – Introducing important
conceptualizations and architectural milestones.

The first block of the lecture material (equivalent
to two 90-minute lectures) encompasses two mod-
ules for providing the quite heterogenous groups
of students (cf. Sec. 4.1) with a unified knowl-
edge base to start with (cf. Fig. 2): First, general
NLP-specific topics are introduced before in the
second lecture important conceptual topics regard-
ing neural networks are dealt with. Building on this
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foundation, the next lecture block (cf. Fig. 3; equiv-
alent to four 90-minute lectures) starts by covering
the Transformer architecture in-depth since it is the
focal methodological topic the students need to un-
derstand every tiny detail of. The next module is of
similarly central importance, as it introduces BERT
as one major cornerstone of the developments lead-
ing up to contemporary LLMs. It further deals
with important concepts of transfer learning from
a birds-eye perspective, the components of pre-
training LLMs (objectives, hyperparameters, data),
the implications of architectural choices (encoder-
only, decoder-only, encoder-decoder), and the (effi-
cient) fine-tuning of such models. The third (and fi-
nal) central building block of the current version of
the lecture is centered around decoder-only LLM
architectures (cf. Fig. 4; equivalent to three 90-
minute lectures). After having learned how to
comprehend all potential tasks as a text-to-text
problem in the previous block, the students will
be introduced to alternative concepts of learning
(zero-/few-short learning) before more elaborated
alignment techniques (instruction fine-tuning, re-
inforcement learning from human feedback) are
covered.

Figure 4: Third lecture block – Discussing the capabili-
ties and the inner workings of contemporary LLMs.

These three central building blocks can be flexi-
bly extended using optional modules based on (a)
the needs of the target audience, (b) the fit with the
surrounding curriculum of studies, and (c) what is
of particular interest based on how current research
is developing. The subsequent list of lecture blocks
has been employed over the past semesters:

0. Machine Learning Basics: Before Module 1
to bring everyone up to speed (if required, cf.
Fig. 1).

4. Multilinguality: Multilingual alignment tech-
niques for embeddings/pre-trained models,

mostly taught at LMU for the computational
linguistics (CL) students (cf. Fig. 5).

5. LLMs in Practice: Considerations regarding
hardware, parameter counts, and scaling (in-
cluding a guest lecture from industry, cf. Fig.
5).

We will continuously monitor future develop-
ments in the field and adjust the course accordingly.
This allows us to react flexibly to newly emerging
or newly established methods/topics which can be
added as further modules whenever we see fit.

Figure 5: Optional lecture blocks – Multilinguality and
further insights into contemporary LLMs.

3.3 Programming Questions

The current design of our programming assign-
ments tries to carefully balance basic understand-
ing, i.e. bringing every student from this heteroge-
neous group up to speed, against novelty, i.e. con-
veying (sufficiently) interesting new content that is
of interest to the majority of the students. At the
same time, the degree of difficulty of the assign-
ments is a further crucial consideration since they
partly influence the grading of the students (cf. Sec.
4.2). Trying to get this interplay right, we designed
the following five two-week assignments for the
iteration in the winter term of 2023.

Assignment 1: Building, Tuning and Evaluating
an RNN Model. The goal of the first assignment
is to familiarize all the students with the general
setup of the training loop for a DL model. We ex-
pect the students to be familiar with embeddings
and the basic concepts of DL, and with the basic
functionalities of Python on a technical side. The
intended outcome is that the students become fa-
miliar with working with using PyTorch (Paszke
et al., 2019) and learn how to set up everything
from scratch, so they know what is happening be-
hind the scenes once they start using high-level
frameworks like Hugging Face (Wolf et al., 2020)
later.
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Contentwise, the students are tasked with load-
ing, splitting, and formatting datasets from hosted
places, such as Hugging Face, to gain hands-on
experience with data preparation. They then learn
to build parallelized dataloaders using the PyTorch
API to efficiently handle datasets of varying sizes.
Following that, students are asked to design a cus-
tom RNN model layer-by-layer and to write the
training and evaluation processes by hand. This ex-
poses them to the inner workings of PyTorch mod-
ules and helps them understand how to connect
their own modules to the core “Autograd” func-
tionality. Enhancing their understanding of model
evaluation is another goal of this assignment. Con-
sequently, they need to implement a classification
metric tracking system and plot and document their
results. The assignment provides the class with
three hyperparameter configurations intended to
produce an underfitted, overfitted, and well-fitted
model, lastly prompting them to pinpoint and dis-
cuss notable training moments on their plots.

Assignment 2: Building the “Vanilla” Trans-
former from Scratch. The next important mile-
stone in our curriculum is implementing the vanilla
Transformer from scratch. We deem this task to
be of extremely high didactic importance, as later
on students will most likely use the Hugging Face
libraries to train or to interact with transformer-
based models. Obtaining a proper understanding
of the model’s inner workings is crucial, as the
Transformer itself might be replaced in the future,
but in general large, complex models with many
hyperparameters are still likely to persist.

Since various well-known teaching-oriented im-
plementations of the vanilla Transformer exist, no-
tably “The Annotated Transformer” (Rush, 2018;
Huang et al., 2022) and a chapter of “Deep Learn-
ing Notebooks” (Lippe, 2022), we refrain from
asking the class to simply implement a working
Transformer model. Instead, we provide specific
instructions to break down the task into smaller
sub-tasks, with clear expectations for intermediate
results. This has two key benefits: First, it en-
ables students to identify and debug issues early
on, by checking their sub-results against expected
outputs and tensor shapes. Second, it encourages
students to engage deeply with the paper and code,
making it difficult to simply copy from existing
online resources. Even if students tried to copy,
they would need to make significant changes to fit
our instructions, ensuring a contribution to the im-

plementation. To strike a balance between realism
and learning value, we fit our assignment require-
ments into input and output specifications for each
module, along with assert statements to verify
intermediate results in init and forward methods
of each module.

Assignment 3: The Hugging Face Ecosystem.
As one central objective of the assignments is to
convey hands-on practical knowledge to the stu-
dents, the third assignment is centered around
the Hugging Face ecosystem. The Hugging Face
ecosystem has become a de facto standard in the
NLP community, providing a unified interface for
a wide range of SOTA models and datasets. By
working with it, students can gain experience with
a powerful tool that simplifies the process of build-
ing, training, and distributing NLP models, while
facilitating reproducibility and collaboration.

Students were tasked with fine-tuning the
encoder-only BERT (Devlin et al., 2019) for classi-
fication and the encoder-decoder T5 (Raffel et al.,
2020) for text summarization. Through this exer-
cise, students gain hands-on experience with tok-
enizers, loading, and preparing models from the
Hugging Face hub for different tasks. A key fo-
cus is on the Trainer and its TrainingArguments
class, where students are supposed to experiment
with various techniques to reduce GPU memory
usage, including batch size, gradient accumulation
steps, gradient checkpointing, and 16-bit floating
point data types. Taking it a step further, students
are also introduced to the concept of reversing
the abstractions provided by Hugging Face, for
instance, by inheriting from the Trainer class and
customizing the loss calculation logic according
to our requirements. In the second part, we fo-
cus on approaching problems as text-to-text tasks,
including the pre-/post-processing steps for sum-
marization. Again, while models might change,
implementing the whole pipeline (data-to-model;
task description; GPU utilization) is a vital skill for
the future.

Assignment 4: Interpretability and Decoding.
As the parameter count of NLP models continues
to grow, it has become increasingly important to un-
derstand the inner workings of these models. Cur-
rently, there are many ways to analyze models. The
fourth assignment examines the topics of employ-
ing a simple interpretability method and investigat-
ing decoding strategies, both of which are essential
for understanding the models’ behavior/biases and
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improving the trustworthiness of models.
To gain insight into the attention mechanism, stu-

dents explore the attention patterns of various heads
in pre-trained models. By visualizing and compar-
ing the patterns of BERT and GPT-2 (Radford et al.,
2019) for the same sentence, students observe how
BERT’s bidirectional attention differs from GPT-
2’s left-to-right attention. They then quantify their
observations by calculating and visualizing the en-
tropy per head and layer, revealing how individual
heads distribute their attention. Next, students im-
plement and calculate importance scores (Michel
et al., 2019) per head, visualize their results, and
finally use them for pruning, i.e. removing heads
below a certain importance score threshold. In the
decoding part of the assignment, students load GPT-
2 and compare its outputs for a single input prompt
using different decoding strategies. They begin
by implementing beam search (Vijayakumar et al.,
2016) and contrasting it with standard greedy de-
coding, and then progress to more advanced strate-
gies like top-k (Fan et al., 2018) or top-p (Holtzman
et al., 2019) sampling and temperature scaling.

Assignment 5: LLMs and Prompting.
Language-to-language is a promising paradigm,
likely to persist, as it resonates with human
interaction. Therefore, it is central for students
to learn how to work with this paradigm. The
fifth assignment covers this and showcases key
prompting strategies to accomplish various tasks
and structured, parseable output formats. Students
begin by loading LlaMA-2 (Touvron et al., 2023)
and familiarizing themselves with the concept and
formatting the system prompt. By modifying the
system prompt while keeping the downstream
instruction equal, students observe how the
model’s behavior changes in response to different
meta-instructions. Subsequently, students explore
zero-shot inference (Radford et al., 2019) and
investigate the model performance in a multi-class
classification task without structured output. They
learn to address the difficulties of parsing errors
caused by varying model outputs and format errors,
before repeating the same task while employing
a batched, JSON input- and output structure.
This makes it possible to implement formatting
checks and parsing rules to reject certain outputs
before encountering unknown outputs. Lastly, the
assignment incorporates the few-shot learning
paradigm (Brown et al., 2020) by solving a relation
extraction problem while enforcing a custom,

parseable output style while providing in-context
examples in the desired format.

3.4 Grading

Two common approaches to grading coding assign-
ments are automated evaluation through test suites
and manual checks. While the benefits of auto-
mated test suits are fully automated autonomous
testing in little time and certainly unbiased grading,
the disadvantages are the requirement of precise
task descriptions and little to no variance in allowed
outcomes, partially solved or nonexecutable sub-
missions may not be testable or it might require
additional effort to define those tests. Manual eval-
uation, on the other hand, results in time-intensive
corrections per submission and can introduce bi-
ases during grading. The benefits and disadvan-
tages need to be considered beforehand and should
also be considered during the task creation. The
optimal approach toward grading depends on the
expected number of submissions, the available (hu-
man) resources for (a) assignment preparation and
(b) correction over the course of the semester, and
the probable reuse in future iterations of the course.

Due to our design choice of integrating open-
ended interpretations of results and observations,
we have opted for a hybrid approach: We leverage
the benefits of automated tests for the subset of
well-defined tasks with clear expected outcomes
while resorting to manual evaluation and grading
of the more open-ended parts. This allows us to
manually handle cases where the automated tests
failed within the second pass. To allow the seam-
less combination of both grading approaches, tex-
tual mistake descriptions alongside their resulting
point deductions are collected in one text file per
submission. The automated tests log mistakes to
this file as predefined textual statements, while mis-
takes encountered during manual inspection are
added in the corresponding format. That way both
the final grade of the assignment and the encoun-
tered mistakes can be reported back to the student,
offering insightful feedback via comments. This
allows the student to comprehend the grade and
reflect on his/her solution, and misapprehension.

4 Collaboration Across Universities

4.1 Target groups and their prerequisites

The initial target group of the course was third-
semester master’s students in CL from LMU Mu-
nich for whom the compulsory module has been the
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first touching point with DL. Opening the course
to master’s students of statistics and data science
(Stats+DS) by collaboratively improving and teach-
ing it in 2020 brought in a group with a differ-
ent background for whom this is contrarily the
first touching point with linguistics. Students eligi-
ble to take the course at the University of Vienna
(UNIVIE) have a multi-faceted background as well:
While the majority of the students are enrolled in
computer science (CS), there is also a share of stu-
dents from business analytics in the target group of
this course. This leaves us with students that can
be (coarsely) categorized into three groups:3

• Strong CL background, but not much experi-
ence with ML, DL, and programming

• High level of technical and theoretical exper-
tise in ML, DL, and programming, but (pre-
sumably) no knowledge about linguistics.

• Some affinity to digital tools and program-
ming, but neither an in-depth formal education
in ML/DL nor linguistics.

4.2 Examination requirements
While the modularization of the course makes it
relatively straightforward to collaborate in creating
the material, differences in examination regulations
and grading requirements between universities are
a stumbling block. Rules at LMU require us to
assess a student’s performance via one final exami-
nation at the end of the semester, whereas at UNI-
VIE it is strictly necessary to do 50% of the overall
performance assessment during the semester. We
manage these discrepancies by introducing three
types of (self-)assessments, two of which happen
continuously over the semester while the last one
pertains to a written test at the end of the semester:

(A) Moodle Quizzes: Multiple-Choice/Cloze-
style questions (on a weekly basis).

(B) Assignments: Advanced programming tasks
(on a bi-weekly basis, cf. Sec. 3.3).

(C) Written exam (90min, end of the semester).

Despite the strict requirements regarding perfor-
mance assessment at LMU, it is possible to use
assessment types (A) and (B) for awarding bonus

3One can argue that Stats+DS and CS students represent
two distinct groups, but we believe that they are sufficiently
similar concerning their prerequisites for this course.

points to the students who complete them success-
fully. The students were able to achieve a maxi-
mum of 9 bonus points (10% of the total points
of the 90-minute exam) weighted by the share of
the quizzes/assignments they were able to solve
correctly. Employment of the bonus points was re-
stricted by one condition: The bonus only counted
if a student had passed the exam already without
the bonus. Table 1 shows the proportions of the
students at LMU who were able to achieve a bonus
when entering the written examination4, highlight-
ing the effectiveness of this type of incentive for
working on the intra-semester assessments.5

year 2020 2021 2022 2023

# students 52 48 64 38
w/ bonus 57.7% 68.8% 98.4% 81.6%

bonus > 50% 57.7% 54.2% 54.7% 60.5%

Table 1: Relative frequencies of students with bonus
points among all students who took the exam at LMU.

There is an important breakpoint to be addressed
when looking at the numbers in Table 1: From 2020
– 2022 there were ten assignments (to be completed
on a weekly basis) with relatively easy tasks to
be completed by the students, i.e. filling in some
blanks in otherwise complete Jupyter notebooks.
Starting in 2023, the assignments became signif-
icantly harder: The number was reduced to five,
students were given two weeks to work on each of
them and the task was to write the complete code by
themselves. While this led to a substantial decrease
in the share of students with bonus points among
those who took the exam compared to 20226, the
share of students who achieved over 50% of the
bonus remained relatively constant over the whole
observation period. For 2023, however, we observe
a slight increase in the latter figure (plus 6 per-
centage points compared to 2022), hinting at the
effectiveness of the more challenging assignments.
We do not show similar numbers for students from

4Unfortunately it is hard to calculate the share of students
dropping out before the exam, since typically many more stu-
dents enroll to the moodle course just to check out the material
compared to the actual number of participating students.

5Note, that we only include students who actually took the
exam here. Students with a bonus who did not register for the
exam (or did not show up to it) are not counted in.

6Since the assignments were not substantially changed be-
tween 2020 and 2022 there was some “leakage”, i.e. more
senior students (presumably) passing on the solutions to their
successors and thus leading to more students completing
(some of) the tasks. This suspicion is supported by the rising
numbers (until 2022) in the second row of Table 1.
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UNIVIE, as they are obliged to successfully submit
the assignments to pass the course. Hence a direct
comparison does not make much sense here.

5 Open-Sourcing the Material

A core building block of this course is its public
website alongside the complete source code for
both website and slides. This differentiates the
course from other open teaching resources (cf. Sec.
2) as it enhances its reusability. People are not only
able to use the material as-is, but also to modify,
extend, and enhance it. An important side effect
of this policy is the potential feedback loop that
we might hopefully enter at some point in time:
Instead of only developing and improving the ma-
terial ourselves, other parties re-using the material
could reach out and become collaborators by con-
tributing via issues or pull requests. The technical
setup is kept pretty simple: We use two separate
repositories on GitHub for the source code of the
material and the source code of the website. We be-
lieve this separation helps interested third parties in
finding what they are looking for and it also eases
the whole development process. Using GitHub as a
platform is motivated by its focal nature to the CS
and NLP community, hence lowering the barrier
for collaboration between the co-developers as well
as for interested third parties.

The following list contains links to (i) the mate-
rial, (ii) the website, and (iii) its source code for the
interested reader and for potential collaborators:

(i) https://github.com/slds-lmu/lecture_dl4nlp

(ii) https://slds-lmu.github.io/dl4nlp/

(iii) https://github.com/slds-lmu/dl4nlp

6 Future Challenges and Next Steps

Open-source everything? An important case
of conflicting priorities pertains to the goal of
open-sourcing everything and the interest of pro-
viding the students with fair and challenging
quizzes/assignments. While open-sourcing the so-
lutions to the coding assignments perfectly aligns
with the goal of open-sourcing, it contradicts the
secondary goal to some extent as it could discour-
age students from working on the assignments and
incentivize checking out the readily available solu-
tions. Further, it would hinder re-using the same
assignments for rewarding bonus points (LMU) or
grading the performance over the semester (UNI-
VIE). Hence for the future, we are currently dis-
cussing the following scenarios:

• Keep assignments & solutions closed-source.

• Open-source only assignments w/o solutions.

• Substantially change assignments every
semester. while open-sourcing everything.

Unavoidable Lecturer Turnover. Further chal-
lenges that will arise in the near future7 originate
from the way academia works. After finishing a
PhD, people tend to leave the institution where they
conducted their PhD studies either for a postdoc
at another institution or for industry. While in the
latter case, long-term cooperation on developing
OSER together is most certainly not possible due
to simply different priorities in an industrial job,
also the former case does not automatically war-
rant further cooperation, although it might be more
likely. Thus, we believe it is vital for the persis-
tence of such a project (i) to have a clear ownership
structure and consistent credit assignment policies,
(ii) to set up lecture chapters as self-contained and
independent of the lecturer as possible, and (iii) to
create seamless documentation of reasoning behind
the most important design choices, the workflows,
and the responsibilities of the individual roles.

Related points are addressed by Bothmann et al.
(2023), yet from a slightly different angle: They
also stress the ownership issue as a crucial point
concerning quality assurance and maintaining con-
sistency in the narrative, notation, and correctness
of the material. We think that the peculiarities of
the academic job market are an important addition
to these considerations.

Speed of Developments. Balancing the recency
against stability is a major challenge for such
courses (cf. Sec. 2). In general, university lectures
should cover what can be considered established
methodology or consensus in the research commu-
nity. Examples of such topics can be easily found
in the field of “classical” ML, considering concepts
like logistic regression, support vector machines,
and random forests, just to name a few. For DL
and NLP this clear-cut definition proves to be much
harder: The (relatively young) concept of embed-
dings as well as the Transformer (and its parts) can
by now be considered fundamental/established, but
already as soon as it comes to the encoder-based
models surrounding BERT things begin to get com-
plicated. While BERT itself might be a relatively
unanimous choice, nearly all its successors can be

7Until now the core team has stayed mostly constant.
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regarded as debatable. On the one hand, some of
these papers represent (from today’s perspective)
important milestones or introduce smart ideas that
might be worth teaching. On the other hand, these
ideas might soon be considered outdated and other
models might have taken their place in one year’s
time. So the question that has to be asked every
semester is whether something can be considered
“established” enough to enter the course or whether
it is still too experimental or uncertain.

7 Conclusion

Throughout this paper, we shared some key take-
aways and considerations when it comes to collab-
oratively developing OSER for NLP curricula. We
highlighted crucial challenges that arise both due
to the collaborative development and the different
target groups and due to the peculiarities of the
current fluid state of NLP research itself. Simulta-
neously we showcased the solutions we found, re-
lying strongly on the OSER principles. We further
view this paper as a means of advocating for more
open source and more collaboration, also when
it comes to teaching. While it may be common
practice to collaborate in research itself or when
it comes to using shared computational resources.
Sharing and co-developing teaching materials, on
the other hand, is far from being a commonly ac-
cepted best practice. We again argue, that one
conclusion from the current speed of development
is to join forces also for teaching. Finally, we share
our material for re-use and inspiration and hope to
attract other academics as future collaborators.

Limitations

While we do not claim that our course is all-
encompassing or better than any other course, we
still hope there is some value in (i) the course itself
and (ii) the explanation of our thought processes.
We think humbleness and the willingness to learn
and improve one’s teaching material continuously
are key to the successful development of OSER.
Everything we create and share happens to the best
of our knowledge and we are always happy to be
pointed at mistakes or inaccuracies so we can erad-
icate them.
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