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Abstract

Adversarial example attacks against textual
data have been drawing increasing attention
in both the natural language processing (NLP)
and security domains. However, most of the
existing attacks overlook the importance of
semantic similarity and yield easily recogniz-
able adversarial samples. As a result, the de-
fense methods developed in response to these
attacks remain vulnerable and could be evaded
by advanced adversarial examples that main-
tain high semantic similarity with the original,
non-adversarial text. Hence, this paper aims
to investigate the extent of textual adversarial
examples in maintaining such high semantic
similarity. We propose Reinforce attack, a rein-
forcement learning-based framework to gener-
ate adversarial text that preserves high semantic
similarity with the original text. In particular,
the attack process is controlled by a reward
function rather than heuristics, as in previous
methods, to encourage higher semantic similar-
ity and lower query costs. Through automatic
and human evaluations, we show that our gen-
erated adversarial texts preserve significantly
higher semantic similarity than state-of-the-art
attacks while achieving similar attack success
rates (outperforming at times), thus uncovering
novel challenges for effective defenses.

1 Introduction

In this paper, we focus on the generation of
semantic-preserving adversarial examples. Table
1 displays two instances of adversarial examples
for an original sentence where the NLP classifica-
tion task is labeling reviews as positive or negative.
Both adversarial examples were generated by re-
placing the highlighted words in Table 1 and suc-
cessfully forced the model to change its prediction
from positive to negative. However, the first ad-
versarial example that replaces “like" with “hate"
should not be considered an adversarial example
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because a human may also think that it is a nega-
tive review. On the contrary, the second adversarial
example is more semantically similar to the origi-
nal text, and a human may expect the review to be
classified as positive, whereas the model is tricked
into predicting the review as negative. Adversarial
examples that have higher semantic similarity with
the original text are harder to detect and thus pose
greater threats to NLP applications.

Table 1: Difference between Poor and Tricky Adversar-
ial Examples (AE) for an NLP Application

Original I like this movie, she is a good actress Prediction: Positive
Poor AE I hate this movie, she is a good actress like→ hate Prediction: Negative

Tricky AE I like some movie, she is a good actress this→ some Prediction: Negative

State-of-the-art attacks for generating textual ad-
versarial examples typically consist of the follow-
ing steps: (1) finding vulnerable words and ranking
them, and (2) replacing the words one by one to
generate adversarial samples. Li et al. (Li et al.,
2020) rank the vulnerability of words by mask-
ing all words in the input sentence one at a time
and then comparing the corresponding predictions’
probabilities of the masked sentences. As for the
second step, the lexical substitute models (Zhou
et al., 2019) are used to generate adversarial exam-
ples. However, there are two significant drawbacks
to the above framework: (i) the word importance
ranking via masking ignores the correlations be-
tween words, (ii) the entire attack process relies
on the synonym dictionary (Mrkšić et al., 2016) to
constrain the replacement, which doesn’t actively
optimize adversarial examples to preserve semantic
similarity. In this paper, we aim to extend textual
adversarial attacks with the goal of increasing the
semantic similarity between the original text and
the generated adversarial example. This work has
the potential to spur further research in this domain
of problems and thus facilitate the development of
advanced defense mechanisms.

First, we investigate the effects of computing
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word importance ranking via LIME (Ribeiro et al.,
2016) to consider the information of multiple
words. Recently, interpretability tools (Ribeiro
et al., 2016; Lundberg and Lee, 2017) have been
explored in membership inference attacks (Shokri
et al., 2021) as well as generating (Liu et al., 2024,
2021) or detecting (Fidel et al., 2020) visual adver-
sarial examples. We show that simply switching
from masking to LIME can improve the attack per-
formance noticeably. Secondly, to enforce the se-
mantic similarity between the original text and gen-
erated adversarial examples, we introduce a rein-
forcement learning (RL)-based framework, namely,
Reinforce attack. RL has previously been applied
to reading comprehension (Hu et al., 2018), ques-
tion answering (Yang et al., 2021), and sentence
simplification (Zhang and Lapata, 2017). More
specifically, we recast the attack process as a se-
quence tagging problem, where an agent is trained
to identify vulnerable words for substitution to max-
imize a reward function that optimizes four key met-
rics: semantic similarity, attack success rate, input
perturbation rate, and number of queries. We con-
duct extensive experiments on four classification
datasets and one regression dataset to demonstrate
the effectiveness of our attack methods. The contri-
bution of this paper is twofold:

• We show the potential of using an inter-
pretability tool (LIME (Ribeiro et al., 2016))
in the word importance ranking step that can
produce a more accurate word ranking, thus
improving the attack performance.

• We develop a reinforcement learning (RL)-
based textual adversarial example generation
attack dubbed as Reinforce attack that pre-
serves higher semantic similarity between the
original text and adversarial examples.

2 LIME Attack
Our key idea is that the explanations of LIME can
be leveraged to identify words that are vulnerable
to adversarial attacks. Instead of considering each
word one by one as in previous work for finding
vulnerable words (Li et al., 2020; Jin et al., 2020),
LIME first generates neighborhood samples by ran-
domly removing several words from the input sen-
tence and querying the BERT to get output logits
for each neighborhood sample. Then, a weighted
linear model is learned by taking logits as the la-
bels to approximate the locality of the prediction.
The word importance is calculated by solving the

weights of the linear model to minimize the sum
of cosine distance between the logits of the orig-
inal instance and neighborhood samples. Hence,
LIME takes contextual information into account
and scores each word’s importance in a holistic
way. More details are in Appendix A.

Algorithm 1 summarizes our adversarial exam-
ple generation steps. The first step is to pre-process
the text S and feed it into LIME(·) to obtain the
important words. LIME(·) returns a ranked word
list and we consider only the first q words from the
ranked list, which is represented by I . After we
acquire the list of the important words, we use a
word replacement strategy as shown in Algorithm 1
to generate the adversarial examples. For each im-
portant word wj ∈ I , we leverage BERT to identify
the list of K candidates P j . Let P be the list of
all such P js—representing the top-K candidates
for all words in I . Note that, for every candidate
in P , we filter P j by a set of stop words. The at-
tack is successful when the target model returns
a label other than Y for the perturbed text S′. If
the attack is not successful in a certain iteration,
the next word is perturbed, and we check again for
adversarial example success. Algorithm 1 sets the
maximum perturbation rate at 0.25.

3 Reinforce Attack
Our key observation from state-of-the-art attacks
is that none of these attacks optimizes for seman-
tic similarity, which is a key metric for evaluating
adversarial examples. Therefore, we incorporate
the above illustrated adversarial examples genera-
tion into our RL-based framework, dubbed as Re-
inforce attack as in Figure 1, which optimizes the
trade-offs among all the four key metrics during the
attack process, i.e., attack success rate, semantic
similarity, query number, and perturbation rate.

3.1 Key Metrics

Attack Success: The success rate is the main met-
ric for evaluating the performance of the adversarial
attack.

rA = max(pori − padv, 0) (1)

where pori is the original probability of the pre-
dicted class and padv is the resulting probability of
adversarial sample.
Semantic Similarity: We consider the Universal
Sentence Encoder (USE) (Cer et al., 2018) as an-
other vital metric to evaluate semantic similarity
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Algorithm 1 Adversarial example generation

Require: S = [w0, w1, ..., wn]
Y ← ground-truth label of sentence S
l← 0.25× n //Maximum number of word substitutions
LIME(·) : S → [wi, ...] //The length of [wi, ...] is q
Logit(·) : S → RC //C is the number of classes

Ensure: Sadv //Adversarial example
I = [wi, ...]← LIME(S) //q important words in descending order
P∈q×K = top-K candidates for all words in I using BERT
ns = 0 //Number of substituted words
for wj in I do

if ns > l then
return False //Fail to generate adversarial example

else
for P j

k in P j do
S′ = [w0, w1, ..., wj−1, P

j
k , ...]

if argmax(Logit(S′))! = Y then
return Sadv = S′ //Attack successful

else
if Logit(S′)[Y ] < Logit(Sadv)[Y ] then

Sadv = S′ //Update Sadv

ns+ = 1

end for
end for

directly, which is widely used to calculate the sim-
ilarity between a pair of texts. rS represents the
output score of USE.

rS = USE(S, Sadv) (2)

where S and Sadv are the original and adversarial
sentences, respectively.
Query Number: The query number reflects the
efficiency of the attack. While the attack reward rA

tries to encourage the model to generate mislead-
ing samples, the query reward rQ ensures that the
attack success is not achieved at the cost of a high
number of queries.

rQ =
Q

n
(3)

where Q is the number of queries and n is the length
of the sentence.
Perturbation Rate: We expect the attack to suc-
ceed by replacing a minimal number of words. The
reward rP simply calculates the perturbation rate
to regularize the reward function.

rP =
P

n
(4)

where P is the number of perturbed words and n is
the length of the sentence.

Figure 1: Reinforce attack framework. T is the target
model, S and Sa are original and adversarial sentences,
respectively, Q is the query number, and P represents
perturbation rate. Note that, in practice, we use the
sorted words according to the weights.

4 Experiments
Dataset Description: We apply our method to
both classification and regression tasks. The
datasets used in our experiments for classification
are Yelp (Yelp, 2021), IMDB (IMDB, 2018), AG’s
News (AG, 2019), and FAKE (FAKE, 2018). For
regression, we use Blog Authorship Corpus ((San-
tosh et al., 2013)). We follow the configuration in
(Li et al., 2020) to test on 1000 samples, which
are the same splits used by (Jin et al., 2020). As
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Table 2: Comparison of our attacks (LIME attack and Reinforce attack) with existing work.

Classification Task
Dataset Attack Method Avg Len Original Acc After Attack Acc Perturb % Query Semantic Sim Cosine Sim

IMDB

GA (Alzantot et al., 2018) 45.7 4.9 6493 - -
TextFooler (Jin et al., 2020) 215 90.9 13.6 6.1 1134 0.86 -

BERT-Attack (Li et al., 2020) 11.4 4.4 454 0.86 0.87
LIME Attack (Ours) 4.1 3.0 742 0.80 0.91

Reinforce Attack (Ours) 1.9 3.3 367 0.97 0.94

Yelp

GA (Alzantot et al., 2018) 31.0 10.1 6137 - -
TextFooler (Jin et al., 2020) 157 95.6 6.6 12.8 743 0.74 -

BERT-Attack (Li et al., 2020) 5.1 4.1 273 0.77 0.85
LIME Attack (Ours) 6.1 4.7 352 0.86 0.84

Reinforce Attack (Ours) 6.2 10.8 360 0.96 0.88

Fake

GA (Alzantot et al., 2018) 58.3 1.1 28508 - -
TextFooler (Jin et al., 2020) 885 97.8 19.3 11.7 4403 0.76 -

BERT-Attack (Li et al., 2020) 15.5 1.1 1558 0.81 0.88
LIME Attack (Ours) 6.0 4.0 2981 0.65 0.72

Reinforce Attack (Ours) 2.6 4.4 2811 0.98 0.92

AG

GA (Alzantot et al., 2018) 51.0 16.9 3495 - -
TextFooler (Jin et al., 2020) 43 94.2 12.5 22.0 357 0.57 -

BERT-Attack (Li et al., 2020) 10.6 15.4 213 0.63 0.71
LIME Attack (Ours) 16.2 18.3 387 0.81 0.75

Reinforce Attack (Ours) 15.0 15.1 210 0.94 0.85
Regression Task

Dataset Method Avg Len Original MAE Attacked MAE Perturb % Query Semantic Sim Cosine Sim

Blog
BERT-Attack (Li et al., 2020) 195 6.5 10.5 2.0 151 0.95 0.70

Reinforce Attack (Ours) - 14.0 3.9 199 0.97 0.86

for regression, we randomly split a subset of 1000
random samples from the dataset for testing.

Setup of Automatic Evaluation: To measure the
quality of the generated samples comprehensively,
we set up extensive automatic evaluation metrics
as in (Li et al., 2020). The attack accuracy, which
is the accuracy of the target model on adversarial
samples, is the core metric measuring the effective-
ness of the attack model. In addition, the perturba-
tion rate is also vital since less perturbation usually
means more semantic consistency. Furthermore,
the query number per sample is a key metric, re-
flecting the attack model’s efficiency. Finally, we
also use the Universal Sentence Encoder to mea-
sure the semantic similarity between the original
sentence and the adversarial sample.

Experiment Results: We compare our Rein-
force attack and LIME attack, which is the ver-
sion without using reinforcement framework, with
three existing works: GA (Alzantot et al., 2018),
TextFooler (Jin et al., 2020), and BERT-Attack (Li
et al., 2020). The target model is BERT-base in this
section.

Classification: As shown in Table 2, both our
LIME attack and Reinforce attack achieve compa-
rable or even better results compared to the other at-
tack methods. Our Reinforce attack achieves an av-
erage after-attack accuracy of about 6.4%, which is

a significant improvement compared to the BERT-
Attack (10.6%) and LIME attack (8.1%). We also
observe that methods with LIME perform better on
datasets with longer average lengths (IMDB and
Fake). Most notably, Reinforce attack consistently
outperforms other attack methods in terms of se-
mantic similarity by a large margin. The semantic
similarity reward in Reinforce attack plays a vi-
tal role in maintaining high semantic consistency
throughout the attack process.
Regression: Currently, LIME only supports ex-
plaining classification tasks because LIME relies
on the prediction probabilities to solve the expla-
nations. To resolve the issue, the regression task
needs to be discretized into the classification task.
Therefore, we only compare the vanilla BERT-
Attack and our Reinforce attack. Reinforce attack
achieves an attacked MAE of 14.0, outperforming
the BERT-Attack by ∼ 33%.

5 Conclusions and Future Work
We develop and evaluate Reinforce attack that gen-
erates successful adversarial texts while preserving
the original text’s semantics. We believe that this
unveils emerging challenges to make NLP applica-
tions more secure and robust. In the future, we aim
to evaluate existing defenses against such seman-
tic similarity-preserving adversarial examples and
develop more robust defenses against these attacks.
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A Important Words Selection

To obtain the important words, we construct a func-
tion that takes the text as input and calls the target
BERT model to generate the logit probability for
each class as output. Then LIME employs the con-
structed function to predict the importance of all
words. Specifically, LIME first randomly masks
the words in the original sentence and then uses
the language model to get the logit probability of
the masked sentence. The LIME algorithm trains
a ridge regression model by minimizing the sum
of cosine distance between the logits of the origi-
nal sentence and its variations to estimate the im-
portance of local words. Then, we can have the
ranking list of the words II.

Here is a simple example of how LIME measures
the importance of words1. Suppose the black box
model is a decision tree trained on a document word
matrix and aims to classify YouTube comments as
spam (1) or normal (0). To explain “For Christmas
Song visit my channel! ;)" with label 1, LIME
generates some random variations of the sample,
which will be used to train the local linear model.
As in Table 3, each column corresponds to one
word in the sentence and each row is a variation
with 1/0 representing the existence/absence of the
word. The “PROB" column shows the predicted
probability of spam resulting from each variation.
The “WEIGHT" column shows the proximity of
the variation to the original sentence, calculated as
1 minus the proportion of words that are removed.
For example, if 1 of 7 words was removed, the
proximity is 1 - 1/7 = 0.86. The LIME algorithm
then trains a linear model by minimizing the sum
of the cosine distance between the logits of the
original sentence and its variations to estimate the
local word importance. In this example, LIME
finds that the word “channel" has a high probability
of spam. Since the rest of the words have no impact
on the prediction, their weights will be estimated
as nearly zero.

B Human Evaluation

Since the similarity metrics may not agree with
human intuition, we perform a human evaluation
to evaluate further the generated adversarial ex-
amples via Amazon Turk. We use the IMDB and
Blog datasets for evaluation. There are 50 origi-
nal samples, 50 corresponding adversarial samples

1https://christophm.github.io/interpretable-ml-
book/lime.html#lime-for-text

generated by BERT-Attack, and 50 samples gener-
ated by our methods, which are randomly selected
for each dataset. Firstly, we ask the annotators to
rate the grammaticality of the sentences from 1 to
5 (5 being the best), following (Li et al., 2020).
Secondly, we ask the annotators to compare the se-
mantic similarity of reference sentences with those
generated by the attack methods. The scale is 0
to 1, where 1 is similar, 0 is dissimilar and 0.5 is
the middle, following (Jin et al., 2020). Thirdly,
the human workers are asked to decide whether
the generated samples’ labels are consistent with
the original sentences’ labels. If the labels are the
same, then the score is 1. Otherwise, the score is
0. The sentiment of the original sentence is com-
pared to itself, so the label consistency score of
original sentences is 1. As shown in Table 4, both
our LIME attack and Reinforce attack outperform
the BERT-Attack in the IMDB dataset.
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