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Abstract

In natural language processing courses, stu-
dents often struggle to debug their code. In
this paper, we present three homework assign-
ments that are tightly coupled with in-class
worksheets. The worksheets allow students to
confirm their understanding of the algorithms
on paper before trying to write code. Then, as
students complete the coding portion of the as-
signments, the worksheets aid students in the
debugging process as test cases for the code,
allowing students to seamlessly compare their
results to those from the correct execution of
the algorithm.

1 Introduction

In natural language processing (NLP) and more
broadly in machine learning (ML) courses, home-
work assignments frequently involve training a
model that has been discussed in class on data pro-
vided by the instructor. Creating and training mod-
els is an important skill in NLP, but without proper
scaffolding, such assignments can lead to open-
ended questions posed to instructors and teaching
assistants along the lines of “the accuracy of my
model is lower than expected, but I don’t know why
or whether the current accuracy is acceptable.” In
part due to necessary implementation tricks (Xia,
2008) and the scale of data needed to train an ef-
fective model, NLP assignments often differ from
those in other computer science (CS) classes, in
which students can easily asses whether their solu-
tions are correct or not.

This paper introduces an approach designed to
mitigate this challenge—pairs of in-class work-
sheets and programming-based homework assign-
ments using the worksheet examples as test cases—
and then presents three such tightly coupled assign-
ments created within this framework.

2 Development

The idea of tightly coupled worksheets and pro-
gramming assignments stemmed from an NLP
mini-course for high school students. The course
took place over one week and was repeated three
times over three weeks with new groups of students,
allowing for rapid iterative improvement of the ma-
terials. The assignment was originally given with
little scaffolding, and students struggled signifi-
cantly to connect the exercise performed on a work-
sheet (sentiment classification with Naive Bayes
using words as features) to the exercise performed
in a programming lab assignment (language iden-
tification using character bigrams), even though
the programming assignment included extensive
starter code and significant real-time support (12-
14 students programmed in pairs in a room with an
instructor and a teaching assistant). In later itera-
tions of the course, students were given a worksheet
with a concrete example of Naive Bayes for lan-
guage identification, and the assignment suggested
that they use the same example as a test case in
their code.

While this scaffolding was strictly necessary for
high school students with minimal programming
experience, we found that it can also be useful for
undergraduates. In an NLP course for upper-level
undergraduates,1 the same assignment was used
along with a similar tightly-coupled worksheet that
students completed during class. The added scaf-
folding was particularly useful given that (a) stu-
dents were primarily working on their programs
without real-time instructor support and (b) the raw
number of homework assignments for the course
(seven assignments) was fairly high compared to
other NLP courses, requiring that each homework
assignment be slightly easier to complete.

1The course had data structures and discrete mathematics
as prerequisites; prior experience with machine learning was
not assumed.
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3 Approach

During the lecture, a worksheet is distributed to
students. The worksheet’s purpose is to provide stu-
dents with an opportunity to practice the execution
of the algorithm with step-by-step calculations on
paper. This ensures that the student understands the
algorithm before adding in the complexity of pro-
gramming. Others have found similar worksheets
helpful in reinforcing students’ understanding (Eis-
ner, 2002).

Then, a tightly coupled programming assign-
ment asks the students to implement the algo-
rithm in Python that they practiced with the work-
sheet. The student is provided two testing scripts:
test.py and test_mini.py. test.py trains and
tests the student’s model on a large dataset and out-
puts accuracy or another metric as the final output.
Meanwhile, test_mini.py trains and/or tests the
model with the exact data that was provided on
the worksheet. This allows students to easily see
if their code’s result matched the result from their
worksheet, giving them an objective signal beyond
standard ML metrics to help students determine
whether their implementation was correct.

While students could in theory implement the
same test cases that are written in test_mini.py
independently, providing them to students stream-
lined the development process, allowing them
to focus on the details of the algorithm. Us-
ing test_mini.py encourages students to develop
good habits by testing with familiar data first when
developing their own models outside of class.

4 Assignments

We describe three tightly coupled assignments,
which are shared with this publication.2 Complete
starter code and autograders are available on re-
quest.

4.1 Assignment 1: Language Identification
with Naive Bayes

The first assignment is to build a Naive Bayes lan-
guage identification model with character n-gram
features. While students eventually train and test
their model on eight languages,3 the worksheet fo-
cuses on just Spanish and English. Students count
and smooth the character bigrams in three training
instances, and then employ the model to classify a

2See this github repository.
3The languages included are Chinese (Mandarin), English,

French, German, Italian, Russian, Spanish, and Turkish.

new word. The worksheet also includes a section
on evaluating classifier performance by computing
accuracy and creating a confusion matrix.

4.2 Assignment 2: Part-of-Speech Tagging
with Hidden Markov Models

The second assignment is to build a Hidden Markov
Model for Part-of-Speech tagging. On the work-
sheet, students fill out a table with the values that
would be stored while executing the Viterbi algo-
rithm using log probabilities. For homework, stu-
dents write code to implement the Viterbi algorithm
and optimize smoothing parameters.

4.3 Assignment 3: Beam Search for Text
Generation

The third assignment is to implement beam search
for text generation. The assignment assumes ac-
cess to a model that outputs the probabilities of
the n most probable tokens given a sequence of
tokens.4 On the worksheet, students perform beam
search with the help of a Google Colab notebook
that provides a high-level interface to interact with
the language model (a function takes in token IDs
as input and returns a dictionary where the keys are
the n most probable token IDs and the values are
their probabilities).5 A similar function is provided
as part of the programming assignment, and stu-
dents’ experience with it serves as a starting point
when implementing the algorithm.

5 Student Reception

The instructor observed that most students relied
heavily on the provided test_mini.py scripts and
used them to debug during office hours. Students
frequently referenced the calculations that they
had made on the worksheets as part of their pro-
gramming process. Some students needed to be
prompted to check their model’s internal data struc-
tures if the final result was incorrect, but by doing
so were able to fix bugs in their code. Having
ground-truth values of intermediate computations
already worked out on their worksheets allowed
them to isolate the component of their code that
was not working. Afterward, multiple students
gave positive unsolicited feedback about the struc-
ture of the assignments, such as they “liked how

4We used GPT-2 (Radford et al., 2019), but another model
could be plugged in here, or the assignment could be modified
to focus on machine translation.

5All other worksheets could be completed on paper, al-
though some students completed them on tablets with dis-
tributed PDFs.
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the worksheets used the same examples that they
started with for the programming assignments.”

6 Limitations

6.1 Scope of On-Paper Test Cases

The examples on the worksheets provided to stu-
dents did not capture all possible bugs that stu-
dents could encounter while programming. While
it would be possible to add complexity to the work-
sheets’ examples to help students catch bugs early,
there is some pedagogical value associated with
allowing them to learn about how such features in
the data could affect their models on their own.

6.2 Application to Pre-Trained Models

Applying this approach to large pre-trained mod-
els is less natural than applying it to Naive Bayes
and Hidden Markov Models; for instance, it would
be impossible to compute the correct output of a
BERT model (Devlin et al., 2019) by hand on pa-
per. Assignment 3 demonstrates one method for
incorporating pre-trained models, but without any
training. Future work could explore the possibility
of creating small-scale test models for educational
purposes that use the same API as large pre-trained
models but have a minimal number of weights,
which could then be used on worksheets and in
test_mini.py-type programs.
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