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Abstract
The spread of various forms of offensive speech online is an important concern in social media. While platforms have
been investing heavily in ways of coping with this problem, the question of privacy remains largely unaddressed.
Models trained to detect offensive language on social media are trained and/or fine-tuned using large amounts of data
often stored in centralized servers. Since most social media data originates from end users, we propose a privacy
preserving decentralized architecture for identifying offensive language online by introducing Federated Learning (FL)
in the context of offensive language identification. FL is a decentralized architecture that allows multiple models to
be trained locally without the need for data sharing hence preserving users’ privacy. We propose a model fusion
approach to perform FL. We trained multiple deep learning models on four publicly available English benchmark
datasets (AHSD, HASOC, HateXplain, OLID) and evaluated their performance in detail. We also present initial
cross-lingual experiments in English and Spanish. We show that the proposed model fusion approach outperforms
baselines in all the datasets while preserving privacy.
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1. Introduction

NLP systems relying on modern deep learning
paradigms are trained on very large amounts of
data. In several applications and domains (e.g.,
social media), most data used to train machine
learning models comes from end users. Such confi-
dential data often cannot be shared without compro-
mising users’ privacy. This is an important concern
for organizations that handle large amounts of con-
fidential data, such as financial institutions, health-
care facilities, law firms, and many others. With
the widespread use of personal computing devices
(e.g., PCs, smartphones, and virtual assistants),
data privacy also became a great concern to indi-
viduals, which motivated several countries to pass
legislation aiming to protect users’ privacy such as
the European Union General Data Protection Reg-
ulation (GDPR)1 and the Swiss Datenschutzgesetz
(DSG).2

The need for privacy-preserving machine learn-
ing models that can handle confidential data
while protecting organizations’ and users’ privacy
emerges from this situation. To address this im-
portant challenge, Federated Learning (FL) has
become an increasingly popular machine learning
paradigm (McMahan et al., 2017) as it allows us to
train robust machine learning models across mul-
tiple devices or servers without exchanging data.
In FL, multiple clients work together under the co-

1https://gdpr.eu/
2https://www.edoeb.admin.ch/edoeb/de/

home/datenschutz/ueberblick/datenschutz.
html

ordination of a central server. Each client’s data
is stored locally and not exchanged among clients
or with the central server. FL, therefore, offers the
possibility of training robust machine learning mod-
els on large numbers of decentralized local data
repositories without compromising privacy. FL mod-
els have been successfully applied in a wide range
of applications in computer networks (Lim et al.,
2020), computer vision (Yan et al., 2021), informa-
tion retrieval (Wang et al., 2021), NLP (Chen et al.,
2019), and many others.

In this paper, we explore the use of FL in offen-
sive language identification online through a model
fusion technique (Choshen et al., 2022). Datasets
containing the various forms of offensive speech
(e.g., hate speech, cyberbullying, etc.) are sensi-
tive in nature, which creates an interesting use case
for FL. The use of FL and other privacy-preserving
paradigms allows social media platforms to work
together to solve this important issue without the
need to exchange confidential information, thus
preserving users’ privacy. While FL has recently
started to be explored in NLP (Chen et al., 2019; Lin
et al., 2022b), including the workshop on Federated
Learning for NLP (FL4NLP) at ACL-2022 (Lin et al.,
2022a), to the best of our knowledge, no studies
have yet explored the use of FL in the context of
offensive language identification. Our work fills this
gap by introducing FL in the context of offensive
language identification online and by providing the
community with an evaluation of FL methods using
four publicly available English offensive language
benchmark datasets presented in Section 3.

One recent study (Gala et al., 2023) proposed

https://gdpr.eu/
https://www.edoeb.admin.ch/edoeb/de/home/datenschutz/ueberblick/datenschutz.html
https://www.edoeb.admin.ch/edoeb/de/home/datenschutz/ueberblick/datenschutz.html
https://www.edoeb.admin.ch/edoeb/de/home/datenschutz/ueberblick/datenschutz.html
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Training Testing
Dataset Inst. OFF % Inst. OFF % Data Sources
AHSD (Davidson et al., 2017) 19,822 0.83 4,956 0.82 Twitter
HASOC (Mandl et al., 2020) 5,604 0.36 1,401 0.35 Twitter, Facebook
HateXplain (Mathew et al., 2021) 11,535 0.59 3,844 0.58 Twitter, Gab
OLID (Zampieri et al., 2019a) 13,240 0.33 860 0.27 Twitter

Table 1: The four datasets, including the number of instances (Inst.) in the training and testing sets, the
OFF % in each set and the data source.

FL in offensive language identification, but it lacks
the consideration of combining different data. Their
architecture solely focuses on distributed training
on the same dataset with multiple clients and eval-
uating fedopt (Reddi et al., 2021), fedprox (Sahu
et al., 2019) algorithms to optimise the global model.
Our main focus in this study is on combining multi-
ple models using FL, which could identify offensive
content in different data.

2. Related Work

Offensive Language Identification The task of
automatically identifying offensive language online
has been substantially explored in the literature
(MacAvaney et al., 2019; Melton et al., 2020; Zia
et al., 2022; Weerasooriya et al., 2023). Multiple
types of offensive content have been addressed,
such as aggression, cyberbulling, and hate speech
using classical machine learning classifiers (e.g.,
Support Vector Machines) (Malmasi and Zampieri,
2017, 2018), neural networks (Gambäck and Sik-
dar, 2017; Djuric et al., 2015; Hettiarachchi and
Ranasinghe, 2019), pre-trained general-purpose
transformer-based language models (Ranasinghe
and Zampieri, 2020, 2021), and fine-tuned lan-
guage models on offensive language datasets
(Caselli et al., 2020; Sarkar et al., 2021). The vast
majority of studies addressed offensive content in
English and other widely-spoken resource-rich lan-
guages such as Arabic (Mubarak et al., 2021), Por-
tuguese (Fortuna et al., 2019) and Turkish (Çöl-
tekin, 2020) while a few studies dealt with low-
resource languages (Fišer et al., 2017; Gaikwad
et al., 2021; Raihan et al., 2023). Multiple compe-
titions on this topic have been organized creating
important benchmark datasets such as OffensE-
val (Zampieri et al., 2019b, 2020), HASOC (Mandl
et al., 2020; Modha et al., 2021; Satapara et al.,
2022), TRAC (Kumar et al., 2018, 2020), and HatE-
val (Basile et al., 2019). While substantial progress
has been made in the past few years, to the best of
our knowledge, none of the aforementioned studies
or competitions has addressed the question of data
privacy.

Federated Learning in NLP With the goal of pre-
serving users’ data privacy, FL architectures have
been extensively studied in a variety of domains

(Wang et al., 2021) in the past several years. Only
more recently, however, FL has been explored for
text and speech processing (Lin et al., 2022b; Silva
et al., 2023; Zhang et al., 2023; Che et al., 2023).
Recent workshops co-located with top-tier confer-
ences confirm this growing interest in FL and pri-
vacy in general. The workshop on Privacy in Natu-
ral Language Processing (PrivateNLP) (Feyisetan
et al., 2022), which is currently in its fourth edition,
addressed the interplay between NLP and data
privacy while the aforementioned FL4NLP work-
shop (Lin et al., 2022a) co-located with ACL-2022
was the first workshop organized focusing exclu-
sively on FL for NLP. Most papers presented in the
workshop, however, dealt with language modelling
and learning representation rather than with down-
stream tasks and applications such as offensive
language identification. As we mentioned before,
a recent study applied different FL strategies in of-
fensive language identification (Gala et al., 2023).
However, their study focuses on distributed training
on the same dataset (Sahu et al., 2019).

3. Data

We use four popular publicly available datasets con-
taining English data summarized in Table 1. As the
datasets were annotated using different guidelines
and labels, following the methodology described in
previous work (Ranasinghe and Zampieri, 2020),
we map all labels to OLID level A (Zampieri et al.,
2019a), which contains the labels offensive (OFF)
vs. not offensive (NOT). We choose OLID due to
the flexibility provided by its general three-level hi-
erarchical taxonomy below, where the OFF class
contains all types of offensive content, from general
profanity to hate speech, while the NOT class con-
tains non-offensive examples. The OLID taxonomy
is presented next:

• Level A: Offensive (OFF) vs. Non-offensive
(NOT).

• Level B: Classification of the type of offensive
(OFF) tweet - Targeted (TIN) vs. Untargeted
(UNT).

• Level C: Classification of the target of a tar-
geted (TIN) tweet - Individual (IND) vs. Group
(GRP) vs. Other (OTH).
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Figure 1: The three stages of the FL pipeline in the proposed fused model.

In the OLID taxonomy, offensive (OFF) posts tar-
geted (TIN) at an individual are often cyberbulling
whereas offensive (OFF) posts targeted (TIN) at a
group is often hate speech.

AHSD (Davidson et al., 2017) is one of the most
popular hate speech datasets available. The
dataset contains data retrieved from Twitter and
it was annotated using crowdsourcing. The anno-
tation taxonomy contains three classes; Offensive,
Hate, and Neither. We conflate Offensive and Hate
under a class OFF while neither class corresponds
to OLID’s NOT class.

OLID (Zampieri et al., 2019a) is the official dataset
of the SemEval-2019 Task 6 (OffensEval) (Zampieri
et al., 2019b). It contains data from Twitter anno-
tated with a three-level hierarchical annotation in
which level A classifies posts into offensive and not
offensive; level B differentiates between targeted
pots (insults and threats) and untargeted posts
(general profanity); and level C classifies them into
three targets: individual, group, or other. We adopt
the labels in OLID level A as our classification la-
bels.

HASOC (Mandl et al., 2020) is the dataset used
in the HASOC shared task 2020. It contains posts
retrieved from Twitter and Facebook. The upper
level of the annotation taxonomy used in HASOC
is the same as OLID’s level A, which allows us to
directly use the same labels in our models.

HateXplain (Mathew et al., 2021) is a recent
dataset collected for the explainability of hate
speech. It contains both token- and post-level an-
notation of Twitter and Gab posts. The annotation
taxonomy contains three classes; hate speech, of-
fensive speech, and normal. Following the anno-
tation guidelines of OLID (Zampieri et al., 2019a),
we mapped the hate speech and offensive speech
classes to offensive (OFF) and normal class to not
offensive (NOT).

4. Methodology

The proposed FL pipeline contains three steps de-
picted in Figure 1. We describe these steps below.
Initial Model Training Transformer models have
achieved state-of-the-art performance in many NLP
tasks (Devlin et al., 2019), including offensive
language identification (Ranasinghe et al., 2019;
Sarkar et al., 2021). Therefore, our methodology
in this paper builds around pre-trained transform-
ers. For the text classification tasks such as offen-
sive language identification, we use the pre-trained
transformer models by utilizing the hidden represen-
tation of the classification token (CLS) as shown in
Figure 2. For this task, we implemented a softmax
layer on top of the CLS token, i.e., the predicted
probabilities are y(B) = softmax(Wh+ b), where
W ∈ Rk×d is the softmax weight matrix, and k is
the number of labels. which in our case is always
equal to two.

Figure 2: A sample transformer model for offensive
language identification (Ranasinghe and Zampieri,
2020) predicting offensive and not offensive labels.
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We used this text classification architecture to
build separate models for each dataset that we
introduced in the previous section. We trained the
model using the training sets of each dataset. We
employed a batch-size of 16, Adam optimiser with
learning rate 4e−5, and a linear learning rate warm-
up over 10% of the training data. During the training
process, the parameters of the transformer model
and the parameters of the subsequent layers were
updated. The models were evaluated while training
using an evaluation set that had one-fifth of the
rows in training data. We performed early stopping
if the evaluation loss did not improve over three
evaluation steps. All the models were trained for
three epochs.

We repeated this process with two popular pre-
trained transformer models; bert-large-cased (De-
vlin et al., 2019) and fBERT (Sarkar et al., 2021).
The bert-large-cased is a general purpose pre-
trained transformer model while fBERT is a domain-
specific pre-trained transformer model for offensive
language identification that has been trained on
over 1.4 million offensive tweets in SOLID dataset
(Rosenthal et al., 2021) and has shown state-of-
the-art results in several offensive language identi-
fication benchmarks (Sarkar et al., 2021).

Model Fusion In order to combine the different
models created using different datasets, we fol-
lowed a recent approach named model fusion
(Choshen et al., 2022). Model Fusion is the process
of taking several fine-tuned models and creating a
new base model. Formally, given an initialization
base model P and n models fine-tuned on it, let
W1,W2 . . .Wn ∈ Rd be the weights fine-tuned by
the models over P . Fusing is a function

Wfuse = f(W1,W2, . . . ,Wn) Rd × Rd × . . .× Rd → Rd

(1)
In this work, we propose the simplest form of fu-

sion. For each weight shared by all models, assign
the average weight to the model.

Wfuse = f (W1,W2, . . . ,Wn) =
W1 +W2 + . . .+Wn

n
(2)

In order to empirically evaluate model fusion
in offensive language identification, we consider
all possible seven combinations. These include
different combinations of two models, such as
AHSD +OLID and HASOC +HateX, different
combinations of three models, such as AHSD +
OLID+HASOC and AHSD+OLID+HASOC
and finally, the combination of all four models.

Further Finetunning The weights of the fused
model resulting from step 2 can be anomalous as
we followed a naive averaging method. Therefore,
we performed a further finetuning step on the fused
model. In this step, we fine-tuned the fused model
using only one available dataset in a particular en-

vironment. We followed the same classification
objective described in step 1 and used the same
configurations. However, to avoid the model being
biased toward the finetuning dataset, we only used
20% of the available training data in the finetuning
step.

The whole pipeline described above simulates a
real-life scenario where the data can not be shared.
The machine learning models are trained in sepa-
rate environments using their own data, as in the
first step. In the second step, with model fusion,
we combined the models. In the final step. We
further fine-tuned the fused model on a particular
dataset where we repeated the process for all four
datasets. Therefore with this pipeline, the datasets
are not shared, and privacy is preserved among
the different environments.

4.1. Baseline Models
We compared our fusion-based approach to two
baseline models.

Non-fused Baseline We train a transformer-based
baseline using the training set of one of the datasets
and evaluate it on the test set of that particular
dataset as well as on the test sets of other datasets.
We repeated the process for all four datasets with
two transformer models; bert-large-cased (Devlin
et al., 2019) and fBERT (Sarkar et al., 2021). This
baseline reflects the most common approach in
offensive language detection, where a model is
trained on a dataset available for a particular envi-
ronment, but evaluated on other datasets in differ-
ent environments as well.
Ensemble Baseline We also used an ensemble
baseline; where we trained four separate trans-
former models on each dataset. For each test in-
stance, we predicted values from all four models,
and the final label is the label predicted with the
highest probability from all four models. Similar to
our previous experiments we repeated the process
for bert-large-cased (Devlin et al., 2019) and fBERT
(Sarkar et al., 2021).

5. Results and Discussion

In Table 2, we present the best results from each
approach for each dataset. We show the results
for fBERT as it provided better overall results. For
the AHSD test set, the best result, 0.921 Macro F1
score, is obtained when fBERT models are trained
on AHSD and OLID and fused, then further fine-
tuned on AHSD. For OLID the best result, 0.839
Macro F1 score was provided when BERT-large-
cased models trained on AHSD and OLID were
fused and further fine-tuned on AHSD. Similarly, for
HateX the best result, 0.777 was provided when the
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Dataset Approach Models Macro F1

AHSD

non-fused AHSD - - 0.931 ±0.01
fusion with FT AHSD OLID - - 0.921 ±0.00

fusion without FT AHSD OLID - - 0.866 ±0.00
ensemble AHSD OLID - - 0.845 ±0.01

OLID

non-fused - OLID - - 0.854 ±0.00
fusion with FT AHSD OLID - - 0.837 ±0.03

fusion without FT AHSD OLID - - 0.836 ±0.00
ensemble OLID - HateX 0.785 ±0.04

HASOC

non-fused - - HASOC - 0.798 ±0.01
fusion without FT AHSD OLID HASOC - 0.770 ±0.01

fusion with FT AHSD OLID HASOC - 0.754 ±0.07
ensemble AHSD HASOC - 0.647±0.02

HateX

non-fused - - HateX 0.795 ±0.01
fusion with FT AHSD - - HateX 0.777 ±0.00

fusion without FT AHSD OLID - HateX 0.772 ±0.01
ensemble - - HASOC HateX 0.654 ±0.01

Table 2: The best result for each dataset for each approach; non-fused models, fused models with
fine-tuning (FT), fused models without finetuning and ensemble. We only report the results with fBERT.
The results are ordered from Macro F1.

fBERT models trained on AHSD and HateX were
fused and further fine-tuned on HateX. However,
HASOC follows a different pattern, and the best
result was produced when fBERT models trained
on AHSD, OLID and HASOC were fused, and fur-
ther fine-tuned on AHSD. Overall, fBERT models
provided slightly better results than BERT-large-
cased models in most experiments. This is mainly
because the fBERT model was trained on domain-
specific data on offensive language identification.
Finally, we present all results of the fused models
and the non-fused model baseline in Table 3 in
terms of Macro F1 score.

5.1. Discussion

We discuss the following four main findings from
our results;

(1) The fused model performs better when eval-
uated on the same dataset used in further fine-
tunning. All the datasets except for HASOC, the
best result was produced when the fused model
was further fine-tuned on that particular dataset.
For HASOC too, when the fBERT model trained
on AHSD, OLID and HASOC were fused and fur-
ther fine-tuned on HASOC provided 0.754 Macro
F1 score, which is very close to the best result
(0.770). With the results, we can conclude that the
fused model performs better when evaluated on
the same dataset used in further finetunning. This
observation reflects an ideal scenario in real-world
applications where we want an ML model to per-
form excellently in data specific to our environment/
platform. This objective can be achieved success-
fully with model fusion and finetunning as we see
in the results.

(2) The fused model generalizes well across
datasets even when it is not used in finetun-
ning. One drawback of fused models is that the
result slightly decreases compared to the non-fused
models trained only using a particular dataset. In
the results, this is clear as there is a decrease in
the Macro F1 score between underlined values
and bolded values. Furthermore as you can see in
Table 2, the best result in all the datasets were pro-
duced with the non-fused baseline. However, after
further investigating this, it is clear that non-fused
models do not often generalise well across other
datasets. For example in Table 3, the non-fused
model trained on AHSD only provides 0.699 Macro
F1 score for OLID. However, AHSD and OLID fused
model further fine-tuned on AHSD provides 0.830
Macro F1 score. This is similar to the majority of
the experiments, and fused models provide better
results than non-fused models in other datasets.
This observation again reflects an ideal scenario
in real-world applications where we want an ML
model to perform well across data not specific to
our environment/ platform. As we see in the re-
sults, this objective can be achieved successfully
with model fusion.

(3) The Fused model outperforms the ensemble
baseline in all the datasets. As shown in Table
2, model fusion approaches with and without fine-
tunning on a particular dataset outperform the best
ensemble model. For HASOC, there is a large gap
between the ensemble model and fused models as
the ensemble model produces only 0.670 Macro F1
score while the fused model provides 0.770 Macro
F1 score. The other datasets also follow a simi-
lar pattern. This is a key observation because we
have presented a fusion based approach for FL that
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Fine-tuned
Dataset

Fused Models BERT-large-cased fBERT
AHSD OLID HASOC HATEX AHSD OLID HASOC HATEX

AHSD

AHSD OLID - - 0.900±0.00 0.830±0.07 0.610±0.00 0.554±0.06 0.921±0.00 0.836±0.09 0.627±0.00 0.628±0.00
AHSD - HASOC - 0.778±0.14 0.627±0.00 0.637±0.00 0.607±0.02 0.776±0.04 0.722±0.00 0.632±0.00 0.677±0.05
AHSD - - HATEX 0.727±0.03 0.697±0.00 0.660±0.04 0.594±0.00 0.781±0.03 0.707±0.00 0.673±0.03 0.648±0.00
AHSD OLID HASOC - 0.919±0.00 0.837±0.08 0.766±0.02 0.636±0.00 0.915±0.00 0.835±0.08 0.770±0.01 0.623±0.00
AHSD - HASOC HATEX 0.705±0.06 0.674±0.00 0.595±0.03 0.565±0.00 0.734±0.03 0.704±0.00 0.643±0.00 0.643±0.00
AHSD OLID - HATEX 0.905±0.00 0.813±0.09 0.628±0.00 0.719±0.05 0.914±0.00 0.834±0.08 0.627±0.00 0.772±0.01
AHSD OLID HASOC HATEX 0.716±0.03 0.708±0.00 0.646±0.05 0.652±0.06 0.730±0.01 0.724±0.00 0.668±0.04 0.684±0.04

Non-fused Baseline 0.926±0.01 0.699±0.03 0.630±0.05 0.586±0.06 0.931±0.01 0.743±0.03 0.682±0.04 0.606±0.06

OLID

AHSD OLID - - 0.893±0.00 0.839±0.05 0.647±0.00 0.621±0.03 0.866±0.00 0.837±0.03 0.601±0.00 0.598±0.00
- OLID HASOC - 0.715±0.00 0.405±0.01 0.392±0.00 0.651±0.06 0.718±0.00 0.725±0.07 0.655±0.00 0.667±0.05
- OLID - HATEX 0.696±0.00 0.692±0.08 0.656±0.04 0.616±0.00 0.679±0.07 0.723±0.07 0.611±0.00 0.650±0.00

AHSD OLID HASOC - 0.868±0.00 0.826±0.04 0.756±0.00 0.608±0.00 0.840±0.00 0.819±0.02 0.759±0.09 0.606±0.00
- OLID HASOC HATEX 0.687±0.00 0.649±0.09 0.586±0.01 0.596±0.00 0.729±0.00 0.694±0.08 0.637±0.01 0.630±0.00

AHSD OLID - HATEX 0.847±0.00 0.812±0.04 0.642±0.00 0.751±0.09 0.861±0.00 0.831±0.03 0.615±0.00 0.752±0.01
AHSD OLID HASOC HATEX 0.713±0.00 0.777±0.00 0.672±0.07 0.699±0.08 0.708±0.08 0.793±0.00 0.682±0.08 0.707±0.09

Non-fused Baseline 0.685±0.02 0.845±0.00 0.636±0.05 0.620±0.06 0.702±0.01 0.851±0.00 0.653±0.05 0.645±0.08

HASOC

AHSD - HASOC - 0.777±0.13 0.419±0.00 0.652±0.00 0.356±0.06 0.792±0.11 0.785±0.05 0.680±0.00 0.708±0.08
- OLID HASOC - 0.147±0.00 0.707±0.05 0.656±0.00 0.220±0.07 0.717±0.00 0.734±0.05 0.683±0.00 0.673±0.04
- - HASOC HATEX 0.530±0.05 0.480±0.00 0.695±0.04 0.738±0.00 0.761±0.03 0.791±0.00 0.689±0.00 0.690±0.00

AHSD OLID HASOC - 0.864±0.00 0.812±0.05 0.763±0.08 0.624±0.00 0.805±0.00 0.801±0.00 0.754±0.07 0.635±0.00
AHSD - HASOC HATEX 0.754±0.01 0.419±0.00 0.686±0.01 0.698±0.00 0.734±0.09 0.780±0.00 0.668±0.01 0.661±0.00

- OLID HASOC HATEX 0.732±0.00 0.700±0.04 0.675±0.01 0.686±0.00 0.736±0.00 0.712±0.06 0.671±0.00 0.676±0.00
AHSD OLID HASOC HATEX 0.703±0.09 0.647±0.00 0.651±0.00 0.651±0.00 0.719±0.06 0.781±0.00 0.702±0.06 0.718±0.06

Non-fused Baseline 0.620±0.03 0.492±0.01 0.788±0.01 0.555±0.06 0.645±0.02 0.532±0.01 0.798±0.01 0.575±0.05

HATEX

AHSD - - HATEX 0.758±0.01 0.449±0.00 0.531±0.08 0.744±0.00 0.671±0.01 0.591±0.00 0.587±0.00 0.777±0.00
- OLID - HATEX 0.650±0.00 0.689±0.06 0.557±0.09 0.749±0.00 0.584±0.02 0.668±0.01 0.599±0.00 0.775±0.00
- - HASOC HATEX 0.538±0.01 0.545±0.0 0.710±0.05 0.756±0.00 0.527±0.05 0.573±0.00 0.707±0.07 0.772±0.00

AHSD - HASOC HATEX 0.692±0.04 0.529±0.00 0.693±0.05 0.741±0.00 0.636±0.10 0.588±0.00 0.688±0.08 0.767±0.00
- OLID HASOC HATEX 0.561±0.00 0.640±0.09 0.690±0.06 0.755±0.00 0.526±0.00 0.664±0.08 0.689±0.08 0.772±0.00

AHSD OLID - HATEX 0.522±0.00 0.597±0.08 0.607±0.00 0.645±0.09 0.532±0.00 0.563±0.03 0.613±0.00 0.633±0.10
AHSD OLID HASOC HATEX 0.627±0.08 0.532±0.00 0.635±0.09 0.642±0.11 0.631±0.09 0.565±0.00 0.652±0.09 0.671±0.11

Non-fused Baseline 0.569±0.03 0.504±0.01 0.604±0.02 0.782±0.02 0.581±0.01 0.523±0.01 0.612±0.01 0.795±0.01

Table 3: Macro F1 score results for the fuse models (BERT-large-cased and fBERT) compared to the
baseline systems fine-tuned on the four datasets. Results are reported on 10 runs along with standard
deviation. The best results from the fused approach for each model are in bold. Results for the non-fused
baseline model evaluated on the same dataset are underlined.

can surpass an ensemble based model preserving
privacy across different datasets. The platforms/
environments that are interested in developing a
FL approach should focus on model fusion based
strategies that outperform ensemble based models
as we showed in the results.

(4) The Fused model performance heavily de-
pends on the datasets it was trained on. Our
final observation is that the fused model perfor-
mance depends on the datasets that it was trained
on. For example, when the model fusion was per-
formed between AHSD and OLID, the final model
provided excellent results on both datasets. This
is due to the general nature of these two datasets
covering multiple types of offensive content rather
than focusing on a particular type of offensive con-
tent. On the other hand, results are not the same
when the model fusion was performed between
AHSD and HASOC where the final model did not
provide good results for both datasets. This can
be explained by the demography of the dataset as
HASOC data is collected on Twitter users based
in India. It is clear that model fusion would thrive
in similar kinds of datasets, but would not perform
well with different kinds of data.

Overall, model fusion produces excellent results on
the dataset that it was fine-tuned on, and it gener-
alizes well across other datasets. Fused models
outperform both of our baselines in all the datasets.
Therefore, model fusion provides a successful ap-
proach to FL.

5.2. Multilingual Experiments
We conducted initial multilingual experiments with
the same FL setting. We used OffendES (Plaza-del
Arco et al., 2021), a Spanish offensive language
identification dataset. For English we used the
OLID dataset described before. Each instance in
OffendES is labelled as belonging to one of the five
classes; Offensive and targeted to a person (OFP),
Offensive and targeted to a group (OFG), Offensive
and not targeted to a person or a group (OFO),
Non-offensive, but with expletive language (NOE),
and Non-offensive (NO). We map the instances
belonging to the OFP, OFG, OFO, and NOE to OLID
OFF, and the NO class as NOT. Even though, the
label NOE is considered non-offensive in OffendES,
it contains profanity so we map it to OLID label OFF
to conform with the OLID guidelines.

Instead of the monolingual BERT models we
used in the previous experiments, we use cross-
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lingual models, specifically XLM-R (Conneau et al.,
2019). We used the same FL settings and com-
pared it with ensemble baseline. The results are
shown in Table 4.

Dataset Approach Macro F1

English

non-fused 0.845 ±0.01
fusion with FT 0.829 ±0.03

fusion without FT 0.831 ±0.00
ensemble 0.776 ±0.02

Spanish

non-fused 0.812 ±0.04
fusion with FT 0.809 ±0.02

fusion without FT 0.792 ±0.01
ensemble 0.761 ±0.02

Table 4: The results for multilingual experiments
on English and Spanish; non-fused models, fused
models with fine-tuning (FT), fused models without
finetuning and ensemble. We report the results with
xlm-roberta. The results are ordered from Macro
F1.

The results show that fusion based FL outperforms
ensemble baseline in multilingual settings too. This
opens new avenues for privacy preserving models
for languages other than English and more specifi-
cally, low-resource languages.

6. Conclusion and Future Work

This paper introduced FL in the context of combin-
ing different offensive language identification mod-
els. While a recent study (Gala et al., 2023) uses FL
learning in offensive language identification, their
work is limited to distributed training on the same
dataset with multiple clients. As far as we know, our
research is the first study to use FL in combining
multiple offensive language identification models.
We evaluated a fusion-based FL architecture us-
ing a general BERT model and a fine-tuned fBERT
model on four publicly available English benchmark
datasets. We also presented initial cross-lingual
experiments in English and Spanish. Our results
show that the fusion model performances outper-
form the performance of an ensemble baseline
model. We also show that the fused model gen-
eralizes well across all datasets tested. As the FL
architecture does not require data sharing, we be-
lieve that FL is a promising research direction in
offensive language identification due to its privacy
preserving nature.

In future work, we would like to explore other FL
architectures and compare their performance to
the fused model proposed in this paper. Finally.
we would like to evaluate the performance of re-
cently proposed large language models (LLMs)
(e.g., GPT-4, LLama 2) for this task in FL settings.
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