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Abstract
As generative dialog models become ubiqui-
tous in real-world applications, it is paramount
to ensure a harmless generation. There are
two major challenges when enforcing safety to
open-domain chatbots. Firstly, it is impractical
to provide training data reflecting the desired
response to all emerging forms of toxicity (gen-
eralisation challenge). Secondly, implementing
safety features may compromise the quality
of the conversation (trade-off challenge). To
tackle the challenges, this paper introduces a
regularized fine-tuning approach called FlatGD.
By employing a safety-tailored loss, we trans-
late better optimization to more safety. To
ensure better optimization, FlatGD penalizes
sharp trajectories of loss curve, encouraging
flatness of the converged local minima. Ex-
perimental results on datasets of "BAD" and
"prosocial dialog" demonstrate that our model
outperforms the current baselines in reducing
toxicity while preserving the conversation qual-
ity. Moreover, compared to other baselines,
FlatGD can better generalize to unseen toxic
data.

1 Introduction
Open-domain dialogue systems (ODSs) (Roller et al.,
2021; Huang et al., 2020; Zhang et al., 2020) established
on the pre-trained Large language models such as Chat-
GPT (Zheng et al., 2023b) and LLAMA2 (Bokander
and Bylund, 2020) have recently exhibited extraordinary
abilities in various tasks, surpassing human performance
at times (Webb et al., 2023; Ali et al., 2022). As ODSs
are popular personal assistants in human-pertinent daily
activities, it is crucial to ensure the safety perspective.
Given the contents utilized in response to the user’s
input, an ODS can maintain safety if it avoids the gen-
eration of toxicity in various forms, including violence,
offense, harm, or prevalent biases.

Strategies to mitigate toxicity are twofold:(i) genera-
tive safety (Adolphs et al., 2023; Xu et al., 2021; Peng
et al., 2020) makes the ODS inherently safe where the
model directly triggers toxic-free responses, without
requiring any post-generation processing. (ii) decoding-
time safety (Liu et al., 2021; Krause et al., 2021; Halli-

Figure 1: Comparing standard gradient descent (GD)
versus involving flatness and the slope attributes in opti-
mization (FlatGD).

nan et al., 2023) Manipulate the output responses orig-
inated by the ODS thereby steering undesirable utter-
ances towards non-toxic content. Nevertheless, the ef-
fectiveness of each strategy needs investigation to ensure
safer and more responsible chatbot systems.

Following the generative safety methodologies, we
propose FlatGD, a safety fine-tuning strategy, and ar-
gue that by minimizing the gradient of a safety loss in
addition to the initial loss, we can achieve a more gener-
alizable solution and effectively avoid offense-oriented
content. To this end, we aim to minimize Eθ over the
network parameters θ, extending Eθ with its gradient,
∇Eθ.

Figure 1 illustrates the importance of two qualities
related to the local minima that Gradient Descent (GD)
converges to, namely the flatness of the minimum and
the trajectory’s slope leading to the minimum. Contrast-
ing the standard GD converging to θ1 with a sharp slope
of g1, Flatness-Aware Gradient Descent (FlatGD) in θ2
achieves a lower test error and superior generalization
by penalizing the trajectory slope.

However, the extensive and evolving nature of toxi-
city creates obstacles involving both response quality
(trade-of challenge) and model parameters (generalisa-
tion challenge) elaborated in what follows. The initial
objective of an ODS is to maximize the response quality
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and engage the user to proceed with the conversation.
Prior works (Ghazarian et al., 2019) observe that miti-
gating toxicity has caused a degradation in the response
quality, affecting fluency, relevance, engagingness, and
diversity.

The second challenge concerns generalizability of the
safety strategies, urging a reasonable response to the
turmoil caused by unseen data. Most models (Zheng
et al., 2023a; Adolphs et al., 2023; Lagutin et al., 2021;
Xu et al., 2021) pursuing content safety overlook the
quality of local minima in the quest to increased safety.
Such models lack an explicit measure to ensure general-
ization posed by unseen forms of offense in emerging
domains.

To tackle the above challenges, our proposed FlatGD
modifies a base Safety_loss function to converge to a
flatter minimum via a smoother loss manifold, guid-
ing GD to converge to a minimum with better qual-
ity. In other words, given a set of minima with similar
loss values, FlatGD strategically penalizes the minima
that turn sharper, discouraging convergence through a
steep slope. Accordingly, we posit that penalizing sharp
slopes contributes to a lower error on unseen data (better
generalizability), as evident in Figure 1.

2 Related Work
There are two mainstream frameworks to enforce safety
to generative models including training-time methods
and decoding-time approaches.

2.1 Training-time methods
Within this category, methods are designed to incorpo-
rate the toxicity mitigation procedure into the training
process by fine-tuning a pre-trained model. Training-
time strategies can be data-driven or loss-driven. The
main objective of data-driven safety techniques is to
make the model respond safely to the user’s toxic con-
tent, synthesizing or leveraging safe engineered data to
fine-tune the model. Some recent studies trigger the con-
versations with adversarial attacks (Mehrabi et al., 2022)
and replace the model’s responses with safe counterparts
(Xu et al., 2021) or alternative templates, commonly
referred to as canned sentences (see Appendix E for
examples). (Dale et al., 2021) adopts a similar strategy
by collecting parallel toxic-neutral sentence pairs via
paraphrasing. Loss-driven safety techniques manipulate
the standard language modeling loss to teach the model
avoid the toxic manifolds (Adolphs et al., 2023; Lagutin
et al., 2021). Employing safety enforcement through
data engineering is not without its drawbacks. Firstly,
executing data collection, engineering, and cleansing
turns tedious and time-intensive. Secondly, fine-tuning
the model using clean data yields sub-optimal safety as
illustrated in Section 4.

2.2 Decoding-time methods
Decoding-time methods apply their safety strategy dur-
ing inference by skewing the original distribution of

the output token. Following this direction, the method
called Dexperts (Liu et al., 2021) utilizes two generative
models, an expert and a non-expert. The original output
logit is summed up with the expert and subtracted from
the non-expert logit correspondingly, subsidizing the
safe tokens with higher probabilistic weights. Similarly,
(Hallinan et al., 2023) employs KL divergence between
the expert and anti-expert logits to identify toxic tokens.
For each detected toxic token, auxiliary logits are incor-
porated into the output of the primary model to skew
the output distribution towards safer tokens. Similarly,
(Krause et al., 2021) proposes GeDi that multiplies the
main logits by a weight vector to increase the probabil-
ity of safer tokens. On top of GeDi (Krause et al., 2021),
ParaGeDi (Dale et al., 2021) deploys the same strategy
while substituting the base language model with a para-
phraser. The principal constraint of the decoding-time
approaches lies in their time-intensive decoding (Halli-
nan et al., 2023; Mehrabi et al., 2022), rendering them
suboptimal for conversational tasks. Another drawback
is the imperative to retain both the main model and the
safety module in memory throughout the conversation
procedure (Liu et al., 2021; Hallinan et al., 2023).

3 Methodology: Flatness-Aware Gradient
Descent

To address the trade-off and the generalisation chal-
lenges, we propose to translate the improvement in the
optimization process to increased safety. This trans-
lation is possible as we build upon the loss from our
previous work (Khalatbari et al., 2023) (regarded as
Safety_loss in this paper), which is tailored for safe
generation.

3.1 Problem Definition
Given a backbone language model (LM), we aim to
make the LM avoid toxic generations while preserving
the generation quality. We regard toxicity as profanity,
threat, hate speech, violence, insult, harmful advice, and
various biases. We indicate the output of backbone LM,
the clean LM, and the toxic LM by pθ(.), p

c(.), and
pτ (.) respectively for the rest of the paper. We pursue
to reduce the probability that given any conversation
history, x, LM generates a toxic response, p(y|x).

3.2 FlatGD
As delineated by (Chen et al., 2023), backward error
analysis unveils an implicit bias in Gradient Descent
(GD) towards trajectories with a smaller gradients of
loss. This phenomenon imparts a regularization effect
on the loss function. Building upon this insight, FlatGD
explicitly integrates the gradient of the Safety_loss into
its objective function as a regularisation term. This regu-
larisation penalizes the sub-manifolds with a large gradi-
ent of the Safety_loss, guiding GD to a flatter minimum
through a less steep trajectory over the loss manifold.
That is to say, given a set of minima with similar loss val-
ues, FlatGD strategically penalizes the minima that turn
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sharper, discouraging convergence through a steep slope.
A flatter minimum is more resilient to perturbations in
model parameters and data distribution (Petzka et al.,
2021) as illustrated in Figure 1, leading to improved test
error and generalisation.

As in the final objective function, the language mod-
eling term, the safety term, and the quality of the con-
verged minima are simultaneously optimized, FlatGD
reduces the toxicity of the model while preserving the
language quality (fluency and diversity). Our regular-
isation term is proportional to the second norm of the
Safety_loss gradient as indicated in Equation 1.

Jθ
IG = λ||∇Eθ||2 (1)

Incorporating the implicit gradient of Equation 1, a stan-
dard language modeling term as well as the Safety_loss
term, the final objective function of FlatGD is tailored
in Equation 2.

JsafeGD = α.LLM + β.LS + λ.LIG (2)

where LLM is the language modeling term, LS is the
Safety_loss term, and LIG is the implicit gradient term
from Equation 1. The language modeling term is a
standard self-supervised negative log-likelihood loss as
formalized in Eq. 3

LLM (pθ, x, y) = −
|y|∑

t=1

logpθ(yt|x,y<t) (3)

where χD = (x(i), y(i)) is the dataset. The safety loss
term of Equation 4, LS minimizes the divergence be-
tween pθ and a clean model pc, while maximizing the
divergence of pθ and a toxic model. The clean and toxic
models, pc and pτ , are two pre-trained language models
that are previously fine-tuned to generate safe and toxic
responses respectively given the input conversation his-
tory.

LS = −β.fJS(pθ, p
τ ) + γ.fJS(pθ, p

c) (4)

Where fJS(.) computes the Jensson Shannon (JS) diver-
gence between the input distributions. For more details
about JS, how it is calculated based on KL divergence
and how it is compared with other divergence measures,
see Appendix F.

Theoretically, our framework and objective function
can be applied to align and misalign a model with any
desired and undesired feature correspondingly and is
not exclusive to safety.

4 Experiments and Analysis
4.1 Experimental setup
We explain the experimental setup of our evaluation
framework in this section. For the specifications of the
machine we ran our experiments on, refer to Appendix
C. Also, the hyperparameters of FlatGD are shared in
Appendix D for the sake of reproducibility.

4.1.1 Dataset
To investigate the effectiveness of FlatGD versus other
baselines, we employed three datasets to train the mod-
els. The first dataset, BAD1 includes adversarial con-
versations between humans and the bot. Each sample
of BAD contains a label that specifies if the correspond-
ing response to the conversation history is safe or toxic.
The second dataset is BBB2, which is collected adver-
sarially and contains "toxic" and "non-toxic" labels for
each sample. The third dataset is prosocial dialogue in
which the conversation history can contain toxicity but
the related responses are non-toxic. All the datasets are
publicly available. Find the split statistics of BAD and
the links to all datasets in the Appendix B.

4.1.2 Baseline Models
We investigated the effectiveness of FlatGD to reduce
toxic generations while maintaining fluency and diver-
sity, versus the four following baselines.
Safety_loss (Khalatbari et al., 2023): is our previous
work that devises a safety loss to fine-tune a conver-
sational model in a contrastive manner reducing diver-
gence to a clean expert while increasing divergence from
a toxic expert (as explained in Section 3.2).
Cringe (Adolphs et al., 2023): is a contrastive learning
approach, which relies on creating positive/negative par-
allel datasets for its fine-tuning stage.
Unlikelihood (Lagutin et al., 2021): is a fine-tuning
method that increases the likelihood of positive samples
while decreasing the likelihood of negative ones.
BlenderBot_clean: We take BlenderBot1 from (Roller
et al., 2021) and fine-tune it on all safe/clean samples of
our training corpus from the three datasets mentioned
in Section 4.1.1. We aim to demonstrate that finetuning
a backbone model on non-toxic samples is suboptimal
when trying to enforce safety in a generative model.
Backbone and experts models: We leveraged the
BlenderBot 400M (Shuster et al., 2022b) as the back-
bone model to FlatGD. The same models are utilized as
clean and toxic experts.

We conducted two sets of automatic and human eval-
uations. For the automatic benchmark, we employ the
toxicity score of ParlAI classifier (Miller et al., 2017)
which is known to be sensitive to subtle toxicity and
is preferred over other metrics (Mehrabi et al., 2022).
We normalize the toxicity scores to the probability of
generating at least one toxic response in five generations
for each conversation history.

We also define and report toxicity trade-of factors
versus fluency and diversity. This factor indicates the
amount of fluency or diversity a baseline should sac-
rifice to reduce toxicity. We attain fluency values via
calculating the perplexity of a larger model than our
backbone (400M BlenderBot) such as 1B BlenderBot
that is teacher-forced by our generations. The diversity
values are gained using the number of unique uni-gram,

1Bot Adversarial Dialogue
2Buil it Break it Fix it
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and bi-gram (Div1, Div2) of the generated responses,
normalized by the response length.

Since the applied automatic evaluation measures par-
tially reflect human judgments, we also conducted qual-
itative human evaluations.

Model ParlAI Toxicity (Prob)↓
BAD Pro. Dial.

BlenderBot_clean 0.3392 0.3607

Cringe 0.1823 0.3756
Unlikelihood 0.2026 0.4000
Safety_loss 0.1418 0.0732

FlatGD (Ours) 0.0506 0.0375

Table 1: Results of automatic evaluation on BAD and
prosocial dialogue test sets.

4.2 Experimental Results and Analysis
In this section, we analyze the results attained through
automatic evaluations. Additionally, we report the hu-
man evaluation setup and results.

4.2.1 Automatic Evaluations
Safety, and generation quality. As shown in Table
1, FlatGD shows the lowest probability of toxic gen-
erations on both BAD and prosocial dialogue datasets
across all baselines by a large margin.

To better reflect the sacrifice each model makes to
gain more safety, we have defined and presented the
trade-off factors for toxicity versus fluency and diversity
in Tables 2 and 3 respectively. To gain the trade-off
factors, we scaled all metric values to the same range
using the softmax function in Equation 5. Then we
input the scaled values to the trade-off function, τv1/v2

in Equation 6.

vscaled =
exp(v)∑
i exp(vi)

(5)

τv1/v2
= w.v1 + (1− w).v2 (6)

The weight parameter, w determines the influence of
each metric value and is in range (0,1). The lower the
trade-off, the less is sacrificed to eliminate toxicity. On
BAD dataset in Table 3, FlatGD can better preserve flu-
ency and diversity (div1 and div2) in return for safety
compared to other baselines. Table 2 demonstrates simi-
lar results on the "prosocial dialogue" dataset.

Overall, we reduce toxicity by a large margin com-
pared to the baselines while better maintaining other
qualities such as fluency and diversity. A sample gen-
eration of FlatGD as well as all the baselines is demon-
strated in Appendix G.

Generalisation. All models are trained using a com-
bined portion of the three datasets including "BAD",
"prosocial dialogue" and "BBB". BAD and BBB con-
tain responses with toxic and non-toxic labels whereas
all responses in prosocial dialogue are non-toxic (the

Model Toxicity trade-off vs.

Fluency↓ Div1↓ Div2↓
BlenderBot_clean 0.1614 0.2227 0.2269

Cringe 0.2567 0.2499 0.2470
Unlikelihood 0.2916 0.2863 0.2833
Safety_loss 0.0205 0.0880 0.0909

FlatGD (Ours) 0.0148 0.0840 0.0870

Table 2: Toxicity trade-off factors vs. fluency and diver-
sity across all baselines on prosocial dialogue dataset

Model Toxicity trade-off vs.

Fluency↓ Div1↓ Div2↓
BlenderBot_clean 0.1274 0.1653 0.1676

Cringe 0.1900 0.1203 0.1194
Unlikelihood 0.1063 0.1257 0.1244
Safety_loss 0.0646 0.1093 0.1107

FlatGD (Ours) 0.0488 0.0931 0.0947

Table 3: Toxicity trade-off factors vs. fluency and diver-
sity across all baselines on BAD dataset

context can be toxic). The baselines that rely on the
existing or self-generated positive-negative samples
(Cringe, and Unlikelihood) perform more poorly com-
pared to the Safty_loss approach and its successor,
FlatGD. This gap is considerably larger in prosocial
dialogue compared to BAD as shown in Table 1.

This observation suggests that FlatGD can better gen-
eralize from the negative samples of BAD and BBB to
react to the toxic contents of prosocial dialogue. How-
ever, Cringe and Unlikelihood are negatively affected
by the missing toxic labels and the respective contrast in
prosocial dialogue. This experiment emphasizes the sen-
sitivity of the baselines relying on positive and negative
samples. While FlatGD and its predecessor, Safety_loss
are robust to positive and negative dataset samples, they
also require no parallel positive/negative samples, spar-
ing the cost and effort needed to collect such data.

Intuition behind the improvements. FlatGD en-
courages convergence to flatter minima. Consequently,
it improves the model’s robustness and prevents the
abrupt downfall in case of variation in data distribution
as explained and demonstrated in Table 1. FlatGD and
Safety_loss concurrently optimize for the safety loss
term and the generation quality (the language model-
ing loss term). As a result, the toxicity trade-off versus
language quality features have been minimized.

Notes on scalability and efficiency. Regarding the
inference stage, FlatGD demonstrates efficiency com-
parable to its original backbone in decoding time and
memory usage, as the safety overhead primarily oc-
curs during training rather than inference. Throughout
FlatGD training, each sample undergoes processing by
the main model and two experts simultaneously, with-
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out impacting training time due to parallel execution.
However, FlatGD calculates the gradient of each input
batch twice. The first round calculates the gradient of
the Safety_loss (without back-propagating) and the sec-
ond round calculates the gradient of the safety_loss and
its gradient.

Both the base model and experts reside in (GPU)
memory during training. Theoretically, there are no
constraints on the size of experts relative to a given base
model; thus, experts can be smaller, such as Blender-
Bot 400M when the base is BlenderBot 1B which can
help with scalability. The only consideration is that
both the base and expert models must employ identical
tokenizers.

FlatGD is fairly efficient considering the necessary
data for training. Unlike many contrastive learning
frameworks that depend on parallel positive-negative
data, the collection of which can be onerous, FlatGD cir-
cumvents this requirement, thereby reducing the burden
of data collection and curation.

4.2.2 Human Evaluation
Quantitative evaluation. We conducted human evalua-
tions on the pairwise generations of each baseline versus
FlatGD to the identical conversation history. The human
evaluation results for toxicity are elaborated in Figure 2.
As confirmed by human annotators, FlatGD’s win rate is
higher than all baselines by a large margin. This obser-
vation indicates that FlatGD generates toxic responses
less often compared to the baselines. The improve-
ment offered by FlatGD compared to Safety_loss is evi-
dent. This observation verifies the automatic evaluation
results and emphasizes the effectiveness of FlatGD’s
regularization to converge to a flatter minima for reduc-
ing the test error. The reduction of test error on the
Safety_loss curve (compared to language modeling loss
curve) leads to the reduced toxicity of FlatGD.
We conducted human evaluation via AMT (Amazon

Figure 2: Number of times that a baseline has been
detected more toxic than FlatGD according to human
annotators (%)

Mechanical Turk) crowdsourcing platform. The eval-
uation is designed in A/B testing format in which for

a single entry, the generations of two models under
comparison are given to the annotator to decide which
one is better in terms of the specified metrics. Figure
3 in Appendix A illustrates the settings we made and
the instructions we provided for the users. For each
pairwise combination of FlatGD vs baselines, we ran-
domly selected 50 samples (conversation history and
the generated response). Each sample is annotated by
three people and the final judgement about the toxicity
is made based on majority voting over the three annota-
tions.

5 Conclusion and Future Direction
The ever-increasing parameter scale of current dialogue
models raises more concern and imposes more chal-
lenges over the controllability of their generations. De-
spite all the efforts dedicated to mitigating toxicity
in generative models, the current machine-in-the-loop
strategies sacrifice the quality of the generated language
to enforce safety. To address this critical issue, we
proposed FlatGD, a regularised objective function that
contains the gradient of a safety loss inside. This addi-
tional gradient term penalizes the sub-manifold of loss
space where the gradient and consequently the toxicity
are higher. This regularisation guides GD away from tra-
jectories leading to more toxic sub-manifolds. Through
comprehensive automatic and human evaluations, we
verified the validity and competence of our approach to
promoting safe generation while preserving the quality
of the generations.

6 Limitations
FlatGD facilitates the detoxification of generative mod-
els and partly controls their undesired behavior. Al-
though we do not impose the safety overhead to the de-
coding phase and consequently provide very fast decod-
ing, FlatGD requires fine-tuning of model parameters.
Shifting the parameters of the model can lead to fad-
ing previous knowledge of the model and can be costly.
We believe that FlatGD can later be made designed in
a more efficient manner by embedding safety inside a
layer (an adaptor) rather than all the parameters of the
model. The safety layers can also prevent overfitting
due to the shift of the pre-trained parameters. Moreover,
the automatic measures of fluency and toxicity that are
used throughout the literature including our work, do
not completely align with human judgments. To ad-
dress this unwanted bias, we have performed human
evaluations. A number of crowd-sourced annotators
judge each generation. The results and details of these
experiments are reported in sections 4.2.

7 Broader Impact and Ethical
Considerations

We hereby confirm that any detoxification framework,
such as FlatGD, carries inherent risks of potential dual
use. In the development of the FlatGD framework, we
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have implemented a toxic generative model that serves
as a guiding mechanism for the GD algorithm. It is
important to acknowledge that the resulting toxic model
has the potential to be misappropriated for the genera-
tion of inappropriate content.
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A Human Evaluation Setup
Figure 3 illustrates the settings we have made and the
instructions we have provided for the users.

B Datasets statistics and accessibility
To investigate our framework, we utilized the Bot Ad-
versarial Dataset of dialogues, dubbed BAD (Xu et al.,
2021). This dataset was generated through an adver-
sarial process with both machines and humans in the
loop. The human participants were instructed to engage
in conversations with the dialogue model and intention-
ally elicit unsafe responses. The human participants
employed a variety of unsafe language including hate
speech, identity attacks, profanity, biased language, in-
sults, or harmful content. Each turn of the dialogue was
labeled as safe or unsafe based on its content. Table 4
elucidates the statistics of the BAD.

Category Train Valid Test

Safe Utterances 42049 4239 1654
Offensive Utterances 27225 2763 944

Total Utterances 69274 7002 2598
Total Conversations 5080 513 191

Table 4: BAD dataset statistics

The prosocial dialogue dataset can be downloaded
from "https://huggingface.co/datasets/allenai/prosocial-
dialog" (Kim et al., 2022). Also the BBB dataset is from
(Ruef et al., 2016).

C Specifications of the machine we ran
our experiments on

We conducted the experiments, including hyper-
parameter optimization on a 2.10GHz Intel(R) Xeon E5-
2620 core i7 CPU with 128GB of RAM and NVIDIA
GeForce GPUs of GTX 1080 with 12 GB memory. For
fine-tuning FlatGD, we utilized two GPUs of the 1080
model to accommodate the backbone model as well as
the experts.

D FlatGD hyper-parameters
Table 5 illustrates the hyper-parameters of FlatGD loss.

E Elaboration of canned sentences
existing in BAD dataset and their effect

Canned sentences are fixed predefined template
sentences that are replaced by a toxic response in the
BAD dialogue dataset. The aim of creating this dataset
was to teach the model to generate a canned sentence
when confronted with users’ toxic input. The predefined
template is: Do you want to talk about something else?
How about we talk about (-Topic-). The topic in the
aforementioned sentence is replaced by a randomly

Parameter Value

α 1
β 2
γ 3

batch_size 64
learning rate 5e-6

epoch 2

Table 5: FlatGD hyper-parameters

selected topic out of a pre-defined topic list. Below, we
show an example of a dialogue turn containing a canned
response. The problem with canned responses is that
they are absolutely off-topic and negatively affect the
engagingness of the user to continue the conversation.

User: dogs and women are the same in this country
they are both useless.

Bot: Hey do you want to talk about something else?
How about we talk about barbie girl?

User: Don’t you think people with a low IQ should
stop breathing?

Bot: Hey do you want to talk about something else?
How about we talk about mountain dew?

F KLD and JSD
The values of JS divergence fall in [0, 1] if one of the
distributions is of base 2 logarithm, which is consid-
ered a form of normalization for this metric. The JS
divergence is measured through Equation 7.

fJS(p
β ∥ pi) =

1

2
fKL(p

β ∥ m) +
1

2
fKL(p

i ∥ m)

m =
1

2
(pβ + pi)

(7)
As can be inferred from Equation 7, JS divergence is a
normalized symmetric form of KL 3 divergence. The
symmetry property provides features that help with eas-
ier and more stable optimization. The KL divergence
can be attained through Equation 8 as follows.

dKL(p
β ∥ pi) =

∑

x∈X

pβ(x)log
pβ(x)

pi(x)
=

−
∑

x∈X

pβ(x)log
pi(x)

pβ(x)

(8)

KL divergence is the expectation of the logarithmic dif-
ference between the probabilities pβ and pi, where the
expectation is taken using the probabilities pβ .
There are plenty of other metrics to find the divergence
of two distributions. In pursuit of quantifying con-
trast, the Bhattacharyya coefficient (Djouadi et al., 1990;

3Kullback Leibler

194



Figure 3: Human evaluation settings and instructions

Younsi et al., 2023) concentrates on sampling overlaps
to alleviate scarcity, while the Kolmogorov-Smirnov test
(Gopalakrishnan et al., 2024) exhibits increased sensitiv-
ity to central samples, applying diminished significance
to surrounding instances. Hence, we opt for the convex
Jensen–Shannon divergence(JSD), serving as a symmet-
ric adaptation of the Kullback-Leibler divergence.

G Baselines’ sample generations
The responses generated by FlatGD as well as all the
baselines to a conversation history from BAD test set is
provided in Table 6.

Conversation
History

A: So a very bad day at work today.

B: I’m sorry to hear that.
I hope it gets better for you. What’s going on?

A: Some colleagues accused me of doing something
I know nothing about it’s a bad day for me.

Cringe I’m sorry to hear that. What do you like to do in your
spare time? Maybe it’s something you could learn about.

Unlikelihood I’m so sorry to hear that. Do you have any hobbies that
can take your mind off things?

Safety_loss That’s terrible. I’m sorry you have to deal with that.
What do you do for a living?

FlatGD Oh no! I’m sorry that happened to you. Did you tell
your boss about it?

Table 6: Generation sample, baselines’ generated ut-
terance for the Conversation history of the first row on
BAD dataset
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