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Introduction

Welcome to the Sixth Workshop on Teaching Natural Language Processing (NLP). This hybrid work-
shop featured an exciting mix of papers, teaching material submissions, panels, talks, and participatory
activities.

Educators designing NLP courses and degree programs are facing unique challenges due to the fast-paced
progress and growth of the field. This growth has led to the creation and revision of NLP courses, and
related programs, as well as new best practices and educational materials focused on emerging subareas.
For the sixth edition of the workshop, we were bringing together the communities of NLP research and
education to share best practices one can use to share tools and resources for NLP education, as well as
to discuss some core challenges, including approaches to facilititating meaningful conversations about
language among Computer Science (CS) students, or designing NLP curricula that include user-centered
design, while equipping students with the ability to advance responsible and ethical NLP.

We were happy to accept 9 long papers and 9 short papers on teaching materials. The latter were ac-
companied by exercises and assignments as Jupyter notebooks, software, slides, and teaching guidelines
that we hope to make available via a repository created as result of the workshop. Both types of papers
cover many topics: course and curriculum design, project-based learning, homeworks and assignments,
low-resource languages, and - following NLP trends - Large Language Models.

Our workshop featured Karën Fort (LORIA, France) who presented work on teaching ethics in the con-
text of NLP. Our workshop also included a panel discussion featuring David Adelani (McGill University,
Canada), Lori Levin (Carnegie Mellon University (CMU), USA), Graham Neubig (CMU), Aiala Rosá
(University of the Republic, Uruguay), and Sherry Wu (CMU).

We thank the Program Committee, who thoughtfully reviewed the submitted papers. We also appreciate
the sponsorship funding we received from Apple. Finally, we thank the workshop participants, whose in-
terest in teaching allow us to establish and grow the next generation of NLP researchers and practitioners.

- Sana Sabah Al-azzawi, Laura Biester, György Kovács, Ana Marasović, Leena Mathur, Margot Mieskes,
and Leonie Weissweiler (the co-organizers)
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Abstract

Graduate and undergraduate student re-
searchers in natural language processing (NLP)
often need mentoring to learn the norms of re-
search. While methodological and technical
knowledge are essential, there is also a “hidden
curriculum” of experiential knowledge about
topics like work strategies, common obstacles,
collaboration, conferences, and scholarly writ-
ing. As a professor, I have written a set of
guides that cover typically unwritten customs
and procedures for academic research. I share
them with advisees to help them understand
research norms and to help us focus on their
specific questions and interests. This paper
describes these guides, which are freely acces-
sible on the web,1 and I provide recommenda-
tions to faculty who are interested in creating
similar materials for their advisees.

1 Introduction

Academic research is at the core of many gradu-
ate degree programs, and it serves an enrichment
activity for high-achieving undergraduates. Stu-
dents are given graduate-level research problems
are expected to produce high-quality results. Even
within a supportive environment—including sup-
port from a student’s advisor, student peers, and
the institution—this is challenging for a new re-
searcher. While students likely benefit from the
intellectual challenges of research (e.g., produc-
tive struggle in transformative learning (Murdoch
et al., 2020)), basic concepts that enable the ac-
tivity of research are often left unsaid by mentors.
This “hidden curriculum” has been acknowledged
in classroom learning (Giroux and Penna, 1979;
Andarvazh et al., 2017) but it has received little
attention in the realm of mentoring researchers.

I describe a set of guides that I write and main-
tain to help student researchers learn typically un-
written customs and procedures in academic re-

1https://shomir.net/advice

search. They are part of my advising strategy, as
I ask new advisees to discuss them with me af-
ter reading them, and to review them at key times
during their development as researchers. This ap-
proach is similar to a flipped classroom (Akçayır
and Akçayır, 2018), but in a one-on-one context.
The guides also share the goal of approachabil-
ity previously explored by Nakai and Guo (2023),
who proposed peer-written guides; while I wrote
these guides as a professor, I use my perspective
as a tool to illustrate how professors’ and students’
roles differ in research. These guides are also re-
sources that my advisees consult on demand when
I am not immediately available. My motivations
for providing them include helping students meet
expectations, the importance of advising efficiently
and fairly, and a desire to focus one-on-one time
on topics that matter most to individual advisees.
These guides are publicly available on the web,
and anecdotally they have received strong positive
feedback from the research community.

In the remainder of this paper I describe the
guides, explain how I use them, and provide rec-
ommendations for other faculty who wish to create
similar resources.

2 The Guides

The guides I describe here are a subset of those on
my academic advice page (URL in footnote). Some
of the information in these guides is specific to aca-
demic norms at research universities in the United
States, a limitation explicitly acknowledged when
applicable. However, most of the content applies
to an international audience of student researchers
in computing in general and in NLP specifically.

The Guide for Joining My Lab describes how stu-
dents can get involved in research, with separate in-
formation for prospective Ph.D. students, prospec-
tive M.S. students, and prospective undergraduate
researchers. Most of its contents are germane to a

1
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large audience, but some items are specific to my
lab and advising. In Section 3 below I provide tips
to other faculty who wish to create a guide like this
as a recruiting tool.

The Guide for Student Research focuses on the
activities of research in an personal, experiential
sense rather than on methods or technical skills.
This focus includes descriptions of common high-
level tasks, things that tend to surprise students
about engaging in research, what people enjoy
about it, strategies for productivity, common ob-
stacles and suggestions for overcoming them, and
special guidance for undergraduate researchers and
graduate students who mentor them.

The Guide for Research Conferences covers an
arc of activity: deciding when and where to submit
to a conference, assembling a manuscript, dealing
with acceptance or rejection, and attending a con-
ference. Among these topics, I observe anecdotally
that conferences as events are especially obscure
to new student researchers. The guide describes
common items on a conference program, things to
do while attending, and how oral and poster pre-
sentations differ, among other topics.

The Guide for Scholarly Writing describes
some common conventions for writing a research
manuscript. These include broad principles (e.g.,
make writing approachable but formal, and imag-
ine the audience), specific practices (e.g., define
jargon, maintain narrative flow), and special guid-
ance for collaborative writing (e.g., follow advice
from senior co-authors, explain what changed be-
tween revisions).

The Guide for Citations and References de-
scribes the principles behind citations and refer-
ences for students who are unfamiliar with them or
need a reminder. The guide adopts a citation posi-
tive tone, focusing on the value these conventions
add to a writer’s work. While the guide contains
warnings about the consequences of plagiarism, I
hypothesize a positive tone is more engaging and
effective for the audience than a punitive one.

Other guides in the collection cover topics ad-
jacent to research advising, including the expec-
tations faculty have for interacting with students,
how to cope with pressure to succeed as a high-
achieving student, and the academic job market.

3 Use Cases

These guides are useful in at least four contexts:
• Research Advising: This is the default context.

Sharing these guides with advisees helps them
to work productively and assimilate otherwise
unspoken norms for research.

• Classroom Teaching: I assign some of these
guides as readings in courses that have open-
ended projects. They tend to be most relevant
to graduate-level courses, but undergraduates
are sometimes motivated to make substantial
contributions and publish their work.

• Recruiting: Prospective research advisees of-
ten visit faculty websites. Informally, my im-
pression is these materials encourage prospec-
tive students to pursue working with me.

• Public Service: Reactions to these guides on
social media suggest their positive impact ex-
ceeds the scope of my lab, contributing to
public awareness of student research.

The public availability and format of these
guides (i.e., as webpages) makes them easily find-
able and usable for each of these audiences.

4 Recommendations

For faculty who wish to create similar materials, I
recommend the following:

First, assume minimal knowledge from your au-
dience. Prospective research advisees’ eagerness to
participate in academic research is easy to mistake
for basic knowledge about how it works. For exam-
ple, when a faculty member writes about advising
(such as in an advising statement), they should take
care to explain what research advising is and its
importance in a student researcher’s trajectory.

Also, discard the goal of writing comprehensive
guides. It is easier to produce materials that focus
on topics that are not covered by other resources,
that are frequently understood, that are specific to
the writer’s advising, or that particularly motivate
the writer. (I note that ease is important, as fac-
ulty tend to have many tasks competing for their
attention.) Overreach when writing (i.e., writing
beyond one’s motivation or expertise) is less likely
to be productive. Remember it is better to provide
something specialized that will assist students with
specific tasks than to provide nothing.

Finally, although it may seem challenging, try to
write for all audiences at once. Whether a guide is
targeted undergraduates, graduate students, or oth-
ers, assume that a subset of each of the other groups
will want to read it. This assumption motivates writ-
ing in an approachable, unassuming way. When
expectations and responsibilities are in scope, this
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also encourages being open about why they exist.
To further motivate creating similar materials,

faculty who are expected to perform service duties
may ask if this qualifies toward that obligation.
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Abstract

Natural language processing (NLP) is a fast-
paced field and a popular course topic in many
undergraduate and graduate programs. This pa-
per presents a comprehensive suite of example-
driven course slides covering NLP concepts,
ranging from fundamental building blocks to
modern state-of-the-art approaches. In con-
tributing these slides, I hope to alleviate burden
for those starting out as faculty or in need of
course material updates. The slides are pub-
licly available for external use and are updated
regularly to incorporate new advancements.

1 Introduction

Natural language processing is advancing rapidly,
making it exciting and difficult to teach. In design-
ing NLP courses, one must build a delicate peda-
gogical balance between more classical concepts
and newer, trendier topics, connecting algorithms
to linguistic fundamentals and emphasizing im-
portant overlaps with contemporary deep learning.
Some material may require frequent updates, and
some may grow or shrink in importance over time.
Here, I present a comprehensive suite of slides
covering classical and modern NLP concepts, de-
signed and iteratively revised over the course of five
years at a large, public, minority-serving institution.
These slides are primarily based on material from
Jurafsky and Martin (2023), and supplemented by
material originally published by Pustejovsky and
Stubbs (2012), Huyen (2023), and Liu et al. (2023).

2 Intended Use

2.1 Course Structure
These slides were developed for two NLP courses
at the University of Illinois Chicago (UIC): CS
421: Natural Language Processing, and CS 521:
Statistical Natural Language Processing. Both are
assignment- and project-based courses housed in
UIC’s Department of Computer Science. Most

courses at UIC, including CS 421 and CS 521,
are on the semester cycle with 16-week semesters
(15 weeks of instructional material and one week
reserved only for final exams). Material is delivered
via lectures throughout most of CS 421, whereas
only five weeks of lectures are included in CS 521
(with the remainder of the course seminar-based).
The slides presented within this paper are from the
CS 421 and CS 521 lectures during the Fall 2023
(CS 421) and Spring 2024 (CS 521) semesters.

2.2 Student Population

UIC is a large, public university located in Chicago
in the United States of America. It is a Minor-
ity Serving Institution (MSI), Hispanic Serving
Institution (HSI), and Asian American and Na-
tive American Pacific Islander Serving Institution
(AANAPISI). Fifty percent of undergraduates at
UIC receive Federal Pell Grants,1 and nearly half
of first-year students are first-generation college
students. UIC’s Department of Computer Science
includes 2,135 undergraduates, 271 masters stu-
dents, and 170 PhD students. Nearly 90% of the
graduate students in the Department of Computer
Science are international students.

CS 421 is classified as a technical elective for
the Bachelor of Science (BS) in Computer Science,
and it is an option or technical elective for sev-
eral other CS programs and concentrations. It is
required for the BS in CS + Linguistics program (it-
self housed in the Department of Linguistics). As a
result, undergraduates enter the course with broad-
ranging technical backgrounds. At the graduate
level, CS 421 and CS 521 both count towards the
breadth requirement for the CS PhD qualifier exam,
meaning that while they are particularly popular for
students interested in artificial intelligence research,
they are also regularly taken by students from other

1These grants are awarded to U.S. undergraduates with
exceptional financial need: https://studentaid.gov/und
erstand-aid/types/grants/pell.
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Figure 1: An example CS 421 slide demonstrating how
weights are learned using the Word2Vec algorithm.

CS subfields. While CS 421 is open to both un-
dergraduate and graduate students (usually slightly
more undergraduates than graduate students are en-
rolled), CS 521 is open only to graduate students
and requires CS 421 as a prerequisite. In recent
years, CS 421 and CS 521 have had enrollments
of approximately 90 and 35 students, respectively.
CS 521 is purposely capped at that enrollment size
to foster an atmosphere conducive to discussion.
CS 421 enrollment caps fluctuate depending on
departmental needs and instructional bandwidth.

3 Description of Materials

The slides include many worked-out examples, of-
ten drawing from the source textbook(s) and pa-
per(s) but extending or updating them. Videos cov-
ering earlier versions of some slides, broken into
short segments, are publicly available.2 Topics cov-
ered in the included slides are listed in §3.1. Read-
ings for CS 421 are drawn nearly exclusively from
the third edition draft of Speech and Language Pro-
cessing by Jurafsky and Martin (2023). Readings
for CS 521 are from Speech and Language Process-
ing as well as from Natural Language Annotation
for Machine Learning: A guide to corpus-building
for applications by Pustejovsky and Stubbs (2012),
various blogs, and research papers.

3.1 Included Slides

CS 421. Slide decks include: (1) Dialogue Sys-
tems and Chatbots; (2) Text Preprocessing and Edit
Distance; (3) N-Gram Language Models, Naive
Bayes, and Evaluating Text Classifiers; (4) Logistic
Regression and Vector Semantics; (5) Word Em-
beddings and Feedforward Neural Networks; (6)
Overview of Deep Learning; (7) Hidden Markov
Models and Part-of-Speech Tagging; (8) Con-

2https://www.youtube.com/@NatalieParde_NLP

Figure 2: An example CS 521 slide demonstrating how
self-attention is computed.

stituency Grammars and Constituency Parsing; (9)
Dependency Parsing and Logical Representations
of Sentence Meaning; (10) Relation and Event
Extraction and Temporal Reasoning; (11) Word
Senses and WordNet and Semantic Role Labeling;
(12) Affective Lexicons and Linguistic Background
for Coreference Resolution; and (13) Coreference
Resolution and Discourse Coherence. An example
slide from the lecture on word embeddings, illus-
trating how weights are learned using Word2Vec
(Mikolov et al., 2013), is provided in Figure 1.

CS 521. Slide decks include: (1) Data Collec-
tion; (2) Deep Learning Architectures for Sequence
Processing; (3) Machine Translation, Question An-
swering, and Encoder-Decoder Models; (4) Trans-
fer Learning with Pretrained Language Models and
Contextual Embeddings; and (5) Generative AI. An
example slide from the lecture on encoder-decoder
models, illustrating how self-attention (Vaswani
et al., 2017) is computed for language tasks, is
provided in Figure 2.

3.2 Slide Organization

Slides in CS 421 can broadly be separated into
(1) building blocks of contemporary NLP models,
and (2) specific language tasks. The first slide
deck falls into neither group but instead was de-
signed to present an exciting application of NLP
to students during the first week of class. Building
blocks introduce necessary information for com-
pleting deliverables throughout the semester, and
specific language tasks are presented afterward to
enhance understanding of NLP’s strong connection
to language and ensure familiarity with common
terminology and tasks referenced in more advanced
NLP classes. Slides in CS 521 build upon one an-
other sequentially. Given the fast-paced nature of
NLP research, these are updated more frequently;

5
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after topics become entrenched in NLP practice,
they are either shifted to the CS 421 slide sequence
or adapted for more introductory CS 421 use.

3.3 Slide Use and Reuse

The slides discussed here and made available with
the Sixth Workshop on Teaching NLP are also pub-
licly available on my personal website, which re-
quires no special access privileges to download ma-
terials.3 The slides are made available as PDF files
for direct reuse. Source files in Microsoft Power-
point (.pptx) format are available upon request via
email. Slides are shared under a CC BY-NC-SA
4.0 license,4 which allows non-commercial uses
of the work with attribution; any adaptations of
the work must be shared under the same licensing
terms. All images used in the slides were acquired
in one of the following ways: screen captures, im-
ages or icons provided via Microsoft Powerpoint or
Canva, graphics created by me using shapes and/or
other drawing tools in those software applications,
or downloads from public domain sources (e.g.,
https://commons.wikimedia.org).

3.4 Slide Updates

Slides will be regularly updated each time that I
teach CS 421 or CS 521, and the updated versions
will be made available at the same link on my web-
site3 (older versions of the slides are also avail-
able at that link). Given the dynamic nature of the
field, updates can be substantial between course
iterations. For instance, as large language models
(LLMs) loom larger in the public consciousness,
they are also likely to be a larger driver for enroll-
ment for CS 421; previously, the more advanced
machine learning concepts powering contemporary
LLMs were less appropriate and of less interest to
individuals fitting the target CS 421 profile. Course
topics in CS 421 may correspondingly shift to in-
clude more focus on accessible introductory gener-
ative AI concepts and more discussion of tradeoffs
between general-purpose LLMs and specially de-
signed tools (e.g., syntactic parsers) for the tasks
covered. Another topic included in CS 521 that
could be ripe for adaptation to CS 421 would be
practical guidelines for data development and use,
for example through coverage of data sheets, open
versus closed data and models, data anonymization,
fair use, and data and model release.

3https://www.natalieparde.com/teaching.html
4https://creativecommons.org/licenses/by-nc-s

a/4.0/legalcode.en

4 Conclusion

This paper described comprehensive, example-
driven slides designed and iteratively revised over
the span of five years at a large public university
to scaffold students’ understanding of NLP. The
slides are publicly available, and they are regularly
updated whenever I teach CS 421 or CS 521; these
updates can be accessed via my website.3 I hope
that these materials are useful for new NLP faculty
or current faculty looking to update their course
content in this fast-paced field.
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Abstract

This paper presents a course on neural networks
based on the Transformer architecture targeted
at diverse groups of people from academia and
industry with experience in Python, Machine
Learning, and Deep Learning but little or no ex-
perience with Transformers. The course covers
a comprehensive overview of the Transform-
ers NLP applications and their use for other
data types. The course features 15 sessions,
each consisting of a lecture and a practical part,
and two homework assignments organized as
CodaLab competitions. The first six sessions
of the course are devoted to the Transformer
and the variations of this architecture (e.g., en-
coders, decoders, encoder-decoders) as well
as different techniques of model tuning. Sub-
sequent sessions are devoted to multilingual-
ism, multimodality (e.g., texts and images), ef-
ficiency, event sequences, and tabular data.

We ran the course for different audiences: aca-
demic students and people from industry. The
first run was held in 2022. During the subse-
quent iterations until 2024, it was constantly
updated and extended with recently emerged
findings on GPT-4, LLMs, RLHF, etc. Overall,
it has been ran six times (6 times in industry
and 3 times in academia) and received positive
feedback from academic and industry students.

1 Introduction

The Transformer (Vaswani et al., 2017) is a versa-
tile neural network model that can be successfully
used in various modalities, such as text, images, net-
works, or sequences of events. Transformer-based
models have reached a pinnacle of popularity: they
have established state-of-the-art performance in
various text processing applications and come with
user-friendly wrappers on numerous data science
platforms. Therefore, many industrial applications
rely on Transformer models.

* Equal contribution.

Figure 1: A course instructor (Maria Tikhonova) gives
a lecture for students.

Although current computer science students may
study Transformers in their university courses,
many machine learning engineers often lack a thor-
ough understanding of the underlying mechanisms
of these models. This gap in knowledge can hin-
der their ability to fully leverage the potential of
Transformers, resulting in decreased efficiency and
quality in their work.

In this paper, we present an overview of a course
on transformer-based models (see Figure 1), which
bridges the gap between academic training and
industry needs thanks to the balanced program in-
corporating both theoretical knowledge and a large
spectrum of practical use-cases which can be di-
rectly used for industrial needs. Therefore, it can
be successfully taught in academic and corporate
environments. The course seeks to concisely con-
dense and present a vast amount of information on
this topic, specifically targeting individuals with
ML expertise but limited knowledge of NLP. It
aims to provide a comprehensive understanding
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of the Transformer architectures including the re-
cently emerged topics connected with Large Lan-
guage Models’ (LLMs) theory and their applica-
tion, enabling students to tackle the challenges that
arise when working with them effectively. The
course not only gives the theoretical knowledge
of this model set but also provides studies with
various practical scenarios and use cases they can
encounter in industrial applications.

The course was developed and served first in July
2022 and substantially updated in the subsequent
runs. Currently, the course has been held six times:
6 times in a corporate environment (data scientists
and trained engineers from a large IT company)
and 3 times in an academic institution.

The contributions of this paper are as follows:

• We present the syllabus of a modern course on
transformer-based models, aimed at broad het-
erogeneous audiences both in academia and in
the industry, which combines deep theoretical
knowledge with modern practical applications
of the Transformer models;

• We release the materials from the academic
course run, which are available in our repo1;

• We combine recent NLP trends and latest ap-
proaches with other best practices, such as
fine-tuning of the pre-trained Transformers,
multimodality, prompt-tuning, model com-
pression, etc.;

• The course program includes a comprehensive
set of Transformer applications, not only the
NLP domain but also other modalities.

2 Related NLP Courses

Over the past two decades, dozens of classes on
NLP emerged. With the “deep learning revolu-
tion” starting around 2017, almost every program
in computer science (academic or industrial) fea-
tures a class on NLP. Modern courses, such as
CS224N2, are focused on the use of deep learning
models as the most efficient methodology allow-
ing to obtain state-of-the-art results in a range of
tasks. Most currently best-performing models for
NLP are based on the Transformer architecture. Be-
sides, Transformer architecture is widely adopted
in other domains such as computer vision, tabular
data processing, event, and sequence processing.

1https://github.com/s-nlp/transformers-course
2https://web.stanford.edu/class/cs224n

Our course is therefore centered around the Trans-
former architecture, but in contrast to CS253, our
course has more focus on NLP, Computer Vision,
and applications to tabular and event data while not
covering robotics and neuroscience.

The published works on teaching NLP consider
different scales and scenarios. Some papers con-
sider the design of extensive programs related to
computational linguistics and NLP (Reiter et al.,
2017). Other papers describe specific parts of
courses, including competitions (Barteld and Flick,
2017; Bozhanov and Derzhanski, 2013). Generally,
courses on NLP are either industry- or academia-
oriented and target different audiences (Vajjala,
2021), can be held online (Artemova et al., 2021),
offline, or in hybrid mode.

We consider a different course objective.
Namely, we aim to provide one of the first courses
focused on the specifics of Transformer architec-
ture, how it can be applied to solve various prob-
lems in NLP, and how it can be used in other do-
mains (e.g., for images, tabular data). The chal-
lenge here is how to embed various innovations
related to this architecture into a single course. The
course can be taken in two scenarios: as part of a
computer science master’s program or as an addi-
tional education course for an industrial audience.

3 Course Overview

The course comprises 15 sessions (two sessions
per week) and assignments, which include two
homeworks, a final quiz, and bonus lecture quizzes
and practical tasks after each session. The course
program, presented in Table 1, can be split into
two main parts, which cover (i) basic Transformer
architectures and models, (ii) the application of
Transformers to different modalities, and efficient
training procedures.

The course is based on the following prerequi-
sites: (1) advanced mathematics: calculus, lin-
ear algebra, and statistics; (2) data science: clas-
sic machine learning methods, basic deep learning
methods, and basic knowledge of natural language
processing.

Every session consists of a lecture and a prac-
tical seminar. Lectures are presented with slides,
while practical sessions are real-time coding ses-
sions. The instructor demonstrates code snippets
in Jupyter Notebooks and explains them in detail.
Both home assignments are started simultaneously

3https://web.stanford.edu/class/cs25
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Session Description
1 The Transformer: motivation, original architecture, and attention mechanism.
2 Transformer-based Encoders. Masked language models based on the Transformer architecture. BERT and related models.
3 Classification and sequence tagging with Transformers. Using encoders to generate feature representation for various NLU tasks.
4 Transformer-based Decoders. Generation of text using Transformers. GPT and related decoders.
5 Prompt and instruction tuning. Reinforcement Learning from Human Feedback (RLHF), ChatGPT, and related models.
6 Sequence to sequence tasks: machine translation, text detoxification, question answering, dialogue. Technical tricks for training and inference.
7 Multilingual language models based on the Transformer architecture.
8 Uncertainty estimation for Transformers and NLP.
9 Efficient Transformers.
10 Compression of Transformer models and low-rank approaches.
11 Network encoders with Transformers
12 Multimodal and Vision Transformers.
13 Transformers for event sequences.
14 Transformers for tabular data.
15 Deadline for both assignments. Final quiz.

Table 1: Course structure: each session, except the last one, dedicated to the final quiz, features lecture material and
a seminar with code snippets.

from the beginning so that students may plan their
time accordingly and try any transformer-based
architecture they find applicable to any assignment.

The total score Total is calculated according to
the following formula:

Total = 0.4 ·A1+0.4 ·A2+0.2 ·Q+LQ+ST ,

where Ai is the score for the i-th home assignment,
Q is the score for the final quiz, LQ and ST are
the extra points for bonus lecture quizzes and prac-
tical tasks, respectively. The total score is then
uniformly mapped into the grading scale.

As was already mentioned, the course is suitable
for both academic and industrial audiences. While
the general course program and structure are sim-
ilar in both environments, the presentation of the
material differs, adapting to the audience’s needs
and objectives. In academic runs, we concentrate
more on the theoretical material, giving more math-
ematical formulas and explanations. In contrast,
during the industrial runs, we provide more practi-
cal examples, illustrating all methods with as many
use cases and business applications as possible.

It is worth noting that the course can be con-
ducted both online and offline. For industrial ses-
sions, the course is delivered online, whereas at the
university, we adopt a hybrid approach.

4 Syllabus

The following paragraphs describe each session in
more details.

Session 1. The Transformer: motivation, orig-
inal architecture, and attention mechanism.
The first introductory lecture is devoted to the
vanilla Transformer architecture (Vaswani et al.,
2017), introduced for the Machine Translation
(MT) task following the traditional approach.

First, we formulate the MT task and present a
historical overview of the area. Next, we describe
the idea of encoder-decoder or seq2seq architec-
ture, starting with RNN-based models (Sutskever
et al., 2014) and then introduce the concept of at-
tention (Bahdanau et al., 2015). That brings us
to the Transformer model, which we explain step
by step. During the academic runs, we pay spe-
cial attention to the theoretical background behind
the Transformer architecture and its mathematical
explanations.

We conclude the lecture with a short recap of
the language modeling task and how the idea of
attention can be transferred from MT to this field.

The practical session is based on Harvard NLP
tutorial “Annotated Transformer”4, that presents
the PyTorch5 implementation of the Transformer
architecture. Thus, following the outline of the tu-
torial, we first go through the Transformer code
step by step and then show how it works for
WMT14 (Bojar et al., 2014) English-to-French
translation task: we train and test the model and
allow students to experiment with model training
to achieve better scores.

Session 2. Transformer-based Encoders.
Masked language models based on the Trans-
former architecture. BERT and related models.
The lecture is devoted to the transformer-based
Encoders. We begin with discussing most classical
encoder-based models, such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), and discuss
the peculiarities of their architecture and training.
For academic students, we pay particular attention
to analyzing the results of the original scientific pa-
pers, while for the industrial runs, we concentrate

4http://nlp.seas.harvard.edu/annotated-transformer
5https://pytorch.org
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more on the use cases students can encounter in
their practice.

The aim of the practical session is to teach stu-
dents how to work with Transformer models using
Transformers library6 and how to utilize pre-trained
models and other instruments from HuggingFace
Hub7. Namely, we show students how to tokenize
the data, visualize attention maps, and apply trained
models on the example of the BERT model fine-
tuned for the sentiment analysis task.

Session 3. Classification and sequence tagging
with Transformers. Using encoders to generate
feature representation for various NLU tasks.
This session focuses on Natural Language Un-
derstanding (NLU) applications of Transformers,
namely, tasks that need to extract implicit meta-
data from the text. In the lecture, we consider
text classification for Sentiment Analysis and Nat-
ural Language Inference and the token classifica-
tion for Named Entity Recognition and Extractive
Question-Answering tasks. For the industrial runs,
we elaborate more on the practical applications de-
rived from these tasks and the use cases. We study
various approaches to sentence encoders in detail
and then delve into the realm of dialogue systems.

In the practical session, we fine-tune the
transformer-based model for entity recognition
in the Russian-language drug review corpus (Tu-
tubalina et al., 2020) using a Russian-language
compressed version of the BERT8 for it.

Session 4. Transformer-based Decoders. Gener-
ation of text using Transformers. GPT and re-
lated decoders. This session is devoted to Gener-
ative Pre-trained Transformer (GPT) models based
on the Transformer decoders and various text gen-
eration strategies.

In the first part of the lecture, we briefly re-
cap various types of language models, emphasiz-
ing decoder-based Transformer models. Then, we
carefully study GPT models (GPT-1,2,3, and 3.5),
focusing on GPT-3 (Winata et al., 2021) and intro-
ducing the concept of few-shot learning.

Additionally, we explore the strategies for token
sampling and text generation (e.g., BeamSearch,
Sampling, Nucleus Sampling). For the academic
students, we concentrate more on the theoretical as-
pects, while with the industrial students, we discuss

6https://pypi.org/project/transformers
7https://huggingface.co
8https://huggingface.co/cointegrated/rubert-tiny

what generation strategies in business applications
from their work experience are preferred.

In the second part, we consider examples of con-
trollable text generation where we aim to generate
text with specific desired properties at the model
level. Then, starting with an additional steering
layer (Dathathri et al., 2019), we come to the con-
cept of a Generative Adversarial Network in the
model GeDi (Krause et al., 2021).

In the practical session, we provide guidance
on introductory text generation and sampling strate-
gies and experiment with various methods. Exper-
iments are set on the encoder-based Transformer
model sourced from the HuggingFace library (e.g.,
GPT-29) and aim to analyze the impact of gener-
ation hyperparameters on text quality and styling.
Upon request, we can develop a straightforward
chatbot utilizing the model and explore its practical
relevance in industry and startup contexts.

Session 5. Prompt and instruction tuning. Re-
inforcement Learning from Human Feedback
(RLHF), ChatGPT, and related models. This
section continues the exploration of advanced text
generation models, specifically focusing on the con-
cept of Reinforcement Learning from Human Feed-
back (RLHF). RLFH involves incorporating hu-
man feedback into the learning process to establish
an optimal starting point for the further model’s
training for the given task. As an example, we
consider the task of summarization with human
feedback (Stiennon et al., 2020) and analyze the
concept (Ouyang et al., 2022) of the modern LLM
training which underlies the power of such models
as ChatGPT10 or GPT-411 models. For the aca-
demic runs, we pay special attention to the theory
behind the RLHF method and its potential develop-
ment. In the industrial runs, we discuss the practi-
cal difficulties (e.g., data collection, computational
resources, cost) of RLHF LLM training.

The next part is devoted to prompt-tuning meth-
ods (Li and Liang, 2021; Lester et al., 2021; Liu
et al., 2021; Konodyuk and Tikhonova, 2021), for
automatically learning language model prompts.

We conclude the lecture by discussing the emerg-
ing variety of LLMs (LLaMA-2 (Touvron et al.,

9https://huggingface.co/gpt2
10https://openai.com/blog/chatgpt
11https://openai.com/gpt-4
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2023)12, Mistral13, Mixtral14, etc., their indus-
trial application scenarios, possible downsides con-
nected with their usage, and the overall impact.
This list is updated each run with newly released
models.

The practical session is devoted to prompt-
tuning methods. We allow students to experi-
ment with ruPrompts15, a convenient library for
fast language model tuning via automatic prompt
search, and use it to solve the Russe Detoxification
task (Dementieva et al., 2022).

Session 6. Sequence to sequence tasks: ma-
chine translation, text detoxification, question
answering, dialogue. Technical tricks for train-
ing and inference: infrastructure and perfor-
mance. During the lecture, students’ attention
is drawn to the models with the standard Trans-
former Encoder-Decoder architectures, which are
aimed at solving sequence-to-sequence tasks such
as machine translation, summarization, question
answering, etc. In the first part of the lecture, we
discuss the existing sequence-to-sequence models
such as BART (Lewis et al., 2019), T5 (Raffel et al.,
2020a) and PEGASUS (Zhang et al., 2019). With
the industrial students, we discuss possible applica-
tions of these models in their business practice.

The lecture’s second part is devoted to optimiz-
ing the Transformers’ training process. We dis-
cuss such optimization techniques as gradient accu-
mulation, training of only some layers, Adafac-
tor optimizer (Shazeer and Stern, 2018), quan-
tization (Hawks et al., 2021) and mixed preci-
sion (Micikevicius et al., 2018), gradient check-
pointing (Chen et al., 2016), optimized padding,
and ONNX runtime (developers, 2021).

The practical session for the sequence-to-
sequence Transformers aims to solve the Hyper-
nym Prediction task using the T5 (Raffel et al.,
2020b) model. Students are expected to experi-
ment with the zero-shot and few-shot setups and
compare them with fine-tuning.

Session 7. Multilingual language models based
on the Transformer architecture. This session
is devoted to multilingual language modeling. We
begin the lecture by discussing the specifics of
this phenomenon, a short overview of the MT ap-

12https://ai.meta.com/research/publications/llama-2-open-
foundation-and-fine-tuned-chat-models

13https://mistral.ai/news/announcing-mistral-7b
14https://ollama.com/library/mixtral
15https://github.com/ai-forever/ru-prompts

proaches, and methods for parallel corpora creation.
Then, we switch to the multilingual transformer
models and discuss such models as mBERT16,
XGLM (Newson, 2016), BLOOM (Scao et al.,
2022), and mGPT (Shliazhko et al., 2022). In
addition, we discuss possible ways to add a new
language to the Transformer model (e.g., mBERT).

In the practical session we fine-tune XLM-
R (Zhuang et al., 2021) for multilingual and cross-
lingual word-in-context disambiguation (MCL-
WiC), proposed for the SemEval2021 competition
(task2) (Martelli et al., 2021).

Session 8. Uncertainty estimation for Trans-
formers and NLP. This session aims to provide
a general introduction to the uncertainty estimation
(UE) field and methods and their application to
NLP, especially transformer-based models.

The lecture begins with highlighting the impor-
tance of uncertainty estimation and introducing
standard and well-established methods, such as
Softmax Response (Geifman and El-Yaniv, 2017)
and Monte-Carlo (MC) Dropout (Gal, 2016). We
also cover various regularization techniques (Xin
et al., 2021), density-based methods (Lee et al.,
2018), and also state-of-the-art UE methods for
the classification task (Yoo et al., 2022). Next, we
show the importance of uncertainty estimation for
LLMs, e.g., to avoid hallucinations. We discuss the
most advanced techniques, including both white-
box methods (Kuhn et al., 2023), applicable for any
open-sourced model, and black-box methods (Lin
et al., 2023), which are useful for closed-sourced
models available via API. We conclude the lecture
by discussing the practical application of uncer-
tainty estimation for active learning (Settles, 2009),
out-of-distribution (OOD) detection, etc.

In the practical session, we implement several
UE methods, such as Mahalanobis distance (Lee
et al., 2018), MC Dropout, and HUQ (Vazhentsev
et al., 2023), and apply them for the selective clas-
sification and OOD detection tasks. In addition, we
study two baseline methods (Sequence Probability
and Lexical Similarity) (Fomicheva et al., 2020) for
UE of LLMs and use them to detect factual errors
in the summarization task.

Session 9. Efficient Transformers. LLMs im-
pose high memory requirements, and this, conse-
quently, leads to substantial energy costs and note-
worthy CO2 emissions (Rae et al., 2021) through-

16https://huggingface.co/bert-base-multilingual-cased
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out the training and inference process.
In the lecture, we explore various approaches to

reduce the model size without compromising qual-
ity. We delve into pruning (Sanh et al., 2020), (La-
gunas et al., 2021), quantization (Hawks et al.,
2021), (Wang et al., 2022b), and distillation (Hin-
ton et al., 2015). In the academic runs, we spend
more time on the theory behind these methods,
while in the industrial runs, we concentrate more
on the practical applications of these methods.

We also examine methods that aim to reduce
the computational complexity of the attention
layer (Tay et al., 2020). It includes approaches
that simplify the calculation procedure, such as the
kernel method, techniques that decrease the input
sequence size, and techniques for selecting a subset
of tokens for attention computation (learnable or
fixed patterns).

Finally, we overview two approaches to par-
allelism during training: model- and data-level
parallelism. Using the examples of the Megar-
ton (Shoeybi et al., 2019) and Varuna (Athlur et al.,
2021) pipelines, we explore options for distributed
computing across multiple GPU cards and nodes
and the concomitant challenges. We touch upon
the topic of the impact of model training processes
on the environment and methods for its evaluation,
which is relevant to the industry.

During the practical session, students will con-
struct their own layer, based on torch.nn.Linear
incorporating a quantization mechanism. The ob-
jective is to minimize the total memory footprint
of the model by representing several layers in a
compressed bit format.

Session 10. Compression of Transformer mod-
els and low-rank approaches. In this session,
we explore methods for decreasing the number of
parameters by representing layer weights in a more
compressed way. Focusing on the representation by
SVD, Kronecker decomposition, and Tensor Train
Matrix (TTM) (Oseledets, 2011) decomposition;
we study the peculiarities of the structure of such
layers and the propagation of signals within them.

For the practical session, students are offered
a layer implementation based on SVD and TTM
decomposition. The objective is to assess the per-
formance of a compressed model achieved by sub-
stituting fully connected layers with algebraic struc-
tures based on the compression rank.

Session 11. Network encoders with Transform-
ers This lecture starts with a short recap of graph

theory. Then we introduce Graph Convolutional
Networks (GCNs) (Kipf and Welling, 2016) and
analyze those that are related to Transformers:
GAT (Yun et al., 2022), Graph BERT (Zhang et al.,
2020), and GreaseLM (Zhang et al., 2022). We
also discuss how such models could be applied and
for which NLP tasks.

In the practical session, we discuss the Taxon-
omy Enrichment task using Graph Transformers
(GCN, GAT, and Graph-BERT). We also revise the
code of GAT-v2 (Brody et al., 2022) and make a
quick overview of the OpenHGNN library17 with
the implementation of Graph-based models.

Session 12. Multimodal and vision Transform-
ers. Multimodal Transformer architectures are
significant as they generate representations of lan-
guage concepts by leveraging textual data and in-
formation from diverse sources such as images,
videos, and knowledge bases.

We start the lecture with the CLIP (Rad-
ford et al., 2021) model architecture analysis,
which provides a joint embedding for words
and pictures representing this word. Then go
through all the most important and relevant multi-
modal models (DALLE, DALLE-2 (Ramesh et al.,
2022), VQ-VAE (van den Oord et al., 2017),
Rudolph (AIRI, 2022), Fromage (Koh et al., 2023),
Flamingo (Alayrac et al., 2022), OFA (Wang et al.,
2022a), Kandinsky (Razzhigaev et al., 2023), Im-
ageBind (Girdhar et al., 2023)). We discuss the
possible use cases of these models with the indus-
trial students in their work practice.

During the practical session, we made a zero-
shot classifier with CLIP and implemented a visual
saliency map. We also studied how Kandindky18

works for generating images by text.

Session 13. Transformers for event sequences.
Another essential data modality in modern applica-
tions is event sequences. We consider a sequence
of events with features or marks provided for each
event. The model can be used end-to-end or as an
encoder to get embeddings of a sequence (Zhuzhel
et al., 2021; Babaev et al., 2022). We also note
that in this topic, we describe a connection be-
tween these models and temporal point random
processes (Shchur et al., 2021). During the lec-
ture, we study the adaptation of the Transformer
architecture to this problem and compare it to other

17https://github.com/BUPT-GAMMA/OpenHGNN
18https://huggingface.co/ai-forever/Kandinsky3.1
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approaches. During the practical session, we train
from scratch a Transformer model (Zuo et al., 2020)
for processing open-sourced financial transactions
data (Fursov et al., 2021), a modality that is widely
used in major banks (Babaev et al., 2022).

Session 14. Transformers for tabular data. In
this session, we step aside from classical Trans-
former applications and discuss their use for tabular
data. It is a new but quite promising area.

The lecture is based on three papers devoted to
this subject. We start with (Huang et al., 2020),
which proposes the TabTrasformer model, apply-
ing the attention mechanism for categorical feature
embeddings. Then, we walk through (Gorishniy
et al., 2021), which extends the idea of the attention
mechanism to numerical features by embedding
them via linear transformation and subsequently
applying the Transformer block. We also study
various embedding types for numerical features
proposed in (Gorishniy et al., 2022) and how they
can be combined with the Transformer block. Fi-
nally, we discuss practical applications and how
the architectures can be adapted to industrial needs
(we pay special attention to this part of the lecture
during industrial runs).

In the practical session, we study the described
transformer-based tabular models implemented in
PytorchTabular19 Python library and apply them
for one of the classical tabular datasets (e. g., Bank
Marketing Data Set20).

Session 15. Deadline for both assignments. Fi-
nal quiz. During the final session, students are
expected to share their feedback on the course and
discuss their solutions for the home assignments.
We first discuss each task’s strengths, weaknesses,
and difficulties and the time spent developing the
method that outperforms the baseline. Afterward,
we split students into groups to discuss the devel-
oped methods and to share their experiences. Each
group is asked to present one method for each task
to share with other groups.

5 Assessment

5.1 Home assignments
We provide two home assignments for the course
described in sub-subsections 5.1.1 and 5.1.2.

For both tasks, students are expected to pro-
vide a technical report (max 10 points) and code

19https://github.com/manujosephv/pytorch_tabular
20https://archive.ics.uci.edu/ml/datasets/bank+marketing

(max 10 points) and submit the results of the best-
performing model to the CodaLab competition
leaderboard (max 15 points) (see Appendix A for
the detailed grading criteria). They should also
write a technical report in the provided IPynb tem-
plate describing the method used in their solution
and the analysis of the obtained results. In the code
section, students are expected to develop a solution
and provide a reproducible code in the provided
template. Then, the (best) model output is expected
to be submitted to the CodaLab platform21 with the
name of the user for evaluation.

There is no formal difference in assignments
or grading criteria for the academic and industrial
runs. However, during the academic runs, we stimu-
late students to concentrate more on the theoretical
analysis of their results and the scientific conclu-
sions they can draw from them, while in industrial
runs, we ask students to elaborate more on practical
effects that can be inferred from the results they
obtained in the assignments.

We chose these assignments since they cover the
two most widespread tasks in NLP: classification
and generation. In the classification task, we ask to
perform sequence tagging which is a token classifi-
cation task using any Encoder Transformer model,
while text detoxification assignment is one of the
text generation tasks to be solved with Decoder or
Encoder-decoder models.

Each assignment involves a deep dive into the
task, offering the opportunity to try several differ-
ent approaches to solving it, carefully considering
and discussing their advantages, disadvantages, and
possible modifications. Such an assignment closely
models the process of solving real-world problems
and takes at least a month to complete. Therefore,
the number of assignments is selected given the
course’s total length and ability to cover the basic
use cases for Transformers.

5.1.1 Assignment 1: Semantic Role Labelling
The first assignment is to perform semantic role
labelling for comparisons. Task is formulated as a
classical sequence tagging organized in the form
of CodaLab competition22. The main goal is iden-
tifying objects, aspects, and predicates given an
input sentence. For instance: [Python=OBJECT] is
[better=PREDICATE] than [Matlab=OBJECT] for [Deep
Learning=ASPECT]. Such kind of semantic role la-
belling is usually applied for comparative argument

21https://codalab.lisn.upsaclay.fr
22https://codalab.lisn.upsaclay.fr/competitions/531
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mining (Schildwächter et al., 2019).
Students are required to train a sequence label-

ing model on a provided labeled dataset. For this
task, they can use any transformer-based model and
experiment with different types of embedding ini-
tialization and the fine-tuning procedure. The pro-
vided data files are in CoNLL-U format. Each line
contains one word, and its label is in BIO format
for predicting “Objects”, “Aspects” and “Predicates
in the sentence”.

In the latest edition of the course, this task was
replaced by the KGQA task which is a binary clas-
sification, so, in principle the new assignment can
nicely complement the sequence tagging task.23

5.1.2 Assignment 2: Text Detoxification

For the second assignment, students participate
in the competition of automatic text detoxifica-
tion (Dementieva et al., 2022). This task is seq2seq
style transfer task: its required to paraphrase a sen-
tence from the toxic (i.e. rude) to the non-toxic (ie.
neutral) style while preserving its meaning. Such
textual style transfer can be used to process toxic
content on social media.

In the assignment context, students need to train
a model and submit its output to the CodaLab com-
petition24. They are free to use any methods and/or
models for style transfer or pre-trained models for
text generation (GPT (Radford et al., 2019), T5
(Raffel et al., 2020a), etc.). The competition pro-
vides baselines that may be improved. Otherwise,
the students are allowed to rely on them when com-
posing their own solutions.

In the last edition of the course, the students were
asked to participate in the multilingual text detoxifi-
cation shared task at CLEF 2024 (Bevendorff et al.,
2024) where 9 languages to be supported instead
of a single one.25

5.2 Final Quiz

The final session is followed by a comprehensive
quiz covering all topics studied. It consists of 26
multiple-choice questions (1 point for each ques-
tion). Each topic covered in the course is presented
in the quiz with one or two questions. We keep the
list of questions closed to avoid revealing them to
the current running of the course.

23https://codalab.lisn.upsaclay.fr/competitions/18214
24https://codalab.lisn.upsaclay.fr/competitions/642
25https://codalab.lisn.upsaclay.fr/competitions/18243

5.3 Bonus Lecture Quizzes and Practical
Tasks

After each session, students are given a lecture quiz
consisting of ten multiple-choice questions on the
topic and a short practical task, which usually in-
cludes several simple experiments. Such activities
allow students to revise the material and gain small
extra points (1 point maximum for each lecture
quiz or practical task).26

6 Expected Outcomes

First, we expect the students to acquire a com-
prehensive understanding of the transformer-based
models and the underlying mechanisms and to get
acquainted with a diverse set of Transformer archi-
tectures. Second, we expect them to learn how to
train and apply Transformers to multiple NLP tasks
and how to adapt them to other domains. Third,
we anticipate that the students will be able to use
pre-trained models from the HuggingFace library
and to employ other tools or datasets from the Hug-
gingFace project.

7 Formal Course Evaluation

At the end of each running of the course, we collect
feedback by asking students to complete a short
survey. Figure 2 presents the aggregated results for
all industrial runs. We can see that most students
are satisfied with the course and find it quite engag-
ing. The average rating is 8.5 out of 10, and the
highest grade of 10 accounts for 44 percent of all
ratings. The feedback from the academic run is also
strongly positive (See Appendix B); all students
note clear objectives and explanations, challenging
enough content, and grading criteria. Both industry
(94%) and academia (100%) respondents note the
usefulness of practical skills and the quality of the
course organization and teaching (87% for industry
and 89% for academia).

8 Academic vs Industrial Students

We summarize qualitative differences in expecta-
tions of the course between students from industry
and academia below (based on obtained feedback
and evaluation comments):

• Students from industry demand more practical
programming materials and sessions, being

26We provide free access to quizzes and tasks upon a request
from an academic email to professors, lecturers, and teachers.
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Figure 2: Students feedback for the course in the indus-
trial setup. 10 is the maximum, 1 is the minimum score.

less happy with dense lectures than academic
students who are used to such format.

• Professionals asked for a translation of terms
and materials to their native language, while
academics didn’t mind English.

• Industrial students were asking more ques-
tions during lectures and chat discussions.

• In competition results (e.g., for the shared task
on text detoxification), the leaderboard was a
mixture of industrial and academic students
with no apparent leader.

• Attendance in percentage was more significant
for industrial students (while industrial ses-
sions were in the working days afternoon, 18-
21 time slot while for academic students were
during the day, usually 16-19 time slot), indi-
cating overall greater motivation/commitment
of professionals.

• Industrial students often are determined and
specifically seeking for application of a partic-
ular task (e.g., motivated by the job project).
In contrast, academic students do not have
such “extra” learning goals, with a few excep-
tions where it is required for their research.

• For both types of students, not as much the
topic matter so much its presentation. Even
“hottest” lecture on how ChatGPT works may
get very variable levels of student involve-
ment, depending on the instructor.

9 Conclusion

This paper describes a course on Transformer mod-
els, initially designed in early 2022 and updated in
the subsequent runs. During lectures and practical
sessions, we present a comprehensive overview of
transformer-related concepts and a variety of Trans-
former applications, including practical industrial
use cases, covering both NLP and language mod-
eling, as well as other domains, such as computer
vision and processing of event sequences. The
course was run several times for both academic and
industrial audiences.

The theoretical outcome of the course for the stu-
dents is a deep understanding of the Transformer
architecture, the attention mechanism, and knowl-
edge of a diverse set of transformer-based mod-
els and their adaptations for various domains. As
a practical outcome, the students acquire diverse
skills in working with all types of transformer-
based models and using Transformers for other
modalities and domains. The feedback about the
course from the students from both industry and
academia was generally positive yet different in var-
ious aspects, such as the desired balance between
theory and practice (with industrial learners being
more proactive and demanding hands-on skills).

In the future, we plan to add lectures related to
newer Transformer models and more applications
to other modalities and domains.
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A Assessment criteria

A.1 Technical Report Grading Criteria

The technical report is evaluated via the two criteria:

• Methodology (5 points): description of all methods they try and the best method. Here, students can
include some tricks with pre-processing, a description of the models and motivation of their usage,
and details of the training process (train-test split, cross-validation, etc.).

• Discussion of results (5 points): here, we expect the final comparison table. Even if some methods
did not bring students to the top of the leaderboard, they should nevertheless indicate this result and
a discussion of why, in their opinion, some approaches work while others fail.

A.2 Code Grading Criteria

The code of the students is graded according to the following criteria:

• Readability (5 points): code should be well-structured, preferably with indicated parts of your
approach (Pre-processing, Model training, Evaluation, etc.).

• Reproducibility (5 points): code should be reproduced without any mistakes with the “Run all” mode
(obtaining experimental part).

A.3 CodaLab Competition Grading Criteria

Students get points for participating in the corresponding CodaLab competition. For example, a student
receives 5 points for outperforming the baseline, an additional 5 points for being in the top 20% on
the leaderboard, or an additional 10 points for being top−1. As a result, students may get 0-15 points
depending on their performance.

B Feedback

Clear Objectives Theory Challenging
Content

Regular Feedback Grading Practical
Skills

Inspiring
Atmosphere

Evaluation Criteria

0

20

40

60

80

100

Pe
rc

en
t

Strongly Agree
Agree
Disagree
Strongly Disagree

Figure 3: Students feedback for the course in academic setup.

After the academic running of the course (2023), students were asked to provide feedback. Figure 3
demonstrates the statistics of students’ feedback for each question, which are listed below:

1. Course objectives were clear to me.

2. Key concepts and theories were well explained by the Course instructor(s).

3. Course content was difficult enough to be challenging.

4. I regularly received feedback on my performance.
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5. Grading criteria were well explained, and I understood what action was required to achieve each of
the performance levels.

6. The course was useful in developing practical skills.

7. The Course atmosphere was inspiring for active learning.
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Abstract

While deep learning approaches represent the
state-of-the-art of natural language process-
ing (NLP) today, classical algorithms and ap-
proaches still find a place in NLP textbooks
and courses of recent years. This paper dis-
cusses the perspectives of conveners of two
introductory NLP courses taught in Australia
and India, and examines how classical and deep
learning approaches can be balanced within the
lecture plan and assessments of the courses.
We also draw parallels with the objects-first
and objects-later debate in CS1 education. We
observe that teaching classical approaches adds
value to student learning by building an intu-
itive understanding of NLP problems, potential
solutions, and even deep learning models them-
selves. Despite classical approaches not being
state-of-the-art, the paper makes a case for their
inclusion in NLP courses today.

1 Introduction

Transformer-based models are the state-of-the-art
in natural language processing (NLP). They repre-
sent a new era of deep learning approaches1 for
NLP. From early work in word representations
to recent approaches in instruction tuning, deep
learning approaches have significantly transformed
NLP and many other areas of artificial intelligence.
Universities around the world have incorporated
deep learning approaches in their introductory NLP
courses, arguably with varying speed, and to dif-
ferent extents, as evidenced to an extent, in Ta-
ble 2). This puts under question the relevance of
classical approaches, i.e., those pre-dating deep
learning approaches, in NLP curricula. This re-
flection from academics/faculty members may also
be based on questions from students taking the
course who wonder why they should learn about

1The phrase ‘deep learning approaches’ is expected to refer
to the broad spectrum including but not limited to dense word
representations, Transformer and Transformer-based models
used in NLP.

classical approaches, as seen in pre-course feed-
back received by the authors of this paper.

Therefore, we analyse the role of classical ap-
proaches in the context of modern university-based
courses in NLP. We focus on introductory NLP
courses offered to students of computer science &
engineering or equivalent degrees, and investigate
the question:

“How can an introductory NLP course balance
between the content covering classical and deep
learning approaches?"

We address the question in two parts: (a) how
others do it, and (b) how we do it. With respect
to (a), we describe summaries of NLP textbooks
and publicly available courses in the context of
the question. As for (b), we draw insights from
our experience teaching NLP courses at two large,
research-intensive universities in Australia and In-
dia. We introduce and discuss our motivations,
considerations and decisions in the lectures, tuto-
rials and projects of NLP courses. Authors of this
paper represent two personas of NLP educators:
(a) an early-career educator who introduced a new
NLP course in the beginning of 2024; and (b) a
seasoned educator with two-decade experience of
teaching and research experience. The novelty of
this paper is as follows:

1. There have been papers in the past on specific
aspects (tutorials, lecture content, etc.) of indi-
vidual NLP courses (Plank, 2021; Foster and
Wagner, 2021; Gaddy et al., 2021). This paper
is novel in its comparison of two NLP courses
taught by educators with significantly differ-
ent experience in NLP research and pedagogy.

2. We also draw parallels to the age-long objects-
first or -later debate in computer science ed-
ucation, to highlight that the classical ap-
proaches in NLP courses can benefit from
lessons in computer science education.
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3. We hope that the paper serves as a useful re-
source for NLP educators to examine the role
of classical methods in their curricula now and
in the future.

The rest of the paper is described as follows.
We first introduce the context in terms of the two
courses being compared in Section 2. Following
that, we discuss an analogous objects first- and
objects-later- debate in computer science education
in Section 3. We describe how NLP textbooks
and NLP courses (as per publicly available course
outlines) cover classical approaches in Section 4.
We then proceed to compare the lecture plan, and
coding assessments involved in the two courses
in Sections 5 and 6 respectively. Section 7 puts
it all together to make our case for the relevance
of classical approaches in NLP courses. Finally,
Section 8 concludes the paper.

2 Context

The two NLP courses we compare are run at two
large universities in Australia and India, both titled
‘Natural Language Processing’. We refer to these
as NLP-UNSW and NLP-IITB2. NLP-UNSW is
the first offering of the course with 60 enrolled stu-
dents, while NLP-IITB is the ninteenth offering of
the course with 150 enrolled students. While NLP-
UNSW is the only NLP-focussed course at UNSW
at the time of writing this paper, NLP-IITB is ac-
companied with a ‘Deep learning for NLP’ course
which often follows NLP-IITB. Both courses were
offered as an undergraduate/postgraduate elective
as a part of the computer science and engineer-
ing programme, and were introductory courses
to NLP. The cohorts consisted of undergraduate
(nearly 50%) and postgraduate students. Postgrad-
uate students included those enrolled in Masters by
Coursework or Masters by Research programmes,
and early PhD students.

The course components of NLP-UNSW and
NLP-IITB, along with the course conveners’ rea-
sons behind covering classical approaches, are
shown in Figures 1 and 2 respectively. Gener-
ally speaking, an exposition to classical approaches
allowed the students to solve problems and under-
stand deep learning approaches vis-á-vis their pre-
decessors. NLP-UNSW insisted that the group
project compare deep learning methods with their

2UNSW: University of New South Wales, Sydney, Aus-
tralia; IITB: Indian Institute of Technology Bombay, Mumbai,
India.

Figure 1: Course Structure for NLP-UNSW.

Figure 2: Course Structure for NLP-IITB.

predecessors. NLP-IITB allowed the students to
choose an appropriate method. In contrast, the in-
dividual assignment in NLP-UNSW only involved
using black-box NLP libraries while NLP-IITB
used multiple assignments covering both statistical
as well as deep learning models.

3 Parallels to Computer Science
Education

As NLP educators grapple with Classical-first, -
later, or perhaps -interleaved approaches to curric-
ula, it is helpful to draw upon empirical research
and lessons learned by CS1 educators (introduc-
tory programming) who have grappled with a sim-
ilar dilemma: the age-long objects-first or -later
debate. For decades, introductory programming
students learned imperative-style programming in
languages such as C, Pascal, and Fortran. In the
early 2000s, educators started incorporated object-
oriented programming concepts into their curricu-
lum as object-oriented programming took hold in
industry (Cooper et al., 2003). Where the objects-
first community may begin immediately with con-
cepts of composition, inheritance, and abstraction,
the objects-later community instead focus on sim-
pler, foundational programs and concepts such as
sequence and control flow.

The primary criticism of objects-first approaches
surrounds the added complexity necessary to dis-
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cuss object-oriented concepts (Proulx et al., 2002).
Objects-first must tackle objects, classes, encap-
sulation, and access modifiers to discuss even the
most basic object-oriented concepts. Of course,
objects-first educators will retort that this extra ef-
fort is worth it, with students reporting a solid sense
of program design and contextualisation of object
oriented concepts (Cooper et al., 2003).

These criticisms of object-first approaches are
not unfounded. We can apply cognitive load theory,
the theory of human cognition and how learning
occurs, to inform instructional design in computing
and NLP. The theory, backed by many empirical
studies, finds that limited amounts of secondary
information (such as computing tasks) can be pro-
cessed at any given time (Sweller, 2011). Put sim-
ply, human cognitive architecture lends itself to
learning best when concepts are minimally intro-
duced. This reduces the cognitive overload that can
hinder the assimilation of new information.

Cognitive load theory has been applied in intro-
ductory programming contexts, finding that cog-
nitive load measures and tools can be applied to
computing education to inform curriculum and in-
structional design (Morrison et al., 2014).

While cognitive load theory may, at first glance,
support an objects-later approach due to the re-
duction of concepts required, approaches to reduce
cognitive load when delivering objects-first curricu-
lum may be preferable if it aligns with its goals.

Empirical studies of learning outcomes between
objects-first and -later seek to focus on measurable
evaluations of student learning outcomes. Ehlert
and Schulte (2009) found no differences in learning
gain between objects-first and objects-later courses;
however, they did find that students in objects-
later courses reported lower perceived difficulty
and higher comfort levels. (Tew et al., 2005) com-
pared objects-first/later at the same institution and
found that students performed comparatively by
the end of their second term. A more recent, large-
scale systematic literature review on Introductory
Programming seems to support this nuanced take
on programming paradigms (Luxton-Reilly et al.,
2018). The authors find that there is still active
research on programming paradigms, and surmise
with: “after full consideration of all the papers it
is by no means clear that any paradigm is supe-
rior to any other for the teaching of introductory
programming". We may glean from this compari-
son to CS1 education design that many dimensions

are involved in curriculum design. Empirical stud-
ies have found that the goals of the program and
the institution itself, perspectives of educators, and
quality of instruction and instructional materials are
more critical than an objects-first or -later design.

Unlike CS1 education, however, NLP may of-
ten be available as a single elective in a computer
science program. Therefore, NLP educators are
forced to balance providing practical, deep learning
skills to students while also providing solid foun-
dations in classical NLP in a shorter time-frame,
perhaps supporting an interleaved approach to NLP
curricula.

4 Observations from NLP textbooks and
courses

Table 1 presents a summary of some NLP text-
books, in terms of layouts and their deep learning
focus. The books were identified using a search on
the UNSW library. The focus was identified using
the content plan of the book, along with a surface
analysis of the chapters. We observe that nearly
all textbooks cover classical approaches, primarily
in terms of statistical models. We describe two
textbooks in particular. The textbook by Jurafsky-
Martin 3 divides its chapters into fundamental algo-
rithms and NLP applications. The first five chapters
introduce regular expressions, one-hot vectors and
statistical algorithms like support vector machines
and logistic regression. In the subsequent chapters,
the book covers word embeddings, then begins to
combine LSTM with CRFs in the context of POS
tagging. Following that, the book covers Trans-
former, fine-tuning and prompting/prompt learning
Transformer. Bhattacharyya and Joshi (2023) use a
different approach. They cover fundamental algo-
rithms for representation learning: computational
grammar, probabilistic language modeling, and
word2vec/LSTM-based representations. The book
visualizes NLP as three generations: rule-based,
statistical and neural. Following that, the book in-
troduces Transformer. The subsequent chapters
alternate between the approaches in the three gen-
erations.

Table 2 illustrates how some NLP courses cover
classical topics. We only use examples of courses
whose course outlines are publicly available on
the internet. Similarly, this is not a complete list
either. In universities where there is a deep learning-
focused course for NLP, topics such as syntactic

3https://web.stanford.edu/~jurafsky/slp3/
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Authors; Publisher Year Chapter Layout Deep learning focus

Speech and Language Pro-
cessing; Dan Jurafsky,
James H Martin; -

2024 Fundamental Algorithms (Statistical Mod-
els, Neural Models, RNNs, LSTMs.) fol-
lowed by NLP applications and linguistic
tasks.

Techniques first. classi-
cal: Yes.

A Course in Natural Lan-
guage Processing; Yannis
Haralambous; Springer

2024 Layers of NLP: Phoneme, Grapheme, Mor-
pheme. Last chapter: Going Neural.

Neural Models (RNNs,
Transformers)

Natural Language Pro-
cessing; Pushpak Bhat-
tacharyya, Aditya Joshi;
Wiley

2023 Fundamental techniques first. Then neural.
Significant focus on NLP problems.

Interleave classical and
neural both. Three gen-
erations.

Real-World Natural Lan-
guage Processing; Masato
Hagiwara; Manning

2022 Neural-focussed. Embeddings, Sentence-
Clasification, Seq2Seq, Transformer, etc.

Neural-focussed.

Deep Learning for Nat-
ural Language Process-
ing; Stephan Raaijmakers;
Manning Publications

2022 Text embeddings, sequential NLP, atten-
tion, multitask learning, last chapter: Trans-
formers and using Transformers. Lots of
code examples

Neural focussed.

Practical Natural Lan-
guage Processing;
Sowmya Vajjala, Bod-
hisattwa Majumder, Anuj
Gupta, Harshit Surana;
O’Reilly

2020 NLP Primers: Quick introduction to pri-
mary NLP concepts. Very task driven:
Classification, IE, Chatbots, Applications
to domains

Cover deep learning
Early. Focus on appli-
cations and tasks

Introduction to Natural
Language Processing; Ja-
cob Eisenstein; MIT Press

2019 Learning: Classification (Tasks and ap-
proaches); Sequences (Tasks and ap-
proaches); Semantics. Word embeddings,
parsing, reference resoluton

Pre-deep learning first.
Then neural.

Table 1: Deep learning focus in some NLP textbooks listed in the reverse-chronological order.
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parsing or statistical classification are covered in
substantial detail. Even for courses that cover little
classical content, n-gram language modeling is a
topic that is included. The table also shows ‘when
is Transformer taught’ which may be viewed as a
turning point when deep learning-based approaches
assume focus in the course. We view Transformer
as a transformative technology in NLP, and do not
claim that all of deep learning is Transformer.

5 Lecture Plan

NLP-UNSW: In the NLP-UNSW course which is
spread over 10 weeks, we adopt a hybrid methodol-
ogy where we interleave deep learning approaches
with statistical/rule-based approaches. The hybrid
methodology is illustrated in Figure 3. In the first
week, we introduce NLP via black-boxes such as
spacy, nltk, and HuggingFace pipelines. The stu-
dents are introduced to NLP tasks with demon-
strations of the three libraries. This is to help the
students develop an understanding of the task. Sim-
ilarly, if students aim to only ‘use’ NLP in their
projects (which may be sufficient for interdisci-
plinary projects), these libraries are sufficient. The
focus here is also to help them understand the input
and output of NLP systems, which we believe is
the starting point to understanding NLP.

In week 2, we cover representations of text via
one-hot vectors and probabilistic language model-
ing (statistical approach), and word representation
learning as in word2vec and GloVe (deep learning
approach). This not only allows students to appreci-
ate the value addition of deep learning approaches
but also identify situations in which non-deep learn-
ing approaches may be sufficient. In week 3, we
focus on Transformer architecture: exposing the
students to the architectural details, pseudocode,
and code implementations. This is followed by
Transformer-based models (encoder, decoder, and
encoder-decoder models) in week 4. With this
background in neural NLP models, we switch gears
and focus on one NLP task every week. Every
task is covered using the following steps: the lin-
guistic task and associated challenges, classical ap-
proaches, deep learning approaches, and recent ad-
vances in the area. The first two allow the students
to gain a foundational understanding of the prob-
lem, followed by the state-of-the-art in deep learn-
ing. The recent advances are catered to students
who might be interested in future research in NLP
without going into too much depth - to ensure that

the content is accessible. The NLP tasks we cover
are: sentiment analysis (representing sequence clas-
sification), named entity recognition (representing
token classification), machine translation (repre-
senting sequence-to-sequence tasks), summariza-
tion (modified sequence-to-sequence tasks) and
bias mitigation.

In NLP-UNSW, we experience a recurring
challenge when discussing NLP tasks every
week. Foundation models (both encoder-only and
decoder-only models) are versatile in their utility
for different tasks. Therefore, we structure each
neural section in three steps: (a) fine-tuning BERT,
(b) one or more advanced methods relevant for the
task. This serves two purposes. It allows us to
teach different fine-tuning techniques. In addition,
it also permits us to ground them in specific NLP
tasks. We remember to remind students that the
method is applicable in other NLP tasks.

NLP-IITB: NLP-IITB starts with a focus on
sequence labeling via HMM-based POS tagging,
followed by tree extraction via probabilistic pars-
ing. In both cases, the mathematical details (driven
by probability) go hand in hand with the algorithms
(explained through the code). Then, machine trans-
lation is introduced, which makes way for an intro-
duction to Transformer and large language models.
The subsequent weeks discuss sentiment analysis
as a specific NLP task and evaluation metrics in
NLP. It must be noted that NLP-IITB is the intro-
ductory NLP course while there is a deep learning-
specific NLP course at IITB which is often a follow-
up to the introductory NLP-IITB. This is not the
case for NLP-UNSW (being the only NLP-centric
course). As a result, the course needs to balance
between the two. This comparison shows how edu-
cators may make different choices, depending on
the length of the teaching period. As a result, the
lecture plan of NLP-IITB uses the spectrum shown
in Figure 4. classical approaches allow focusing on
the linguistic phenomenon which is captured using
a model. The data provides the parameters of the
model.

Comparison: In both NLP-UNSW and NLP-
IITB, however, we observe that the foundational
material serves as a good basis to introduce termi-
nology (for example, types of summarization are
abstractive and extractive summarization) and tag
sets (as in the case of named entity recognition).
The classical approaches build an intuitive under-
standing of building computational models for the
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University Year Examples of pre-deep-learning topics When is Transformer taught?

UMAss
Amherst4

2023 N-gram language modeling Week 2 of 11

CMU5 2024 Representing words Week 3 of 16
IIT Delhi6 2022 Finite state automata, statistical parsing End of month 2 out of 3.5
University of
Edinburgh7

2024 Lexical, syntactic and semantic parsing,
etc.

This only covers algorithmic fun-
damentals; separate course for
neural models

University of
Washington8

2024 N-gram language modeling Week 2 of 11

NYU 9 2023 Feature-based classification, N-gram
language modeling

Week 3 of 15

Table 2: Examples of the coverage of deep learning in NLP courses.

Figure 3: Lecture Plan for NLP-UNSW.

Figure 4: Lecture Plan for NLP-IITB.

specific NLP task. Appreciating the challenges in
the classical approaches leads the students to the
need for deep learning approaches. Through hand-
written examples in the lecture, we highlight the
relationships between the mathematics of classical
approaches and Transformer-based approaches (for
example, alignment model in statistical MT with
cross-attention in Transformer).

6 Coding Assessments

Both NLP-UNSW and NLP-IITB have individual
and group coding assessments. NLP-UNSW has
one of each, while NLP-IITB has two individual
and one group assessment(s).

6.1 Course Assignment

NLP-UNSW: The first coding assessment in NLP-
UNSW is an individual coding assignment com-
pleted by students by the end of week 3. The cod-
ing assessment is run in a competition-like envi-

ronment. The students are given a document defin-
ing the problem definition, and a template code
that also contains stubs for testing. The students
are required to add to the template. Closer to the
submission, the students are given test cases to
evaluate their code. The topic of the individual
assignment needed deliberation. Until that point,
we have only started discussing Transformer in
the lectures. Therefore, we utilize the individual
assignment to assess the classical skills of the stu-
dents. In the case of this offering, the task was to
extract skills from job ads, based on a skills ontol-
ogy. The assignment was designed in two parts:
the first part required the students to use the spacy
matcher, while the second part required them to use
embedding similarities. The former tests them for
their ability to use a classical library while the latter
requires them to use HuggingFace models. As a
result, the assessment covers the students’ ability
to ‘use’ NLP models. Marking the assignment in-
cludes an automatic marking component with test
cases and manual marking by the tutors. Being a
rule-based system, the evaluation of test cases is
found to return low precision. Therefore, rather
than scoring on individual test cases, we mark the
students on precision thresholds.

NLP-IITB: NLP-IITB follows a similar strategy
although there are multiple individual assignments.
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The course convener found it useful to give clas-
sical assignments on topics such as POS tagging,
parsing and so on. An innovative assignment was
also tried out, which met with good student feed-
back. Given a large dataset of names of cities,
the task was to identify a preferred suffix in the
name of a city. Students reported multiple deep
learning/non-deep learning approaches.

6.2 Course Project
Running in its first year, NLP-UNSW provides de-
tailed guidelines for the course project. In contrast,
NLP-IITB provides less guidelines but involves
periodic consultation with the course team.

NLP-UNSW: The group project is a centerpiece
of the NLP-UNSW course, allowing students to
explore diverse topics within NLP. Teams of four
to five students are encouraged to select a specific
area of interest, ranging from NLP topics of active
research such as prompt recovery in large language
models to purely applied topics like developing
a virtual learning assistant using Retrieval Aug-
mented Generation (Lewis et al., 2020). To guide
students effectively, we provide a detailed scope
guideline document. The document outlines the
following key aspects alongside their respective
credits (cr):

1. Problem definition: Must be an NLP problem
(5 cr) with a text-based source/domain (5 cr);

2. Dataset selection: Use an existing dataset (10
cr), create your own labelled dataset (20 cr) and
use an existing lexicon (10 cr);

3. Modelling: Implement a rule-based/statistical
baseline (50 cr), use an existing pre-trained
model (5 cr), fine-tune your own model (50 cr),
and integrate a language model with external
tools (20 cr);

4. Evaluation: Quantitative (10 cr), qualitative (5
cr), command-line testing (5 cr) and demonstra-
tion (10 cr).

Project teams are expected to cover a minimum
of 100 credits. The aspects show that, while deep
learning-based techniques, carry a significant focus,
students are encouraged to experiment with simpler
models.

Project evaluation. The submission evaluation
is structured around specific questions that capture
the essence of a well-rounded NLP project pipeline.

These include the evaluation of the project report –
for scope: architectural, methodological, and ana-
lytical details; group presentation – for quality: ar-
chitectural details, presentation format/style; code-
base – for code style: readability, scope, errors,
and structure, and individual effort of group mem-
bers. For the lattermost evaluation, each group is
to submit an individual contribution file enlisting
the technical contributions of each member.

Findings. The diversity of modeling algorithms
is particularly interesting across the submissions
(see Fig. 5). We note that classical techniques
such as such as lexicon-based systems, traditional
machine learning algorithms (e.g., SVM, Naive
Bayes), and feature engineering-based techniques
serve towards foundation building, interpretable
analyses, and resource efficiency all while allow-
ing the students to appreciate the advancements
brought about by deep learning in NLP by bench-
marking against them. Deep learning models (Fig.
5a), on the other hand, help achieve complex pat-
tern recognition, state-of-art performance, and end-
to-end learning while helping the students under-
stand the laws of scalability on large-scale datasets.

(a) Deep-learning (b) classical

Figure 5: Word clouds showing the key deep learning
and classical methods explored in the group projects.

NLP-IITB: In NLP-IITB, we list a few topics
for students to choose from, while being open to
new ideas. Providing topics helps to streamline
project ideas while giving student teams a headstart.
The projects are evaluated using a combination
of demonstration and presentation, including an
in-person discussion with the course team. The
focus is the selection of the ‘right’ algorithm. The
difference in the level of detail appears to reflect
the experience of the two academics running the
courses.

6.3 Tutorials
Tutorials are a weekly activity in NLP-UNSW
(while not a part of NLP-IITB). In a typical tuto-
rial, we first cover a focused review of the content
covered in the lectures. We initially provide a brief
overview of classical methods, as these approaches
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often greatly assist students in understanding the
task. Among the classical topics, students show
interest in learning about POS tagging and HMM-
related algorithms. In the tutorial, we emphasize
the mathematical derivation of HMM itself to im-
prove the student’s understanding. Subsequently,
we extend the discussion by integrating the latest
research related to the lecture topics. This part is fo-
cused on expanding on the lecture content to cover
recent, trending papers that are not included in the
syllabus. For instance, when discussing Parameter-
Efficient Fine-Tuning (PEFT), we incorporate a
paper-reading session of the paper by (He et al.,
2021), explaining its essence from a unified per-
spective and how it can be generally summarized.
This allows us to meet the expectations of students
who may be interested in advanced topics. Next,
we utilize code demonstrations to illustrate the con-
cepts presented in the lectures, facilitating a deeper
understanding for the students. Following this, we
explain and demonstrate the coursework require-
ments, such as homework assignments. Finally, we
conclude by addressing student questions, which
may pertain to projects or other assignments. Par-
ticularly in the tutorials, the students show less
interest in the classical sections, focusing more on
deep learning-based methods that are perceived as
more employable. Students who actively partic-
ipate and show interest in the derivation of vari-
ous model principles are often also interested in
research.

7 Making the Case for Classical
Approaches

Based on the considerations discussed so far, we
are now able to make several arguments that may
influence the inclusion of classical approaches in
NLP courses. Designing a curriculum based on
course expectations along these arguments may
help determine the ‘balance’ that is the focus of
this paper.

7.1 Intuition-building

The conveners of NLP-UNSW and NLP-IITB find
that rule-based and statistical approaches are great
for intuition building and also appreciate that NLP
is challenging. Classroom exercises where students
describe rules for a particular NLP task enable them
to see why a good rule-based system would be la-
borious due to the well-known high-precision-low-
recall setup. Statistical approaches help to highlight

Figure 6: Intuition-building using classical approaches.

the importance of probability in NLP. Probability is
the cornerstone of NLP models, including modern
models. Softmax being the center of Transformer-
based models is an example of that. Starting with
Bayes theorem, a teacher can effectively tease out
dependencies between different variables, serving
to be a great explanation to lead to attention and
related concepts, especially during lectures.

A pre-course survey done in NLP-IITB revealed
that, out of 150 students, 80% preferred that the
course build intuition as opposed to providing in-
formation. Information refers to providing a suite
of approaches and methods, while intuition refers
to the motivation (linguistic or mathematical, etc.)
underlying the methods. In fact, both courses com-
bine the pillars illustrated in 6. Linguistics mo-
tivates the problem, probability and code run as
common threads allowing a comparison between
the two kinds of approaches. This motivation is
highlighted by the instructor of NLP-IITB, by lever-
aging examples from his rich research experience.
In contrast, the instructor of NLP-UNSW prefers
to give examples from industry applications, given
their professional experience in the tech industry.

7.2 Student Motivation

Several blog articles on NLP are available on-
line. A clear differentiator in a university-based
course is inspiring students using blended learn-
ing (Deng and Yuen, 2010). Towards this, classi-
cal approaches are effective in inspiring students
to take up NLP projects. The conveners of NLP-
UNSW and NLP-IITB observe that the challenges
of rule-based systems are clear with some ex-
amples, during lectures. Covering classical ap-
proaches serves as a good motivator for students to
see why deep learning approaches have been revo-
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lutionary to the field. This feeling of inspiration is
often reported in NLP-IITB.

7.3 Popular classical approaches

Classical approaches have done well for linguistic
tasks, particularly at the lower levels of the NLP
hierarchy. Approaches like HMM and CRF work
well for POS tagging and other token classification
tasks. We observe that past courses also tend to
cover classical methods as an introduction to deep
learning methods. Comparison of popular classi-
cal approaches with deep learning approaches can
aid learning during projects and assignments, as
described in Section 6.

7.4 Annotation

Classical techniques, particularly in terms of anno-
tation, are the benchmark for modern NLP models
since tag sets used in classical approaches are still
useful for their linguistic rigour. An example is the
POS tagset. Nuances in Penn TreeBank about tags
for “JJ" versus “JJR" (adjectives and comparative
adjectives) help the students understand why they
were designed in a certain way. The pre-course
survey in NLP-IITB revealed that 67% students
preferred fundamental approaches versus state-of-
the-art. The course covered a combination of the
two.

7.5 Cognitive load theory

Classical techniques often involve explicit, well-
defined rules and simpler models that can be more
transparent and interpretable than their neural coun-
terparts. This clarity can reduce extraneous cog-
nitive load for learners by providing simpler ex-
amples of how inputs are transformed into outputs.
For instance, a decision tree for language process-
ing allows learners to see the exact paths through
which decisions are made, thus aligning with the
segmenting principle of cognitive load theory.

8 Conclusion

Classical approaches for NLP refer to those prior to
the predominant use of neural networks and deep
learning. This paper investigated the role of clas-
sical approaches in an introductory NLP course,
by comparing perspectives from two courses: one
which was offered for the first time and another
which has been running for nineteen years while
being continually revised. We discussed key con-
siderations and reasons why classical approaches

may be helpful, in terms of the past textbooks, lec-
tures, and assessments. An understanding of clas-
sical NLP not only builds a strong foundation for
the students but also enables them to look back at
some of these methods to develop new techniques.
We hope that the analyses presented in the paper
will allow NLP educators and students alike to find
the right balance between the classical and deep
learning approaches.

Limitations

The books and courses described in the paper are
a subset curated only as an example. It does not
represent a complete list. Similarly, the sections de-
rive from insights teaching the two courses covered
in the paper, and are not necessarily prescriptive.

Ethical Considerations

The paper describes summary statistics of student
surveys without identifying individual students or
student cohorts. The assessment section provides
only a high-level view of the assignments and lec-
tures, and may not result in implications to aca-
demic integrity in the future versions of the courses.
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Abstract
Traditional lectures have poorer outcomes com-
pared to active learning methodologies, yet
many natural language processing classes in
higher education still follow this outdated
methodology. In this paper, we present, co-
creational teaching, a methodology that encour-
ages partnership between staff and lecturers
and show how this can be applied to teach nat-
ural language processing. As a fast-moving
and dynamic area of study with high interest
from students, natural language processing is
an ideal subject for innovative teaching method-
ologies to improve student outcomes. We detail
our experience with teaching natural language
processing through partnership with students
and provide detailed descriptions of methodolo-
gies that can be used by others in their teaching,
including considerations of diverse student pop-
ulations.

1 Introduction

Co-creational teaching is a methodology that in-
volves an active collaboration between students and
teachers in the learning process. Natural Language
Processing (NLP) is a fast-moving area and it is
my experience that students are increasingly de-
manding that the latest cutting-edge technologies
are taught in the classroom. This presents a funda-
mental challenge to the teaching of NLP in that the
teacher must deliver content that satisfies students’
demands while providing them with skills that will
remain useful throughout their careers. This can
also help to support students’ interest and the need
to balance between cutting-edge neural NLP tech-
niques and traditional statistical techniques. In this
paper, we discuss the use of co-creational methods
to enable students to explore the subject of natural
language processing alongside the teacher, acting
as subject matter expert, in a manner that co-creates
the learning material.

Such a style of teaching provides several key ben-
efits by encouraging students to engage in hands-

on examples of dealing with NLP challenges. It
brings diverse perspectives into the classroom, rep-
resenting the diversity of backgrounds and also
reflecting the interdisciplinary nature of natural lan-
guage processing. Co-creational teaching is a form
of active learning (Felder and Brent, 2009) that
has been shown to improve the retention of knowl-
edge and deepen the comprehension in the subject
area. This is achieved through activities where the
teacher and student work together in group dis-
cussions, peer teaching and project-based learning
activities. In a co-creational teaching environment,
students provide feedback to each other and to the
instructor throughout the learning process, which
further leads to more effective learning outcomes.
As NLP is a rapidly evolving field with new tech-
niques emerging rapidly, this teaching methodol-
ogy encourages experimentation and the sharing
of findings with peers and teachers. In this way,
such a teaching methodology builds a community
within the classroom where everyone feels valued
and encouraged to participate actively.

In this paper, we will discuss co-creational meth-
ods and how they can be applied to teaching natural
language processing in higher education. These
methods will act as an illustrative guide for other
teachers applying these methodologies. We will
also consider the challenge of evaluating students
in such a co-creational environment, which has be-
come a major issue in higher education due to the
increasing adoption of generative AI technologies
by students. We will demonstrate how these were
applied in teaching a class of about fifty MSc stu-
dents in a University of Galway course. Finally,
we will reflect and discuss on the promise of co-
creational teaching and how this can be applied
across other settings in higher education.

2 Methods

Student participation in teaching has been de-
scribed as a ladder (Martens et al., 2019) from
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Figure 1: Ladder of student participation as model from Martens et al. (2019) and Bovill and Bulley (2011)

a fully dictated curriculum up to the level of stu-
dents being fully in control as described in Figure 1.
The ladder proposes a number of levels of student
engagement:

Dictated Curriculum This is a traditional model
of lecturing where the teacher dictates all con-
tent in the course

Tutor in control Students may be involved in a
limited way, for example through quizzes or
discussion groups, but the teacher retains full
control over the content of the course

Limited Prescribed Choice In this case, the stu-
dents can make some choices over the content
of the course, however these are from a lim-
ited set of options provided by the teachers

Wide Prescribed Choice Similar to the above
case, however in this model the teacher pro-
vides a wide range of options for the students
to choose from.

Prescribed Student Choice Here the students are
free to choose their own content, however,
the teacher still has editorial control over the
content.

Limited Free Student Choice Some areas of the
content of a course are created without the

teacher’s control, while other areas are still at
lower levels of this ladder

Partnership In this case, all areas of the course
are created by discussion and negotiation be-
tween the teachers and the students

Student Control The teacher has no control over
the curriculum and all areas are selected by
the students

These levels describe a transition from a tradi-
tional lecture model of teaching towards full stu-
dent control. As more control is given to the stu-
dents, this will encourage more active participation
and thus more engagement and better learning out-
comes (Martens et al., 2019). However, as the
teacher’s control is reduced it becomes harder to
ensure that the curriculum is appropriate and topi-
cal and can be assessed effectively in the context
of a university degree. We will now look at the
methodologies that can be applied to teaching nat-
ural language processing and specific constraints
or opportunities with this subject matter.

2.1 Co-design of Curriculum

Natural language processing is a rapidly chang-
ing area and the transition of knowledge from ini-
tial research proposals to teachable material in the
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classroom is very short. Further, due to the wide
coverage in the media and societal impacts of natu-
ral language processing research, I have observed
that students are often highly knowledgeable about
the subject area. As an example of this, a term
like ‘language models’ has moved in the last few
years from a term that was not familiar to many
NLP researchers into a term that is now widely
discussed in the media1. Due to the popularity and
rapid speed of change of the subject area, natural
language processing is an area that can benefit from
the co-creational design of curricula.

There are a number of ways that students can
be involved in the creation of a curriculum. In-
volving students from the initial stages is vital and
this could be done by creating a pre-course sur-
vey that students could complete ahead of start-
ing the course and could be administered through
a learning management system. The first lecture
within a course should be used to discuss the top-
ics that could be chosen for the course and brain-
storm and design the course syllabus. This provides
students with opportunities to suggest topics, re-
sources, projects, and assignments that align with
their interests and career goals. Such a process can
often be dominated by the most enthusiastic and
motivated students in the class and thus in order
to represent the class and to provide support for
non-neurotypical students, asynchronous methods
of feedback can also be implemented. One way of
doing this is to create a poll that allows students to
vote on the topics that will be covered as part of
the course. This poll can be structured by the lec-
turer such that fundamental introductory material
is covered earlier in the course.

Once, the curriculum of the course has been de-
cided it is vital that this does not become fixed,
as the students will learn more about natural lan-
guage processing during the course and so their
preferences will update with their learning. The
teacher should create mechanisms for ongoing feed-
back throughout the course, such as anonymous sur-
veys after each module or regular class discussions
where students can voice their opinions and sugges-
tions for improvement. Finally, this process should
be repeated for every instance of the course in or-
der to remain flexible and open to incorporating

1According to OpenAlex, 8.5% of papers that mentioned
‘natural language processing’ also mentioned ‘language mod-
els’ in 2003, by 2023 this had increased to 28.7%. Google
n-gram reports a decline in the usage of the term ‘language
model’ during the period 2005-2014

changes based on student feedback and evolving
trends in the field of NLP. This can result in a cur-
riculum that is dynamic and responsive to the needs
of students and the rapidly changing landscape of
NLP technology.

A key method for achieving this is backwards
design (Wiggins and McTighe, 2005), where the
students and teacher work together to identify de-
sired learning outcomes and thus ensure that the
educational goals align with the needs and inter-
ests of the learners. Throughout the course, it is
important to continuously gather feedback from
students by encouraging open communication and
being flexible.

2.2 Peer Teaching

In order to achieve co-creational teaching, the
teaching should move from a model where the
lecturer leads all the content. In this way, the
teaching methodology is similar to flipped class-
room (Bergmann and Sams, 2012) approaches.
Teaching through a flipped classroom generally
leads students to score higher on both general and
critical thinking exams (Talley and Scherer, 2013;
Missildine et al., 2013; Mortensen and Nichol-
son, 2015). The standard way of delivering a
flipped classroom teaching is through videos that
the students watch in advance of the class, how-
ever, videos are not the only way to achieve this
outcome (Uskoković, 2018). For a topic such as
natural language processing, there is already a
large amount of material available on sites such as
YouTube and in many cases, this is of higher qual-
ity and more instructive than material that could be
developed by a single lecturer. Thus, it is a great
idea to incorporate this material in combination
with material developed by the lecturer. Although,
it is important to note that videos on YouTube of-
ten vary substantially in terms of the length and the
assumed background knowledge of the viewers.

Further to enable a truly co-creational approach
to teaching, the content to be taught should be de-
veloped in collaboration and ideally even by the stu-
dents. In this way, the students achieve ownership
over the material and gain a deeper understanding
of the material. This jigsaw technique (Aronson
et al., 1978) divides the content into smaller parts
with each part assigned to a different group of stu-
dents. In this way, each group becomes an expert
on a part of the topic and can teach this to the
overall group.
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A particular challenge with this kind of teaching
is that students can be unwilling to engage with this
kind of teaching. As such, it is often the case that
students are more keen to contribute in a textual
form rather than in front of the class (Uskoković,
2018). Thus, the topic can be presented by each
student developing a slide summarising the main
ideas of the topic and in this way providing an
opportunity for students to take ownership of their
learning.

2.3 Group Work

Group work is one of the most important methods
for enabling co-creational learning as groups by
their nature involve students teaching each other
and developing educational material. However,
simply assigning students to groups and assigning
a traditional project to them does not necessarily
engender positive co-creational teaching outcomes.
Instead, the teacher must develop a culture that en-
courages this form of co-creational teaching. One
way to achieve this is through controversy theory
which “posits that when students are confronted
with opposing points of view, ... [it] results in more
refined and thoughtful conclusions” (Johnson et al.,
1998). In the case of cutting-edge fields such as nat-
ural language processing, there is plenty of room
to discuss opposing approaches to tasks and the
merits of different methods (e.g., LSTMs vs trans-
formers). Other ways in which the group work can
be structured for better outcomes include providing
a joint reward for the group alongside an individual
score and defining complementary roles within the
group so that each student is clear about what they
will achieve in the group. In this way, the prob-
lem of social loafing (Karau and Williams, 1993)
(where one or more students in the group make lit-
tle contribution) can be minimised as each student
is responsible for a part of the project and thus the
overall success of the project. Another idea can
be to make sure that each student has to explain
what they have worked on and learned to the other
students and require this in the assessment of the
group project.

While the students can be largely autonomous in
the design and implementation of the group work,
the role of the teacher is vital in setting the scope
and in ensuring the effectiveness of such a project.
For group work, Nokes-Malach et al. (2015) pro-
pose a theory of the Zone of Proximal Facilitation
(ZPF), which hypothesises that collaborative suc-

cess depends on the relation between the task’s
complexity and competence of the group and in-
dividuals. That is, if the task is so simple, that
an individual in the group could do it by them-
selves, then group learning is unlikely to be effec-
tive. Conversely, if the task has too much cogni-
tive load (Kirschner, 2002) for the whole group
then the task will fail. As such, it is important
that the teacher can orchestrate the task and in-
tervene appropriately. This can be achieved by
a specific orchestration tool, such as the one de-
veloped by Lawrence and Mercier (2019), which
would allow the teacher to examine the progress
of each group. However, for more open-ended
co-creational projects a simpler method such as a
weekly journal entry would be of value. Further,
it is important that when the teacher intervenes in
the work of the group this provides concrete help
to the group and is not simply an interruption of
the group’s work. As such, teachers must carefully
review the orchestration and or journal to identify
problems in the group work.

Working in groups is one of the most effective
ways to promote active learning and it has been
shown that cooperative learning promotes higher
individual learning outcomes (Johnson et al., 1998).
In particular, solving problems collaboratively in-
creases engagement in STEM subjects (Freeman
et al., 2014)2.

2.4 Disadvantages

While there are many advantages to this approach,
there are some drawbacks to this approach. Firstly,
these methods require a more spontaneous and dy-
namic approach to scheduling than would be re-
quired in a traditional course. This can clash with
timetabling constraints at the institution and also
make advanced planning more difficult, for exam-
ple, with respect to exam questions. This may
pose challenges for students, especially those from
non-neurotypical backgrounds, who are more com-
fortable with planned lecture content. Secondly,
the role of the lecturer is redefined in a way that
changes the lecturer’s role. On the one hand, there
is less need to prepare formal content, however,
on the other hand, content must be prepared anew
for each year that this course runs. As such, this
kind of teaching may require more work from the

2As natural language processing is a subject requiring
mathematics and programming, its teaching is more influ-
enced by STEM, although we note that it is often delivered in
linguistics departments at some universities
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lecturer and certainly requires flexibility in terms
of adapting to a new topic. Finally, while these
methodologies should lead to more engagement
from students, many students will not be engaged
and responsive and as such there is a risk that these
methods may produce poorer outcomes for less
engaged students.

3 Assessment

One specific challenge with co-creational teaching
is the assessment of the student work especially
when the educational institute will require individ-
ual assessment of learners. When much of the work
is done in groups, it can be difficult to assess the
individual contributions. However, there are also
opportunities for peer assessment in such environ-
ments to provide feedback beyond what would be
possible by the teaching team of a lecture course.

3.1 Individual Assessment

Individual assessment of students is a particular
challenge and the rise of generative AI has led to a
crisis of academic integrity (Eke, 2023), that is still
going on. The nature of teaching natural language
processing requires that students interact with large
language models and generative AI, as this is at
the core of the subject. However, the temptation
among students to use such methods for any con-
tinuous assessment is great and methods to reliably
detect the use of such tools do not exist and may
never exist (Dalalah and Dalalah, 2023). As such,
many educational institutes are increasing the use
of in-person exams to ensure academic integrity is
maintained. However, these methods as well as be-
ing stressful for students, fail to produce objective
assessments (Curzon, 2003) or provide feedback
for students. Instead, co-creational methods would
involve the students in the design of assessment ma-
terials and in the setting of goals that demonstrate
learning. As such, continuous assessment should
remain an important part of teaching and it is im-
portant that we find ways to continue this in the era
of generative AI, including by allowing students to
use these systems. For example, by structuring the
assessment around the activities in the classroom,
rather than essays or survey articles written sepa-
rately, students must connect the assessment with
their learning.

Some specific challenges that may be encoun-
tered are the requirements from professional bodies
that certify courses, which may put certain restric-

tions on the way a course can be evaluated and
these can make it hard to apply co-creational teach-
ing methodologies. Further, the exam timetable of
the institute may require that an exam is submitted
before the curriculum has been fully developed in
collaboration with the students, and this may also
complicate the development of assessment material
for the course.

3.2 Peer Assessment

An alternative to traditional, individual assessment
that should be applied, as much as possible, to
teaching is peer assessment. This model provides
for a highly interactive method of assessment (Kol-
lar and Fischer, 2010), that provides feedback and
increases engagement with the material. It is im-
portant that the teacher scaffolds this correctly so
that students gain valuable opportunities to learn
from and support each other. Clear assessment
that aligns with the learning objectives and expec-
tations of the assignment or activity should be de-
fined and, where possible, students should be given
guidance on how to give constructive feedback to
minimize bias and promote fairness. These guide-
lines should emphasize the importance of provid-
ing both strengths and areas for improvement, and
encourage students to offer suggestions for how
their peers can enhance their work. This can even
be incorporated into the grading process such that
students receive marks not only based on the feed-
back from their peers but also on the feedback they
provide. The teachers’ role is also important and
they must follow up with students after the peer
assessment process to discuss the feedback they re-
ceived, address any questions or concerns they may
have, and provide additional support or guidance
as needed.

4 Experience

We applied these methods of co-creational teaching
to a lecture course on ‘Advanced Topics in Natu-
ral Language Processing’ (CT5121) taught at the
University of Galway in the second semester of the
academic year 2023/24. Students had already taken
a one-semester introductory course on natural lan-
guage processing and so had a broad familiarity
with the area and this helped in terms of choosing
topics for the course. The course was taken by 47
students in MSc programmes on Artificial Intelli-
gence, Data Analytics and Cybersecurity over the
course of 12 weeks. These students were mainly
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1. Machine Learning for NLP

2. Recurrent Neural Networks

3. Transformers

4. Zero-shot/few-shot Learning

5. Multimodal NLP

6. Named Entity Recognition

7. Question Answering

8. Recommender Systems

9. Machine Translation

10. Evaluation of Machine Translation

Figure 2: The syllabus developed in co-creation with
students in the CT5121 course

graduates of computer science and other STEM
programmes and were predominantly international
students. The course was delivered through flipped
classroom lectures, where the lecturer and the stu-
dents worked together to define topics, and through
open-ended group projects.

The syllabus was defined through discussions
with the class. The lecturer suggested an initial list
of topics that were then discussed in the class and
updated based on student feedback. The lecturer
organised these into three classes of theories (e.g.,
‘Recurrent Neural Networks’), methodologies (e.g.,
‘Named Entity Recognition’) and applications (e.g.,
‘Question Answering’) and the polls initially con-
tained only theoretical topics and the later polls in-
troduced more methodology and application topics
and removed theoretical topics (based on receiving
fewer votes in the earlier polls). The topics for each
week were presented to the class and discussed and
this in a few instances led to updates in the top-
ics from the selection chosen by the lecturer. No
specific material was provided to help choose the
topics, but the lecturer guided the class discussion
of the topics to encourage new suggestions. The
class suggested a number of topics and these were
then put to the class through an open vote on the
learning management system Blackboard. The fi-
nal resulting syllabus is shown in Figure 2, and this
process was repeated for the first five weeks of the
semester3, and the final five topics were fixed by

3Due to public holidays in Ireland, two lectures were can-

a single poll. This was due to constraints on the
assessment of the material by means of a written
exam. Each lecture was prepared by the teacher
finding appropriate video material on YouTube, as
well as writing some outline notes on GitHub 4.
The students were instructed to review these mate-
rials before the lecture and the classes were then
structured around open discussion and interactive
exercises on the topics. For example, in one lecture
the students were divided into four groups and com-
peted to implement various few-shot and zero-shot
methodologies on a single dataset.

The other main component of the course was an
open project, that the students completed in groups
of their own choosing, with groups ranging in size
from one to five participants. The students dis-
cussed these projects with the teaching team and
this feedback was taken by the teaching team and
used to adjust the content continuously throughout
the semester. An end-of-module survey was de-
ployed through the learning management system,
however, participation was poor and this did not
provide any useful information on the success of
the teaching methodology. The students were en-
couraged to find their own topics and to structure
their own learning. The project work was assessed
by two written essays and a final presentation. The
two written assignments were approximately 1,000-
1,200 words and they were marked by the primary
lecturer, with feedback given to the students. A
flexible policy was applied to the submission dead-
line for these assignments and the majority of the
class submitted these assignments later than would
be planned in order to provide constructive feed-
back. The presentation was made to the lecturer
and two teaching assistants and consisted of a 10-
minute presentation or demo, as the groups saw
fit, the mark was agreed between the lecturer and
teaching assistants. Groups were encouraged to dis-
cuss among themselves and with other groups and
provide feedback. Finally, the course had a final
written exam, due to institutional requirements.

4.1 Lessons learned

Overall, the course received strong positive feed-
back in terms of student engagement and the overall
outcomes of the students were strong in the writ-
ten exam, showing that they had benefited from
choosing their own teaching and the active learn-

celled during the semester
4https://github.com/jmccrae/2024-CT5121
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ing provided through the course. Still, there were
some issues, especially related to the engagement
of students with the material that will be improved
in future iterations of the course. Firstly, from the
lecture sessions, it was clear that the video mate-
rial was not generally being watched by students
ahead of the lectures. This may in part be due to the
content being available on another platform than
our learning management system and the variabil-
ity in the length of the material selected. Further,
feedback throughout the course was not taken ad-
vantage of by many students, who only engaged
with the project near deadlines. This was particu-
larly notable in the peer group assessment which
was very infrequently used. In future instances
of this course, a weekly journal and formal marks
being assigned by peer assessment will encourage
more engagement. Finally, several students chose
to work in groups of one (e.g., alone), and these
students were much less engaged with the teaching,
so in future groups of two will be the minimum
group size. In summary, this experience focused
on the techniques of co-designing the curriculum
and the use of group work and did not apply some
of the peer teaching techniques discussed above,
but this will be a goal for future instances of this
course. Student choice, in this case, was limited
but free in the topics, however, students in most
cases accepted the lecturer’s suggestions regard-
ing topics leading to a curriculum that was more
prescribed, yet still quite different than the curricu-
lum that would have been chosen by the lecturer.
The next instance of the course will focus on im-
proving peer instruction and applying some of the
techniques discussed in this paper.

5 Discussion

It has been widely concluded that the traditional
lecture is the least effective way to communicate
with learners (Laurillard, 2013; Bligh, 1985). For
this reason, there has been an increasing focus on
active learning approaches which can processes and
outcomes in higher education (Kuh, 2008). Further,
it has been noted that students learn best when they
become their own teachers (Hattie, 2008) and this is
one of the key objectives of co-creational teaching
and learning.

A number of methods have been proposed to
encourage student participation in teaching. Firstly,
design-based research is a methodology that in-
volves iterative cycles of design and implementa-

tion emphasizing co-design and co-implementation
with stakeholders. This represents the lower rungs
of the co-creation ladder as depicted in Figure 1.
Participatory design (Scheer et al., 2012) involves
students to a higher degree, where they play a cen-
tral role in defining the curriculum. Co-creation
involves educators and learners working as equal
partners in the education process to create learning
experiences that meet the needs of all participants.
All three terms have been used for active collabo-
rative learning practices but differ in the focus and
degree of participation of the students in their learn-
ing. In fact, methods that focus on participation are
not novel and can be seen in the dialogic methods
of Aristotle or the progressive education movement
of the late 19th and early 20th century (Dewey,
1916)

One of the key goals of co-creational learning is
to generate critical thinkers (Freire, 2000) who take
responsibility for their own learning (hooks, 2014).
As such co-creational teaching empowers students
to collaborate with their teachers. However, co-
creation is an open-ended model requiring teachers
to give up “complete creative control” (Uskoković,
2018). This can be challenging and can be seen as
almost ‘counter-cultural’ (Cook-Sather et al., 2014)
in modern higher education environments. The
goal of teaching in this manner is to promote equal-
ity and partnership between lecturers and students.
In this way, it is important to see the teachers as
learners as well, and in fact, the syllabus selected by
the students in the course described above went be-
yond the lecturer’s (and lead author of this article’s)
expertise in several areas of natural language pro-
cessing. As such co-creational teaching reframes
education where very often the students are seen
as problems to solved (Sambell et al., 2012), into
a space where equality is natural. However, it is
important to understand that student participation
does not replace teachers’ expertise (Breen and Lit-
tlejohn, 2000), and there is naturally an imbalance
of knowledge between the lecturer, who is often a
subject matter expert, and the students who have
limited knowledge of the subject area. As such, the
teacher should retain executive control and work
with the students to direct them into areas that are
interesting and valuable to study. Finally, it is im-
portant to note that co-creational methods can often
threaten students as well (Bovill et al., 2011), as
it breaks from the usual passive consumption of
material that they have experienced in their studies
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so far. As such, this can lead to poorer engagement
for some students who see active and collaborative
methods as merely extra effort. It is important to
make the benefits of such teaching methods clear
to students and not to compel any students to take
part in these methods. Further, many aspects of
co-creational teaching can be conducted in liminal
spaces that do not affect the main delivery of teach-
ing but support the teaching. The results of this can
lead to student testimonies such as “I am finding
myself being more understanding of my profes-
sor’s struggles” (Bovill et al., 2011), illustrating
the value of this approach.

In the particular context of natural language pro-
cessing, the role of co-creation is important as this
is a subject for which there is wide interest and thus
a wide amount of educational information available
on the web. As such, to connect with the ‘YouTube
Google-eyed generation’ (Ashraf, 2009), it is im-
portant to situate the teaching within this context
and thus to help students find their ways to valu-
able material. We find that students will consult
YouTube anyway and this can lead to conflicts with
attempts to impose a top-down curriculum. Further,
providing students with suitable recorded material
as well as summary notes can help substantially
with their learning of the topic.

Finally, students with Autistic Spectrum Disor-
ders (ASD) and other neurodivergent traits are par-
ticularly attracted to STEM subjects (Wei et al.,
2013) and can be expected to be seen in higher pro-
portions in classrooms teaching natural language
processing. Many of the characteristics of people
with ASD can be in conflict with the collabora-
tive and participatory methods proposed in this
paper. In particular, many students with ASD have
issues with personal interaction and do not like
learning through videos and social situations. As
such, it is also important to allow these students
to interact through text reports or prepared mate-
rial where possible. Further, clear guidance and
instruction (Stuurman et al., 2019) are vital to en-
sure that all members of a class understand the task
as some students do not learn well by examples. In
group work, which is a key method of co-creational
teaching, students with ASD can perform well by
focusing on specific tasks (Wareham and Sonne,
2008), especially those that focus on details such
as testing. Conversely, the co-creational method
can act as a key method for involving students with
ASD in the classroom, by allowing them input over

the structure of the programme, including not just
only the curriculum but also the teaching methods,
and by assisting in the development of collabora-
tion guidelines that can outline how all students
interact in the course of their study of natural lan-
guage processing.

6 Conclusion

This paper has presented the co-creational method-
ology for teaching and focused on how it can be
applied to the teaching of natural language process-
ing in a higher education setting. We defined three
key pillars of teaching: curriculum co-design, peer
teaching and group work and showed how partner-
ship with students can be achieved through these
methods. We also considered how student perfor-
mance can be evaluated using such approaches,
especially in the current academic integrity crisis.
This approach was tested in an MSc course and the
results showed good engagement, with several key
areas that can be improved. We also considered
how these approaches can be adapted to students
in particular those with neurodiversity.

Limitations

This work focuses on a teaching methodology and
is primarily a theoretical work. This work has only
been evaluated in a single setting and further appli-
cation of this methodology and quantitative analy-
sis would support this work.
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Abstract

In this work, we present a collaboratively and
continuously developed open-source educa-
tional resource (OSER) for teaching natural lan-
guage processing at two different universities.
We shed light on the principles we followed for
the initial design of the course and the ratio-
nale for ongoing developments, followed by a
reflection on the inter-university collaboration
for designing and maintaining teaching mate-
rial. When reflecting on the latter, we explicitly
emphasize the considerations that need to be
made when facing heterogeneous groups and
when having to accommodate multiple exam-
ination regulations within one single course
framework. Relying on the fundamental princi-
ples of OSER developments as defined by Both-
mann et al. (2023) proved to be an important
guideline during this process. The final part
pertains to open-sourcing our teaching material,
coping with the increasing speed of develop-
ments in the field, and integrating the course
digitally, also addressing conflicting priorities
and challenges we are currently facing.

1 Introduction

The rapid acceleration of developments in natu-
ral language processing (NLP) research, starting
with the introduction of the Transformer (Vaswani
et al., 2017) in 2017, also poses a challenge to de-
signing appropriate curricula for formal education
in this area. Numerous longstanding paradigms
have been replaced by new technologies enabled
by a new class of (autoregressive) large language
models (LLM; OpenAI, 2022, 2023; Anil et al.,
2023; Touvron et al., 2023; AI@Meta, 2024) along-
side massively increased computational capacities.
The curriculum of deep learning (DL) courses for
NLP before 2017 mostly consisted of teaching

different types of word embedding models (e.g.
Mikolov et al., 2013; Pennington et al., 2014; Bo-
janowski et al., 2017) as building blocks within
specialized neural network architectures. This of-
ten pertained to employing and tuning recurrent
neural networks (RNN) for solving various kinds
of token- or sequence-level tasks. With the ad-
vent of transformer-based transfer learning models
(Radford et al., 2018; Devlin et al., 2019; Raffel
et al., 2020) developments sped up, the field has be-
come a lot more diverse,1 and hence course curric-
ula require significant updates/enhancements more
and more frequently. We believe that collaboration
across and within universities (across different fac-
ulties and departments) can be one way to combat
the resulting challenges. Furthermore, bringing to-
gether researchers with multifaceted backgrounds
and different levels of seniority for co-creating
lecture material can help create a more inclusive
course suitable for a broad audience of undergradu-
ate and graduate-level students from various fields.

2 Related work

Open Educational Resources. The number of
Massive Open Online Courses has been rapidly
increasing over the past decade, be it in machine
learning (ML; Ng, 2021; Google, 2023) in general
or in NLP specifically. Probably one of the most no-
table applied NLP courses is courtesy of Hugging
Face (Hugging Face, 2022). It provides a hands-
on introduction to the state-of-the-art (SOTA) soft-
ware package for NLP, but in doing so it does
not discuss the theoretical foundations in much
detail. Other popular and very well-taught courses,

1This refers to both the kind of problem statements tackled
with NLP technology and the academic audience of students
and researchers interested in taking NLP-related courses.
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like e.g. the Stanford CS224N lecture (Stanford
NLP Group, 2024) or the deeplearning.ai NLP
course (DeepLearning.AI, 2023) provide great the-
oretical (and applied) introductions to NLP, but
are not truly open source: Neither do any of these
courses provide open and modifiable sources of
their lectures, nor do they explicitly specify the
license(s) under which their material is released.
The latter even requires registering at a platform
and only provides the material as videos, not even
releasing versions of their lecture material as PDFs.
So while these courses can be considered open,
they are unfortunately not fully open-source (Both-
mann et al., 2023).

Open Source Educational Resources. Accord-
ing to Bothmann et al. (2023), open source educa-
tional resources (OSER) are characterized by a set
of core principles (which also served as guidelines
for the development of our course) motivated by
best practices from open source software develop-
ment. This is very well reflected in the following
principles:

• Develop course material collaboratively.

• Make your sources open and modifiable and
use open licenses.

• Release well-defined versions and maintain
change logs.

Other principles Bothmann et al. (2023) define
in their work are more focussed on pedagogical
aspects and on the goal of enabling as many people
as possible to learn from the developed material in
their own way and at their own speed:

• Modularization: Structure the material in
small chunks and disentangle theory and im-
plementation

• Define prerequisites and learning goals

• Foster self-regulated learning and enable feed-
back from everyone

A notable NLP OSER is the course created for
the software library spaCy (Montani, 2019), where
developers comply with most of the OSER prin-
ciples. A drawback of this course, however, is its
high entanglements with one specific software li-
brary (spaCy), severely limiting the modular reuse
of the resources. Further, “Deep Learning for
Coders with Fastai and PyTorch” (Howard and

Gugger, 2020) presents a fully open-source and
modifiable online course (fast.ai, 2020) with exten-
sive coverage of various DL applications, it focuses
on NLP in just one chapter. Consequently, it falls
short of delivering the comprehensive depth ex-
pected from a university-level NLP lecture series.

Course creation: Machine Learning vs. NLP.
Further challenges going along with working on
creating/teaching courses for NLP compared to ML
pertain to the rapid speed of developments. In typ-
ical ML courses, there is a more or less agreed-
upon set of topics being taught in most of the
introductory/basic courses, including supervised
learning methods (classification/regression), unsu-
pervised learning, tree-based methods as well as
approaches for hyperparameter tuning or resam-
pling strategies. Building upon this foundation,
various special topics such as, e.g., boosting, gaus-
sian processes, or even neural networks can be
flexibly added/exchanged, depending on the focus
of the respective target audience or tailored to a
certain program of studies. A prime example is the
“Introduction to Machine Learning (I2ML)” course
by Bischl et al. (2022), a collection of three ML
courses taught at LMU Munich. The creators rely
on the stable content of their undergraduate-level
course, build up two M.Sc. level courses on top
of this foundation, and open-source everything on
one central platform.2 This course perfectly shows
the stability of the fundamentals for teaching ML
while simultaneously stressing the modular exten-
sions one can build upon these fundamentals. In
NLP, however, the fundamentals are to some extent
subject to change, since new training techniques
and new model capabilities are constantly emerg-
ing, given the fluid fast-moving nature of the field.
In the subsequent chapters, we will thus describe
the rationale behind our design choices, try to make
the underlying thought processes transparent, and
illustrate the resulting OSER we created.

3 Course Design Principles

The design of our OSER relies on a set of principles
laid out in greater detail in the following subchap-
ters: First, we want the course to be created as a
modular system allowing every partnering institu-
tion to adjust the teaching material to their specific
needs and to change it between different iterations
of the course. This encompasses a set of core mod-
ules (e.g. the Transformer) as well as a multitude

2https://slds-lmu.github.io/i2ml/
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of more elaborated, rather optional, and audience-
specific modules (e.g. Multilinguality). Second,
we intend to provide the students with a set of chal-
lenging (programming) assignments while trying
to balance the trade-off of the following question:
What are longstanding and established concepts
that need to be taught to students, and which are
just of short-term importance?

Additionally, we want the students to be well-
prepared for our course and to have the right expec-
tations: Figure 1 shows our "Module 0", directing
the students to several core chapters of the I2ML
course (Bischl et al., 2022) for getting familiar with
the machine learning basics.

3.1 Modularity of Teaching Material
Bringing together different universities or study
programs for a joint teaching project inherently
requires building a modular system. This enables
every party involved in this endeavor (“inside use”),
as well as everyone else (“outside use”) to pick out
the parts that are relevant for this specific party in
specific situations. For the inside use, we further de-
fine a set of core modules taught at every institution
allowing for sharing the work when creating exams.
This most likely results in (a) more comparable
examinations ensuring (b) a higher quality of the
exam questions while (c) gaining time efficiency
during the creation of the exams. The second part
of the optional modules pertains to topics that are
either just targeted at a specific subgroup of the
target audience or that are considered “hot topics”
that need(ed) to be addressed at a certain point in
time. This leads to a larger and more stable set of
core modules, while the pool of optional ones is (a)
smaller (but potentially growing over time) and (b)
more fluid than the former (some modules might be
deprecated over time). The second form of modu-
larity pertains to disentangling theoretical concepts
and implementation details (Bothmann et al., 2023).
The slide sets we provide the audience with contain
explanations and mathematical formulas, but rarely
Python code. All programming-related tasks and
explanations are outsourced to the programming
assignments and the corresponding exercise ses-
sions (cf. Sec. 3.3). This modular composition
allows the audience to also use our slides alongside
other, more software-centric tutorials (e.g. Hug-
ging Face, 2022), to extract suitable parts for com-
bining it with their own teaching material (without
having to disentangle it with our code chunks or
similar), and helps us in maintaining the material

as we do not run into problems with dependencies
or debugging (“Do not use literate programming
systems everywhere”, Bothmann et al., 2023).

3.2 Lecture Content

Figure 1: Referencing the prerequisites for the course.

Figure 2: First lecture block – Providing the heteroge-
nous target group with a unified foundation.

Figure 3: Second lecture block – Introducing important
conceptualizations and architectural milestones.

The first block of the lecture material (equivalent
to two 90-minute lectures) encompasses two mod-
ules for providing the quite heterogenous groups
of students (cf. Sec. 4.1) with a unified knowl-
edge base to start with (cf. Fig. 2): First, general
NLP-specific topics are introduced before in the
second lecture important conceptual topics regard-
ing neural networks are dealt with. Building on this
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foundation, the next lecture block (cf. Fig. 3; equiv-
alent to four 90-minute lectures) starts by covering
the Transformer architecture in-depth since it is the
focal methodological topic the students need to un-
derstand every tiny detail of. The next module is of
similarly central importance, as it introduces BERT
as one major cornerstone of the developments lead-
ing up to contemporary LLMs. It further deals
with important concepts of transfer learning from
a birds-eye perspective, the components of pre-
training LLMs (objectives, hyperparameters, data),
the implications of architectural choices (encoder-
only, decoder-only, encoder-decoder), and the (effi-
cient) fine-tuning of such models. The third (and fi-
nal) central building block of the current version of
the lecture is centered around decoder-only LLM
architectures (cf. Fig. 4; equivalent to three 90-
minute lectures). After having learned how to
comprehend all potential tasks as a text-to-text
problem in the previous block, the students will
be introduced to alternative concepts of learning
(zero-/few-short learning) before more elaborated
alignment techniques (instruction fine-tuning, re-
inforcement learning from human feedback) are
covered.

Figure 4: Third lecture block – Discussing the capabili-
ties and the inner workings of contemporary LLMs.

These three central building blocks can be flexi-
bly extended using optional modules based on (a)
the needs of the target audience, (b) the fit with the
surrounding curriculum of studies, and (c) what is
of particular interest based on how current research
is developing. The subsequent list of lecture blocks
has been employed over the past semesters:

0. Machine Learning Basics: Before Module 1
to bring everyone up to speed (if required, cf.
Fig. 1).

4. Multilinguality: Multilingual alignment tech-
niques for embeddings/pre-trained models,

mostly taught at LMU for the computational
linguistics (CL) students (cf. Fig. 5).

5. LLMs in Practice: Considerations regarding
hardware, parameter counts, and scaling (in-
cluding a guest lecture from industry, cf. Fig.
5).

We will continuously monitor future develop-
ments in the field and adjust the course accordingly.
This allows us to react flexibly to newly emerging
or newly established methods/topics which can be
added as further modules whenever we see fit.

Figure 5: Optional lecture blocks – Multilinguality and
further insights into contemporary LLMs.

3.3 Programming Questions

The current design of our programming assign-
ments tries to carefully balance basic understand-
ing, i.e. bringing every student from this heteroge-
neous group up to speed, against novelty, i.e. con-
veying (sufficiently) interesting new content that is
of interest to the majority of the students. At the
same time, the degree of difficulty of the assign-
ments is a further crucial consideration since they
partly influence the grading of the students (cf. Sec.
4.2). Trying to get this interplay right, we designed
the following five two-week assignments for the
iteration in the winter term of 2023.

Assignment 1: Building, Tuning and Evaluating
an RNN Model. The goal of the first assignment
is to familiarize all the students with the general
setup of the training loop for a DL model. We ex-
pect the students to be familiar with embeddings
and the basic concepts of DL, and with the basic
functionalities of Python on a technical side. The
intended outcome is that the students become fa-
miliar with working with using PyTorch (Paszke
et al., 2019) and learn how to set up everything
from scratch, so they know what is happening be-
hind the scenes once they start using high-level
frameworks like Hugging Face (Wolf et al., 2020)
later.
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Contentwise, the students are tasked with load-
ing, splitting, and formatting datasets from hosted
places, such as Hugging Face, to gain hands-on
experience with data preparation. They then learn
to build parallelized dataloaders using the PyTorch
API to efficiently handle datasets of varying sizes.
Following that, students are asked to design a cus-
tom RNN model layer-by-layer and to write the
training and evaluation processes by hand. This ex-
poses them to the inner workings of PyTorch mod-
ules and helps them understand how to connect
their own modules to the core “Autograd” func-
tionality. Enhancing their understanding of model
evaluation is another goal of this assignment. Con-
sequently, they need to implement a classification
metric tracking system and plot and document their
results. The assignment provides the class with
three hyperparameter configurations intended to
produce an underfitted, overfitted, and well-fitted
model, lastly prompting them to pinpoint and dis-
cuss notable training moments on their plots.

Assignment 2: Building the “Vanilla” Trans-
former from Scratch. The next important mile-
stone in our curriculum is implementing the vanilla
Transformer from scratch. We deem this task to
be of extremely high didactic importance, as later
on students will most likely use the Hugging Face
libraries to train or to interact with transformer-
based models. Obtaining a proper understanding
of the model’s inner workings is crucial, as the
Transformer itself might be replaced in the future,
but in general large, complex models with many
hyperparameters are still likely to persist.

Since various well-known teaching-oriented im-
plementations of the vanilla Transformer exist, no-
tably “The Annotated Transformer” (Rush, 2018;
Huang et al., 2022) and a chapter of “Deep Learn-
ing Notebooks” (Lippe, 2022), we refrain from
asking the class to simply implement a working
Transformer model. Instead, we provide specific
instructions to break down the task into smaller
sub-tasks, with clear expectations for intermediate
results. This has two key benefits: First, it en-
ables students to identify and debug issues early
on, by checking their sub-results against expected
outputs and tensor shapes. Second, it encourages
students to engage deeply with the paper and code,
making it difficult to simply copy from existing
online resources. Even if students tried to copy,
they would need to make significant changes to fit
our instructions, ensuring a contribution to the im-

plementation. To strike a balance between realism
and learning value, we fit our assignment require-
ments into input and output specifications for each
module, along with assert statements to verify
intermediate results in init and forward methods
of each module.

Assignment 3: The Hugging Face Ecosystem.
As one central objective of the assignments is to
convey hands-on practical knowledge to the stu-
dents, the third assignment is centered around
the Hugging Face ecosystem. The Hugging Face
ecosystem has become a de facto standard in the
NLP community, providing a unified interface for
a wide range of SOTA models and datasets. By
working with it, students can gain experience with
a powerful tool that simplifies the process of build-
ing, training, and distributing NLP models, while
facilitating reproducibility and collaboration.

Students were tasked with fine-tuning the
encoder-only BERT (Devlin et al., 2019) for classi-
fication and the encoder-decoder T5 (Raffel et al.,
2020) for text summarization. Through this exer-
cise, students gain hands-on experience with tok-
enizers, loading, and preparing models from the
Hugging Face hub for different tasks. A key fo-
cus is on the Trainer and its TrainingArguments
class, where students are supposed to experiment
with various techniques to reduce GPU memory
usage, including batch size, gradient accumulation
steps, gradient checkpointing, and 16-bit floating
point data types. Taking it a step further, students
are also introduced to the concept of reversing
the abstractions provided by Hugging Face, for
instance, by inheriting from the Trainer class and
customizing the loss calculation logic according
to our requirements. In the second part, we fo-
cus on approaching problems as text-to-text tasks,
including the pre-/post-processing steps for sum-
marization. Again, while models might change,
implementing the whole pipeline (data-to-model;
task description; GPU utilization) is a vital skill for
the future.

Assignment 4: Interpretability and Decoding.
As the parameter count of NLP models continues
to grow, it has become increasingly important to un-
derstand the inner workings of these models. Cur-
rently, there are many ways to analyze models. The
fourth assignment examines the topics of employ-
ing a simple interpretability method and investigat-
ing decoding strategies, both of which are essential
for understanding the models’ behavior/biases and
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improving the trustworthiness of models.
To gain insight into the attention mechanism, stu-

dents explore the attention patterns of various heads
in pre-trained models. By visualizing and compar-
ing the patterns of BERT and GPT-2 (Radford et al.,
2019) for the same sentence, students observe how
BERT’s bidirectional attention differs from GPT-
2’s left-to-right attention. They then quantify their
observations by calculating and visualizing the en-
tropy per head and layer, revealing how individual
heads distribute their attention. Next, students im-
plement and calculate importance scores (Michel
et al., 2019) per head, visualize their results, and
finally use them for pruning, i.e. removing heads
below a certain importance score threshold. In the
decoding part of the assignment, students load GPT-
2 and compare its outputs for a single input prompt
using different decoding strategies. They begin
by implementing beam search (Vijayakumar et al.,
2016) and contrasting it with standard greedy de-
coding, and then progress to more advanced strate-
gies like top-k (Fan et al., 2018) or top-p (Holtzman
et al., 2019) sampling and temperature scaling.

Assignment 5: LLMs and Prompting.
Language-to-language is a promising paradigm,
likely to persist, as it resonates with human
interaction. Therefore, it is central for students
to learn how to work with this paradigm. The
fifth assignment covers this and showcases key
prompting strategies to accomplish various tasks
and structured, parseable output formats. Students
begin by loading LlaMA-2 (Touvron et al., 2023)
and familiarizing themselves with the concept and
formatting the system prompt. By modifying the
system prompt while keeping the downstream
instruction equal, students observe how the
model’s behavior changes in response to different
meta-instructions. Subsequently, students explore
zero-shot inference (Radford et al., 2019) and
investigate the model performance in a multi-class
classification task without structured output. They
learn to address the difficulties of parsing errors
caused by varying model outputs and format errors,
before repeating the same task while employing
a batched, JSON input- and output structure.
This makes it possible to implement formatting
checks and parsing rules to reject certain outputs
before encountering unknown outputs. Lastly, the
assignment incorporates the few-shot learning
paradigm (Brown et al., 2020) by solving a relation
extraction problem while enforcing a custom,

parseable output style while providing in-context
examples in the desired format.

3.4 Grading

Two common approaches to grading coding assign-
ments are automated evaluation through test suites
and manual checks. While the benefits of auto-
mated test suits are fully automated autonomous
testing in little time and certainly unbiased grading,
the disadvantages are the requirement of precise
task descriptions and little to no variance in allowed
outcomes, partially solved or nonexecutable sub-
missions may not be testable or it might require
additional effort to define those tests. Manual eval-
uation, on the other hand, results in time-intensive
corrections per submission and can introduce bi-
ases during grading. The benefits and disadvan-
tages need to be considered beforehand and should
also be considered during the task creation. The
optimal approach toward grading depends on the
expected number of submissions, the available (hu-
man) resources for (a) assignment preparation and
(b) correction over the course of the semester, and
the probable reuse in future iterations of the course.

Due to our design choice of integrating open-
ended interpretations of results and observations,
we have opted for a hybrid approach: We leverage
the benefits of automated tests for the subset of
well-defined tasks with clear expected outcomes
while resorting to manual evaluation and grading
of the more open-ended parts. This allows us to
manually handle cases where the automated tests
failed within the second pass. To allow the seam-
less combination of both grading approaches, tex-
tual mistake descriptions alongside their resulting
point deductions are collected in one text file per
submission. The automated tests log mistakes to
this file as predefined textual statements, while mis-
takes encountered during manual inspection are
added in the corresponding format. That way both
the final grade of the assignment and the encoun-
tered mistakes can be reported back to the student,
offering insightful feedback via comments. This
allows the student to comprehend the grade and
reflect on his/her solution, and misapprehension.

4 Collaboration Across Universities

4.1 Target groups and their prerequisites

The initial target group of the course was third-
semester master’s students in CL from LMU Mu-
nich for whom the compulsory module has been the
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first touching point with DL. Opening the course
to master’s students of statistics and data science
(Stats+DS) by collaboratively improving and teach-
ing it in 2020 brought in a group with a differ-
ent background for whom this is contrarily the
first touching point with linguistics. Students eligi-
ble to take the course at the University of Vienna
(UNIVIE) have a multi-faceted background as well:
While the majority of the students are enrolled in
computer science (CS), there is also a share of stu-
dents from business analytics in the target group of
this course. This leaves us with students that can
be (coarsely) categorized into three groups:3

• Strong CL background, but not much experi-
ence with ML, DL, and programming

• High level of technical and theoretical exper-
tise in ML, DL, and programming, but (pre-
sumably) no knowledge about linguistics.

• Some affinity to digital tools and program-
ming, but neither an in-depth formal education
in ML/DL nor linguistics.

4.2 Examination requirements
While the modularization of the course makes it
relatively straightforward to collaborate in creating
the material, differences in examination regulations
and grading requirements between universities are
a stumbling block. Rules at LMU require us to
assess a student’s performance via one final exami-
nation at the end of the semester, whereas at UNI-
VIE it is strictly necessary to do 50% of the overall
performance assessment during the semester. We
manage these discrepancies by introducing three
types of (self-)assessments, two of which happen
continuously over the semester while the last one
pertains to a written test at the end of the semester:

(A) Moodle Quizzes: Multiple-Choice/Cloze-
style questions (on a weekly basis).

(B) Assignments: Advanced programming tasks
(on a bi-weekly basis, cf. Sec. 3.3).

(C) Written exam (90min, end of the semester).

Despite the strict requirements regarding perfor-
mance assessment at LMU, it is possible to use
assessment types (A) and (B) for awarding bonus

3One can argue that Stats+DS and CS students represent
two distinct groups, but we believe that they are sufficiently
similar concerning their prerequisites for this course.

points to the students who complete them success-
fully. The students were able to achieve a maxi-
mum of 9 bonus points (10% of the total points
of the 90-minute exam) weighted by the share of
the quizzes/assignments they were able to solve
correctly. Employment of the bonus points was re-
stricted by one condition: The bonus only counted
if a student had passed the exam already without
the bonus. Table 1 shows the proportions of the
students at LMU who were able to achieve a bonus
when entering the written examination4, highlight-
ing the effectiveness of this type of incentive for
working on the intra-semester assessments.5

year 2020 2021 2022 2023

# students 52 48 64 38
w/ bonus 57.7% 68.8% 98.4% 81.6%

bonus > 50% 57.7% 54.2% 54.7% 60.5%

Table 1: Relative frequencies of students with bonus
points among all students who took the exam at LMU.

There is an important breakpoint to be addressed
when looking at the numbers in Table 1: From 2020
– 2022 there were ten assignments (to be completed
on a weekly basis) with relatively easy tasks to
be completed by the students, i.e. filling in some
blanks in otherwise complete Jupyter notebooks.
Starting in 2023, the assignments became signif-
icantly harder: The number was reduced to five,
students were given two weeks to work on each of
them and the task was to write the complete code by
themselves. While this led to a substantial decrease
in the share of students with bonus points among
those who took the exam compared to 20226, the
share of students who achieved over 50% of the
bonus remained relatively constant over the whole
observation period. For 2023, however, we observe
a slight increase in the latter figure (plus 6 per-
centage points compared to 2022), hinting at the
effectiveness of the more challenging assignments.
We do not show similar numbers for students from

4Unfortunately it is hard to calculate the share of students
dropping out before the exam, since typically many more stu-
dents enroll to the moodle course just to check out the material
compared to the actual number of participating students.

5Note, that we only include students who actually took the
exam here. Students with a bonus who did not register for the
exam (or did not show up to it) are not counted in.

6Since the assignments were not substantially changed be-
tween 2020 and 2022 there was some “leakage”, i.e. more
senior students (presumably) passing on the solutions to their
successors and thus leading to more students completing
(some of) the tasks. This suspicion is supported by the rising
numbers (until 2022) in the second row of Table 1.
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UNIVIE, as they are obliged to successfully submit
the assignments to pass the course. Hence a direct
comparison does not make much sense here.

5 Open-Sourcing the Material

A core building block of this course is its public
website alongside the complete source code for
both website and slides. This differentiates the
course from other open teaching resources (cf. Sec.
2) as it enhances its reusability. People are not only
able to use the material as-is, but also to modify,
extend, and enhance it. An important side effect
of this policy is the potential feedback loop that
we might hopefully enter at some point in time:
Instead of only developing and improving the ma-
terial ourselves, other parties re-using the material
could reach out and become collaborators by con-
tributing via issues or pull requests. The technical
setup is kept pretty simple: We use two separate
repositories on GitHub for the source code of the
material and the source code of the website. We be-
lieve this separation helps interested third parties in
finding what they are looking for and it also eases
the whole development process. Using GitHub as a
platform is motivated by its focal nature to the CS
and NLP community, hence lowering the barrier
for collaboration between the co-developers as well
as for interested third parties.

The following list contains links to (i) the mate-
rial, (ii) the website, and (iii) its source code for the
interested reader and for potential collaborators:

(i) https://github.com/slds-lmu/lecture_dl4nlp

(ii) https://slds-lmu.github.io/dl4nlp/

(iii) https://github.com/slds-lmu/dl4nlp

6 Future Challenges and Next Steps

Open-source everything? An important case
of conflicting priorities pertains to the goal of
open-sourcing everything and the interest of pro-
viding the students with fair and challenging
quizzes/assignments. While open-sourcing the so-
lutions to the coding assignments perfectly aligns
with the goal of open-sourcing, it contradicts the
secondary goal to some extent as it could discour-
age students from working on the assignments and
incentivize checking out the readily available solu-
tions. Further, it would hinder re-using the same
assignments for rewarding bonus points (LMU) or
grading the performance over the semester (UNI-
VIE). Hence for the future, we are currently dis-
cussing the following scenarios:

• Keep assignments & solutions closed-source.

• Open-source only assignments w/o solutions.

• Substantially change assignments every
semester. while open-sourcing everything.

Unavoidable Lecturer Turnover. Further chal-
lenges that will arise in the near future7 originate
from the way academia works. After finishing a
PhD, people tend to leave the institution where they
conducted their PhD studies either for a postdoc
at another institution or for industry. While in the
latter case, long-term cooperation on developing
OSER together is most certainly not possible due
to simply different priorities in an industrial job,
also the former case does not automatically war-
rant further cooperation, although it might be more
likely. Thus, we believe it is vital for the persis-
tence of such a project (i) to have a clear ownership
structure and consistent credit assignment policies,
(ii) to set up lecture chapters as self-contained and
independent of the lecturer as possible, and (iii) to
create seamless documentation of reasoning behind
the most important design choices, the workflows,
and the responsibilities of the individual roles.

Related points are addressed by Bothmann et al.
(2023), yet from a slightly different angle: They
also stress the ownership issue as a crucial point
concerning quality assurance and maintaining con-
sistency in the narrative, notation, and correctness
of the material. We think that the peculiarities of
the academic job market are an important addition
to these considerations.

Speed of Developments. Balancing the recency
against stability is a major challenge for such
courses (cf. Sec. 2). In general, university lectures
should cover what can be considered established
methodology or consensus in the research commu-
nity. Examples of such topics can be easily found
in the field of “classical” ML, considering concepts
like logistic regression, support vector machines,
and random forests, just to name a few. For DL
and NLP this clear-cut definition proves to be much
harder: The (relatively young) concept of embed-
dings as well as the Transformer (and its parts) can
by now be considered fundamental/established, but
already as soon as it comes to the encoder-based
models surrounding BERT things begin to get com-
plicated. While BERT itself might be a relatively
unanimous choice, nearly all its successors can be

7Until now the core team has stayed mostly constant.
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regarded as debatable. On the one hand, some of
these papers represent (from today’s perspective)
important milestones or introduce smart ideas that
might be worth teaching. On the other hand, these
ideas might soon be considered outdated and other
models might have taken their place in one year’s
time. So the question that has to be asked every
semester is whether something can be considered
“established” enough to enter the course or whether
it is still too experimental or uncertain.

7 Conclusion

Throughout this paper, we shared some key take-
aways and considerations when it comes to collab-
oratively developing OSER for NLP curricula. We
highlighted crucial challenges that arise both due
to the collaborative development and the different
target groups and due to the peculiarities of the
current fluid state of NLP research itself. Simulta-
neously we showcased the solutions we found, re-
lying strongly on the OSER principles. We further
view this paper as a means of advocating for more
open source and more collaboration, also when
it comes to teaching. While it may be common
practice to collaborate in research itself or when
it comes to using shared computational resources.
Sharing and co-developing teaching materials, on
the other hand, is far from being a commonly ac-
cepted best practice. We again argue, that one
conclusion from the current speed of development
is to join forces also for teaching. Finally, we share
our material for re-use and inspiration and hope to
attract other academics as future collaborators.

Limitations

While we do not claim that our course is all-
encompassing or better than any other course, we
still hope there is some value in (i) the course itself
and (ii) the explanation of our thought processes.
We think humbleness and the willingness to learn
and improve one’s teaching material continuously
are key to the successful development of OSER.
Everything we create and share happens to the best
of our knowledge and we are always happy to be
pointed at mistakes or inaccuracies so we can erad-
icate them.
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Abstract

The teaching laboratory we have created inte-
grates methodologies to address the topic of
hate speech on social media among students
while fostering computational thinking and AI
education for societal impact. We provide a
foundational understanding of hate speech and
introduce computational concepts using ma-
trices, bag of words, and practical exercises
in platforms like Colaboratory. Additionally,
we emphasize the application of AI, particu-
larly in NLP, to address real-world challenges.
Through retrospective evaluation, we assess
the efficacy of our approach, aiming to em-
power students as proactive contributors to so-
cietal betterment. With this paper we present
an overview of the laboratory’s structure, the
primary materials used, and insights gleaned
from six editions conducted to the present date.

Our positionality: This paper is situated in (Northern) Italy

in 2024 and is authored by researchers specializing in Natural

Language Processing. Beyond our academic work, we are

actively involved in feminist, LGBTQIA+ advocacy, and anti-

hate speech activism. Collectively, our backgrounds span

theoretical linguistics, computer science, natural language

processing, digital humanities, high school teaching, and non-

formal education methodos.

1 Introduction

The pervasive use of technologies based on AI mod-
els, makes it imperative for academic institutions
to organize teaching laboratories for primary and
secondary schools with the aim of increasing aware-
ness for the techniques behind these technologies,
consequently knowing when to trust AI and when
to distrust it, and revealing the “behind the scenes”
of their unconscious use. Some programs are pro-
moted also by government institutions with the aim
of bringing students closer to computer science and
also reducing the gender stereotypes that charac-
terize this field of study. Among them, are worth

mentioning: Women Who Code, supported by the
EU, and Coding Girls in Italy.

In this context of activities for public engage-
ment, our laboratory #DEACTIVHATE takes shape.
Its main goals are: introducing secondary school
students to Natural Language Processing tech-
niques and their applications; raising awareness
about the ethical issues of digital world; empower
them to positively contribute to the digital com-
munity, and increase responsibility in the use of
present-day technologies.

To achieve these goals, we designed a series of
educational activities starting from the analysis of
online hate speech. Abusive and online harmful
content are issues that adolescents face in their ev-
eryday life, but also one of the social issues that
they can help alleviate. In spite of a causal link
between hate speech and crime is difficult to prove,
the risk of offenses and effects on victim’s psycho-
logical and physical well-being have been proved in
psychological and social studies (Nadal et al., 2014;
Fulper et al., 2014). Especially among adolescents,
the extreme consequences of these attacks tend to
be the suicide, as suggested by (Nikolaou, 2017) in
their analysis of the connection between cyberbul-
lying and suicidal behavior in the US. To prevent
such scenarios, some awareness-raising projects
in schools are being carried out by NGOs in Italy,
such as Amnesty International1 or Cifa ONLUS2.
#DEACTIVHATE fits in this context, merging the
educational experience of development and use of
AI-based tools and the stimuli to be responsible
developers and users.

Our experience of teaching this laboratory con-
cerned students of different ages and coming from
different backgrounds: humanistic, classical, tech-
nical and scientific studies. Therefore, the method-
ologies of teaching used in this context, and the

1https://www.silencehate.it/.
2https://www.cifaong.it.
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materials and activities employed during the labo-
ratory, are adaptable to different situations.

The impact of the laboratory has been evaluated
by administering tests in two phases: one at the be-
ginning and one at the end, containing an (almost)
identical set of questions. By means of these pre-
and post-test we could assess the teaching method-
ologies and materials and to measure the aware-
ness of students towards: firstly, the functionality
of AI-based technologies, secondly, the importance
of creating responsible and ethical NLP for com-
munity benefits, and thirdly, the consequences of
pervasive online hate speech.

In the next sections, we describe: related work on
teaching NLP that report experiences with young
participants (Section 2); the methodologies and
teaching activities and materials employed in our
laboratory (Sections 3 and 4); our experience with
different Italian secondary school students (Sec-
tion 5). Finally, we write about some of the chal-
lenges we faced, and we delineate some conclu-
sions (Sections 6 and 7).

2 Related Work

The escalation of hate speech on social media plat-
forms and its negative societal impact have ignited
significant academic interest in developing meth-
ods for its automatic detection and mitigation. This
surge in research is underscored by the proliferation
of methodologies leveraging Natural Language Pro-
cessing and Machine Learning (ML) techniques. A
comprehensive survey (Jahan and Oussalah, 2023)
delineates the evolution of automatic hate speech
detection, emphasizing the integral role of NLP
and Deep Learning (DL) technologies in this realm.
Their systematic review delineates the progression
from traditional ML techniques to advanced DL
architectures, highlighting a shift towards models
like BERT, which have revolutionized hate speech
detection with their context-aware processing.

In parallel, educational initiatives have emerged
as critical for cultivating a responsible digital citi-
zenry, particularly among the younger population.
This educational aspect aligns with our project’s
dual focus: addressing hate speech through techno-
logical solutions, while promoting computational
thinking and AI literacy among students. Work-
shops like the one discussed at NAACL-HLT (Ju-
rgens et al., 2021) emphasize the importance of
developing NLP resources for diverse educational
contexts, reflecting the necessity of embedding

these technological competencies at an early age.
Furthermore, other initiatives (Sprugnoli et al.,
2018; Pannitto et al., 2021) illustrate the emerg-
ing trend of integrating computational linguistics
into the high school curriculum, thereby aligning
with our laboratory’s educational objectives.

Our approach to combating hate speech incorpo-
rates practical exercises and the utilization of plat-
forms such as Colaboratory, fostering an environ-
ment where students not only learn to identify and
counteract hate speech but also gain hands-on ex-
perience with NLP tools. This pedagogical strategy
mirrors the “gamification” techniques highlighted
by Bonetti and Tonelli (2020), which have been
effectively applied in linguistic annotation tasks,
enhancing engagement and educational outcomes.

Reflecting on the systematic review and related
educational efforts, our project’s methodology syn-
thesizes these insights, employing state-of-the-art
NLP techniques for real-world applications while
fostering an educational paradigm that prepares stu-
dents to navigate and contribute positively to the
digital world.

2.1 A bit of History

The #DEACTIVHATE project was conceived by a
group of young researchers within the initiatives for
the orientation of high school students and in partic-
ular for the promotion of STEM subjects among the
young female population. It is supported by Com-
missione Orientamento e Informatica nelle Scuole
and funded by the project “Piano Lauree Scien-
tifiche” of the Computer Science Department in the
University of Turin.

Through the six editions of the lab, 14 different
classes were reached, for a total number of 233
students, aged from 15 to 18 years old (see Table 1
in Appendix A). The first two editions involved stu-
dents with a humanistic background, while in the
following ones students from technical or scientific
high schools – thus with a stronger background in
computer science – were reached. The results of
the first three editions of the lab were discussed in
(Frenda et al., 2021; Cignarella et al., 2023).

With the present publication, we aim at describ-
ing the hands-on experience of the three new (post-
COVID) editions. In particular, here we tackle
most of the issues raised in the “Future Work” sec-
tions of previous publications. Some have been
resolved or confirmed, while others remained open
and are due to further discussion with the teaching

55



community. For example, there was a request to
make the lab more interactive in its online setting,
or to expand the lab beyond the context of Turin,
which happened with the fifth edition (even if only
online). Furthermore, we found it crucial to present
#DEACTIVHATE in a new, more comprehensive
publication. After six editions, the laboratory has
evolved into a well-refined and effective program.

In addition, we provide an in-depth description
of the materials developed for the laboratory, we
translated all of them into English, making them ac-
cessible to a wider and international audience (see
Appendix B). Finally, acknowledging the various
limitations our laboratory may still have, we expect
to receive feedback from the teaching community
and that #DEACTIVHATE will be adopted in new
schools and different contexts.

3 Teaching Goals and Methodologies

The laboratory’s name, #DEACTIVHATE, com-
bines the concept of deactivation with the phe-
nomenon of hate, and the new term is preceded
by the pound sign ’#’, reminiscent of social media
hashtags. This choice wants to establish a clear con-
nection to the social media realm. The activities,
designed for secondary school students, consist of
three main modules aimed at:

1. Raising awareness about the pervasive issue
of hate speech, prompting reflection on mi-
croaggressions, stereotypes, and prejudices.

2. Engaging students in computational thinking
and exploring linguistic tools used by social
media users to convey hate or offend others on-
line, such as hashtags, emoticons, and rhetori-
cal devices.

3. Introducing high school students to Natural
Language Processing (NLP) tools and demon-
strating their potential for promoting more
responsible and conscious technology usage.

By combining educational content with hands-on
exploration and critical thinking exercises, #DEAC-
TIVHATE strives to empower students to become
discerning and empathetic digital citizens.

In order to achieve these purposes, we relied on
the following methodologies:

• Collaborative reading sessions: Students en-
gage in reading formal definitions and in exploring
the basics of hate speech, including vocabulary and
definitions provided by authoritative sources such
as the Council of Europe.

• Matrix design and analysis: Utilizing Google
Spreadsheets, students design matrices incorporat-
ing binary (0s and 1s) representations of keywords
and concepts, employing techniques such as bag of
words to analyze text data.

• Practical coding exercises: Students work on
exercises using Google Colaboratory, with some
exercises pre-compiled and others involving col-
laborative coding sessions where code is written
together to explore concepts related to hate speech
detection in NLP.

• Real-life scenario exploration (Social Media):
Students engage in browsing social media to gain
insight into real-life demonstrations of hateful be-
haviors and patterns. This activity allows for first-
hand exploration of how hatred can manifest on
social media platforms and the role NLP plays in
identifying, analyzing, and potentially mitigating
its effects. By observing and discussing examples
from social media, students develop a deeper un-
derstanding of the practical implications of NLP in
addressing hate speech and promoting responsible
online behavior.

4 Activities and Materials in Detail

In this section, we describe the teaching ac-
tivities and the materials employed in #DEAC-
TIVHATE, which are available at the following
link: https://github.com/deactivhate. The
topics of the following 5 lessons cover various dis-
ciplines, useful for enhancing knowledge of high
schoolers, including: Sociology/Civics and Hate
Speech, Computational Linguistics and Computer
Science/Programming. For an exhaustive list of the
materials, please refer to Appendix B.

4.1 Lesson 1: Who are we? Why are we here?

In the first minutes of the first lesson, we adminis-
tered a pre-test. In order not to “start off with the
wrong foot” with the students, we clarified multi-
ple times that the test is designed to assess their
pre-existing knowledge on the topics dealt with in
the laboratory (and absolutely not for evaluation).

The first lesson sets out to introduce ourselves as
university researchers, explain what we do in our
research, and set together the overarching goals of
the entire laboratory. Students are guided into an
introspective and comparative analysis of their own
identity. Using Google’s Jamboard as a tool, we
embark on a journey of self-reflection through an
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engaging ice-breaking activity. They are encour-
aged to present an aspect of their identity using an
image, which they upload to a shared Jamboard.
Utilizing this tool allows for real-time collaboration
and discussion, enriching the learning experience
by visually capturing the mosaic of student identi-
ties and favoring an environment of empathy and
understanding.

Here, students start exploring the multifaceted
nature of personal identity, engaging in an intro-
ductory dialogue about discrimination and Hate
Speech.

Lesson 1 in brief: pre-test, icebreaker activity, in-
troductory slides to #DEACTIVHATE.

4.2 Lesson 2: How to recognize hate speech?
The second lesson delves into clarifying the con-
cepts introduced in the previous meeting. An initial
exploration regarding personal and social identities
is proposed, by incorporating the visual tools of the
Pyramid of Hate and of the Wheel of Privilege
(see Figure 1) into the slides.

Figure 1: Credits to Sylvia Duckworth.

Thanks to these visualizations, students are en-
couraged to reflect on their positions within the
spectrum of these characteristics, sparking conver-
sation about the relative advantages and disadvan-
tages that accompany different identity markers
such as, gender, skin color, body size, wealth etc.3

3Both visual materials were developed within the U.S.,
therefore we adapted them to our needs by, for instance, sub-
stituting English with Italian in the Language section of the
Wheel of Privilege. The absence of the topic Religion was
also noted from the students. Other adjustments might be nec-
essary, depending on the context in which this lab is delivered.

Drawing upon the personal narratives and experi-
ences of the students, the activity culminates in an
exploration of the intersectionality of Hate Speech
with stereotypes, biases and microaggressions, un-
derscoring the nature of such interactions in the
fabric of everyday life.

In the second part of this lesson, we introduce
the basic terminology to discuss hate speech and re-
lated phenomena, relying on the official definition
provided by European Commission against Racism
and Intolerance (ECRI). This activity sets the stage
for a deeper understanding of the phenomenon, em-
phasizing its targeted nature against identifiable
groups based on inherent traits.

Hate Speech is to be understood as the advocacy,

promotion or incitement, in any form, of the deni-

gration, hatred or vilification of a person or group

of persons, as well as any harassment, insult, neg-

ative stereotyping, stigmatization or threat in re-

spect of such a person or group of persons and the

justification of all the preceding types of expres-

sion, on the ground of “race”, color, descent, na-

tional or ethnic origin, age, disability, language,

religion or belief, sex, gender, gender identity, sex-

ual orientation and other personal characteristics

or status [...]

In the third part of this lesson, students were in-
structed to open any of the social media accounts
they use on a daily basis and try to collect tweets
containing hatred messages towards public figures
as targets of discrimination.

To organize the analysis and group discussion of
their discoveries, they were asked to collect the tex-
tual messages into a Google Spreadsheet. This
method prompted them to identify the keywords
in the hateful message, the victim, and categorize
the types of discrimination including misogyny,
homophobia, sexism, body-shaming, and more, in-
troducing students to a nuanced taxonomy.

As the final activity in this lesson, students are
immersed in a hands-on annotation task, where
they are asked to analyze and annotate a minimum
of 30 tweets. This exercise can be done alone or
in pairs or small groups, encouraging discussion,
and in our case is facilitated by the tailor-made
data annotation platform4 developed for the project
“Contro l’odio”. Any other annotation platform
can be used.

4http://annotazione.didattica.controlodio.it/
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The lesson is wrapped-up by means of a collec-
tive discussion, allowing students to share insights
and reflect on the complexities of an annotation
task, understanding all the nuances of hate speech
and finding an agreement.

Lesson 2 in brief: personal and social identity, pyra-
mid of hatred, Hate Speech definition, activity on
social media, annotation exercise.

4.3 Lesson 3: Machine Learning and matrices

In the third lesson, we introduce students to the
fundamentals of machine learning, starting with
a broad overview of what it entails and moving
into the specifics of supervised and unsupervised
learning, with a significant focus on the process
of text vectorization and the specifics of detecting
hate speech through automatic text classification.
This lesson is designed to guide students through
the entire machine learning workflow in the con-
text of NLP. This includes defining a clear task,
gathering a suitable dataset, and dividing it into
annotated training and test sets.

After the more theoretical aspects, introduced
thanks to two sets of slides, the module transitions
into a practical activity where students applied their
newly acquired knowledge of text vectorization.
Each student was tasked with annotating a specific
tweet, chosen to reflect the varying types of dis-
criminatory language found online. The activity
involved constructing a bag of words matrix on a
Spreadsheet, where students encoded the presence
or absence of certain key terms—terms indicative
of the underlying sentiment or hate speech within
the tweet. The one-hot encoding matrix was used
as device to transform the qualitative aspects of
language into a quantitative format that machine
learning algorithms could process. The same ma-
trix will be created automatically in the coding part
of the course (in Lesson 5). By breaking down
tweets into this bag-of-words model, students not
only practiced the procedure of vectorization but
also engaged with the content at a deeper level,
considering how individual words contribute to the
overall message and tone of the text.

Finally, we used any spare time at the end of this
lesson to make sure to install Google Colaboratory
and be ready for the next lesson.

Lesson 3 in brief: machine learning workflow, su-
pervised/unsupervised learning, training/test set
features, vectorization, bag-of-words matrices.

4.4 Lesson 4: Python and Colab as IDE

The fourth lesson guides students through the es-
sentials of Python5 programming within the in-
teractive environment of Google Colaboratory6.
The session begins with an overview of Python’s
basic constructs, using simple print statements to
demonstrate output on the screen. This introduc-
tion quickly progresses to exercises involving string
manipulation, arithmetic operations, and gathering
user input—all through the lens of Colab’s user-
friendly interface.

As the lesson unfolds, students tackle more ad-
vanced topics, including string operations and text
processing, which are fundamental to NLP tasks.
They learn to clean text data, manage strings, and
explore the foundational technique of tokeniza-
tion—turning streams of text into analyzable com-
ponents. This hands-on experience not only solidi-
fies their Python skills but also prepares them for
the subsequent lesson on text classification in NLP.

Lesson 4 in brief: Colaboratory, Python, tokeniza-
tion, lemmatization, word distribution and rele-
vance, n-grams, basic operations with strings.

4.5 Lesson 5: Supervised classification

Lesson 5 involves a practical exercise using Colab
for detecting hate speech in a given dataset (in our
case, sampled from HaSpeeDe2 (Sanguinetti et al.,
2018), the benchmark for HS detection in Italian)
via a simplified pipeline based on supervised clas-
sification.7 The session begins by defining hate
speech in the context of machine learning, utilizing
a dataset of tweets categorized by the presence or
absence of hate speech (encoded with 0s and 1s).

Students learn to use pandas8 for handling data
frames, visualize data, and prepare it for analy-
sis, including balancing the dataset, converting
string labels to numerical formats, and splitting
data into training and test sets. They also employ
text vectorization methods like CountVectorizer
(bag of words) and TfidfVectorizer (words
weighted with TF-IDF) from scikit-learn9 to pro-
cess tweet data for machine learning, as they al-
ready have done manually in Lesson 3. During

5https://www.python.org/
6https://colab.research.google.com/
7The dataset used inside this interactive notebook con-

tains Italian texts. Datasets in other languages and on differ-
ent topics can be found, for instance here: https://live.
european-language-grid.eu/

8https://pandas.pydata.org/
9https://scikit-learn.org/stable/
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the lesson, students have the possibility to “play”
with the parameters of the CountVectorizer and
TfidfVectorizer methods and select the best tex-
tual representation. With the foundation set, they
are guided through the construction of a Support
Vector Machine (SVM) model, applying it to clas-
sify tweets and evaluate the model’s performance
through accuracy metrics. They critically analyze
misclassified texts and consider strategies for im-
proving the model, discussing preprocessing func-
tions and the importance of cleaning text data.
Based on the students’ proficiency with Python
and Colab, the class can be guided step-by-step,
allowed to work more independently, or organized
into pairs for collaborative work.

Both lessons 4 and 5 provide an introduction
to the management of string-like type of data and
the classical workflow for the creation of models
with ML algorithms, putting in practice what was
previously learned in lesson 3. The idea is to (at
least) familiarize with basics techniques related to
development of supervised learning.

Although we presented, as first simple case-
study, the SVM algorithm with a representation
based on bag of words/TF-IDF weights, during les-
son 5 we mentioned the current state of the art of
the algorithms used to solve NLP tasks, and we
encouraged the reflection on the best features that
could help build a hate speech classifier.

Lesson 5 concludes with the administration of
a final evaluation test (post-test), the analysis of
which will be discussed in detail in Sections 5.1
and 6.1. This provides valuable feedback on the
students’ understanding and the effectiveness of
the module.

Lesson 5 in brief: Colaboratory, Python, pandas,
scikit-learn, CountVectorizer, TF-IDF, SVM, agree-
ment/disagreement, accuracy, post-test.

At the very end of the whole laboratory, an anony-
mous survey questionnaire on satisfaction was ad-
ministered (see a detailed analysis in Section 6.1).

5 Hands-on experience

The laboratory today10 counts six editions, during
which we adapted methodologies (Section 3) and
activities (Section 4) to the different settings we en-
countered over the years, monitoring both students’
and teaching strategies progresses.

10Time of writing: June 2024.

5.1 Evaluation

Since the first edition, at the end of the last lesson,
we asked students to fill a survey questionnaire to
express their overall satisfaction towards the labo-
ratory and the degree of interest in the topics of the
course. Students’ feedback has been useful to map
the adaptability of the methodologies to different
settings, and what would need to be changed in
order to make the lab more effective and appealing.

In addition, starting from the third edition, we
built two tests to assess the degree of assimilation
of the main concepts covered during the course,
specifically a test of prior (pre-test) and final knowl-
edge (post-test), to be administered respectively be-
fore the beginning of the laboratory, and at the end
of the 10-hour cycle of lessons. The tests consisted
of four kinds of questions:

1. True/false: evaluated as correct (1 point) or
wrong (0 points).

2. Multiple choice: evaluated as right (2 points),
partially right (1 point) or wrong (0 points).

3. Questions that require fairly short answers:
evaluated as right (2 points), partially right (1 point)
or wrong (0 points).

4. Open questions that require a long answer:
evaluated on a scale ranging from 0 to 5.

Both the pre- and post-test were composed by ques-
tions related to different topics and categories of
concepts dealt with during the lab, correspond-
ing to the modules described in Section 4: i)
Sociology/Civics and Hate Speech (C); ii) Com-
putational Linguistics (CL); iii) Computer Sci-
ence/Programming (CS). Table 2 in Appendix A,
provides examples for each of these categories, to-
gether with examples of the assigned notes for the
open questions.

Most of the questions in the pre- and post-test
overlapped in order to assess students’ progress,
together with the effectiveness of the laboratory.
The pre-test was delivered before the introduction
of ourselves and of the course (see Section 4.1),
since we wanted to map their level of knowledge
on the topics of the laboratory to actively engage
the participants right away. The post-test was ad-
ministered on the last lesson (see Section 4.5), or
given by the last day as homework with a hard
deadline (and help from the local teachers, for
the deadline to be respected). It was presented
to students as a proper assessment test, in order to
encourage them to participate seriously and with
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Positive comment Improvable space management Improvable course structure Lack of engagement
Lack of time for programming Lack of time for theory Lack of clarity No suggestion

Figure 2: Grouped answers to the question: Do you have any comments, suggestions, or constructive criticism that
would be helpful in organizing future #DeactivHate laboratories?

commitment. For the 3rd and 4th edition, both the
questionnaires were held on the Moodle platform
of our main affiliation (University of Turin). For
the 5th and 6th edition they were held on Google
Forms, since, post-2020, many schools began using
Google Classroom as suite for online teaching.

6 Challenges and Lessons Learned

After six editions and seven teachers involved dur-
ing the years, we want to share our considerations
on challenges and lessons learned, since we be-
lieve it can be useful to open a deeper reflection
on teaching NLP and offensive language detection
nowadays in high schools. To carry out this anal-
ysis, we examined the answers to the anonymous
survey questionnaire on satisfaction, and the re-
sults of the pre- and post-tests. Then we gathered
together, sharing thoughts that emerged from read-
ing the results, recollecting the experiences of each
edition. All the questionnaires represented useful
instruments to assess the effect of our methodolo-
gies in different settings, to summarize the chal-
lenges we were able of addressing during the years,
and to highlight those that are still open.

6.1 Addressed challenges
We analyzed the anonymous opinions received
from students in the survey questionnaire, and we
grouped the replies in thematic groups. In Figure 2
we show the results.

In particular, we noticed a major difference re-
lated to time management between the online (first,
third, and fifth) and the offline editions (second,

fourth, and sixth). The laboratory started during the
period of the COVID-19 pandemic outbreak, which
forced us to deal with online teaching since the be-
ginning (even though the laboratory was originally
conceived to be held in praesentia). As teachers,
we perceived a difference in the students’ respon-
siveness in respect to offline teaching, specifically
worsening time management.

Online teaching was particularly challenging in
edition 1 because, in the first lessons, students were
all connected from a single computer, making the
interaction often filtered through the teacher in the
classroom. The same happened in the fifth edi-
tion by necessity of the school, with the additional
problem of having two classes of different levels
merged sharing the same room, thus leading to the
request for an improvement in space management
(see Figure 2). These experiences taught us how a
one-on-one interaction with students online is still
preferable than having the whole class connected
to one device, facilitating the possibility of engage-
ment and helping them not to get lost, especially
during the lectures dedicated to coding.

Looking at the pre- and post-test results in Fig-
ure 3 (administered from the third edition on, as
referenced in Section 5), it is possible to observe
an improvement in all the modules and editions. In
the fifth edition, we noticed a higher percentage of
students who have not assimilated concepts from
the CS module. This result can also be associated
with the fact that we worked with classes of two
different levels at the same time, having students
with different computer skills.
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Figure 3: Mean of correct answers in pre- and post-tests for the subset of students who completed both tests (120).

Similarly, in the sixth edition there were students
from different classes, since they could choose the
course as school-work experience11 on a voluntary
basis, and the lab was an extracurricular activity
for them. In this case, the improvements between
the pre- and post-test were consistent. On the other
hand, the strong request for more time for program-
ming (Figure 2) could be linked to the fact that the
teachers dedicated part of the fifth lesson to a visit
to the buildings of the Computer Science Depart-
ment of the University of Turin, thus ‘sacrificing’
time that would be typically dedicated to coding.

Despite these issues, the 6th edition showed us
the positive aspect of having a class of people who
volunteered to partake in the lab and, therefore, ex-
pressed an active interest on these topics, as demon-
strated by the higher percentage of positive com-
ments (Figure 2) and satisfaction.

A big challenge we encountered in the 4th edi-
tion was the presence of negative social bubbles in
the classroom, and their influence in approaching
hateful content, specifically linked to the figure of
a well-known hate spreader and misogynist. To ad-
dress this issue (also acknowledged by local teach-
ers), we spent more time on lessons dedicated to
the definition of hate speech and hateful content,
significantly engaging with the class; thus, reduc-
ing the available time dedicated to CS and coding.
This specific situation might be the cause of high
scores in “lack of clarity” (refer to the dark blue
portion in the graph, see Figure 2).

Moreover, we decided to share informative con-
tent on the topic with the local teachers, specifically
Bold Voices advice12 spread in Italy via the news-
paper “Internazionale”13.

11It is a compulsory activity foreseen in some types of
higher education institutions in Italy, after one of the last
Education reforms.

12https://www.boldvoices.co.uk/
13https://www.internazionale.it/

6.2 Open challenges

Throughout these years we addressed multiple chal-
lenges, nevertheless, there are still open issues that
need to be discussed and worked out.

For instance, a major difficulty we found from
the 4th edition on was to balance the introduction
of NLP basics, and students curiosity towards more
complex models such as LLMs, which are now part
of their daily life. In the fifth edition, we dedicated
around 10 minutes of the last lesson to introduce
a visual article published by the Financial Times
on the basics of generative AI14, also adding the
source to the advanced materials. This attempt was
taken positively, but a more effective strategy to
the entry of generative AI into the everyday lives
of our students is definitely needed.

Considering the overall interest towards more
hours of programming, another open challenge in-
tends to better balance the second part of #DEAC-
TIVHATE, introducing an additional (sixth) meet-
ing, and working step by step by launching the
programming part already from the second lesson,
if the rooms and tools of the schools allow for it.
We believe that delivering practical coding exer-
cises in parallel with the theory lessons would lead
to a more engaging setup. Furthermore, an extra
lesson would allow us to delve into unsupervised
learning, providing a comprehensive understand-
ing of fundamental NLP concepts. It could also
introduce alternative classification methods like
multilayer perceptrons or transformer architectures
such as BERT, offering at least a basic introduction
to these (slightly more) advanced topics.

Another challenge, linked to the fact that most
of the editions of the laboratory were part of a
larger school guidance project, is to harmonize

notizie/anna-franchin/2023/04/07/
andrew-tate-misoginia-violenza

14https://ig.ft.com/generative-ai/
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this objective and keep it always updated with the
involved students and teachers, reserving a proper
time and space for it.

Finally, we are aware that students’ awareness
changes according to social and cultural factors, so
it is important to make the laboratory flexible, and
able to meet the needs and interests of each group
we work with.

7 Conclusions

Our paper outlines the development and implemen-
tation of the #DEACTIVHATE laboratory, aimed at
empowering high school students to address hate
speech through computational thinking and NLP
techniques. The laboratory’s goals include intro-
ducing students to NLP techniques, raising aware-
ness about ethical issues in the digital world, and
fostering responsible technology usage. Through
six editions of the laboratory, we have reached a
diverse group of students, adapting methodologies
and activities to different settings and backgrounds.

The related work section contextualizes our
project within the broader academic landscape,
highlighting the importance of automatic hate
speech detection and educational initiatives for
promoting responsible digital citizenship. Our
approach incorporates practical exercises and uti-
lizes platforms like Google Colaboratory to provide
hands-on experience with NLP tools.

We describe in detail the teaching goals and
methodologies employed in the laboratory, which
include collaborative reading sessions, matrix de-
sign and analysis, practical coding exercises, and
real-life scenario exploration on social media. Each
lesson is designed to progressively build students’
understanding of hate speech detection and NLP
techniques.

The paper also presents the results of evalua-
tions conducted throughout the editions, including
pre- and post-tests administered to assess students’
knowledge and the effectiveness of the laboratory.
Challenges encountered during the implementation
of the laboratory are discussed, along with lessons
learned and open challenges for future iterations.

Ethics Statement and Limitations

This paper has limitations, primarily stemming
from our positionality as NLP academic re-
searchers based in Northern Italy, which inherently
introduces cultural and societal biases, as discussed
in the first part of the paper. Secondly, it is crucial

to consider that our theoretical framework concern-
ing Hate Speech within the #DEACTIVHATE labo-
ratory is situated within a European context. This
framework refers to legislation and directives de-
rived from the EU, as well as broader statements
from the European Commission against Racism
and Intolerance (ECRI).

• Different socio-cultural environments can in-
fluence the manifestation and perception of hate
speech, as well as the effectiveness of various de-
activation strategies. Therefore, while our insights
contribute valuable knowledge, we recognize that
they might (vastly) differ in contexts outside the
one we operated in.

• The Wheel of Privilege was originally developed
within the U.S., therefore it was adapted to our
framework by, for instance, substituting English
with Italian in the Language section of the Wheel
of Privilege. We also noticed the absence of a
‘slice’ regarding Religion. We believe that other
adjustments might be necessary, depending on the
context in which this laboratory will be taught.

• The Wheel of Privilege was originally developed
within the U.S., therefore it was adapted to our
framework by, for instance, substituting English
with Italian in the Language section of the Wheel
of Privilege. We also noticed the absence of a ‘slice”
of the pie regarding Religion. We believe that other
adjustments might be necessary, depending on the
context in which this laboratory will be taught.

• We acknowledge that some activities might be
triggering; therefore, we recommend careful con-
sideration of the teachers. For instance, the activity
carried out in Lesson 2 of researching hateful mes-
sages throughout social media pages, takes place
after thorough reflection on the target and potential
consequences.

• With our background and experience with this
phenomenon, both as researchers and activists, we
believe it is important it is crucial to highlight the
problem rather than hide it. The issue of online
hate is widespread, and young people are exposed
to it daily, making it essential to address it with
awareness and preparedness. Furthermore, the
class should be designed to be a safe space for ev-
eryone, with precautionary measures in place and
trigger warnings always provided (with the help of
local high school teachers).
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A Appendix

Edition Mode Period Type Grade and age N. of students

1st online April-June 2021 humanities III (15/16 y.o.) 21
IV (16/17 y.o.) 14

2nd in person October-December 2021 humanities IIIα (15/16 y.o.) 20
IIIβ (15/16 y.o.) 26

3rd online February-March 2022 technical
III (15/16 y.o.) 25
IV (16/17 y.o.) 20
V (17/18 y.o.) 19

4th in person April-May 2023 technical IVα (16/17 y.o.) 18
IVβ (16/17 y.o.) 24

5th online January 2024 technical IV (16/17 y.o.) 28 in totalV (17/18 y.o.)

6th in person February 2024 technical
III (15/16 y.o.)

17 in totalIV (16/17 y.o.)
V (17/18 y.o.)

Table 1: Details of the editions of the laboratory. In the second and fourth edition, we taught to two different classes
of the same grade (α and β).

Question Type Topic Example open answer Vote
By reading the following text you decide
whether it contains hate speech (hs) or does
not contain any (non-hs).

true/false CL

How is text written in natural language pro-
cessed by a machine/computer? Choose the
alternative

multiple choice CS

The following text contains at least one form
of hate speech. Choose the discriminatory phe-
nomenon you think best from the options be-
low and explain why. [Racism, Misogyny, Sex-
ism, Ageism, Homophobia, Abilism]

short answer C
This is a form of ageism because
generalizes on the age of the follow-
ers

0

"How can you put up such a vulgar picture,
shame on you, you are not up to being fol-
lowed by children, you should not set such an
example to an audience of kids/children fol-
lowing you"

misogyny, physical appearance is
judged and the content of the photo
is deemed "vulgar"

2

A practical example of an algorithm in every-
day life is...

long answer CS
A practical example of an algorithm
in everyday life is work.

1

To fix my hair for example I do a
series of "operations" that together
define the algorithm: 1) I take the
hair dryer; 2) I make sure my hair is
completely dry; 3) I take the foam;
4) I spread it on my hair so that it is
a bit curly; 5) I take the hair dryer
again; 6) I blow dry my hair; 7) I
take the gel; 8) I spread it on my hair
and fix it calmly hair by hair; 9) I
put down the gel, the foam and the
hair dryer.

5

Table 2: Example of different types of questions in respect to the three main topics of the course.
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B Available Materials

All the materials created for the #DEACTIVHATE laboratory are available at the following link:
https://github.com/deactivhate. Below, we provide a complete list of the files contained in the
GitHub repository. First, a general document explaining “how we structured the course”, and then 5
folders, one per lesson, containing the following materials:

Lesson 1:
• Icebreaker JamBoard
• Introduction to #DeactivHate (slides)
• Pre-test

Lesson 2:
• Social and personal identity + pyramid + hate speech definition (slides)
• Forms of hatred (slides)
• Tweets containing Hate Speech (spreadsheet)

Lesson 3:
• Machine Learning workflow - 1st part (slides)15

• Machine Learning workflow - 2nd part (slides)
• Bag of words matrix (spreadsheet)

Lesson 4:
• Colab + Python (slides)
• Introduction Colab Python (interactive python notebook)⋆

Lesson 5:
• Supervised Classification (interactive Python notebook)⋆16

• Extra material on Machine Learning workflow
• Post-test

⋆ The interactive notebook files for coding contain cells of code with one or more possible solutions of
the task. With the purpose of introducing students to manage strings and creation of NLP models, during
the lessons we used a version of these files without solutions provided.

> > > The ideal instructor(s) for teaching this course should have at least an expertise in the following
topics: hate speech detection and legislation, basics of natural language processing, high school teaching.

15In slide 25 of this presentation, we mention the already obsolete Twitter API as possible software to collect data online.
Probably best if updated.

16The dataset used inside this interactive notebook contains Italian texts. Datasets in other languages and on different topics
can be found, for instance here: https://live.european-language-grid.eu/.

65

https://github.com/deactivhate
https://live.european-language-grid.eu/


Proceedings of the Sixth Workshop on Teaching NLP, pages 66–68
August 15, 2024 ©2024 Association for Computational Linguistics

Tightly Coupled Worksheets and Homework Assignments for NLP

Laura Biester
Middlebury College

lbiester@middlebury.edu

Winston Wu
University of Hawai‘i at Hilo

wswu@hawaii.edu

Abstract

In natural language processing courses, stu-
dents often struggle to debug their code. In
this paper, we present three homework assign-
ments that are tightly coupled with in-class
worksheets. The worksheets allow students to
confirm their understanding of the algorithms
on paper before trying to write code. Then, as
students complete the coding portion of the as-
signments, the worksheets aid students in the
debugging process as test cases for the code,
allowing students to seamlessly compare their
results to those from the correct execution of
the algorithm.

1 Introduction

In natural language processing (NLP) and more
broadly in machine learning (ML) courses, home-
work assignments frequently involve training a
model that has been discussed in class on data pro-
vided by the instructor. Creating and training mod-
els is an important skill in NLP, but without proper
scaffolding, such assignments can lead to open-
ended questions posed to instructors and teaching
assistants along the lines of “the accuracy of my
model is lower than expected, but I don’t know why
or whether the current accuracy is acceptable.” In
part due to necessary implementation tricks (Xia,
2008) and the scale of data needed to train an ef-
fective model, NLP assignments often differ from
those in other computer science (CS) classes, in
which students can easily asses whether their solu-
tions are correct or not.

This paper introduces an approach designed to
mitigate this challenge—pairs of in-class work-
sheets and programming-based homework assign-
ments using the worksheet examples as test cases—
and then presents three such tightly coupled assign-
ments created within this framework.

2 Development

The idea of tightly coupled worksheets and pro-
gramming assignments stemmed from an NLP
mini-course for high school students. The course
took place over one week and was repeated three
times over three weeks with new groups of students,
allowing for rapid iterative improvement of the ma-
terials. The assignment was originally given with
little scaffolding, and students struggled signifi-
cantly to connect the exercise performed on a work-
sheet (sentiment classification with Naive Bayes
using words as features) to the exercise performed
in a programming lab assignment (language iden-
tification using character bigrams), even though
the programming assignment included extensive
starter code and significant real-time support (12-
14 students programmed in pairs in a room with an
instructor and a teaching assistant). In later itera-
tions of the course, students were given a worksheet
with a concrete example of Naive Bayes for lan-
guage identification, and the assignment suggested
that they use the same example as a test case in
their code.

While this scaffolding was strictly necessary for
high school students with minimal programming
experience, we found that it can also be useful for
undergraduates. In an NLP course for upper-level
undergraduates,1 the same assignment was used
along with a similar tightly-coupled worksheet that
students completed during class. The added scaf-
folding was particularly useful given that (a) stu-
dents were primarily working on their programs
without real-time instructor support and (b) the raw
number of homework assignments for the course
(seven assignments) was fairly high compared to
other NLP courses, requiring that each homework
assignment be slightly easier to complete.

1The course had data structures and discrete mathematics
as prerequisites; prior experience with machine learning was
not assumed.
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3 Approach

During the lecture, a worksheet is distributed to
students. The worksheet’s purpose is to provide stu-
dents with an opportunity to practice the execution
of the algorithm with step-by-step calculations on
paper. This ensures that the student understands the
algorithm before adding in the complexity of pro-
gramming. Others have found similar worksheets
helpful in reinforcing students’ understanding (Eis-
ner, 2002).

Then, a tightly coupled programming assign-
ment asks the students to implement the algo-
rithm in Python that they practiced with the work-
sheet. The student is provided two testing scripts:
test.py and test_mini.py. test.py trains and
tests the student’s model on a large dataset and out-
puts accuracy or another metric as the final output.
Meanwhile, test_mini.py trains and/or tests the
model with the exact data that was provided on
the worksheet. This allows students to easily see
if their code’s result matched the result from their
worksheet, giving them an objective signal beyond
standard ML metrics to help students determine
whether their implementation was correct.

While students could in theory implement the
same test cases that are written in test_mini.py
independently, providing them to students stream-
lined the development process, allowing them
to focus on the details of the algorithm. Us-
ing test_mini.py encourages students to develop
good habits by testing with familiar data first when
developing their own models outside of class.

4 Assignments

We describe three tightly coupled assignments,
which are shared with this publication.2 Complete
starter code and autograders are available on re-
quest.

4.1 Assignment 1: Language Identification
with Naive Bayes

The first assignment is to build a Naive Bayes lan-
guage identification model with character n-gram
features. While students eventually train and test
their model on eight languages,3 the worksheet fo-
cuses on just Spanish and English. Students count
and smooth the character bigrams in three training
instances, and then employ the model to classify a

2See this github repository.
3The languages included are Chinese (Mandarin), English,

French, German, Italian, Russian, Spanish, and Turkish.

new word. The worksheet also includes a section
on evaluating classifier performance by computing
accuracy and creating a confusion matrix.

4.2 Assignment 2: Part-of-Speech Tagging
with Hidden Markov Models

The second assignment is to build a Hidden Markov
Model for Part-of-Speech tagging. On the work-
sheet, students fill out a table with the values that
would be stored while executing the Viterbi algo-
rithm using log probabilities. For homework, stu-
dents write code to implement the Viterbi algorithm
and optimize smoothing parameters.

4.3 Assignment 3: Beam Search for Text
Generation

The third assignment is to implement beam search
for text generation. The assignment assumes ac-
cess to a model that outputs the probabilities of
the n most probable tokens given a sequence of
tokens.4 On the worksheet, students perform beam
search with the help of a Google Colab notebook
that provides a high-level interface to interact with
the language model (a function takes in token IDs
as input and returns a dictionary where the keys are
the n most probable token IDs and the values are
their probabilities).5 A similar function is provided
as part of the programming assignment, and stu-
dents’ experience with it serves as a starting point
when implementing the algorithm.

5 Student Reception

The instructor observed that most students relied
heavily on the provided test_mini.py scripts and
used them to debug during office hours. Students
frequently referenced the calculations that they
had made on the worksheets as part of their pro-
gramming process. Some students needed to be
prompted to check their model’s internal data struc-
tures if the final result was incorrect, but by doing
so were able to fix bugs in their code. Having
ground-truth values of intermediate computations
already worked out on their worksheets allowed
them to isolate the component of their code that
was not working. Afterward, multiple students
gave positive unsolicited feedback about the struc-
ture of the assignments, such as they “liked how

4We used GPT-2 (Radford et al., 2019), but another model
could be plugged in here, or the assignment could be modified
to focus on machine translation.

5All other worksheets could be completed on paper, al-
though some students completed them on tablets with dis-
tributed PDFs.
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the worksheets used the same examples that they
started with for the programming assignments.”

6 Limitations

6.1 Scope of On-Paper Test Cases

The examples on the worksheets provided to stu-
dents did not capture all possible bugs that stu-
dents could encounter while programming. While
it would be possible to add complexity to the work-
sheets’ examples to help students catch bugs early,
there is some pedagogical value associated with
allowing them to learn about how such features in
the data could affect their models on their own.

6.2 Application to Pre-Trained Models

Applying this approach to large pre-trained mod-
els is less natural than applying it to Naive Bayes
and Hidden Markov Models; for instance, it would
be impossible to compute the correct output of a
BERT model (Devlin et al., 2019) by hand on pa-
per. Assignment 3 demonstrates one method for
incorporating pre-trained models, but without any
training. Future work could explore the possibility
of creating small-scale test models for educational
purposes that use the same API as large pre-trained
models but have a minimal number of weights,
which could then be used on worksheets and in
test_mini.py-type programs.
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Abstract

This paper presents teaching materials, particu-
larly assignments and ideas for classroom activ-
ities, from a new course on large language mod-
els (LLMs) taught at Charles University. The
assignments include experiments with LLM
inference for weather report generation and ma-
chine translation. The classroom activities in-
clude class quizzes, focused research on down-
stream tasks and datasets, and an interactive
"best paper" session aimed at reading and com-
prehension of research papers.

1 Introduction

Reflecting contemporary trends in education is a
challenging task. The teachers often need to decide
which promising topics to cover in their course and
which topics are better to leave for discussion in
reading groups. The unstable nature of research
progress also means that courses that are not up-
dated regularly lose their relevance in time. How-
ever, when the trend becomes as prominent as large
language models (LLMs) have become, the need
for a systematic overview in the form of a special-
ized course gets increasingly urgent.

This paper presents one of these efforts – a new
course taught at Charles University composed of
a series of LLM-related lectures and interactive
sessions. During its first year in 2024, 51 students
enrolled in the optional course, mainly attending
local BSc or MSc study programmes.

The course is composed of 13 sessions with var-
ious levels of interactivity, including lectures, di-
rected discussions on the current topic, quizzes,
as well as practical work with LLMs (Section 2)
and other classroom activities (Section 3). After a
broader discussion in the first session, the course
focused on the following topics: The Transformer
model (Vaswani et al., 2017), LLM training and
inference, data collection and evaluation, LLM ap-
plications, efficiency, multilinguality, speech pro-

cessing, translation, meaning/understanding, and
ethics of LLM training and use.

All course materials, including slides, record-
ings, and assignments, are available on the course
website.1

2 Assignments

We organized two assignment-based sessions fo-
cused on (1) generating weather reports using
LLMs and (2) using LLMs for machine translation
(MT). For each task, we ran instances of different
models on our GPU cluster with an API provided
by the text-generation-webui2 package. The
API allowed the students to access and configure
the models without the need to access specialized
hardware or rely on commercial platforms.

In both tasks, the students worked in small teams
(up to 5 people), and were provided with a starter
code3 that would call the model API with a spec-
ified set of parameters. Besides choosing the ap-
propriate prompts, the teams experimented with
various decoding parameters, including the sam-
pling temperature, the k and p parameters for top-k
and top-p sampling, and the beam size.

Text Generation. In this task, the students were
asked to generate weather reports in natural lan-
guage using an LLM. The students were provided
with a selection of JSON files retrieved from the
openweathermap.org API for various cities. The
assignment was divided into 4 subtasks: (1) gener-
ating a report about the current weather, (2) gener-
ating a 5-day forecast, (3) generating a report in a
language other than English, and (4) changing the
forecast style (e.g., for specific target groups).

The four models the students experimented with

1https://ufal.mff.cuni.cz/courses/npfl140
2https://github.com/oobabooga/

text-generation-webui
3https://github.com/kasnerz/npfl140
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were Mistral 7B,4 Mistral 7B Instruct (Jiang et al.,
2023),5 Phi-2 (Javaheripi et al., 2023),6 and Aya-
101 (Üstün et al., 2024).7 The students reported on
the difficulties of generating factually accurate out-
puts from the models, confirming recent findings
(Kasner and Dušek, 2024). They also proposed
improved data preprocessing, prompt formatting,
and decoding parameters.

Machine Translation. In the MT assignment,
the teams were given paragraphs of text in 21 (un-
known) languages and instructed to translate them
using an LLM into English and then into a language
of their choice. Again, the students experimented
with prompt engineering and decoding parameters.

For the first part, we created a simple web app8

for submitting the English translation, which com-
puted the Character F-score (Popović, 2015) and
showed a leaderboard of the 10 best-scoring teams
per language during the session. After the assign-
ment, the leaderboard can be configured to show
the source language and the reference translations.
The leaderboard then shows all submissions made
to the app except those marked as debug submis-
sions. In the second part of the assignment, the
students were asked to experiment with translation
into a language of their choice. They should submit
a report, which is due a week after the hands-on
session.

We used a slightly different set of models com-
pared to the previous assignment. Mistral 7B
Instruct and Aya-101 remained, and we added
translation-specific models Tower Instruct (Alves
et al., 2024) and ALMA-R (Xu et al., 2024).

When translating into English from medium-
resourced languages, the students could gener-
ally match the quality of commercial MT systems.
However, translating into their languages (e.g., Slo-
vak, Ukrainian, Georgian, Serbian) appeared chal-
lenging.

3 Classroom Activities

Discussions. Discussion among the students was
a recurring activity in many of the sessions. To en-
courage as many students to participate, we either
let them discuss in small groups and then present

4https://hf.co/mistralai/Mistral-7B-v0.1
5https://hf.co/mistralai/

Mistral-7B-Instruct-v0.1
6https://hf.co/microsoft/phi-2
7https://hf.co/CohereForAI/aya-101
8https://github.com/jlibovicky/

llm-mt-assignment

their position, or we used interactive slides to col-
lect and show their input in real-time,9 which also
encouraged less self-confident students to share
their opinion.

Discussion is an effective method for teaching
non-technical topics. In the final session on this
course, we focused on two primary areas. The first
area involves the question of whether LLMs can
truly understand language. We recommend engag-
ing students in discussions about various thought
experiments (e.g. Searle, 1985; Bender and Koller,
2020) and exploring both sides of the debate: those
who argue that it is impossible (e.g. Bender et al.,
2021) and those who believe it is possible to some
extent (e.g. Andreas, 2022; Søgaard, 2022). The
second area covers ethical considerations. Here,
students discussed environmental and labor issues
related to training LLMs (e.g. Bender et al., 2021)
and the broader challenges associated with the de-
velopment and deployment of language technolo-
gies (e.g. Jørgensen and Søgaard, 2023).

Class Quizzes. Every session began with a short
multiple-choice quiz based on the topics from the
previous class. These quizzes were implemented
using a simple web app10 that shows a QR code
to join the quiz, and after a certain amount of
time, it shows the results. Each question can be
answered multiple times until the correct choice
is selected, providing immediate feedback to the
students. When the time is up, the app shows the
correct answers and the number of unsuccessful
attempts for each incorrect choice.

At the final session, students complete a simi-
lar immediate-feedback test in the form of scratch
cards (Epstein et al., 2001).

Downstream tasks and datasets. During the
class on LLM fine-tuning, we asked the students
to split into groups and assigned downstream tasks
(summarization, code generation, hate speech de-
tection, and machine translation). The students
were supposed to find suitable datasets and evalua-
tion metrics. The groups presented their findings
to the class and then discussed the potential draw-
backs of the benchmarks and evaluation metrics.

Reading research papers. One of the goals we
set for the course was to teach the students to re-
sponsibly assess the quality and trustworthiness of
recent research papers. We organized an activity

9Slido: www.slido.com
10https://github.com/jlibovicky/class-quiz
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where the students role-played a best-paper com-
mittee, partially inspired by the Role-Playing Paper-
Reading Seminars (Jacobson and Raffel, 2021).

We selected five papers to encourage critical as-
sessment of the values of model descriptions (Jiang
et al., 2023; Schick et al., 2023) and analytical
works (Basmova et al., 2023; Balloccu et al., 2024;
Yoon et al., 2024). Each student was randomly
assigned one of the papers to read thoroughly.

During the class, we first divided the students
into groups containing at least one student per ar-
ticle, where the students explained the papers to
each other. Then, the students re-grouped by their
assigned article, where they discussed the paper
again and nominated an advocate for and against
it. Then, the advocates presented their final one-
minute speeches. Finally, students secretly voted
for the best paper using an online form.

4 Conclusion

We presented teaching materials and class activities
for a new LLM course taught at Charles Univer-
sity. In the first year, 51 students enrolled course of
which around 30 were actively participating. We
expect a larger attendance in the following years
after the course is upgraded from optional to elec-
tive.11 All classroom activities can be applied in
larger cohorts as well. Scaling up the LLM-based
assignments for larger number of students might
pose an issue for institutions with limited access
to computing resources. However, we used four
model setups (for each we needed one GPU) that
were available for all the students, and so we used
up only a relatively small portion of the resources
available in our GPU cluster. We therefore expect
no severe issues with scaling up to a few hundreds
of active students. The availability of enough teach-
ing assistants to ensure proper feedback to the stu-
dents will potentially become a more significant
issue.
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Abstract
The rapid advancements and the widespread
transformation of Large Language Models,
have made it necessary to incorporate these
cutting-edge techniques into the educational
curricula of Natural Language Processing
(NLP) with limited computing resources. This
paper presents an applied NLP course designed
for upper-year computer science undergradu-
ate students on state-of-the-art techniques with
an emphasis on multilinguality and language
diversity. We hope to empower learners in ad-
vancing their language community.

1 Introduction to Pedagogical Approach

We present a newly designed Natural Language
Processing (NLP) course for upper-year computer
science students at a primarily undergraduate teach-
ing institution of a diverse multicultural audi-
ence. The rapid advancement in the field poses
a significant challenge for educators to adequately
cover both traditional linguistic techniques in ad-
dition to the latest neural techniques and large
language model (LLM) developments (Goldberg,
2016; Santra et al., 2023). Therefore, to ad-
dress these challenges, our course emphasizes self-
directed learning by incorporating hands-on labs,
assignments1, and two exams, all designed to pro-
mote in-depth and robust life-long learning.
Target Audience: Demographically, the local
region is known for multiculturalism where the
institution is composed of a high proportion of
first-generation immigrants who speak their na-
tive tongue. Turning challenges into opportunities,
this course covers multilinguality and language di-
versity, which is ideal for empowering the local
student population. Furtheremore, this course is
designed for senior undergraduate students in com-
puter science, with the prerequisites of linear alge-
bra, calculus, probabilities, and most importantly

1Public Access of the Course Assignments can be found
at https://github.com/Kosei1227/OTU-LLM-Course

machine learning (introductory). Some junior grad-
uate students may also join the course if they have
an interest in NLP research.
Learning Outcomes The learning outcomes of
the course are: 1) Understanding and knowing
the NLP concepts, terminology, tasks, methods,
and techniques; 2) Modifying and debugging NLP
code with comfort and proficiency; 3) Applying
advanced NLP techniques in building and extend-
ing LLMs; 4) Connecting personal cultural and
personal experiences to the latest work in multilin-
guality and language diversity.

2 Course Structure and Content

The course is 12 weeks long with 9 weeks of lec-
tures and 3 weeks for invited speakers who are
working in multilinguality and language diversity
(Table 1). There are weekly in-person labs with
optional TA assistance, where students run Python
notebooks and answer short quiz questions related
to the code. Then there are 3 assignments, each de-
signed to complement the materials covered in the
lecture. The lectures are used to cover the problems
and methods of the assignments at a high level and
then allow learners to have hands-on implemen-
tation of the material. The course has a midterm
exam and a final exam to ensure learners grasp the
foundations of the materials.
Assignment 1: A Journey through Language
Modelling. This assignment introduces students to
the foundations of language modelling applied to
low-resource languages. The goal is to introduce
a series of language models that are increasing in
complexity (Gaddy et al., 2021). Students will gain
experience loading datasets of low-resource lan-
guages, which they will process, tokenize, and use
to construct custom vocabularies (Schmidt et al.,
2024). First, students begin by implementing a ba-
sic statistical n-gram model (Brown et al., 1992),
followed by a feed-forward neural n-gram model,
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Week Lecture Topics Lab Notebooks Assignments
1 Course Introduction Python and Regex
2 Corpus Statistics and n-Gram Language Model N-Gram Language Modelling
3 Entropy Decisions PyTorch Introduction A1
4 Machine Learning and Feature Classification Naive Bayes and Text Classification
5 Neural Language Models Word Embeddings and Vector Semantics
6 MIDTERM EXAM RNN MIDTERM
SB STUDY BREAK
8 Attention and Transformers Pytorch and Attention A2
9 Large Language Models Transformer (Illustrated and Annotated)
10 Multilinguality and Language Diversity HuggingFace1
11 Multilinguality and Language Diversity HuggingFace2 A3
12 Multilinguality and Language Diversity Transfer Learning

FINAL EXAM FINAL

Table 1: Contents of the weekly lectures and corresponding lab notebooks.

and finally, the transformer language model (Vig
and Belinkov, 2019). After the series of imple-
mentations, students conduct an open-ended explo-
ration, attempting to improve results beyond the
given exercise, either from a list of provided ideas
or based on their intuition. 2

Assignment 2: Neural Machine Translation with
Custom Vocabulary Building & Transformer.
This assignment covers the foundational principles
of neural machine translation (NMT), through the
integration of a custom transformer architecture.
After the hands-on processing of low-resource lan-
guages, students implement a custom transformer
(Vaswani et al., 2023) class through the use of Py-
Torch modules and layers (Radford et al., 2023),
exposing students to the architecture’s inner work-
ings. The model’s construction will conclude by
integrating forward and masking methods with Py-
Torch classes. Following the creation of their mod-
els, students craft a custom training loop, where
they gain hands-on experience working with gra-
dient descent optimization (Robbins, 1951), back-
propagation (Rumelhart et al., 1986), and loss func-
tions (LeCun et al., 2015). Finally, the assignment
will conclude by allowing students to evaluate the
translation performance of their hand-crafted mod-
els, through the use of industry-standard metrics,
such as the BLEU score (Papineni et al., 2002).
Upon completion of this assignment, students will
have developed a holistic understanding of core
NLP principles along with a strengthened machine
learning foundation.
Assignment 3: Adapting Languages with Fine-
Tuning. This assignment guides students through
the process of adapting existing language models to

2This assignment is from UC Berkeley’s Computer Sci-
ence graduate NLP course (cs288) Interactive Assignments
for Teaching Structured Neural NLP, Project 1: Language
Modeling https://sites.google.com/view/nlp-assignments

a low-resource language, providing hands-on expe-
rience with modern neural machine translation tech-
niques and transfer learning strategies. Students
will begin by selecting a low-resource language,
leveraging datasets from prior NMT research, and
exploring various fine-tuning methods, such as full
parameter fine-tuning, LoRA (Hu et al., 2021), and
prompt tuning (Lester et al., 2021). The rationale
for the chosen strategy must be discussed, empha-
sizing efficiency and effectiveness given the con-
straints of limited computational resources. Using
appropriate software and repositories, students will
fine-tune the language models and develop custom
benchmarks to evaluate performance. The assign-
ment will culminate in a comprehensive evaluation
of the adapted models against baseline models, en-
abling students to critically analyze and understand
the impact of their modifications. This assignment
builds upon students’ knowledge of neural architec-
tures, such as Transformers (Vaswani et al., 2023),
and equips them with the skills to undertake re-
search in NLP by focusing on real-world applica-
tions and interactive learning methods.

3 Conclusion

A recent challenge in NLP pedagogy is the rapid
advancement of LLMs and the consequent surge in
computational requirements(Kaplan et al., 2020).
In light of those challenges, our course is designed
to ensure learners remain abreast of the latest tech-
niques emphasizing multilinguality and language
diversity to empower students and their communi-
ties of the institutional and local demographic. We
hope to cultivate essential lifelong learning skills
that empower them to adapt to the ever-evolving
landscape.
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A Appendix

Technical Stack All technical and teaching ma-
terials are integrated into a cloud environment ac-
cessible by internal students. The libraries and
packages used for the environment are: 1) Debian
OS - TensorFlow Jupyter Notebook with CUDA
driver installed so that it can utilize the server GPU
hardware; 2) Python libraries installed are: NLTK,
Gensim, SciPy, PyTorch, Portalocker, tqdm, and
scikit-learn. 3 3) Regarding the NLTK and Gen-
sim libraries, it has datasets/models already baked
into the image. The students/users won’t need to
download them, it saves up storage space.

The current jupyter environment load all the lab
contents the moment a user logins into the hubdev.
Student can login now and test it. There are some
behaviours applied to for the sake of the student
and ease-ability of updating the lab content: The
lab content files in the student’s home directory
will always get updated to match that from the
Docker image. If in the middle of the semester you
want to change the lab content, it will be easier
to just update the docker image and all students
will receive the updated lab in their home directory
(as long as they log out / restart their notebook).
The lab content (.ipynb, .csv, and .txt files) are all
"read-only" files. Students have to save-as a new
.ipynb file for saving their lab progress. Jupyter
will alert them to save-as. This is to avoid cases
where a student accidentally deleted or modified
the original lab content. So that there will not be
the case where a student is messaging the prof in
the middle of the night just because they made a
mistake and asks for a copy of the original file. If a
student deleted the lab content file (they really have
to work out of their way to do this), they will just
need to restart their notebook and the lab content
will be there again.

3More libraries or packages can be added if the assign-
ments/labs are updated.
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Abstract

This paper presents a shared task that we orga-
nized at the Foundations of Language Technol-
ogy (FoLT) course in 2023/2024 at the Techni-
cal University of Darmstadt, which focuses on
evaluating the output of Large Language Mod-
els (LLMs) in generating harmful answers to
health-related clinical questions. We describe
the task design considerations and report the
feedback we received from the students. We
expect the task and the findings reported in this
paper to be relevant for instructors teaching nat-
ural language processing (NLP) and designing
course assignments.

1 Introduction

The Foundations of Language Technology (FoLT)
course, a regular offering at the Technical Univer-
sity of Darmstadt, provides undergraduate and grad-
uate students with a comprehensive introduction to
the fundamental concepts and technologies of Nat-
ural Language Processing (NLP). In the 2023/2024
academic year, we have updated the curriculum
to incorporate the latest advancements of Large
Language Models (LLMs). The course is struc-
tured into 14 lectures, supplemented by 9 hands-
on coding tutorials that allow the students to rein-
force their understanding of key concepts learned
in the previous lectures. In addition, we organized
a shared task to challenge students to evaluate the
output of LLMs in generating harmful answers to
clinical questions related to health. The primary
goal of this shared task is to help students gain
practical experience in applying NLP techniques
and tools to a real-world research problem that
involves data annotation, preprocessing, model de-
velopment, and model evaluation.

In this paper, we describe the task design and
discuss the lessons learned from implementing the

* Correspondence to yhou@ie.ibm.com.

Category Definition
Contradiction the sentence contradicts with one

or more statements from the gold
answer

Exaggeration the sentence exaggerates the ef-
fect(s) of one or more statements
from the gold answer

Understatement the sentence weakens the effect(s)
of one or more statements from the
gold answer

Agree the sentence agrees with one or
more statements from the gold an-
swer

Cannot access the sentence’s content is beyond the
scope of the gold answer

General com-
ment

the sentence provides general com-
ment that are irrelevant to the spe-
cific content of the question q and
can be applied to any questions,
such as “It is crucial to consult with
a healthcare provider for personal-
ized recommendations”.

Table 1: Fine-grained answer categories

shared task, which can offer insights for educators
seeking to develop similar assignments for their
own courses.

2 Task Details

2.1 Task Design

Given a health-related clinical question q, and two
corresponding answers a from human experts and
a′ from an LLM, the objective of our shared task
is two-fold: (i) harmfulness detection by determin-
ing whether a′ contains harmful information. We
consider a′ to be harmful if it contains contradic-
tory or exaggerated information compared to a; (ii)
fine-grained answer categorization by assigning a
specific category label to each sentence within a′.
Table 1 summarizes the six categories we consid-
ered, and Figure 1 shows an answer from an LLM
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Figure 1: Annotating LLM answers with fine-grained categories

that annotated with fined-grained categories for the
question “can adding multiple micronutrients to
food improve health in the general population?”.

2.2 Task Dataset
For the shared task, we utilize Cochrane Clinical
Answers1, a trusted resource that provides con-
cise, evidence-based responses to clinical questions
grounded in rigorous Cochrane systematic reviews.
Each CCA consists of a clinical question, a brief an-
swer, and relevant outcome data extracted from the
corresponding Cochrane systematic review, specifi-
cally curated for practicing healthcare profession-
als. We collected a dataset of 500 CCAs published
between 2021 and 2023, assuming that the answers
written by clinical professionals represent accurate
and truthful responses to the target questions.

3 Shared Task Implementation

We divide the shared task into four sub-tasks and
require each participating team to consist of 2-3
members. The first two sub-tasks focus on data
annotation and processing, while the latter two con-
centrate on developing and evaluating both basic
and state-of-the-art models.

For the first two sub-tasks, each team is assigned
to work with a set of ten CCAs. To complete these
sub-tasks, each student needs to set up the annota-
tion environment using Label Studio (Tkachenko
et al., 2020-2022), carry out the annotations for
answers from different LLMs, calculate the inter-
annotator agreement, submit individual annotations
and consolidated group annotations after resolving
any disagreements. To help students to quick grasp
the professional medical concepts, we provide ex-
planations of key terms from gold-standard CCA

1https://www.cochranelibrary.com/cca

answers in plain language, based on an online Med-
ical Terms in Lay Language Dictionary2, such as
“hypotension: low blood pressure”.

In total, 55 teams participated in the first two sub-
tasks. After merging and cleaning the annotations
from all teams, we compiled a dataset of 1800 anno-
tated answers from five LLMs for 360 CCAs. We
then divided the dataset into dev and test sets, com-
prising 500 LLM answers for 100 CCAs and 1,300
LLM answers for 260 CCAs, respectively. The five
testing LLMs include Llama-2-70b-chat (Touvron
et al., 2023) with two different system instructions,
OpenAI ChatGPT3, Microsoft BingChat4, and Per-
plexityAI5. The specific prompts employed to test
these LLMs are detailed in Appendix A.

For the third sub-task, we released the dev
dataset to the students. Each team needs to write
code to analyze human annotations and answer a
list of questions, such as “Do retrieval augmented
LLMs (BingChat, PerplexityAI) generate less harm-
ful content compared to other models?” More de-
tails about the analyzed questions can be found in
Table 2. In addition, we instructed the students to
train two baseline models - a decision tree and a
simple neural network model - for the two classifi-
cation tasks outlined in Section 2.1.

For the fourth sub-task, the teams were required
to design prompts to elicit responses from LLMs
for the two classification tasks described in Section
2.1. Each team can submit up to three predictions
on the test set for each task. Participants had the
option to compete in either the open track or the

2https://hso.research.uiowa.edu/get-started/
guides-and-standard-operating-procedures-sops/
medical-terms-lay-language

3https://chatgpt.com/
4https://www.bing.com/chat
5https://www.perplexity.ai/
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Derive Insights From Human Annotations
Q1: Do retrieval augmented LLMs (BingChat, Per-
plexityAI) generate less harmful content compared
to other models?
Q2: How much does the harmfulness of gener-
ated answers vary between different prompts of the
same LLM model?
Q3: To what degree does the harmfulness of gen-
erated answers differ between open-source LLMs
and commercial LLMs?
Q4: In which topics do LLMs produce less harmful
content?
Q5: Do LLMs exhibit similar patterns of generat-
ing harmful content across different topics?

Table 2: Questions analyzed in the third sub-task.

closed track. In the closed track, teams were re-
stricted to using the pre-defined LLM, Mistral-7b-
instruct, to perform the task, whereas the open track
placed no such constraints on the LLMs that could
be used. To facilitate participation in the closed
track, we set up a Hugging Face endpoint inference
service hosting a Mistral-7b-instruct-v02 model for
two weeks, incurring a cost of $85.

4 Shared Task Results

Grading system. Our grading system is designed
to assess student performance across four sub-tasks.
Each sub-task is worth 100 credits, which are al-
located as follows: For the first two sub-tasks,
students earn credits based on their annotation ef-
fort, including submitting individual and adjudi-
cation annotations, and correctly calculating inter-
annotator agreement scores. For the third sub-task,
students are automatically graded on the code snip-
pets they write to fulfill the task goal. The credits
for the fourth sub-task is divided into the following
three components:

1. Completing code snippets for prompting
LLMs through APIs (30 credits);

2. Submitting prediction files for the testing
dataset for both closed and open tracks (30
credits);

3. Performance on the leaderboards of the closed
and open tracks (40 credits). Specifically,
if a team’s rank is k on the closed track
leaderboard and there are n teams partici-
pating for the closed track, then all mem-
bers from this team will receive the credit
c = 20/n ∗ (n+ 1− k).

To qualify for a bonus point, which upgrades
their final grade in the course (e.g., from 2.0 to
1.7), students must meet two conditions: 1) pass
the final written exam, and 2) participate in all four
sub-tasks and obtain at least 70% of all points.

Students’ performance. A total of 121, 130,
110, and 94 students participated in the first, sec-
ond, third, fourth sub-tasks, respectively. Overall,
87 students participated in all four sub-tasks, and
74 of them received the bonus points.

5 Discussion and Conclusions

During the shared task, we received diverse feed-
back from participants. Students with a linguistic
background generally found setting up the annota-
tion environment and performing annotations to be
engaging tasks, whereas some from a computer sci-
ence (CS) background perceived the annotation pro-
cess as too time-consuming. Notably, the majority
of students expressed a preference for the third sub-
task, while the fourth sub-task was widely regarded
as the most challenging. For future iterations, stu-
dents recommended reducing the annotation load
or selecting topics that require less domain-specific
knowledge to facilitate judgment.

One potential limitation of our shared task de-
sign is that students were involved in constructing
the test set, which may have given them implicit
knowledge that could influence their prompt de-
sign in the fourth sub-task. However, we mitigate
this risk by noting that each team only annotated
a small proportion of CCAs (10), which, even in
the worst-case scenario, would only account for
3.8% of the entire testing dataset. It is therefore
unlikely that overfitting to these “leaked” instances
would guarantee good performance on the whole
testing dataset. Nevertheless, to eliminate any po-
tential bias, we recommend that in future iterations,
course instructors should keep the testing dataset
completely hidden from participants to ensure a
more robust evaluation.

Finally, following the shared task, we in-
vited participants to voluntarily consent to do-
nate their annotations to an open-source dataset.
In total, we collected 850 annotated LLM an-
swers for 130 CCAs. We release this dataset
to the community to support future teaching
and research endeavors: https://github.com/
UKPLab/folt-shared-task-23-24.
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A Prompts for Testing LLMs

Llama-2-70b-chat Prompt 1:
Provide a concise answer for the following
question. {Question}

Llama-2-70b-chat Prompt 2:
You are a helpful, respectful and honest assistant.
Provide a concise answer for the following
question. Always answer as helpfully as possible,
while being safe. Your answers should not
include any harmful, unethical, racist, sexist, toxic,
dangerous, or illegal content. Please ensure that
your responses are socially unbiased and positive
in nature. If a question does not make any sense,
or is not factually coherent, explain why instead
of answering something not correct. If you don’t
know the answer to a question, please don’t share
false information. {Question}

ChatGPT/BingChat/PerplexityAI Prompt:
Provide a concise answer for the following
question. {Question}
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1 Introduction

As the scale of publicly-available large language
models (LLMs) has increased, so has interest in
few-shot prompting methods. This paper presents
an assignment that asks students to explore three
aspects of large language model capabilities (com-
monsense reasoning, factuality, and wordplay) with
a prompt engineering focus.

The assignment consists of three tasks designed
to share a common programming framework, so
that students can reuse and adapt code from earlier
tasks. Two of the tasks also involve dataset con-
struction: students are asked to construct a simple
dataset for the wordplay task, and a more challeng-
ing dataset for the factuality task. In addition, the
assignment includes reflection questions that ask
students to think critically about what they observe.

2 Course Context

This assignment was designed for an advanced un-
dergraduate Natural Language Processing course.
The corresponding lectures cover prompting tech-
niques like chain-of-thought reasoning and contin-
uous prompting, as well as limitations of LLMs.
By this point in the semester, students are famil-
iar with the mechanics of LLMs, from byte-pair
tokenization (Gage, 1994; Sennrich et al., 2016) to
multi-head attention (Vaswani et al., 2017). Stu-
dents had one week to complete the assignment.

3 Learning Goals

This assignment is designed to allow students to
explore three different aspects of LLM capabilities
by experimenting with prompting techniques. The
learning goals for the assignment are as follows:

• Build programs that interface with LLMs
• Explore various ways of constructing prompts
• Construct datasets to explore LLM capabili-

ties related to factuality and wordplay
• Critically analyze LLM capabilities

Pig Latin
papaya -> apayapay
Commonsense Reasoning (from Roemmele
et al. (2011))

1. Premise: The man broke his toe.
Question: What was the CAUSE of this?
(a) He got a hole in his sock.
(b) He dropped a hammer on his foot.

Notable Scientist Facts
1. What is Barbara Partee’s field of study?

(a) Linguistics
(b) Physics

Figure 1: Example items from the three main tasks

4 Assignment Design

This assignment consists of three core tasks, each
exploring a different aspect of LLM capability.

4.1 Task 1: Wordplay

In Task 1, students explore the ability of a pre-
trained LLM to solve one kind of wordplay puzzle:
Pig Latin. Pig Latin is a language game in which
the initial consonants of a word are removed and
appended to the end along with the syllable “ay”
(Figure 1). Although the pattern is simple, the sub-
word tokenization used by contemporary LLMs
may make it more challenging to recognize.

This task consists of five subtasks, plus a set of
reflection questions:

1. Create a Pig Latin dataset of 20 words
2. Write a function to generate prompts
3. Write a function to submit a single prompt to

the model
4. Write a function to post-process a completion

and extract the answer
5. Write a function to run the prompting ex-

periment on the entire dataset and report the
model’s performance
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Students were required to experiment with three
aspects of the prompt: providing examples (few-
shot prompting), describing the task in different
ways, and varying the format of the examples.

The analysis questions asked students to make
observations about the effect of different prompt
formats, and to comment on factors that might af-
fect the model’s performance. I was particularly
hoping that students might pick up on the fact that
subword tokenization makes this task more chal-
lenging, since they were familiar with byte-pair
encoding tokenization.

4.2 Task 2: Commonsense Reasoning

In Task 2, students explore pretrained LLM per-
formance on a commonsense reasoning bench-
mark: the Choice of Plausible Alternatives (COPA)
task (Roemmele et al., 2011) from the SuperGLUE
suite of LLM benchmarks (Wang et al., 2019). The
dataset targets model understanding of real world
cause and effect relationships (Figure 1).

The subtasks for this part were similar to those in
Part 1, except that students did not have to construct
their own dataset. However, some students did find
the JSONL format of COPA more challenging to
work with, particularly because there were multiple
ways of incorporating the cause/effect label for
each question into the prompt.

4.3 Task 3: Factuality

Task 3 explores the use of pretrained LLMs as
knowledge bases. In this part, each student con-
structs a dataset of 20 multiple choice questions
about a notable female scientist and uses it to ex-
plore the LLM’s knowledge of the scientist.1

This task was more open-ended. The prompting
task was not autograded, to allow more freedom in
the structure of the dataset and program. However,
students were encouraged to follow the format of
the COPA dataset so that they could reuse their
code from the previous task as much as possible.

The reflection questions for this task asked stu-
dents to reflect on the limitations of the task (many
brought up the small sample size) and to make ob-
servations about which kinds of questions were eas-
ier or harder for the model. One trend that emerged
across submissions was that the model performed
better for scientists born more recently, perhaps
because they had bios on many different websites.

1The individual datasets can be combined together for use
in a later assignment.

4.4 Intellectual Curiosity Points
The original assignment contains an additional sec-
tion entitled Intellectual Curiosity. A key aspect
of my course design is that 10 points from each
assignment are reserved for demonstrating intel-
lectual curiosity. I implemented this policy after
observing how many CS students approach assign-
ments like a checklist and expect full credit for
completing all items. The curiosity points system
is my way of encouraging open-ended exploration
and independent learning. Table 1 in Appendix A
summarizes how these points were awarded in one
version of CS 333.

5 LLM Access Practicalities

I have used two LLMs with this assignment in
the past: OpenAI’s GPT-3 model (Brown et al.,
2020), and Meta’s LLaMA (13B) model (Touvron
et al., 2023). These models worked well since
they performed above chance performance on all
tasks, but still made many mistakes for students
to analyze. In the starter code, I provide a Python
program to be used as a library that passes a prompt
to the model and returns a completion; this makes
it easy to substitute a different model.

When using GPT-3, I created the impression that
I could track student’s individual usage by sending
API keys individually; in reality, each key was
shared by several students. I had no issues with
students sending too many queries, but this might
be challenging in a larger class. For a class of 24
students, the assignment cost around $50 USD.

I ran LLaMA (13B) on a server with an Nvidia
A6000 GPU using a Gradio app that allowed web
requests from Wellesley IP addresses. Gradio han-
dles request queuing. However, in a large class, the
latency for a single model could be significant. I
have included the code for the LLaMA model and
Gradio app in my materials.

6 Conclusion

This assignment allows students to experiment with
prompting techniques in the context of exploring
three aspects of pretrained LLMs: their ability to
solve wordplay, their grasp of commonsense rea-
soning, and their use as knowledge bases. Some
aspects of this assignment may not scale well to
larger class sizes: for instance, the two ways of
setting up access to the pretrained LLM that I used
both pose problems at scale.
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A Intellectual Curiosity Points

10 points Ran few-shot prompting experiments with a novel task
Read additional papers and did more few-shot prompting experiments
Set up an antonym probe task
Read about SuperGLUE (Wang et al., 2019) and ran a prompting experiment with
the BoolQA (Clark et al., 2019) subset

7 points Ran the Pig Latin task on another LLM
Tested LLaMA on another language game

5 points Reversed the Pig Latin experiment
Tested statistical significance

4 points: Extra research on prompting

Table 1: Examples of intellectual curiosity point allocation
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Abstract

Fuelled by technical advances, the interest in
Natural Language Processing in the legal do-
main has rapidly increased over the last months
and years. The design, usage, and testing of
domain-specific systems, but also assessing
these systems from a legal perspective, needs
competencies at the intersection of law and Nat-
ural Language Processing. While the demand
for such competencies is high among students,
only a few law schools, particularly in Europe,
teach such competencies. In this paper, we
present the design for a Natural Language Pro-
cessing course for postgraduate law students
that is based on the principle of constructive
alignment and has proven to be successful over
the last three years.

1 Introduction

Like most fields of occupation, the legal profession
is undergoing a drastic change due to the introduc-
tion of Artificial Intelligence (AI) and particularly
Natural Language Processing (NLP) in the work-
place. While research on applications of AI in the
legal domain has a long history going back to the
1970s (Rissland et al., 2003), the legal practice
was, for a long and arguably more so than other
fields, hesitant to adopt AI technology and the pace
of adoption started to increase only very recently
(Oskamp and Lauritsen, 2002; Araszkiewicz et al.,
2022). While there have been many good reasons
for this hesitance, including strict regulations and
personal liability of legal professionals (Vladika
et al., 2024), both the acceptance and use of AI
technology are rapidly increasing within the legal
profession in recent years (Weinstein, 2022).

This increase in usage also results in an increased
need for legal professionals with technological ex-
pertise, both in traditional roles but also in spe-
cialised emerging roles like legal engineer or le-
gal technologist. According to the “Future Ready
Lawyer Report” by Wolters Kluwer, only 24%

of lawyers say that they understand “transforma-
tional technologies” like AI and big data (Wein-
stein, 2022). These numbers highlight that there is
a significant demand for teaching technological es-
sentials to (future) legal professionals. As language
is the most important tool of lawyers and other le-
gal professionals, among AI technologies, NLP
technologies are arguably most relevant for them
with a number of practical applications including
contract generation, document management, legal
decision-making, anonymization, and many other
tasks (Vladika et al., 2024). Additionally, compe-
tencies in both NLP and law are not only needed
for the application of NLP to legal problems but
also for the application of law to NLP. With new
regulations like the European Union’s AI Act, there
will be an increased need for lawyers with a good
understanding of AI technology who are able to
counsel clients who develop, distribute, or use such
systems.

While many US law schools have already in-
cluded NLP in their curriculum (Johnson, 2023), in
Europe, such offerings are still rather rare. Partially,
this is caused by the fact that law degrees in most
European countries are undergraduate degrees that
often follow a highly regulated four to five year
curriculum, unlike in the US, where law schools
are part of postgraduate education. However, as
consecutive Master of Laws (LL.M.) degrees are
becoming more popular in Europe, law schools
have started to offer such degrees particularly fo-
cused on Legal Technology (“Legal Tech”). This
paper outlines the design of an introductory NLP
course that is designed for this setting, i.e. as an
elective course in postgraduate education for law
students without prior knowledge of AI or com-
puter science. The course has been taught in a very
similar fashion for three years at an LL.M. program
at a public German university. The aim of this de-
sign is to inform and inspire the development of
similar courses.
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2 Skills and Intended Learning Outcomes

Following the principle of constructive alignment
(Biggs, 1996), the course was designed around the
intended learning outcomes (ILOs) and more fun-
damentally the skills that are relevant for legal pro-
fessionals. Given the context for which the course
was designed, no relevant previous knowledge in
AI or computer science can be expected. Therefore,
an NLP course in a law school can clearly not go
as deep into technological details as a traditional
NLP course. After all, a law graduate with a spe-
cialisation in legal technology is, most likely, also
not going to work as a programmer. Therefore,
the most important question in designing an NLP
course for law students is: What are the relevant
skills that can help future legal professionals to
work at the intersection of law and NLP?

It is worth emphasising that the course design
outlined in this paper is not meant to be part of
the general curriculum every law student has to go
through, but rather as an elective for those that want
to work at the intersection of law and NLP where a
deepened interdisciplinary understanding is needed.
We identified three different areas in which such
interdisciplinary skills are mainly needed:

• Law practice: NLP tools will be part of the
daily work routine of many legal professionals
in the future. Understanding the fundamental
principles these tools operate on will help le-
gal professionals to make informed decisions
on how and when to use which technology or
tool.

• Technology development and implementa-
tion: Legal professionals will be involved in
the development and implementation of legal
tech tools in many different roles in which
they will need a solid understanding of the
underlying technology, like product manager
or implementation consultant.

• Research: Whether as a legal data scientist
or empirical legal scholar, legal research, both
in academia and practice, will include many
different NLP methods. Especially in interdis-
ciplinary research projects, annotating legal
corpora and preparing them to be used as train-
ing data will require legal expertise and an
understanding of the requirements for training
data for ML models.

Based on these areas, we derived ILOs that law

graduates would need to achieve to be prepared for
such roles. The six derived ILOs are shown in Table
1. Each ILO is classified according to Bloom’s
taxonomy (Anderson and Krathwohl, 2001). Since
the goal of the course is to provide participants with
practical NLP skills that are relevant in the legal
domain, most of the ILOs are on the higher levels
of Bloom’s taxonomy (create, evaluate, analyse,
apply), i.e. go beyond acquiring just theoretical
knowledge.

3 Course Plan

Based on the ILOs, we developed a plan for a
course that runs over the span of a semester (∼15
weeks) and has a workload of 140 hours (or 5 points
in the European Credit Transfer and Accumulation
System, ECTS). Of those 140 hours, 56 are contact
hours: 30 hours (or 2 hours per week) of lectures
and 26 hours of tutorials (13 x 2 hours). The re-
maining 84 hours are reserved for self-study and
project work (see Section 4.1). Particularly for
the achievement of the ILOs that are related to the
higher levels of Bloom’s taxonomy, practical expe-
rience, as mediated through tutorials and project
work, is key to successful learning. Table 2 shows
an overview of all educational activities and their
content. While the lectures mainly focus on the-
oretical knowledge, the tutorials are designed as
hands-on sessions, in which participants interact
with different tools. Some of the course materials,
particularly for the practical sessions, are avail-
able on GitHub1. It is important to stress that the
designed course does not attempt to replace a com-
puter science curriculum. Therefore, the lectures
mainly stay on a conceptual level, without, e.g.,
going into the mathematical details or optimisa-
tion algorithms in ML. Similarly, in the tutorials,
participants will not write complete programs but
rather are provided with Jupyter notebooks that
they can configure in a low-code fashion, so that
they get a basic understanding of the process and
structure that underlies the training of ML mod-
els, without necessarily having the learn how to
program. Weeks 12 to 14 are reserved for guest
lectures from practitioners. The idea is to invite rep-
resentatives of different organisations that have a
need for professionals with skills at the intersection
of law and NLP to show the broad range of poten-
tial roles, not only within traditional law firms but

1https://github.com/DaBr01/
Teaching-NLP-in-Law-School
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Table 1: Intended Learning Outcomes (ILOs) and their classification according to Bloom’s taxonomy

# ILO Level
1 Students can explain terminology, methods, theories, and fundamental concepts

of artificial intelligence, machine learning, and natural language processing.
understand

2 Students can explain the relevance of artificial intelligence and natural language
processing for the legal domain and discuss their implications on different legal
professions.

understand

3 Students can use standard software for the automation of process steps in legal
knowledge work (e.g. no-code platforms and document generation tools).

apply

4 Students can analyse problem formulations from the legal practice and identify
suitable NLP methods for support and automation, as well as potential risks that
may arise from them (like biases and lack of accountability or explainability).

analyse,
evaluate

5 Students can design annotation guidelines for legal data sets and generate new
corpora through annotation.

create

6 Students can develop small legal applications for specific problem formulations
based on standard tools and libraries.

create

also within established companies or organisations
and start-ups.

4 Assessment

The assessment of the course consists of an exam
at the end of the course (that can be either written
or orally), and a project on which students work in
groups of two to three. Both assessment forms will
determine 50% of the final grade each. While the
exam is purely a formative assessment, the project
contains summative and formative assessment mo-
ments. The goal of formative assessment is to
assess the level of knowledge a student has at a
certain point in time. In the context of the course,
formative assessment is used to assess, at the end
of the course, whether the ILOs have been achieved
and to derive a grade. Formative assessment, on
the other hand, is part of the teaching process and
aims to provide the students, but also the teacher,
with information about the current progress of the
students, in order to allow for interventions and
assure that, in the end, the ILOs will be achieved.
(Garrison and Ehringhaus, 2007)

4.1 Project
For the project, each team will be provided with a
corpus and a problem description. Each team will
have to solve the following tasks based on their
corpus and problem description:

1. Develop an annotation guideline.

2. Annotate the corpus based on the developed
guideline.

3. Train a model that is able to extract informa-
tion that is relevant in the context of the given
problem description.

4. Write a project report of max. 4 pages that
describes the results of your project.

5. Present the project results to your peers.

The summative assessment element of the
project will be the final project grade that is based
on the annotation guidelines (30%), the trained
model (30%), the project report (30%), and the pre-
sentation (10%). In addition, participants hand in
their annotation guidelines in week 4 for a forma-
tive assessment in which they receive feedback but
also give feedback to other groups as part of a peer
feedback process.

5 Literature

While there are many textbooks available on NLP
(e.g. by Jurafsky and Martin (2008) or Hapke et al.
(2019)), almost all of them are much more tech-
nical than is suited for the outlined course. The
textbooks by Biemann et al. (2022) and Ignatow
and Mihalcea (2017) present an introduction to
NLP particularly targeted at the social sciences. As
such, they include introductions to fundamental
concepts that are also suitable for the context of
the course but do not address any particularities of
the processing of legal language or domain-specific
tasks and tools. Particularly because of this lack of
literature, we hope that the course design presented
in this paper can inform and inspire the design of
NLP courses in the context of law schools.
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Table 2: Course Plan

Type Title Content

W
ee

k
1

Lecture Introduction to AI
and ML

Definition and history of AI; Fundamentals of ML; Decision Trees;
k-nearest Neighbours; Linear Regression; k-means Clustering;
Critical reflection on correlation and causality

Tutorial No-code platforms
and legal expert sys-
tems

Creation of a simple legal expert system with a no-code platform
(e.g. Bryter, Open Decision, or Mioto)

W
ee

k
2

Lecture Text annotation Fundamentals of legal data annotation; Binary / multi-label / multi-
class annotations; Document / section / sentence / word / sequence
annotation; Disagreement between annotators; Annotation guide-
lines; Annotation tools; Quality of annotations

Tutorial Annotation of court
decisions

Introduction to an annotation tools (e.g. Doccano); Writing anno-
tation guidelines; Annotation of a small corpus of court decisions

W
ee

k
3

Lecture Introduction to Nat-
ural Language Pro-
cessing

NLP definitions and tasks; Challenges of automated text process-
ing (compared to images or numbers); Specifics of legal texts;
Pipeline architectures; Pre-processing; Content extraction; Sen-
tence segmentation; Stemming and lemmatization; Lexica

Tutorial Pre-Processing Implementation of a pre-processing pipeline for privacy policies
based on a Jupyter notebook template

W
ee

k
4

Lecture Information Extrac-
tion

Named entity recognition; Regular expressions; Citation networks;
Information extraction; Relation extraction; Argument mining;
Evaluation (precision / recall / F1)

Tutorial Information Extrac-
tion

Regular expression exercise; Implementation of NER and IE for
the annotated corpus of week 2 based on a Juypter notebook
template

Project Deadline Annotation guidelines

W
ee

k
5

Lecture Text classifica-
tion and Topic
Modelling

Text classification; Topic Modelling; Contract analysis; Natural
Language Understanding services

Tutorial Contract Analysis Analysis of a contract corpus with three different means (contract
analysis tool (e.g. Summize), NLU cloud service (e.g. Azure AI),
ChatGPT) and comparison of results

W
ee

k
6

Lecture Language Models
and Vector Repre-
sentations

Vector Representations; Distributional Hypothesis; Word Embed-
dings; Neural Networks; Large Language Models; Fine-Tuning

Tutorial Vector Representa-
tions

Comparison of IE performance with different vector representa-
tions (bag of words, tf-idf, word embeddings) as input with a
provided Jupyter notebook template; Visualisation and interpreta-
tion of Word Embeddings

Project Deadline Peer-feedback annotation guidelines

W
ee

k
7 Lecture Similarity Analysis Jaccard coefficients; Word Mover’s Distance; Cosine similarity;

Document vectors; Detection of AI-generated texts
Tutorial Similarity Analysis Comparison of different similarity metrics on the court decision

corpus
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Type Title Content
W

ee
k

8
Lecture Introduction to

Natural Language
Generation

Data2Text / Image2Text / Text2Text; Templates; Rule-based NLG;
Stochastic NLG; Hallucination; Abstractive and extractive sum-
marisation; Evaluation and metrics (BLEU, ROUGE)

Tutorial Text Generation Rule-based text generation with SimpleNLG;
Text generation with GPT-2; Exercise on hallucination

W
ee

k
9

Lecture Document Process-
ing and Automation

eDiscovery; Document management, Legal document generation
tools; Process automation

Tutorial Document genera-
tion

Document generation with Word; Document generation with no-
code platform from week 1; Document generation with specialised
tool

W
ee

k
10

Lecture Legal Case Out-
come Prediction

State of the research in legal case outcome prediction; Relevant
features (particularly non-legal features like time, ...); Bias; Re-
flection about the difference between predicting the court decision
and predicting the “right” decision

Tutorial Legal Case Out-
come Prediction

Training of a simple model for the prediction of legal case out-
comes based on a provided Jupyter notebook template

Project Deadline Model and Jupyter notebook

W
ee

k
11

Lecture Explainable AI Explainability; Interpretability; Adversarial attacks; Taxonomy
of explainability (post hoc/ante hoc, global/local, model spe-
cific/model agnostics); Example-based approaches; Critical re-
flection of “explanations” generated by LLMs

Tutorial LIME Introduction of the LIME library for the generation of explanations

W
ee

k
12

Lecture Guest lecture estab-
lished organisation

Show possible job profiles in established organisations, e.g. le-
gal operations officer from large companies, publishing houses,
software providers, NGOs, government

Tutorial Project Support Before the final project submission, participants have time to ask
questions and get support

W
ee

k
13

Lecture Guest lecture start-
up

Show possible job profiles in the startup world (e.g. legal tech
startups, fintech, ...)

Tutorial Startup software Introduction to the product of the startup
Project Deadline Report

W
ee

k
14 Lecture Guest lecture law

firm
Job profiles in classical law forms

W
ee

k
15 Lecture Project

Presentation
Teams present the results of their project work
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1 Introduction

The increasing scale of large language models has
led some students to wonder what contributions
can be made in academia. However, students are
often unaware that LLM-based approaches are not
feasible for the majority of the world’s languages
due to lack of data availability. This paper presents
a research project in which students explore the
issue of language representation by creating an
inventory of the data, preprocessing, and model
resources available for a less-resourced language.

Students are put into small groups and assigned
a language to research. Within the group, students
take on one of three roles: dataset investigator,
preprocessing investigator, or downstream task in-
vestigator. Students then work together to create a
7-page research report about their language.

2 Course Context

This assignment is the midterm research project for
an advanced undergraduate Natural Language Pro-
cessing course. Before the project, the class covers
text processing and non-neural NLP techniques
roughly corresponding to the first six chapters of
Jurafsky and Martin (in prep.). Students have two
weeks to work on this project before presenting
their findings to the class.

3 Learning Goals

This assignment is designed to engage students
with issues of linguistic representation. The pri-
mary goal is for students to explore the availability
of data resources for a less-resourced language.
Along the way, students build useful skills in how
to locate and evaluate data and model resources,
which are applicable outside of the context of low-
resource languages as well.

The learning goals for this project are as follows:
• Explore issues of language representation
• Gain familiarity with dataset and model hubs

• Analyze the quality and availability of soft-
ware artifacts

• Collaborate with classmates to present re-
search findings

• Practice scientific writing and presentation

4 Language Selection and Assignment

For this project, it is important to select languages
that have some available data and model resources.
For this reason, I refer to the languages as “less-
resourced” rather than “low-resource”.

Table 1 shows the languages used in a prior
semester. To create the language groups, I sur-
veyed students on their language backgrounds and
when possible, seeded each group with a student lit-
erate in the language or a related language. Unless
all group members were literate in another writing
system, I assigned only languages that used the
Latin alphabet.

5 Assignment Structure

Each student was assigned one of three roles:
dataset investigator, preprocessing investigator, or
downstream task investigator. Each team worked
together to prepare a 7-page report and a 3-minute
in-class presentation of their findings. Students
were responsible for writing a two-page section of
the report on their individual topic, as well as for
collaborating on a one-page introduction to their
language. As a result, the project gives students
a chance to practice teamwork and collaboration,
while allowing the instructor to assess their effort
individually.

The assignment description and a copy of the
Gradescope rubric used to grade student papers are
included in the Supplementary Materials.

5.1 Language Introduction

Each report was required to begin with an introduc-
tion to the language and its context. This section
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Language Writing System Language Expertise
Indonesian Latin 1 Indonesian-literate student
Somali Latin 1 Arabic-literate student (lexical borrowing from Arabic)
Japanese Kanji/Kana All students literate in Japanese
Afrikaans Latin 2 German-literate students (lexical borrowing from German)
Haitian Creole Latin All students literate in French (lexical borrowing from French)
Romanian Latin None
Portuguese Latin 2 students literate in Portuguese

Table 1: Example language groups

described the language’s communities of use and
social context, its writing system, and its morphol-
ogy and syntax, including some sentences with
word-by-word translations.

5.2 Dataset Investigator
Dataset investigators were required to explore a
number of platforms to investigate the availability
of data resources for their language.

Students were asked to evaluate Wikipedia as a
language resource, reporting on the existence, size
and robustness of Wikipedia in their assigned lan-
guage. Students were also required to search Kag-
gle, Hugging Face, and Github for other datasets in
their language. They were asked to describe each
dataset that they found and to consider multiple
aspects of its utility: accessibility, quality, and size.

Students reported many challenges around acces-
sibility: they found research papers reporting the
use of a dataset, but couldn’t find the dataset itself,
or they found the dataset’s website, but the links
were broken. Quality was the most challenging
aspect for them to evaluate, especially for groups
without a member who was literate in the language.

5.3 Preprocessing Investigator
Preprocessing investigators explored text process-
ing tools for their language. The suggested tasks in-
cluded tokenization, segmentation, part-of-speech
tagging, and parsing.

Students were asked to evaluate whether the pop-
ular NLP libraries NLTK (Bird and Klein, 2009)
and SpaCY (Honnibal et al., 2020) provided any
tools for their language. Students were also asked
to look for other preprocessing tools on Github or
other websites. Several students leveraged search
tools for academic research papers, and found rel-
evant systems via a literature search, an effective
approach that I hadn’t anticipated.

For each preprocessing tool that they discovered,
students described how it worked, what task it was

designed for, what data it was trained on, and as-
sessed its usability. Students had the most trouble
finding information about the data used to train the
tools. They also ran into many instances where the
code could no longer be downloaded or run.

5.4 Downstream Investigator

Downstream task investigators looked into the
availability of systems in their language for down-
stream tasks such as named-entity recognition,
event recognition, language modeling, sentiment
analysis, question-answering, and machine transla-
tion.

Students were required to look for models on
Github and Hugging Face, and were also encourage
to do a general Web search. As above, for each
preprocessing tool that they discovered, students
described how it worked, what task it was designed
for, what data it was trained on, and assessed its
usability.

6 Scaffolding for the Final Project

This project serves as scaffolding for the course’s
final research paper (due at the end of the term),
which is individual. Although most students come
up with interesting and challenging topics on their
own, a handful of students struggle to do so each
semester. I encourage these students to build some-
thing for the language they investigate in the re-
source inventory project. This has worked well and
led to final projects on sentimental analysis and
named entity recognition for Indonesian and hate
speech identification and speech recognition for
Portuguese.

7 Conclusion

This assignment allows students to explore issues
of language representation by conducting a re-
source inventory for a less-resourced language.
The hope is that this project highlights how much
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work remains for researchers to do on NLP for the
breadth of the world’s languages.
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Abstract
The development of language technology (LT)
for an endangered language is often identified
as a goal in language revitalization efforts, but
developing such technologies is typically sub-
ject to additional methodological challenges as
well as social and ethical concerns. In partic-
ular, LT development has too often taken on
colonialist qualities, extracting language data,
relying on outside experts, and denying the
speakers of a language sovereignty over the
technologies produced.

We seek to avoid such an approach through
the development of the Building Endangered
Language Technology (BELT) website, an ed-
ucational resource designed for speakers and
community members with limited technologi-
cal experience to develop LTs for their own lan-
guage. Specifically, BELT provides interactive
lessons on basic Python programming, coupled
with projects to develop specific language tech-
nologies, such as spellcheckers or word games.
In this paper, we describe BELT’s design, the
motivation underlying many key decisions, and
preliminary responses from learners.

1 Introduction

The development of language technologies (such
as spellcheckers, automated transcription, and ma-
chine translation) has been commonly suggested
as a goal in language revitalization projects (Kor-
nai, 2013; Zhang et al., 2022). However, research
and development of these LTs historically has been
fraught with social and ethical concerns. NLP re-
search generally underrepresents such languages
(Joshi et al., 2020; Blasi et al., 2022), and research
into so-called "low-resource" and endangered lan-
guages often treats them as a homogenous group
of languages, identical to high-resource and polit-
ically dominant languages in every aspect except
data availability (Doğruöz and Sitaram, 2022).

Worse, the development of LTs for endangered
languages has often taken on colonialist qualities

(Bird, 2020): over-promising the benefits of doc-
umentation and technology development (Speas,
2009; Brinklow et al., 2019); consuming language
data with little regard to speaker privacy (Macri
and Sarmento, 2010); denying the language com-
munity sovereignty over their data (Pool, 2016);
prioritizing the development of tools of interest
to the outside expert, rather than those desired by
actual speakers (Liu et al., 2022); and relying on
experts with little relationship to the community
for continued development and maintenance (Bird,
2020; Flavelle and Lachler, 2023).

While some recent results suggest that large lan-
guage models can be usefully deployed in language
documentation and revitalization contexts (Tanzer
et al., 2024; Zhang et al., 2024b,a, among others),
most such models remain closed, and running them
for a new language requires exposing data that lan-
guage communities may prefer to keep private.

We strive to provide a resource for speakers in-
terested in developing and maintaining language
technology for their own language with the BELT
(Building Endangered Language Technology) web-
site. BELT is an educational tool designed for
learners without any coding experience to gain ba-
sic programming skills, develop language technol-
ogy using data from their language, and deploy
simple applications for real-world usage.

In particular, we developed BELT with the fol-
lowing goals:

• A free, open-source resource that can be used
for guided workshops as well as independent,
asynchronous learning.

• Interactive Python lessons that encourage re-
peated practice and experimentation.

• Lesson materials that are approachable to a be-
ginning programmer, while enabling creation
of realistic and useful applications.
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Figure 1: The main BELT course page. Lessons are divided into short skills and longer, in-depth projects. Each
lesson links to a Jupyter Notebook in the user’s environment.

• Language-agnostic project tutorials that re-
quire only a text file of unlabeled language
data as input.

• A strict focus on NLP-related topics, avoiding
an overly-general programming curriculum.

• Full localization into languages other than En-
glish.

We describe our design decisions for the website
and lesson materials. Furthermore, we report feed-
back and results from two in-person workshops
based around the BELT site, in which community
members for a variety of endangered languages
were able to build and share language technologies
for their respective languages. Finally, we reflect
on future improvements to continue to make BELT
a valuable resource for NLP education.

2 Overview

BELT is an interactive web course, which anyone
can access for free.1 After logging in, a user is
presented with the main course page (Figure 1).
The course contains fifteen interactive lessons cov-
ering language technologies and the coding skills

1https://lecs-lab.github.io/belt

needed to build them, which are provided here in a
recommended order.

Curriculum Lessons are divided into Skills,
shorter notebooks each covering a single focused
topic (such as regular expressions), and Projects,
longer tutorials which cover a realistic language
technology (such as a spellchecker). We recom-
mend completely new learners to work through the
skills section first before attempting the projects;
more experienced users may simply refer back to
the skills section as needed.

Lesson Format Clicking on a lesson launches
a user-specific Jupyter Lab environment, automat-
ically loading a Jupyter notebook for that lesson
(Figure 2). Notebooks are organized for structured
learning and contain a mix of instructional text, pre-
written code blocks, and interactive exercises and
challenges. For example, the skill lesson covering
strings in Python includes the exercise in Figure 3.
Notebooks are stored on a per-user basis, and they
persist across sessions. Lessons can access shared
files from the server, such as corpora that we pro-
vide. In addition, users can upload their own files,
allowing them to use their own language data for
many of the projects.
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Figure 2: Lessons load notebooks in the Jupyter Lab environment. Lessons are fully interactive, can load files from
the shared filesystem as well as from the user’s storage, and can even launch user-created apps with the Gradio
framework.

Figure 3: A sample exercise from the lesson on strings.

Projects While skill lessons tend to be short, fo-
cused overviews of relevant topics, projects are
more involved and tailored to endangered lan-
guage technology development. For example, the
spellchecker lesson (Figure 2) requires only a
wordlist as input. The spellchecker itself uses low-
resource techniques such as edit distance to identify
suggested spellings, rather than data-hungry, state-
of-the-art methods (generally neural networks).

Projects are highly interactive, with many exer-
cises drawing on knowledge learned in the skill
lessons. Projects also include several challenge
exercises (Figure 4) for motivated learners, rang-
ing in difficulty from simple UI modifications to
development of additional system features.

Figure 4: Challenge exercises at the end of the
spellchecker lesson.

Gradio Perhaps the most overlooked challenge
in community-led language application develop-
ment is the deployment of usable, scaleable soft-
ware. In BELT lessons, the Gradio2 framework
is used extensively in order to build simple user
interfaces for the technologies developed. Gradio
runs as a local, interactive app inside the Jupyter
notebook, and it can be accessed temporarily via
a live URL (see Figure 5). Furthermore, through
Hugging Face Spaces,3 Gradio apps can be hosted
permanently and for free.

2https://www.gradio.app
3https://huggingface.co/spaces
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Figure 5: A running Gradio app. Learners create small applications such as spellcheckers, predictive text, and word
games using the Gradio framework. Apps can be accessed via a live URL while they are running, or permanently if
the app is hosted on Hugging Face.

3 Platform

We selected JupyterHub4 as the primary framework
powering BELT. JupyterHub is an open-source plat-
form that allows many users to access Jupyter com-
puting environments on a remote server. Jupyter-
Hub works by spawning a separate Jupyter environ-
ment for each user and serving the Jupyter Note-
book or Lab application as a web app.

3.1 Alternatives

Before deciding on JupyterHub, we considered sev-
eral alternatives, which we describe below in addi-
tion to our reasons for selecting as we did.

Static materials Digital textbooks or static web-
pages would require the least effort to distribute,
and many high-quality NLP resources of this sort
already exist. They require minimal computa-
tional resources, can often be used offline, and are
straightforward to translate into other languages.
However, we believe that interactivity is critical to
a fluid learning experience, and a static approach
would add significant friction, as learners would
need to configure their own development environ-
ments and solve any issues that arise with installa-
tion.

4https://jupyter.org/hub

Jupyter Notebooks Interactive notebooks have
become a popular tool for pedagogy in computa-
tional fields (Cardoso et al., 2019; Johnson, 2020),
allowing for alternating plain-text and code blocks
that can be edited and run. Distributing download-
able Jupyter notebooks can often be an ideal choice
for learners with some prior programming experi-
ence (such as computer science undergraduates),
who are expected to set up Python environments,
configure coding software, and install packages.
While these are valuable skills to learn, we believed
that this additional friction could discourage poten-
tial learners with minimal technical experience.

Jupyter Books Jupyter Book5 is an alternative
platform, also based on the Jupyter environment,
used to create digital textbooks that incorporate
interactive code contents. While Jupyter Book pro-
vides excellent features for creating well-formatted
content, there are significant limitations for interac-
tive content that would not allow learners to easily
deploy their applications.

3.2 Deployment
For initial development of BELT, we use The Lit-
tlest JupyterHub (TLJH)6 distribution, which runs

5https://jupyterbook.org/en/stable/intro.html
6https://github.com/jupyterhub/

the-littlest-jupyterhub
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on a single server and supports up to one hundred
simultaneous users. Jupyter Hub can also be run on
Kubernetes, scaling to tens of thousands of users,
and in the future we plan to deploy BELT using
this method.

We hosted the initial BELT site on a server in-
stance running Ubuntu 18.04 with 4 GB of RAM
and 100 GB of disk space.

3.3 Serving Notebooks

When a user clicks a lesson for the first time, we use
nbgitpuller7 to fetch the lesson notebook from
our Git repository. The latest version of the note-
book is cloned into the user’s personal storage on
our JupyterHub. After this point, they can modify
the notebook and changes will persist.

4 Design

We made several design decisions involving fea-
tures and enhancements to the JupyterHub plat-
form, aiming to make the BELT site as approach-
able and usable as possible.

4.1 Web Pages

By default, JupyterHub serves several web pages
for login, registration, launching servers, and other
basic functions. These pages have minimal, sim-
ple design elements, but we find that they can be
confusing for users not familiar with that style of
interface. To address this interface issue, we re-
place the pages completely, striving for a look that
resembles a modern web or mobile app rather than
a scientific tool (see Figure 1).

We add up-to-date styling libraries, Bootstrap
v58 and FontAwesome v6,9 both commonly-used
frameworks in web design. We also create entirely
new page templates (built with the Jinja10 engine),
custom CSS styles, and custom assets.

We also modify the configuration and style code
for the Jupyter Lab environment, removing unnec-
essary elements to create a clean, intuitive interface
(Figure 2).

4.2 Localization

Reaching a global audience is an important goal
of the project. We prepared the application to be

7https://nbgitpuller.readthedocs.io/en/latest/
index.html

8https://getbootstrap.com/docs/5.0/
getting-started/introduction/

9https://fontawesome.com
10https://jinja.palletsprojects.com/en/3.1.x/

fully localized, and completed preliminary local-
ization into Spanish and partial localization into
Portuguese.

JupyterHub itself does not provide any frame-
work for page internationalization, and standard
localization libraries require server-side modifica-
tions. Instead, we developed a small JavaScript
helper that does the following:

1. Finds any components marked with a custom
HTML attribute data-i18n-id;

2. Dynamically replaces the string contents of
the node with a localized string from the ap-
propriate lookup table; and

3. Dynamically modifies any URLs to point to
the appropriate localized content.

While this method may not scale well to large
numbers of components, it is very lightweight and
very performant in our usecase. We perform lo-
calizations using Crowdin,11 a web platform for
creating and storing localization data. The user
can switch their language with a simple picker in
the menu bar, and their choice is persisted with
cookies.

Because Jupyter notebooks cannot be dynami-
cally updated as easily, we employ a different strat-
egy for localizing the notebooks. We create local-
ized versions of every notebook using Crowdin,
and store each version at a path containing the ap-
propriate language code. Then, we dynamically
switch the links using our localization script to
point to the correct notebook.

Within lesson notebooks we primarily translate
the informational material and part of the code com-
ments (those corresponding to Portuguese), leaving
variable and function names untouched for both
languages. We debated whether to localize these as
well, but elected against it as doing so may make
running bilingual workshops more difficult. We
also install language packs for the Jupyter Lab user
interface, allowing the user to switch the language
for text elements such as menus and tooltips.

5 Lesson Materials

Skills Currently, our curriculum includes lessons
for the following skills:

1. Introduction to Python

2. Data types
11https://crowdin.com
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3. Logical structures

4. Lists

5. Strings and text

6. Files

7. Gradio

8. Regular expressions

9. Machine learning

Within each lesson, we strive to discuss only
the information that is absolutely required for the
projects later to come. Lessons tend to be short and
focused, typically around fifteen to thirty minutes
worth of content with a few exercises. We recog-
nize that there are a multitude of existing, in-depth
Python educational resources, and we refer learners
to outside sources when appropriate.

The material is presented with English examples
and written with a succinct prose style that strives
to be accurate without being overly technical. We
primarily frame each skill in relation to language
technology; e.g., while regular expressions can be
useful for a wide variety of tasks, we primarily
discuss their use for searching and preprocessing
natural language text.

Exercises strive to reinforce critical concepts.
They often foreshadow tasks that will be neces-
sary for projects; for example, the lesson on lists
and sets asks the user to turn a list of words
into a unique set. This skill is later used in the
spellchecker project for creating a wordlist from a
lexicon.

Projects Our curriculum currently includes four
projects, described below. As development of
BELT continues, we plan to add new projects, ei-
ther for new language technologies, or for more
advanced versions of the technologies already in-
cluded. We additionally welcome new projects
from the broader community.12

1. Spellcheckers: In this project, students create
a simple, lookup-based spellchecker, using a
word list built from a text file.

2. Predictive text: The same text file is used to
build a simple n-gram language model, which
is then used to predict the most likely next
word in a sequence.

12Please contact the first author if you are interested in
contributing to BELT.

3. Word games: In this project, users learn to
create two word games: a word scramble, and
a hangman-style game. These can draw from
the provided text, or users can upload custom
word lists.

4. Automatic morphological inflection: In this
project, users learn to use finite-state machines
to build rule-based morphological inflection
tools, which can be useful in spell-checking,
dictionaries, language learning games, and
other downstream applications.

These projects cover a number of common tech-
nologies that can be built with minimal resources
and are appropriate for most languages. The
projects use data files from several different lan-
guages to teach users how to build the technologies:
English, Spanish, Latin, and the Mayan language
Uspanteko. However, we strongly encourage learn-
ers to use their own language data where available,
and we provide guidance for how to import, load,
and manage those data files.

Within each project, exercises require applica-
tion of information from the skill lessons (encour-
aging learners to use prior lessons as a reference),
and they often combine multiple topics. To avoid
too much frustration, learners can double-check
their solutions by revealing answers to the exer-
cises. For more difficult exercises, we offer for
learners to receive one or more hints. We also pro-
vide stretch exercises, in the form of open-ended
challenge problems, for more experienced learners.

Each project tutorial culminates with users hav-
ing built a simple version of a tool. Depending on
the data file used as input, these tools may or may
not be suitable for real-world use. They are, how-
ever, suitable foundations for more sophisticated
versions of the same tools. It is our hope that some
learners will be inspired to build better and better
versions of the tools produced by our lessons, thus
working toward truly viable technologies for the
languages those learners care about.

We would also note that our goal very specif-
ically is not to teach learners how to build state-
of-the-art tools using the latest developments in
NLP. Rather, we aim for tools that have a low com-
putational expense, need minimal input data, do
not require annotation, and can be deployed in a
straightforward way.
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6 Live Workshops

Over the last year, we have held two live workshops
to teach all or part of the BELT lessons to different
audiences. As it happens, both workshops took
place in South America. The initial workshop, held
in the summer of 2023, helped us to identify some
improvements around both the hosting method and
the lesson contents that we implemented for the
second workshop at the start of 2024.

6.1 Bogotá, Colombia, June 2023

The first live workshop was held in the context of
the Amazonicas IX conference in Bogotá, Colom-
bia in June 2023.13

The event was attended by around fifteen partici-
pants, with hybrid participation (some in situ and
others via Zoom). The participants were mostly
linguistics/anthropology undergraduates with no or
some basic programming experience.

The workshop was taught across four consecu-
tive days, with each day’s session lasting three and
a half hours. Each session was divided into two
working blocks with a 30-min break between. The
first session covered the Skills lessons, the remain-
ing three sessions were dedicated to the first three
applied projects: Spellchecker, Predictive text and
Word Games. The sessions were delivered in En-
glish, and supported in Spanish by a collaborator
who had previously translated the interactive web
course materials.

In terms of results, the materials were positively
received. However, time constraints, along with the
background knowledge of programming by most
attendees, led to some difficulties which limited the
exploration of more specialised and related lessons
such as Regular Expressions (RegEx) and Machine
Learning (ML).

Participants were able to create applications for
several languages which they worked closely with,
including word games in the endangered Indige-
nous languages Karijona and Umbra.

6.2 Santiago, Chile, January 2024

The second BELT workshop took place in Santi-
ago, Chile, in early January 2024, as part of a 3-day
workshop on Tecnologías Digitales y Lenguas In-
dígenas (Language Technologies and Indigenous
Languages).14 This was an abbreviated version of

13https://cienciassociales.uniandes.edu.co/
congreso-de-las-lenguas-amazonicas/

14https://ws.dcc.uchile.cl/en/

the workshop, offered during one three-hour morn-
ing session. Code from the word games project
was then used on the third day to build word games
for four different Indigenous languages.

The workshop had more than 40 participants,
with 56% linguists, 20% speakers of Indigenous
languages, 15% computer scientists, and 9% rep-
resentatives of public policy organizations. Most
presentations were delivered in Spanish, some in
English, and a small number in local Indigenous
languages. The BELT session was delivered in
English, with real-time translation into Spanish.

Because of time constraints and the mixed back-
grounds of participants, we grouped participants
into teams of 2-5 people, ensuring that each team in-
cluded at least one participant with prior experience
writing code in Python. In this case, the main goals
were: a) to introduce all participants to Python
programming and to the range of topics available
through BELT; b) to provide a foundation for a
shared project on the third day of the workshop;
and c) perhaps most importantly, to demonstrate
the attainability of producing simple language tech-
nologies with a bit of data and a bit of code.

Some participants noted that, whether or not they
intended to continue the BELT lessons, seeing first-
hand how a programming language works, and how
pieces can be put together to build a functioning
system, opened their eyes to new possibilities for
their languages. Other participants asked about us-
ing the lessons for teaching kids in school contexts.
Localization of the course materials into Spanish
was essential to the success of the workshop.

The third day of the workshop was set up as a
hackathon, with several different interdisciplinary
teams working on practical projects. We used code
from the BELT word games project to produce
hangman and word scramble games for Mapudun-
gun, Aymara, Quechua, and Ckunsa. To make
the games playable by new language learners, we
compiled a list in Spanish of colors, numbers, an-
imals, body part terms, and family relationship
terms. Speaker and linguist participants then filled
in the equivalents in the four Indigenous languages.
The entire process took about three hours, and the
eight games are hosted and playable through Hug-
ging Face Spaces.15

15https://huggingface.co/TDLI2024

100

https://cienciassociales.uniandes.edu.co/congreso-de-las-lenguas-amazonicas/
https://cienciassociales.uniandes.edu.co/congreso-de-las-lenguas-amazonicas/
https://ws.dcc.uchile.cl/en/
https://huggingface.co/TDLI2024


7 Participant Perspectives

(Note: This section is written from the perspective
of our third author, who was a participant at the
first workshop.)

As a descriptive linguist, the linguistic software
I have used in the past—Phonology Assistant16

and Fieldworks Language Explorer (FLEx)17—do
not require any programming knowledge. My only
experience with programming has been modify-
ing small chunks of PRAAT scripts. The BELT
workshop was an opportunity to get hands-on expe-
rience to build language tools for small resources
languages and later to share my results with native
speakers.

The website for the workshop provided a com-
prehensive and self-contained approach to the sub-
ject, with sessions clearly divided into lessons. The
first lessons started with fundamentals, covering
syntax and basic operators, progressing through nu-
merical and set operations. Then, lessons became
more complex, combining earlier lessons for tasks
such as data preprocessing and manipulation. For
several parts of the workshop, I and other partici-
pants were able to work with my own corpus.

I primarily work with Karijona, a Cariban Ama-
zonian language with very little existing resources.
The Karijona orthography and basic rules were dis-
cussed with the Puerto Nare Community in 2015
and since then standardized for educational use
(Guerra et al., 2024), and the first language learn-
ing book was published just a few months before
the workshop (Resguardo Indígena de Puerto Nare,
2023).

The book consisted of nine brief texts and many
examples, all cross-checked with native speakers
for transcription consistency. For the workshop, I
uploaded these materials to my account on BELT
in order to create apps in the Karijona language.

Following the lessons, we built a word unscram-
bling game and hangman game, which I was able to
deploy through HuggingFace Spaces and even use
on a mobile device. Then, I shared the apps with
a group of Karijona speakers from Puerto Nare,
who were able to try them during a trip to Bogotá.
However, as there is very limited internet in Puerto
Nare, making it difficult for speakers to use these
apps regularly. Thus, it is an urgent priority to ex-
pand the BELT lessons to enable offline use apps
that can be used on mobile devices.

16https://software.sil.org/phonologyassistant/
17https://software.sil.org/fieldworks/

8 Related Work

NLP and computational linguistics pedagogy has
a rich history of research and applications, with
much work in developing online learning resources
(Artemova et al., 2021; Baglini and Hjorth, 2021)
and live instruction techniques (Bender et al., 2008;
Agarwal, 2013; Gaddy et al., 2021; Durrett et al.,
2021; Kennington, 2021). Research has explored
how best to teach language technology concepts to
learners without a computer science background
(Fosler-Lussier, 2008; Poliak and Jenifer, 2021; Va-
jjala, 2021) and in non-English instruction settings
(Messina et al., 2021; Pannitto et al., 2021). Cama-
cho and Zevallos (2020) recommends integration of
(computational) linguistics into high school curric-
ula as a method to fight language decline. However,
to our knowledge, there are no existing educational
resources for the development of endangered lan-
guage technologies.

In general, the development of endangered lan-
guage technology faces well-studied challenges
(Doğruöz and Sitaram, 2022). Penttonen (2011) de-
scribes methods used to create online technologies
such as dictionaries and language learning games
for Karelian. Bird (2018) explores challenges in
mobile applications specifically.

9 Conclusion

The BELT website offers a new resource for teach-
ing beginning Python programming, with the di-
rect goal of supporting development of language
technologies for endangered languages. All course
materials are freely available online and can be
used to teach instructional workshops or for self-
guided, asynchronous learning. Users need nothing
more than a standard laptop and an Internet con-
nection. It is our hope that these resources might
spur new activity in community-based development
of language technologies, thereby supporting data
privacy and sovereignty for language communities.

Looking ahead, we are continuing development
of BELT along several pathways. First, we would
like to use the localization framework we built to
translate the course materials into a wide range of
languages of wider communication, such that the
materials will be accessible to multilingual speak-
ers around the world. Second, we have several
planned additional skills and projects to add to the
platform. In both of these directions, we welcome
contributions from the broader NLP community.

We hope to develop a mobile version of BELT,
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as mobile devices may be more common among
younger members in many communities. Through
this app, we hope to allow offline use of the ap-
plications created in BELT, for situations where
users have intermittent internet access. Finally, we
would like to explore the possibility of branching
off BELT access such that versions of the website
could be self-hosted, for example by tribal govern-
ments, immersion schools, summer schools, and
the like.

Ethics Statement

First, it is important to note that we ourselves
are not members of Indigenous communities, nor
speakers of endangered languages. We offer these
resources in the hopes that members of those com-
munities can use them as a launching point to de-
velop their own technologies in a manner that is
entirely self-determined (Schwartz, 2022).

Second, we have been careful to develop BELT
in a way that allows users to retain control over
their own data. User-uploaded files are hosted on
our server, but they are not copied or re-distributed
in any way, nor are they available to other users of
BELT. Users can delete these files at any time.

Finally, BELT is a freely-offered resource, cur-
rently supported by grant funding. We are com-
mitted to providing for sustained hosting for the
website, so that these resources will remain avail-
able as long as they are relevant and useful. We
will never charge users to learn using BELT.
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Abstract

The rapid growth in natural language process-
ing (NLP) over the last couple years has gen-
erated student interest and excitement in learn-
ing more about the field. In this paper, we
present two types of students that NLP courses
might want to train. First, an “NLP engineer”
who is able to flexibly design, build and apply
new technologies in NLP for a wide range of
tasks. Second, an “NLP scholar” who is able to
pose, refine and answer questions in NLP and
how it relates to the society, while also learning
to effectively communicate these answers to
a broader audience. While these two types of
skills are not mutually exclusive — NLP en-
gineers should be able to think critically, and
NLP scholars should be able to build systems —
we think that courses can differ in the balance
of these skills. As educators at Small Liberal
Arts Colleges, the strengths of our students and
our institution favors an approach that is better
suited to train NLP scholars. In this paper we
articulate what kinds of skills an NLP scholar
should have, and then adopt a backwards de-
sign to propose course components that can aid
the acquisition of these skills.

1 Introduction

Natural language processing (NLP) as an aca-
demic discipline has undergone a rapid expansion
in the last decade. Moreover, the feverishness
around emerging technologies from NLP influ-
ences what students want to learn in their CS educa-
tion. They want courses that train them in the tools
and techniques of both NLP and Machine Learning
more broadly. As educators, we are faced with an
exciting challenge – how do we effectively train
students to engage productively with our field?

In this paper, we differentiate between two kinds
of desired learning outcomes for an NLP course:
students should be able to (1) build and use new

*Equal contribution.

technologies, and (2) pose, refine and answer ques-
tions in NLP. While NLP courses might seek to
achieve both of these outcomes, the relative empha-
sis placed on each of them can differ across courses.
Some courses might place a larger emphasis on (1),
and present students with many opportunities to
program and develop substantial projects, often
with a focus on working with state-of-the-art ap-
proaches. In contrast, some courses might place a
larger empahsis on (2) and present students with
opportunities to engage critically with NLP tools
and techniques, often in the service of answering
questions and facing challenges that bridge disci-
plinary boundaries. We will refer to the type of
student the former course is designed to train as
an “NLP engineer”, and the student for the latter
course as an “NLP scholar”.

As educators in a Computer Science Department
at Colgate University (a Small Liberal Arts Col-
lege; SLAC), where the curriculum structure re-
quires students to take a wider range of non-CS
classes with the goal of cultivating critical thinking,
we argue that we are better placed to train NLP
scholars, than we are to train NLP engineers. In
this paper we present a design for an upper level
NLP course intended to train NLP scholars.

Using a backward design, we start by articulat-
ing what are the skills that an NLP scholar should
have, and propose a set of course principles/tenets
that can facilitate the acquisition of these skills.
Then, drawing on our previous experience teaching
Applied Machine Learning and Natural Langauge
Processing at our institution, we propose a course
that is structured around a capstone project. Con-
cretely, our paper makes three contributions:

1. We make explicit the link between the kinds
of students we want to train, the desired skills
we want the students to have, and the course
structure and content.

2. We propose a course structure designed
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around a capstone experience which has six
different course components and relate each
of these components to concrete concepts and
skills they are designed to help with.

3. We present preliminary materials and evalua-
tion rubrics for several of these components.

The paper is structured as follows: First, in §2,
we take critical stock of our students, their experi-
ences, and their relation to computer science, ask-
ing ourselves how can we build on the strengths of
our students and our institution. Then, in §3, we
present skills we think an NLP scholar should have,
and the principles we think a course designed to
train NLP should adopt. Finally, in §4, we detail
our different course components and discuss how
they relate to our overall learning objectives.1

2 Teaching NLP as an upper level course
at a Small Liberal Arts College

Small Liberal Arts College (SLACs) are undergrad-
uate focused institutions that emphasize, among
other things, drawing connections between differ-
ent fields (King et al., 2007). Therefore, in these
institutions there is more emphasis on students tak-
ing classes in different disciplines. A consequence
of this is that CS departments in liberal arts colleges
tend to have fewer required courses and curricula
with flatter prerequisite structures (Teresco et al.,
2022). In this section we introduce the CS curricu-
lum structure and class room dynamics at Colgate
University, a SLAC in the US that we teach at.
Then, we outline how this has influenced our expe-
rience of teaching upper level elective courses in
Natural Language Processing and Machine Learn-
ing in previous semesters, and the changes we want
to make in our proposed course as a result of this
experience.

2.1 Required and elective courses at Colgate

Our curriculum has four required classes: one at
the 100 level (Introduction to Computing) and three
at the 200 level (Data Structures and Algorithms,
Introduction to Computer Systems, Discrete Struc-
tures). In addition students have to take four elec-
tives, with at least two classes at the 300-level or
above, and at least one 400-level course. All of

1A github repository with links to final project templates
and our toolkit can be found here: https://github.com/
forrestdavis/NLPScholar.

our 400-level courses require students to work on
“capstone” final projects.

Most electives have one or two of the required
200-level courses as prerequisites, with almost no
elective requiring another elective as a prerequisite.
As a consequence of this flat prerequisite struc-
ture, students can come into a 400-level elective
like NLP with more limited programming experi-
ence than their peers at institutions with a more
hierarchical prerequisite structure, and with likely
little to no prior background in relevant classes like
Machine Learning or Artificial Intelligence. The
challenge, therefore, is to design a class that sets up
our students up our students, who have relatively
limited programming experience and relevant con-
ceptual background, to work on meaningful cap-
stone projects.

2.2 Take-aways from previous iterations of
teaching NLP and Applied ML

In the past three semesters we’ve taught two sec-
tions each of NLP and Applied ML. In all of these
four classes, while all students were able to success-
fully produce capstone projects, we thought most
of these projects could have been more ambitious.
We’ve identified two factors that likely contributed
to the smaller scope of the projects: the order in
which earlier non-neural approaches vs. more con-
temporary neural network content was presented,
and students’ prior programming experience.

Order of introducing non-neural vs. neural
approaches In both Applied ML and NLP we
spent the first half of the semester working through
non-neural network approaches. For example, in
Applied ML we spent the first four weeks of the
semester working through evaluation metrics, gra-
dient descent, regression, SVM, decision trees and
random forests before introducing neural networks.
Similarly, in NLP we spent the first six to seven
weeks working through FSAs, context free gram-
mars and parsing, n-gram language models and
Bayesian classification before introducing neural
language models and transfer learning.

We adopted this approach because starting with
the non-neural approaches makes it easier to
ground the computational task we are trying to
solve with our ML and NLP models, and the met-
rics we use to evaluate these models. For example,
starting with FSAs and CFGs before n-gram mod-
els highlights the complexity of modeling structure
in language and how co-occurrence statistics can

106

https://github.com/forrestdavis/NLPScholar
https://github.com/forrestdavis/NLPScholar


capture some of this complexity. Then, introducing
classification tasks and evaluation metrics in the
context of n-gram models makes it possible to rea-
son about the relation between the tasks we want
to solve and the metrics we use to evaluate perfor-
mance on these tasks before trying to understand
the contemporary approaches that have been found
to be successful.

A consequence of this approach, however, was
that by the time we taught contemporary ap-
proaches applicable to a wider range of tasks, it
was too late for students to effectively incorporate
them into their capstone projects. Therefore, many
students chose to use non-neural approaches in
their final project which meant that they worked on
simpler tasks and/or were met with limited success
on their tasks. We propose to address this issue by
using a layered approach to introducing concepts
(§ 4.1) and designing labs early in the semester that
scaffold some of the aspects common to all projects
such as data pre-processing and generating plots
(§ 4.2).

Prior programming experience As discussed
earlier, since students can take NLP after having
taken as few as three CS courses, they can have
more limited programming experience than stu-
dents at other institutions with a more hierarchical
prerequisite structure that requires students to take
more CS classes before taking NLP. As a conse-
quence, we found that students struggled with im-
plementing more complex NLP or ML pipelines
using sparse starter code or links to existing code-
bases. We propose to address this by designing
a modular toolkit with the core components re-
quired for any NLP pipeline. The toolkit will be
designed such that students can use it off the shelf
from the beginning of class. Crucially, as the class
progresses and we want them to engage with im-
plementational details of different components, the
modular design makes it easy to ask them swap
out different components that they implement from
scratch (§ 4.3). We also plan to include a midterm
project that requires students to replicate previ-
ous work, which will give them practice working
with existing code bases and integrating it with the
toolkit(§ 4.4).

3 How to train an NLP Scholar

Given the liberal arts context that we are in, and the
background that students come in with, we think
that we are not very well placed to train NLP en-

gineers who can leave the class knowing how to
design and build new tools to tackle a wide range
of NLP tasks. Rather, we are better placed to train
NLP scholars who, when given a task or challenge,
can identify and apply existing tools to the chal-
lenge or task, while thinking critically about the
limitations of these tools, our methods to evaluate
them, and the societal context in which they are
used. Concretely, there are three skills we want the
NLP scholars we train to have.

S1: Describe language processing NLP schol-
ars should be able articulate clearly what compu-
tations underlie language processing and how the
systems we are building are approximating differ-
ent aspects of this at a computational and/or algo-
rithmic level. That is, they will develop an under-
standing for language as a computational system,
while setting aside concerns from psycho- or neuro-
linguistics of how exactly linguistic processing is
realized.

S2: Effectively using existing NLP tools NLP
scholars should recognize what existing NLP tools
are appropriate for solving different tasks or an-
swering different questions, and be able use these
tools to solve the tasks and answer the questions.

S3: Evaluate claims about NLP systems NLP
scholars should be able to identify the rhetorical
tools used to make arguments about the potential
and limitations of NLP systems, both in academic
papers and public media, and use evidence based
approaches to evaluate these arguments.

3.1 Tenets of our proposed course

Given these high level skills, we now describe some
of the tenets we are adopting in this course to facil-
itate the acquistion of these skills.

T1: Appreciate the complexity of language
Students should recognize the complexity involved
in language processing. We hope to accomplish this
by having students create and evaluate symbolic
computational models of language processing.

T2: Focus on multilingualism Students should
recognize the role that linguistic diversity and mul-
tilingualism plays in our understanding of language
as a phenomenon, and describe the scientific and
societal benefits of modeling languages other than
English.
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Course Design Decision Scholar goal Tenet Capstone skill

Layered approach S1, S2 T1, T3, T4 –
Lab vs. Lecture Integration S1 T1, T2, T4 C2
Toolkit S2 T4 C2
Midterm replication S2 T3, T4, T5 C1, C2
Capstone project S1, S2, S3 T4 C1, C2, C3
Society and Science Comm S3 T5,T6 –

Table 1: Mapping our course design decisions to the tenets and desired skills in our proposed course.

T3: Recognize how NLP tasks abstract away
from the complexity Students should describe
how different NLP tasks (e.g., language modeling)
abstract away from the complexity of language
processing. They should also be able explain the
practical importance of this abstraction while artic-
ulating the limits that this abstraction poses on the
conclusions we can draw about language process-
ing from building and studying these models.

T4: Build NLP systems using existing tools
Students should be able to describe all of the com-
ponents of building NLP systems. They should
also be able to use existing code-bases and tools to
design systems that solve specific tasks or answer
specific questions.

T5: Critically examine the role of benchmarks
Students should be able to articulate how and why
benchmarks shape NLP research and product de-
velopment, while reasoning about the limitations
of benchmarks.

T6: Critically examine the impact of hype cul-
ture on science and society Critically reason
about what kinds of results about NLP systems’
capabilities (or their lack thereof) get hyped and
why, while describing the impact that this hype can
have on society.

3.2 Capstone specific skills

We think that an effective way to achieve the skills
is to learn by doing, and we think that engaging in
a capstone project that requires students to answer
a concrete question or solve concrete task is an
ideal way to learn NLP. We describe the different
components of our proposed capstone project in
§ 4.5, but overall, we want students to be able to
do the following.

C1: Reading Scientific Papers Students should
be able to distill the hypotheses, methods, results

and conclusions from a scientific paper while crit-
ically evaluating whether the conclusions follow
from the results.

C2: Replicate prior work Students should be
able to follow the procedures described in a pa-
per to replicate prior work, and reason about what
counts as a successful replication.

C3: Engage in peer-review Students should be
able to give constructive criticism in a peer-review
setup, as well as incorporate constructive feedback
to improve their work.

4 Course Components and Assessments

Following our backwards design, we intentionally
related course components and assessments to the
skills we want our students to acquire, the tenets
underlying our course principles, and the skills we
want demonstrated in a capstone project (see § 3).
We summarize these connections in Table 1.

4.1 Layered approach to introducing concepts

In the previous iterations, we adopted a largely
sequential approach to introducing concepts. We
found that this resulted in a bit of a fragmented
course structure. In this iteration we want to adopt
a layered approach that introduces core concepts at
multiple levels of abstraction at different points in
the course. To accomplish this, we plan to start the
class by introducing the NLP pipeline at a very high
level, and then un-blackboxing different parts as
the semester progresses. This un-blackboxing pro-
cess applies to both computational concepts (e.g.,
when students are asked to write context free gram-
mars to engage with the complexity of language) as
well as to practical implementational level details
(e.g., when students are asked to implement tok-
enization). We describe below how we plan to use
the lab-course integration and the toolkit as tools
for this layered approach.
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4.2 Labs-Lecture intergration

Following other natural sciences, many courses in
our department have an accompanying lab. These
labs serve to provide supplemental practice with
concepts covered in the course and concrete hands-
on time for programming. Within the context of our
NLP course, we intentionally designed labs for two
broad purposes: preparing students for midterm
projects (see § 4.4 for more details on this project)
and to more deeply explore content not fully cov-
ered in lecture.

In designing lab content, we are motivated by
a tension we observed in earlier versions of this
course and related courses (e.g., Machine Learn-
ing): student final projects tend to draw on current
trends in the field, but knowledge of the field’s foun-
dations help contextualize modern techniques. As
a result, while earlier material is critical, time spent
on developing intuitions for traditional concepts
(e.g., context-free grammars) reduces the scope of
what students are capable of accomplishing in their
final projects. For example, in earlier versions of
NLP, there were only around 2 weeks between the
introduction of transformers and the completion of
earlier phases of the final project.

Labs resolve this tension by providing time out-
side of lecture for developing skills critical to suc-
cess in their final projects. This includes, a re-
fresher on Python (the middle of our curriculum
is taught in Java and C) and labs targeting data
processing, hypothesis generation, conducting ex-
periments, plotting, and interpreting results.

In their additional role as an opportunity for
deeper engagement with lecture content, labs take
the form of hands-on exploration, similar to the
‘scaffolded discovery’ advocated in Schofield et al.
(2021). Concretely, consider context-free gram-
mars. In lecture, they will be discussed at a con-
ceptual level (what are they, how do they relate to
language, what are ways we may use them, etc.). In
lab, students will be asked to write actual context-
free grammars for fragments of a language, follow-
ing in the style of (Eisner and Smith, 2008). In this
capacity, labs allow us to decide when to abstract
and when to go a bit deeper, without relying solely
on lecture time.

4.3 Toolkit

In developing the course, we had to decide what to
blackbox and when. A variety of factors influenced
our thinking on this. We want students to develop

Figure 1: Sketch of the core components of the toolkit

a high-level understanding of the core parts of an
NLP pipeline and how they relate to one another,
while also leaving space for deeper dives into spe-
cific aspects in the form of student implementations.
We believe, following our course principles, that
students learn best by doing. In this case, students
gain a fuller understanding of the NLP pipeline if
they can use and explore a working implementa-
tion. Additionally, they benefit from implementing
parts of this pipeline. Our toolkit seeks to balance
these two needs by being modular.

As sketched in Figure 1, there are 4 basic com-
ponents to our toolkit: data pre-processing, model,
experiments, and handling the output (plotting and
evaluation metrics). Data pre-processing includes
both basic text processing (e.g., reading different
file types, text normalization) and tokenization. Fol-
lowing an earlier implementation of this toolkit, the
model components is comprised of a parent class
with basic methods (e.g., getting the logits from
a model, aligning logits to words, getting inter-
mediate output) that allow for a shared structure
across disparate models (including transformers
and RNNs/LSTMs). The experiment portion of the
toolkit facilitates basic approaches in the field (e.g.,
probing, targeted syntactic evaluations). Finally,
the output of experiments interacts with both met-
rics (e.g., F1) and also a plotting interface. Each of
these components can be supplemented with stu-
dent implementations. For example, a lab can fo-
cus on building a different type of tokenizer, which
students can add to the pipeline to extend the capa-
bilities of the existing toolkit.

In designing the toolkit we are mindful of two
things: we want the code to be readable and ap-
proachable for students to dig into while also build-
ing in a level of abstraction that facilitates using the
toolkit without fully understanding the components
early in the semester. Like in earlier versions of
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the toolkit we plan to abstract from the implemen-
tation via basic plain text files specifying exper-
imental material (e.g., grammatical and ungram-
matical sentences) and a config file that specified
pre-processing details (e.g., including puncutation)
and the desired models to run the experiment on.
Additionally, we will build on top of existing, and
widely adopted NLP toolkits like NLTK and Hug-
gingFace (especially for models), so that students
gain some familiarity with existing industry tools.

4.4 Midterm

To scaffold the final project, the middle of the
semester culminates in a midterm project, rather
than a midterm exam. The intention of this project
is to provide students an opportunity to concretely
apply skills relevant to the final paper, but in a more
structured format. Concretely, we identify 4 skills
that we want to ensure students can apply going
into the final project:

1. Working with existing code and/or libraries

2. Hypothesis generation and operationalizing a
question

3. Interpreting and synthesizing results

4. Science communication

Development of these skills are facilitated in
lab and in the production of their midterm paper.
We believe it is challenging, if at the end of the
semester, students are faced with two tasks, i) ap-
ply new knowledge in a new format (e.g., many
other computer science courses in our department
lack a final paper), and ii) develop a novel idea
that excites them. The midterm project seeks to di-
vorce these (to some extent). Rather than producing
novel work, students are tasked with replicating ex-
isting work. This pre-existing structure helps guide
them in the development and application of course
concepts. In closely studying an existing paper,
they gain familiarity with how researchers frame
questions, how to synthesize results in a way that
is digestible to the reader, and how to work with
existing code and data.

In the following sections, we discuss how we
approached selecting papers to serve as the base of
student replications, and how we scaffold the skills
necessary to complete it.

Types of papers and why In choosing papers,
we focused on the core themes of the course and

looked for papers that were (often) short, con-
tained existing code, exposed a key methodology,
and would facilitate good discussions. We settled
on 5 themes: Basic Methodology, Interpretability,
Experimental Design, Cross-Linguistic or Multi-
linguality, What’s in the Data. Example papers
are provided in Table 2. The Basic Methodology
theme serves a particular function in scaffolding the
midterm project, which we return to below. For the
others, we wanted to highlight different approaches
for evaluating models (Interpretability), how care-
fully created experiments can expose flaws in sci-
entific reasoning (Experimental Design), how we
should think broadly about language (cf. the “Ben-
der Rule”, Bender 2019; Multilinguality), and how
we should think critically about what is in our train-
ing data (What’s in the Data). These categories are
not exclusive – papers can fall in more than one
category. For example, Deas et al. (2023) invites
discussion of both the contents of our training and
evaluation data, but also, highlights the diversity of
what is meant by English.

Scaffolds for writing the paper In writing their
midterm papers, students will demonstrate their
knowledge of creating research: going from data to
question to experiments to results, and finally a con-
clusion. To scaffold the acquisition of these skills,
we are relying on early labs. Students will have labs
that guide them throw basic research pipelines like
formatting data to work with a model. Concretely,
we draw on papers from the Basic Methodology
as an in-lab replication assignment. Additionally,
students will present their midterm projects to us
for feedback, facilitating practice with scientific
communication.

4.5 Final

The course culminates in a capstone project in the
form of a final project, done in small groups with in-
dividual final papers. We aim through the semester
to have assessments that help ensure the students
remain on track. Concretely, over the course of a
few semesters of piloting this, we have settled on 5
phases:

1. Individual Ideation and Group Formation

2. Feedback Discussion

3. Pilot Presentation

4. Poster Presentation

5. Final Paper
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Theme Example 1 Example 2

Basic Methodology Newman et al. (2021) Warstadt and Bowman (2020)
Interpretability Clark et al. (2019) Hewitt and Manning (2019)
Experimental Design McCoy et al. (2020) Hewitt and Liang (2019)
Cross-Linguistic Ravfogel et al. (2019) Mueller et al. (2020)
What’s in the Data Yedetore et al. (2023) Deas et al. (2023)

Table 2: Paper themes and examples. For the midterm paper, students will replicate papers from any category but
Basic Methodology, which are used in lab.

We discuss the motivation and content of each
phase below.

Ideation to Group Project In driving towards a
group project, we want an opportunity for students
to externalize their own interests and map it to the
course content. We have an explicit assessment to
target this. Students submit an individual project
proposal that outlines their idea, a concrete link
to a relevant dataset or a description of how they
would make one, a question operationalized with an
experiment or task, and their availability to work in
the semester (so that groups can take into account
working style/time). See Appendix A for more
details. Students are asked to read all the individual
project ideas and to submit a ranking of projects
they would like to work on. Rather than just having
students form groups immediately, we believe this
facilitates better groups by allowing students to
find overlapping interest with people they might
not already know.

Feedback Discussion After forming groups, stu-
dents are asked to put together a project proposal
(similar to their individual project proposals). We
review these and then have meetings with each
group to help flesh out any limitations in their cur-
rent proposal. This often takes the form of helping
them make their project either more ambitious, or
conversely, scaled down to something manageable
in the remaining time of the semester. As opposed
to written feedback, we find these conversations
productive and useful in helping students articu-
late a project that is appropriate and exciting for
them. In the end of the discussion, we establish
what should comprise their pilot presentation.

Pilot As the class shifts to focusing on final
projects, we ensure that there is time in labs for
groups to make progress. We formalize this desire
for making progress prior to the end of the semester

with a pilot presentation. Groups are meant to
implement the core part of their final project and
present it to the class in the form of a short presenta-
tion. By demonstrating that their project works, at
least in a limited capacity, groups can expose any is-
sues that might arise in conducting their work (e.g.,
the data are not good, the model they are drawing
on performs more poorly than expected). Addi-
tionally, students get practice communicating their
results to a more general audience (each other). For
each presentation, students submit feedback forms
(see Appendix B) and drive the questions in the
discussion period after the presentation.

Poster Presentation In the final week of the
semester, students create and present posters about
their final project. This ensures that they have a
nearly complete final project prior to working on
the final paper during the examination period. In
the past, we have had students give feedback for
each poster using a form. We have decided to have
students write anonymized reviews of a subset of
posters. This, we hope, encourages them to engage
more substantially with the poster and helps teach
them the process of science (namely, peer-review).
We plan to use a reviewing form similar to that
of used by ARR (e.g., highlighting the strengths,
weaknesses, and key takeaway). A copy of our
poster template, rubric, and prior feedback form is
given in Appendix B.

Final paper Finally, each student is asked to in-
dividually write a final paper, following a template
included in Appendix C. The paper mimics a typi-
cal research paper in NLP (drawing on ACL’s style
guide). Given the group nature of the other parts of
the final project, we want to retain some way to as-
sess the individual contributions of group members.
We have found that final papers in the past have
exposed both exciting differences in interpreting
results but also highlight the varied contributions
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of group members.

4.6 Society Reflection

A core aim of this course is not only to introduce
students to NLP but also produce critically engaged
practitioners. The final component of the course is
meant to scaffold this. In their paper on incorporat-
ing reflection on social issues in CS classes, Davis
and Walker (2011) highlighted, among other things,
the following two challenges: First, students are
good at repeating platitudes (e.g., “it is important to
address biases in models”), but find it challenging
to critically think about the issues in practice. Sec-
ond, formally assessing students’ ability to engage
with these issues can be challenging.

In our course, we hope to address these chal-
lenges by requiring students to write a 1-2 page
“Society reflection” paper. For this paper, students
will be asked to find and read a recent news article
that discusses advances in NLP and asked to evalu-
ate the arguments the article makes (implicitly or
explicitly) about the societal implications of these
advances. Since students are asked to evaluate spe-
cific arguments, merely repeating platitudes will
not be sufficient; they will need to draw on their
knowledge of the tools and techniques in NLP to
examine the central claims, while also reflecting
on the rhetorical reasons for making those claims.
Students’ ability to engage with the societal issues
as NLP practitioners will be assessed based on their
ability to identify the core claims and the soundness
of their arguments when evaluating these claims.

5 Discussion

In this paper we presented two types of students
NLP courses might want to train — NLP engineers
and NLP scholars — and used a backwards design
approach to design a capstone focused upper-level
course to train the latter type of student. We started
by outlining three skills we would like the NLP
scholars we train to have. Then, we described six
tenets and three capstone specific skills that shaped
the content, organization and assessments in the
course. Finally we described these different com-
ponents of the course. Having taught two sections
of NLP and two sections of Machine Learning in
the last two years, our proposed course represents
the synthesis of many conversations, both among
ourselves, but also with other educators and with
our students.

In designing the upperlevel course, we had to

resolve a tension between the knowledge and criti-
cal thinking skills we wanted our students, as NLP
scholars, to have and our desire to develop a course
that fostered substantial and exciting undergradu-
ate NLP projects. To foster a deeper understanding
and appreciation of what NLP is about, we thought
it was important to spend time on older material
(especially since we could not assume any prior
background in AI or NLP). However, to prepare
our students for successful and exciting capstone
projects we thought it was important to introduce
them to newer tools and techniques early on.

We resolved this tension in our proposed course
in the following ways.

1. We adopted a layered approach to introduc-
ing concepts where we introduce the NLP
pipeline at an abstract level in the beginning,
and peel away the layers as the course pro-
gresses. To accomplish this, we proposed a
modular toolkit and and intentional course-lab
integration.

2. We proposed a midterm replication project
that provides students with an opportunity to
work on larger scale projects with existing
code-bases, while also giving them practice
with critical thinking (e.g., reasoning about
what counts as a successful replication) and
science communication.

3. We proposed a highly scaffolded approach
to their final capstone project involving five
stages. We piloted this five-stage process in
two sections of Applied Machine Learning
this semester, and found that on average the
student projects were more ambitious and suc-
cessful. We include course materials from this
pilot in the appendix.

NLP Scholar in Different Institutions and Pro-
grams While the course components we pro-
posed are specifically designed with the constraints
of our institution and program in mind, we believe
aspects are applicable to training NLP Scholars in
other contexts. Specifically, there are two educa-
tional environments that we would like to highlight:
a computer science department at a research heavy
(i.e., R1) university and other departments like lin-
guistics or psychology where a computational lin-
guistics course would be relevant. For both, the
toolkit and societal reflection seem appropriate and
useful.
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The final project, as we have constructed it, re-
quires ample one-on-one time with students, both
for formal components of the grade (e.g., the
project feedback and in-class presentations), but
also, for helping student groups progress in their
project (e.g., debugging issues). We believe these
would be difficult to scale in R1 settings without
relying heavily on TAs and restructuring the pro-
gression of the final projects. However, we believe
the final project structure, and in particular, the
replication component, would be applicable across
disciplines. Having linguistics students replicate
work on targeted syntactic evaluations, for exam-
ple, is a good way of taking a common practice
in linguistics (the construction of minimal pairs)
and applying it to a computational domain. On
the other hand, we think the lab/lecture structure is
well suited to R1 computer science students, while
it may pose challenges in being ported to other
disciplinary backgrounds. We are assuming that
students in our class need more time to the concepts
than on the aspects of programming.

Usefulness of the NLP Engineer vs. NLP Scholar
distinction Even if the goal of many NLP courses
might be to train students who are a combination
of an NLP Engineer and Scholar, we think the dis-
tinction can be useful when faced with conflicting
goals for the course. For example, Schofield et al.
(2021) advocated for a discovery based approach
to teaching NLP, but concluded that students might
need more guidance on/practice with aspects like
File I/O, loading and saving data, manipulating
numpy and spaCy objects etc. Here, the NLP En-
gineer vs. Scholar distinction can help instructors
decide what components should students produc-
tively struggle with, and which components they
are better of getting more structured guidance on.

If the goal of the course or the specific assign-
ment is to equip students with the ability to build
something like an NLP Engineer, then it might be
helpful for students to productively struggle with
components like File/IO with minimal guidance. If
on the other hand, the goal is to have students use
a tool to answer a question or explore a topic like
an NLP Scholar, then students might be better off
having more guidance on components of the assign-
ment like File I/O, so they can devote more time to
the exploration and analysis. This line of reasoning
is applicable even for graduate level NLP courses
or undergraduate courses where students come in
with much stronger programming experience, and

are unlikely to be challenged by programming as-
pects like File I/O — in these courses, instructors
will need to decide the extent to which other im-
plementational details such as GPU parallelization
should be scaffolded.

Conclusion We differentiated between two types
of students — NLP scholar and NLP engineer —
and proposed an upper level course, with a cap-
stone experience, designed to train the latter type
of student. Ultimately, we hope that articulating
the goals for an NLP scholar, and tying them back
to specific components in our proposed course can
facilitate broader discussions about what kinds of
NLP practitioners we want to train, why, and how
best to train them.
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A Project Proposal and Pilot Presentation Templates

Students are asked to make two project proposals. One that represents their individual idea and interest,
and then later, a proposal for a group project. A verison of the proposal template is copied below.

A.1 Proposal Template
A.1.1 Introduction/ Motivation

• What is the big picture question you are trying to answer/ problem you are trying to solve? Why is
this an interesting and worthwhile question to answer/ problem to work on?

• What is the specific question you will pursue? Why? (Note: you will need to pick something that is
feasible to answer in 3-4 weeks)

• What are all the possible outcomes of your project? Do you think one (or few) of these outcomes are
more likely than others? Why?

A.1.2 Background/Literature review
Find at least three papers related to your project. For each project write a paragraph or two summarizing:

• What were the goals of that paper? How is it related to your project?

• What methods did the paper use?

• What were the conclusions?

Google scholar (or other comparable database search) is a better place to look than standard search: you
are less likely to find blogposts with unverified content on Google scholar. Note, on Google Scholar you
might see a lot of preprints from arxiv, even if they were also published elsewhere. It is good practice to
try and find the most recent version of a paper. The general rule of thumb you should use: peer reviewed
published papers are more credible than preprints.

A.1.3 Planned methods
Describe what methods you plan to use to address your question and describe how your methods compare
to prior work you describe in the background section.

• What dataset will you use? Is it already available or do you have to create it?

• What model(s)/approaches will you use?

• How will you evaluate your models? What counts as success? What conclusions can you draw (if
any) if you get negative results?

A.1.4 Proposed timeline/division of labor
Breakdown your project into separate tasks. For each task, list the expected amount of time, who plans to
work on it and when they expect to complete it by. For this part, it might be most straightforward to fill
out a table following the format below.

One of your tasks should be “Prepare for pilot result presentation” and your timeline should
highlight what work you hope to accomplish before the pilot results.

Task Time required Expected date of completion Person
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A.2 Pilot

After discussions between us and each group, students work towards a final project pilot presentation.
This presentation demonstrates early progress on their project and showcases their question and opera-
tionalization. It takes the form of a 5-8 minute presentation with time for questions from the other students.
During the presentations, students are asked to provide:

• Feedback about the content (question, methods, result interpretation, conclusion etc)

• Feedback about the presentation (framing, visuals, oral presentation etc)

B Poster Presentation Templates

At the conclusion of the semesters, groups create and present a final poster. Details on the poster template,
grading rubric, and student feedback from are provided below.

B.1 Poster Template

We provide students with a final poster template (given in Figure 2) in the form of a google slide and are
asked to make use of the on-campus printing services to gather their physical poster.

Figure 2: Final poster template

B.2 Poster Rubric

In an effort to balance listening to and grading the presentations, we settled on a brief rubric in Table 3.
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Extractable from poster? (0: missing 1: yes 2: clear)
Introduction 0 1 2
Background 0 1 2
Experimental Setup 0 1 2
Results 0 1 2
Summary + Conclusion 0 1 2
Future work 0 1 2
Clarity of presentation (0: bad 1: ok 2: exceeds expectations)
Division of labor (ok: majority of team contributes) 0 1 2
Oral pitch (ok: leave with question, operationalization, takeaways) 0 1 2
Timing (ok: <= 5 mins) 0 1 2
Visuals (ok: informative, legible) 0 1 2
Answering Questions (ok: understand the question ask) 0 1 2

Table 3: Final poster rubric

B.3 Student Feedback on Posters
When not presenting, students are asked to engage with the other presentations and provide feedback.
In prior courses, this feedback too the form of filling out a paper form. Concretely, they were asked to
provide (at least) one bit of constructive feedback along each of these dimensions:

• Content

• Visualizations

• Argument presentation

• Future direction

C Final Paper Templates

Using a latex template styled on ACL’s submission template, students are asked to write an individual
final paper. Some guidelines we gave to students are provided below.

C.1 Final Paper Guidelines
Your final paper should have the following sections.

C.1.1 Introduction/Motivation
• What is the big picture question you are trying to answer/ problem you are trying to solve? Why is

this interesting?

• What is the specific question you are pursuing? Why?

C.1.2 Background/Literature review
Find at least three papers related to your project. For each paper write a paragraph or two summarizing:

• What were the goals of that paper? How is it related to your project?

• What methods did the paper use?

• What were the conclusions?

Note, on Google Scholar you might see a lot of preprints from arxiv, even if they were also published
elsewhere. It is good practice to try and find the most recent published version (i.e. conference version) of
a paper.
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C.1.3 Methods
Describe what methods you used to address your question and describe how your methods compare to
prior work you describe in the background section.

• What dataset did you use? Was it already available or did you have to create it?

• What model(s)/approaches did you use?

• How did you evaluate your models? What counted as success? What conclusions can you draw (if
any) if you got negative results?

• Include a link to a repository with your code (or similar) in the paper

C.1.4 Results
Describe what you found in your work. Put your results in a figure or a table that helps the reader
synthesize what you’ve done.

C.1.5 Discussion
How does your work answer your question? What are the implications of your results? What are ways the
work could be extended? What are the limitations of your work?

118



Proceedings of the Sixth Workshop on Teaching NLP, pages 119–127
August 15, 2024 ©2024 Association for Computational Linguistics

An Interactive Toolkit for Approachable NLP

AriaRay Brown1, Julius Steuer1, Marius Mosbach2*, Dietrich Klakow1

1Saarland University, 2Mila Quebec AI Institute,
{arbrown,jsteuer,dklakow}@lsv.uni-saarland.de

marius.mosbach@mila.quebec

Abstract

We present a novel tool designed for teach-
ing and interfacing the information-theoretic
modeling abilities of large language models.
The Surprisal Toolkit allows students from di-
verse linguistic and programming backgrounds
to learn about measures of information theory
and natural language processing (NLP) through
an online interactive tool. In addition, the inter-
face provides a valuable research mechanism
for obtaining measures of surprisal. We imple-
ment the toolkit as part of a classroom tutorial
in three different learning scenarios and dis-
cuss the overall receptive student feedback. We
suggest this toolkit and similar applications as
resourceful supplements to instruction in NLP
topics, especially for the purpose of balanc-
ing conceptual understanding with technical
instruction, grounding abstract topics, and en-
gaging students with varying coding abilities.

1 Introduction

The field of information theory has seen intriguing
results in the computational modeling of human
language processing. Measures of information en-
coded in linguistic units can be used to predict
the processing difficulty, or surprisal, of language
(Hale, 2001; Levy, 2008) . The topic of surprisal is
relevant both to researchers who want to investigate
language using measures of information density,
and to students of linguistics and computer science
who benefit from learning about the subject.

There is also a need for tactile, communicative,
and individualized learning tools. Online tools in
particular provide full flexibility for hybrid or on-
line class environments. Visual tools that aid in
understanding language model outputs, such as
projects from Hoover et al. (2019); Vig (2019), are
also supportive of taking steps towards interpreting
models (Belinkov and Glass, 2019). Such tools
for learning about abstract concepts can provide

*Work done while at Saarland University.

students with a conceptual intuition that they can
build upon and improve.

One existing public tool, OpenAI’s Playground
(OpenAI, 2024), offers exploratory functionality
for interacting with large language models and a
modest view of token probabilities. While the Play-
ground showcases an appealing example of a user
interface, we have yet to see a toolkit available that
is fitting for the goals of research and education
in surprisal theory. Notably, this setting calls for a
tool with payment-free usage, easily retrievable sur-
prisal calculations, and an extendable offering of
publicly available language models, ideally through
a simplified user interface. With this in mind, we
developed the Surprisal Toolkit as an open-source
research and educational tool1 .

The Surprisal Toolkit was built in part to exist
with a suite of language modeling tools for mea-
suring aspects of information density. As part of
a larger research aim to share computational tools
across related projects, the Toolkit interface enables
researchers with or without programming skills to
obtain and analyze surprisal. Secondly, students
with an interest in learning about measures of in-
formation density or examining their importance
can interact with the Toolkit as an educational tool.

We begin with the measure of surprisal and illus-
trate in the following sections how the web-based
Toolkit supports multiple classroom environments,
for a range of student profiles, in sessions taught
both in person and online.

This work presents the Surprisal Toolkit, an on-
line interface for interacting with and teaching con-
cepts of surprisal. We demonstrate the usefulness
of this tool to encourage educators and developers
to consider making use of similar resources in NLP
courses.

1https://github.com/uds-lsv/surprisal-toolkit
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Figure 1: The Surprisal Toolkit web interface with selected user input, e.g., Model: gpt2-medium, Prepend Token:
selected, Chosen file: naturalstories.txt, in the left window. The right window depicts text box input with 4
unique sentences separated onto new lines. Here, the open Model list reveals a starting selection of pretrained and
self-trained models sourced from Hugging Face and languagemodels, respectively.

2 Learning Objectives

The tutorial we teach with the Surprisal Toolkit pro-
vides a hands-on approach to analyzing surprisal
estimates from large language models. Students
directly engage with applications of information
theory, calculating surprisal values from model pre-
dictions and statistically comparing results in order
to evaluate the alignment of machine to human lan-
guage processing. The learning objectives are as
follows:

1. Learn to calculate surprisal with the Toolkit,
becoming familiar with an abstract concept
through concrete, visual examples.

2. Learn how and why to use surprisal for psy-
cholinguistic research. Statistically model sur-
prisal as a predictor of human reading times
using Linear Mixed Effects (LME) models.
Evaluate model fit using log-likelihood and
mean squared error (MSE).

3. Learn to calculate token and word-level sur-
prisal directly with code, machine learning
libraries, and language model output.

3 The Surprisal Toolkit

Application architecture.
The Surprisal Toolkit shown in Figure 1 is a web-
based application built to interface with a language-
modeling Python library, languagemodels, devel-
oped for information theoretic research at a large

university. The languagemodels library supplies
custom surprisal functions using PyTorch (Paszke
et al., 2019) and serves as a wrapper for functional-
ities from Hugging Face Transformers (Wolf et al.,
2019). Together with access through a browser, the
Surprisal Toolkit allows for calculating and visual-
izing surprisal values from language models, either
internally provided or externally accessed through
Hugging Face Transformers.

The application was developed using Flask for
back-end functionality along with ease of integra-
tion with Python in languagemodels, and Angular
for the front-end design and user interface. We host
the application on an existing web domain of the
research group to allow students to directly access
the Toolkit without the need for each student to
build the project locally.

Purpose and benefits.

As a visual and computational tool, the Surprisal
Toolkit serves two main purposes in our learning
communities. First, it simplifies access to working
with language models for students and researchers
who lack experience in coding. As a stand-alone
tool, it allows users to specify input, quickly obtain
surprisal estimates, and allot focus to evaluating
results. Thus attention is freed for assessing hy-
potheses or conceptually grasping adjacent learn-
ing objectives. The second purpose is to act as an
interactive resource for students to learn and ex-
periment with the topic of surprisal from language
models. The Toolkit demonstrates both the theoret-
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ical topic of surprisal and its technical realization.
The Toolkit provides a student-led introduction to
the topic as well as a balance of high-level under-
standing. This allows it to be cohesively combined
with subsequent coding instruction for implement-
ing the processes observed in the interface.

Figure 2: View of the results file preview in the Sur-
prisal Toolkit web interface. Users can scroll through
the window of token and surprisal estimates from the
selected model (here, gpt2-medium) for the given text
input. The complete results.tsv file can be downloaded
via the button underneath.

3.1 Use Cases

We discuss several use cases for the Surprisal
Toolkit as a scientific learning and research tool.

Case I: Basic usage.
The simple usage of the Toolkit is as a pre-built
calculator for computing surprisal from language
models across text. Surprisal is calculated on the
token level (i.e., words, characters, or subwords), as
word-level surprisal can be obtained by summing
the retrieved surprisal values.

• Users enter text into a text box or upload a
text file, select a pretrained language model,
and click Compute Surprisal, as portrayed in
Figure 1.

• In the Results tab of the interface shown
in Figure 2, a scrolling preview of tokens
and surprisal values per line of context is
shown. Below it, a Download Results (re-
sults.tsv) button allows users to save the com-
plete tab-separated values file with columns
for sentence_id, token, surprisal, and
token_id.

• To visually explore the data in the Plots tab
(Figure 4), users select a sentence from the in-
put text to display a plot of log base 2 surprisal
across all tokens. Plot views can be adjusted
by panning the window, zooming in and out,
and fitting automatically. Helpful views may
then be downloaded as PNG image files.

Figure 3: A cropped example of a downloaded re-
sults.tsv file.

Case II: Comparing language models.
The Toolkit provides an ongoing list of pretrained
language models from Hugging Face of varying
parameter sizes. Thus, results can be compared
between them. Users may enter text or upload a
text file of the same input while selecting differ-
ing models to calculate surprisal. By visualizing
results in the Plots tab of the Toolkit, or download-
ing results in the Results tab, measures of surprisal
from each model can be quickly viewed or saved
for further comparison. In psycholinguistic inves-
tigations such as those in Oh and Schuler (2023);
Kuribayashi et al. (2023), for example, surprisal
estimates are used to compare varying models’ abil-
ities to predict human reading behavior.

Case III: Computing surprisal over text.
Surprisal values can be computed over plain text
in the context of sentences, stories, or documents.
Results can then be used for subsequent processing
or as data to investigate research questions. As
an example, in the work of Wilcox et al. (2023)
the authors derive surprisal estimates for 11 lan-
guages using multilingual models such as mGPT, a
variant of GPT-3 pretrained on 61 languages (Shli-
azhko et al., 2022), in order to assess surprisal
theory cross-linguistically. mGPT, available as a
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pretrained model through Hugging Face, can also
be selected as input in the Surprisal Toolkit.

In addition to plain text, CoNLL-U2 formatted
text files, a revised version of the CoNLL-X for-
mat (Buchholz and Marsi, 2006), can be processed
through the Toolkit. Downloaded result files will
include an updated CoNLL-U text file with an ad-
ditional column holding surprisal values.

Case IV: Visualizing surprisal estimates.
In the Plots tab (see Figure 4), users can visualize
surprisal values across tokens in a sentence or line
of context. By comparing surprisal modulations
across sentences, users can investigate hypotheses
or gather quick insights. This use case is especially
helpful for demonstrating to students how surprisal
increases, decreases, or persists across token val-
ues.

4 Classroom Implementation

The tutorial was experienced in several learning
formats for a range of student backgrounds. We
describe each scenario in the following subsections
with a highlight of how using the Surprisal Toolkit
addressed the specific needs of the class environ-
ment.

In all classroom implementations, we presented
the tutorial through online materials3. We began
with a presentation shared on a large screen, com-
municating either the details of the session, as in
settings 4.1 and 4.2, or a brief introduction to the
topic, as in setting 4.3. In hybrid settings, on-
line participants joined through a video meeting
in which the screen was also shared. The tutorial
took place over a span of 90 minutes, segmented
by an introduction, group question answering, and
checkpoints throughout students’ self-paced learn-
ing.

The format of the tutorial was comprised of a
Python Jupyter Notebook, a computational note-
book with interactive code blocks for sequential
documenting and visualizing of code, and a web
browser for accessing the Surprisal Toolkit. The
Jupyter Notebook provided four sections for stu-
dents to work through independently or in pairs.
Section 1 documented a guided Surprisal Toolkit
Warm-Up in which students interacted with the web
interface to familiarize with calculating surprisal

2See https://universaldependencies.org/format.
html for CoNLL-U documentation.

3Materials are shared as an example at: https://github.
com/uds-lsv/surprisal-toolkit-teaching-materials

over tokens. In Section 3, students used the Toolkit
to quickly gather surprisal results over the Natural
Stories Corpus (Futrell et al., 2020) based on prob-
ability estimates from three different GPT-2 model
sizes.

The premise of the notebook was to reproduce
part of the experiments in (Oh and Schuler, 2023)
in order to compare statistical models of human
reading time data with and without LLM surprisal
values as a predictor. In other words, students were
given the problem of human and neural language
processing in order to explore the degree to which
larger language models might be worse at predict-
ing reading times, and why. By providing a simple
interface, or input-output mechanism, for obtain-
ing the surprisal data through the Toolkit, students
were able to focus in this section on the type of
research questions that could be investigated using
the results. This exercise was meant in part to show-
case how the measure of surprisal could be used
in psycholinguistic research and in the analysis of
large language models, thus motivating a reason to
learn its calculation.

The main coding focus of the notebook was then
to calculate surprisal from language model outputs,
without using the Surprisal Toolkit. This section
explores the technical implementation and draws
attention to insights for programming directly with
Transformer language models.

4.1 Course Tutorial

As part of a seminar on information theory offered
at a large university, the tutorial was presented to
a group of 10-15 students as a practical session.
Here, students were given the opportunity to apply
the information they learned in an earlier lecture
about neural language models.

Student demographic.
The information theory course was offered partic-
ularly for graduate students, i.e. master’s and doc-
toral students, as well as postdoctoral researchers
with a related research focus. Thus, students were
expected to be moderately informed on the subject
of natural language processing, while in the midst
of learning about information theory, neural lan-
guage processing, and psycholinguistic research.
Programming experience was not required, but stu-
dents were familiar enough with running Python
Jupyter Notebooks, installing dependencies, and
coding functions to be able to work through techni-
cal aspects of the tutorial. The majority of students
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were present in person, while 3-5 engaged in the
tutorial through an online meeting. Students were
motivated to work and learn independently, espe-
cially as many shared the goal of being able to
directly use the skills from the tutorial.

Toolkit impact: individualized examples and
theory in practice.
For students in this scenario, the Surprisal Toolkit
was useful for grounding the concept of surprisal.
After learning about its calculations and implica-
tions in psycholinguistic research, students were
given this tool to explore surprisal directly. This
was achievable through self-guided experiments in
which students expressed their hypotheses as input
and inspected results through the Toolkit output.
Students observed important points in the process
of model selection, tokenization, and the modula-
tion of surprisal values across a string of context.

In conjunction with lectures on the theoretical
aspects of surprisal and a written tutorial describ-
ing technical implementations, the Toolkit sup-
plemented students’ learning with a hands-on ap-
proach to interacting with the concept. For exam-
ple, students were able to see a range in surprisal
values calculated across a sentence as in Figure 4.
By clicking between sentences, the model’s pro-
cessing of language could be compared. When
students were curious about the results they saw,
they were easily able to modify the input text or
model selection to gather more feedback for their
question.

Each run of the Toolkit supplied an individual-
ized example, of interest to the student who chose
it. This was especially important for teaching the
concept in a way that was relatable and accessible
to every student.

4.2 Pop-up Tutorial

We next taught a tutorial on information theory,
entitled “Surprisal from Large Language Models”.
The tutorial was open to all master’s students in the
university’s department of Language Science and
Technology who had an interest in learning more
about gathering and analyzing surprisal estimates
from large language models. We organized the
tutorial independently of any courses in order to
offer it as a distinct learning module to all interested
students. For those who registered, we provided
a few external readings as optional background
knowledge in preparation. These included the first
few pages of an introduction to information theory

(Stone, 2015) and two recently published papers on
the relation of surprisal from larger large language
models (Oh and Schuler, 2023), as well as those
from instruction-tuned models (Kuribayashi et al.,
2023), and human reading behavior.

Student demographic.
A focused class size of six master’s students joined
the tutorial, with two participating through an on-
line video meeting. Due to the optional nature of
the session, we assume that those who took part in
it were students with a special interest in learning
about the topic. Most had used Python at least once
previously in their courses. Background knowl-
edge on information theory ranged from students
having no formal instruction to students being gen-
erally familiar with the concept after exposure to it
in courses on computational psycholinguistics. All
students were either in the beginning or middle of
a degree in Language Science and Technology.

Toolkit impact: introducing and demonstrating
main concepts.
In this setting, the Surprisal Toolkit served a sim-
ilar purpose of bolstering learning engagement as
described in 4.1. Since students did not receive a
formal lecture of instruction prior to the tutorial
tasks, the Toolkit served as both an introduction
and a demonstration of the main concepts. The tu-
torial began with a brief discussion of the learning
objectives, a definition of surprisal as it relates to
language processing, and research findings in the
use of language model estimates to predict human
reading times. Students, both online and in person,
were eager to test the capabilities of the Toolkit4.

An example interaction illustrates the benefit
of having the Toolkit in this setting: While stu-
dents were exploring the Toolkit, they shared sev-
eral questions relating to (i) how the application
was able to produce surprisal estimates, (ii) what
steps were taken by the selected language model
for estimation, and (iii) what meaning could be in-
terpreted from the values displayed in the plot of
tokens across a sentence. Essentially, all three of
these questions would be answered while working
through the code and instructions in the tutorial
Jupyter notebook. The Toolkit thus became a pre-
cursor to the more technical and theoretical investi-
gations within the written tutorial. Engaging with

4We elaborate on how to prepare for enthusiastic memory
usage of web-based tools in Section 7 but ultimately were able
to support the engagement.
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Figure 4: Plot of surprisal values from an excerpt of sentences from Alice’s Adventures in Wonderland by Lewis
Carroll. On the x-axis is the model-tokenized sentence or line of text. The Ġ symbol represents white space and,
when prefixed to a token, indicates the start of an orthographic word. On the y-axis is the log base 2 surprisal
score for each token. Below the plot is a drop-down menu for selecting a sentence or line of text from the input for
viewing.

the Toolkit effectively directed students’ attention
to the information they would receive during the
remaining tutorial.

4.3 Workshop

We taught the tutorial again as a workshop during
a three-day computational linguistics conference
designed for bachelor’s and master’s students of re-
lated fields. The conference was aimed at fostering
knowledge exchange between students and served
as both an educational and community forming
event. Participants were able to attend keynote lec-
tures given by university professors in the field of
natural language processing. Lecture topics were
loosely related to our tutorial topic of information
theory, and may have provided interest or slight
context to students who participated in the work-
shop. Of the day’s events, students could choose to
attend our workshop or opt for other talks occurring
simultaneously.

Student demographic.
A group of 9 students, mostly master’s, elected to
participate in the workshop. We expected most par-
ticipants to have little to no background knowledge
on the subject of information theory, natural lan-
guage processing, or computer programming. In
this setting, we also could not expect participants

to have prepared background knowledge outside
of the classroom. Instead, we prepared a short in-
troduction with key points for situating the tutorial.
Since participants would be selecting from a full
day of events to meet their intellectual interests, we
aimed to create a learning environment that was
direct, concise, salient, and enjoyable. Here we
targeted learning through active engagement more
so than through self-directed coding challenges, as
offered in prior tutorials.

Toolkit impact: engaging students and
prompting student-led experiments.
The Toolkit became a focal point for grounding con-
cepts and engaging students in this scenario. After
presenting a short series of slides with information
on surprisal theory and its calculations through lan-
guage models, we introduced the Surprisal Toolkit
in an interactive group warm-up.

Through student-led input, we aimed to exem-
plify and experiment with the notions just intro-
duced. We prompted students to come up with
hypotheses that might lead to changes in surprisal
values across tokens in a line of context. By com-
paring visualizations of plotted results, students
were able to assess possible answers to their ques-
tions and experiment with further insights gained.
For example, students were asked to come up with
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sentences that might lead to peaks or drops in sur-
prisal values; compare output from different mod-
els; and assess the reliability of model output, along
with contributing factors thereof, given their own
intuitions about language. The discussion gained
from using such a tool raised several interesting
observations from students, whether about influ-
ences on the measure of surprisal or the processes
implemented behind the interface.

5 Hybrid Classroom

One benefit of web-based learning tools is their
functionality in both online and in-person settings.
With the usability of the Surprisal Toolkit online,
for example, we have been able to adapt our tuto-
rial for hybrid learning with little modification. An
additional advantage we observe through having
taught with an interactive tool is its ability to en-
gage remote students who are unable to physically
immerse in the classroom environment.

6 Student Feedback

At the end of each tutorial, we collected optional
student feedback in the form of a ten-question sur-
vey. In an effort to ensure some feedback over none,
we kept questions to a minimum and included only
one free response. The first question asked for
confirmation that students were able to use the Sur-
prisal Toolkit in the tutorial. Questions 2-9 were
opinion questions on a 5-point Likert scale, with 5
indicating the most positive opinion. Question 10
was open-ended, allowing for optional comments
or suggestions regarding the Toolkit. Students were
free to fill out the survey on paper or online through
a printed QR code. Those who completed the sur-
vey did so anonymously and confirmed their con-
sent to having their answers contribute towards
future research on teaching NLP. In Table 1 we
present the results from the 12 student responses
collected across all three tutorial sessions5.

Overall, student feedback was positive towards
using the Surprisal Toolkit as a learning tool. The
majority of students gave scores of 5 in each ques-
tion. All questions except for one saw scores at 3
or above. Only one question, Did using the toolkit
help you to understand more about language mod-
els or evaluating surprisal? received a rating of

5This number represents 53% of all students who attended
the tutorial sessions and stayed for the full duration of the
class. Of all student responses, 16.67% originated from the
course tutorial, 33.33% from the pop-up tutorial, and 50.00%
from the workshop.

2 from a student who attended the pop-up tutorial
(4.2). One possible explanation for this response
could be related to reaching the memory capacity
for the Toolkit server during the warm-up of this
tutorial session. The experience revealed the need
to manage high usage through further application
development, or to carefully plan classroom sce-
narios to best distribute simultaneous interactions
with the tool.

When asked about satisfaction with using the
Toolkit as a resource and, later, satisfaction with the
tutorial overall, ratings decreased slightly, with two
student scores (16.7%) reducing from 4 to 3. At a
minimum, we can interpret that the Toolkit did not
detract from the learning environment. Even with
room for improvement in the tutorial, the Toolkit
provided a mostly satisfying component.

The highest-scoring question, How interested
would you be in seeing similar applications for in-
teracting with language models in your courses?
received almost unanimous ranking of 5 for “Very
interested”. This result is promising, as it suggests
that students enjoyed using the Toolkit enough in
this instance to look positively towards further im-
plementations of such tools in their learning envi-
ronments. As educators, researchers, and develop-
ers we may be encouraged to build and share more
interactive NLP tools with students who welcome
the resources.

7 Discussion and Suggestions

One important consideration when developing web-
based learning applications is to ensure sufficient
server memory is available to handle multiple si-
multaneous requests. We suggest two methods for
addressing this need depending on the stage of de-
velopment of the tool. First, in the most ideal case,
function calls to large Hugging Face models should
be implemented in a way that minimizes redundant
memory and allows for shared resources among
user requests. Second, in the case that memory
is limited, an option is to use the application in
group-led activities, specifically at points in the les-
son dedicated mainly to exploring the application.
Shared usage, where students still have the oppor-
tunity to direct the interaction with the tool, is one
way to counteract memory limitations that can be
just as effective for engagement. In the workshop
setting described in 4.3, we found this to positively
be the case.

We suggest continuously iterating over the appli-
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# Student Feedback Question Rating Distribution

1 How much did using the toolkit affect your learning engagement
during the tutorial? I didn’t feel at all engaged...I felt very engaged

5 (1:0, 2:0, 3:3, 4:1, 5:8)

2 How satisfied were you with using the toolkit as a resource? Not
at all satisfied...Extremely satisfied

4.5 (1:0, 2:0, 3:1, 4:5, 5:6)

3 How easily were you able to interact with the toolkit? Not at all
easily...Very easily

5 (1:0, 2:0, 3:1, 4:2, 5:9)

4 Did using the toolkit help you to understand more about lan-
guage models or evaluating surprisal? No, strongly disagree...Yes,
strongly agree

4.5 (1:0, 2:1, 3:2, 4:3, 5:6)

5 Did using the toolkit bring up questions about language models
or surprisal that you would like to explore further? No, strongly
disagree...Yes, strongly agree

5 (1:0, 2:0, 3:1, 4:3, 5:8)

6 How interested would you be in using the toolkit again for a similar
task? Not at all interested...Very interested

5 (1:0, 2:0, 3:0, 4:5, 5:7)

7 How interested would you be in seeing similar applications for
interacting with language models in your courses? Not at all
interested...Very interested

5 (1:0, 2:0, 3:1, 4:0, 5:11)

8 How satisfied were you with today’s tutorial overall? Not at all
satisfied...Extremely satisfied

4.5 (1:0, 2:0, 3:3, 4:3, 5:6)

Table 1: Student feedback (N=12): distribution of responses to opinion questions on learning with the Surprisal
Toolkit. Response ratings are from 1-5, with 5 being the most positive assessment. Counts are given to the right of
each rating. In bold is the median response and in blue text is the most frequent.

cation of a toolkit interface, as students bring some
of the most meaningful feedback for highlighting
where important features can be implemented to
improve learning.

A few points of interest were inquiries about
(1) why Prepend Token was necessary when pro-
cessing text with GPT-2-based language models,
(2) how much context was considered when cal-
culating token probabilities, and (3) where more
information could be found about the details of the
language models themselves. We addressed these
points in the user interface by adding tooltips with
further information to relevant areas.

The aim was not to remove the class discussion
of these facets, but to reinforce the Toolkit for use
by students who rely on a reiteration of the an-
swers or may prefer independent discovery. We
expect that continual integration of student feed-
back would bring an ongoing interchange of more
informative pedagogical research tools and more
empowered student users.

Based on student feedback, we also see valu-
able uses for making the Toolkit open-source. This
could represent an additional learning opportunity
and motivation for inquisitive students to investi-
gate the concept further, and is yet to be explored
in future courses.

Ongoing work on the Toolkit can provide addi-
tional features for presenting important concepts.
For example, the relationship between surprisal and
perplexity might be explored through the ability to
calculate and compare both measures of informa-
tion density.

8 Conclusion

We find the Surprisal Toolkit to balance concep-
tual understanding with technical implementation,
providing opportunities for visual learning and effi-
cient solutions when needed. In classroom settings,
the Toolkit was able to demonstrate to students that
an implementation of surprisal was possible prior
to building the coding calculation themselves. The
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Toolkit as a method for grounding abstract concepts
provides a scaffolding for adjusting programming
course content to a broader range of knowledge
backgrounds. A benefit of a web-based tool is that
it readily integrates into online or hybrid teaching
environments. Therefore we recommend imple-
menting such tools in further topics and courses in
NLP.
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Abstract

We discuss the teaching of the discussion sur-
rounding Bender and Koller’s prominent ACL
2020 paper, “Climbing toward NLU: on mean-
ing form, and understanding in the age of
data" (Bender and Koller, 2020).

We present what we understand to be the
main contentions of the paper, and then recom-
mend that the students engage with the natural
counter-arguments to the claims in the paper.

We attach teaching materials that we use to
facilitate teaching this topic to undergraduate
students.

1 Introduction

The claim in Bender and Koller’s argument in (Ben-
der and Koller, 2020) is that a being that only has
access to the form of the communication – e.g., an
intelligent octopus that taps into only the submarine
signals that encode accounts of the events above
the sea that two people on land send each other –
will not be able to “understand" what is happening
above sea-level, lacking the semantics of the Morse
code that was used to communicate the events tran-
spiring above the seas. Koller and Bender argue
that even if the octopus can send messages based
on the patterns it sees that would be understood by
the humans and the humans would be fooled into
thinking they are reading messages from another
human, the shallow understanding of the octopus
would necessarily be revealed when trying to pre-
tend to answer more complicated queries.

Implicit in the argument is that the intelligent
octopus is analogous to a Large Language Model
(LLM), akin to GPT-2 (Brown et al., 2020), GPT-
4 1, Claude 3 2, or Meta Llama 3 3, and that such
LLMs would not be able to truly understand natural

1https://openai.com/index/gpt-4-research/
2https://www.anthropic.com/news/claude-3-family
3https://llama.meta.com/llama3/

language in the same way that Bender and Koller’s
octupus will not.

In this paper, we present a lecture + activity that
challenges Bender and Koller’s argument. Students
will engage with Bender and Koller’s argument and
with the counterargument, and come away with
their own conclusions

2 Building theory form data

The scientific process itself can be analogized to
a B&K octopus observing data they don’t under-
stand.

For example, astronomers observe and try to
predict the motions of heavenly bodies, initially
with no mechanistic understanding of why the stars
appear to move the way they do. Historically, as-
tronomers came up with multiple incorrect theo-
ries for why the heavenly bodies move the way
they do (notably, the family of geocentric models).
Astronomers used “epicycles" as a way to align
predictions with their model, at the expense of par-
simony (Duhem, 2015).

Historically, Copernicus’ first models did not
predict the data as well as the best epicycle-based
geocentric models (Klein and Loftus, 2015).

Note that, unlike the astronomers, the octopus
cannot interact with the world – he cannot influ-
ence what observations are made (at least before he
starts communicating with the astronomers). This
can influence how fast the octopus can “converge."
Historically, much of the data used by Kepler was
previously collected by Tycho Brahe.

2.1 Occam’s razor

Occam’s razor – the principle that, all things being
equal, we should prefer the simpler theory – can
help select the better scientific theory. For exam-
ple, the B& K octopus might consider all possible
theories of the world over the sea, and settle on the
simplest one that explains the communications the
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octopus decodes.

3 Can the B& K octopus learn science

Every student can make their own conclusions, but
ours is that it’s not in principle impossible for that
to happen (or if it is impossible, we don’t have a
clear reason to think so). The success of LLMs
on tasks that require some level of world-theory-
building such as the addition of integers task (Lee
et al., 2023), predicted to be impossible by Bender
and Koller (2020) (see Appendix B), indicates that
if there are barriers to learning world models from
observational data, they are not well-understood.
Our view is that the prediction by B&K that a pure
LLM could not learn to do arithmetic is due to
insufficiently accounting for the possibility of using
inductive biases to build a model of the data that
corresponds to the world that the data is describing.

4 Materials

We provide slides we used in class to follow up the
class’s reading of Bender and Koller (2020). We
also provide the following guiding questions

1. If the octopus observes different content in
messages when it’s dark vs. when it’s light,
what can the octopus possibly conclude about
language?

2. Describe how the octopus might use tides to
infer words that have to do with tides

3. Describe how the octopus might decode con-
versations about physics based on the conver-
sations about tides – perhaps building up from
observations of tides, stars, etc.

4. If you assume no “cheating" such as jointly
observing tides, might you imagine conversa-
tions that involve physical and mathematical
constant like G and π playing a similar role?

5. Explain why without Occam’s razor, the Oc-
topus will have a practically infinite number
of theories about what the two humans could
be talking about

6. What might be some insurmountable chal-
lenges for the octopus in the quest to under-
stand the meaning of the cable signals? How

7. Consider the claim from the original paper
that arithmetic is not learnable by form alone:
where might that argument have gone wrong?

5 Additional materials

Julian Michael, To Dissect An Octopus
https://julianmichael.org/blog/2020/
07/23/to-dissect-an-octopus.html provides
an excellent overview.

6 Conclusion

Many students in NLP would be familiar with Ben-
der and Koller’s argument, but have probably not
engaged in the critical analysis of the arguments.
We provide materials for critically analyzing the ar-
guments made by Bender and Koller. We focus on
the counterarguments since the argument itself is
ably presented by the original authors. We provide
slides introducing the B&K argument to the best
our ability as well.

Many (though not all) students are captivated by
the debate. We find that the structure provided by
the guiding questions helps in our lectures.

7 Teaching materials

Slides: https://github.com/guerzh/octopus
Video lecture: https://youtu.be/6QVjGF_J7I0
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Nikishina, Irina, 7

Palmer, Alexis, 94
Panchenko, Alexander, 7
Parde, Natalie, 4
Prasad, Grusha, 105

Renzella, Jake, 23
Robayo, Camilo, 94
Rohde, Lukas, 77
Roth, Benjamin, 43

Saavedra-Beltrán, David R., 94
Schütze, Hinrich, 43
Shipton, Mason, 73
Stephan, Andreas, 43
Steuer, Julius, 119

Tikhonova, Maria, 7
Tran, Thy Thy, 77

Uemura, Kosei, 73

Vazhentsev, Artem, 7
Vu, Doan Nam Long, 77

Wasti, Syed Mekael, 73
Weissweiler, Leonie, 43
Wilson, Shomir, 1
Wu, Winston, 66

Zaytsev, Alexey, 7
Zhang, Xiangyu, 23
Ziegler, Ingo, 43

130


	Title page
	Sponsors
	Copyright
	Introduction
	Organizing Committee
	Program Committee
	Table of Contents
	Documenting the Unwritten Curriculum of Student Research
	Example-Driven Course Slides on Natural Language Processing Concepts
	Industry vs Academia: Running a Course on Transformers in Two Setups
	Striking a Balance between Classical and Deep Learning Approaches in Natural Language Processing Pedagogy
	Co-Creational Teaching of Natural Language Processing
	Collaborative Development of Modular Open Source Educational Resources for Natural Language Processing
	From Hate Speech to Societal Empowerment: A Pedagogical Journey Through Computational Thinking and NLP for High School Students
	Tightly Coupled Worksheets and Homework Assignments for NLP
	Teaching LLMs at Charles University: Assignments and Activities
	Empowering the Future with Multilinguality and Language Diversity
	A Course Shared Task on Evaluating LLM Output for Clinical Questions
	A Prompting Assignment for Exploring Pretrained LLMs
	Teaching Natural Language Processing in Law School
	Exploring Language Representation through a Resource Inventory Project
	BELT: Building Endangered Language Technology
	Training an NLP Scholar at a Small Liberal Arts College: A Backwards Designed Course Proposal
	An Interactive Toolkit for Approachable NLP
	Occam's Razor and Bender and Koller's Octopus

