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Abstract

The immense attraction towards text generation
garnered by ChatGPT has spurred the need for
discriminating machine-text from human text.
In this work, we provide preliminary evidence
that the scores computed by existing zero-shot
and supervised machine-text detection meth-
ods are not solely determined by the generated
texts, but are affected by prompts and real texts
as well. Using techniques from causal infer-
ence, we show the existence of backdoor paths
that confounds the relationships between text
and its detection score and how the confound-
ing bias can be partially mitigated. We open
up new research directions in identifying other
factors that may be interwoven in the detection
of machine text. Our study calls for a deeper
investigation into which kinds of prompts make
the detection of machine text more difficult or
easier.

1 Introduction

Since its release, ChatGPT1 has gained unprece-
dented attention from in and outside of the AI com-
munity, accumulating 100 million users within few
months (Hu, 2023). Due to its articulate and fluent
capability, the language model has been found to
be an attractive assistant for writing essays, aca-
demic papers, news articles, etc. This has led
to an increasing need for discriminating machine-
generated from human-generated texts for a fair
assessment of writings in educational institutions,
proper authorship attribution for accountability in
academic papers, preventing disinformation, etc
(Acres, 2022; Kasneci et al., 2023; Stokel-Walker,
2023; Moran, 2023).

Many traditional works rely on the statistical na-
ture of language modeling as the language model
per se can estimate the conditional probability of
the generated tokens (Gehrmann et al., 2019; Ip-
polito et al., 2020). This enables various ways to as-

1https://chat.openai.com

Figure 1: The discrepancy between how the detection
score f(·) is expected to be determined and actually
determined in reality.

sess the text by using the rank of the predicted prob-
ability distribution or through the entropy thereof.
On the other hand, more recent works like De-
tectGPT (Mitchell et al., 2023) discovered that
machine-generated texts lie in a negative curvature
area of the likelihood function. Besides the zero-
shot methods, OpenAI has also released classifiers
trained under supervision (Solaiman et al., 2019;
Kirchner et al., 2023). All these methods com-
pute a text’s likelihood of being generated from a
machine, which we hereafter dub as the detection
score (i.e. token-level likelihood, level of curvature
of the loss function).

It is worth noting that all the aforementioned
works focus only on the machine-generated texts
without explicitly considering the possibly related
variables such as the prompts that were given to
generate the text or the real counterparts generated
by humans. At first sight, this seems reasonable as
the text’s detection score must surely be determined
by the text itself (Fig. 1). But are they the only
factors that determine the scores in reality?
Research Goal In this work, we set out a new
research direction by turning our attention to the
other factors that may be interwoven when trying to
assess a text’s likelihood of being generated from
a language model. Specifically, we study whether
other factors besides the machine text itself have
an effect on the detection score computed by the
existing works. If such factors were to exist, this
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Figure 2: Causal diagram without backdoors that con-
veys conventional knowledge. P : Prompt, R: Real text,
G: machine-generated text, YG: detection score of ma-
chine text, YR: detection score of real text.

implies that the detection scores are confounded by
other variables that are not explicitly considered in
the detection methods.
Findings Taking inspiration from the causal infer-
ence literature (Pearl, 2010; Pearl and Mackenzie,
2018), we leverage causal diagrams (as shown in
Fig. 2) and show preliminary results that

• there exist backdoors between machine text
and its detection scores for zero-shot detec-
tion methods and a supervised method. The
upshot of this is that prompts affect the detec-
tion score not only through the machine text,
but by other paths;

• the non-causal (biasing) effect can be partially
adjusted for by conditioning on the prompts
and the real texts;

• We show that the zero-shot methods and the
supervised method display distinct behaviors
that imply different causal relationships be-
tween the variables.

Implications Our findings have several implica-
tions. First, the observed association between the
detection scores and generated texts demonstrated
in previous works may not paint the full picture
as there exists other mechanisms that affect the
detection score. The existence of such biasing
paths call for studies to see whether only consid-
ering the causal effect of G enhances the detec-
tion performance (i.e. separability of YG and YR).
Our framework of using causal diagrams may help
researchers identify inherent limitations of detec-
tors when conditioned on certain prompts and give
guidelines for practitioners to resort to other meth-
ods for those texts that are harder to detect.

2 Related Works

The potential societal impact of competent lan-
guage models has called for the need to discrimi-

nate between their output and human-written texts
(Solaiman et al., 2019; Goldstein et al., 2023).
Since the release of a supervised classifier for GPT-
2 with a 95% accuracy rate (Solaiman et al., 2019)
in 2019, the task of detecting machine outputs has
become severely more challenging: the new classi-
fier for ChatGPT was reported to identify only 26%
of AI-generated text as "likely AI-written," while
misclassifying human-written text as AI-written
at a rate of 9% (Kirchner et al., 2023). Recently,
DetectGPT (Mitchell et al., 2023) proposed a zero-
shot detector that uses an approximation of the
curvature of a language model’s log probability
function, outperforming existing zero-shot meth-
ods (Gehrmann et al., 2019) for detecting machine-
generated text and performing similarly or better
than GPT-2 detectors. Watermarking (Abdelnabi
and Fritz, 2021; Yang et al., 2022; Kirchenbauer
et al., 2023; Yoo et al., 2023a,b) is another approach
to identify machine-generated texts by encoding
a secret message in the output of the language
model. While there are research directions aimed
at addressing the challenges to detection, such as
robustness analysis of existing classifiers against
paraphraser (Sadasivan et al., 2023; Krishna et al.,
2023), there is a lack of fundamental analysis re-
garding the factors that impact the detection perfor-
mance. We believe that conducting such an anal-
ysis could guide future directions toward a more
reliable detection of machine texts.

3 Building the Causal Diagram

We briefly explain some notions of causal infer-
ence. For details, we refer the readers to Dablander
(2020).

3.1 Preliminary

Causal diagram illustrates the causal relationship
between random variables and can be represented
by a directed acyclic graph G = {V, E} where V
and E denote the set of variables (vertices) and
cause-and-effect relationships (edges), respectively.
An edge from variable X → Y denotes that X
causes Y . More generally, X has a causal effect on
all its descendents.

Fig. 2 depicts a causal diagram between prompts
P , real texts written by humans R, machine-
generated texts G, and its detection score YG. Both
human and machine texts are completed condi-
tioned on the prompts and are thus, "caused" by the
prompts. In addition, the language model is trained
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Figure 3: A hypothetical example for illustration of
confounding bias and its causal model (from Feldman
et al. 1987).

on the real text to follow its distribution. Hence,
the generated texts are affected by the real text via
the language model, i.e. R→ G.
Backdoors exist between a treatment X and a tar-
get variable Y when another variable Z is both an
ancestor of X and Y . Backdoor variables introduce
confounding bias, which obscures the true causal
effect of X on Y from observational data. For in-
stance, smoking (X) and lung capacity (Y ) may
have backdoor variables such as age (Z) (Feldman
et al., 1987; Lee and Fry, 2010). If the amount
of smoking decreases with age and younger peo-
ple tend to have a better lung capacity, the obser-
vational data might hint that the more someone
smokes, the better the lung capacity as shown in
Appendix Fig. 3. However, when conditioning on
an age group, this does not hold. We show that
there exists a confounding bias between machine
text and its detection score computed by several
zero-shot detection methods.

3.2 Modeling Random Variables
The variables we consider in our graphical model
are prompt P , generated text G, real text R, and de-
tection score YG2. Barring the detection scores, the
observational data for P,G,R are represented as
raw texts, which is non-trivial to model as prob-
ability distribution. To tackle this, we borrow
techniques from MAUVE (Pillutla et al., 2021) to
model the text representations as embedding rep-
resentations of language models, then quantizing
them using a clustering method. The resultant rep-
resentations are discrete probability representations
of texts. To validate our modeling of random vari-

2e.g. perplexity, rank of conditional probability, or entropy.
Hereafter, we use Y to denote YG for simplicity.

ables and the causal relationship between them, we
ensure that statistical dependence exists between
the adjacent nodes. The details are in A.1.

3.3 Experimental Settings
We experiment with two datasets (SQuAD and
XSum) used in the literature. We use the Wikipedia
context for SQuAD and the news articles for XSum.
To quantify the level of independence/association,
we use the G-test (Woolf, 1957) and conditional
mutual information (MI). G-test verifies the null
hypothesis that two given variables are indepen-
dent. MI measures the dependence of two variables.
We generate 10,000 samples on GPT2-Xl (Rad-
ford et al., 2019) by prompting it with the first 30
words of the real samples. We experiment with
four zero-shot detection methods based on log like-
lihood, ranking of likelihood, entropy, and Detect-
GPT (Gehrmann et al., 2019; Mitchell et al., 2023)
and a supervised classifier (Solaiman et al., 2019).
More detailed explanations regarding modeling text
as probability distributions and the metrics are pro-
vided in A.2.

4 Main Results

4.1 Checking for Backdoors
To start off, we presume a causal diagram (Fig. 2)
that does not contain any confounding bias between
the machine-generated text and the detection score.
Then, we falsify the conditions that entails from
this, proving otherwise.

Note that the only variable causing Y is G ac-
cording to the diagram. The missing links between
the nodes such as R − Y entail testable implica-
tions followed by the d-seperation criterion (Geiger
et al., 1990): P ⊥⊥ Y |G and R ⊥⊥ Y |G. More
specifically,

Claim. If P ⊥̸⊥ Y |G or R ⊥̸⊥ Y |G , then there
exists backdoor between G and Y that contains an
arrow into Y (Proof in A.3).

To test this, we use the G-test using the implied
conditional independence as the null hypothesis.
Our results indicate that all the considered meth-
ods violate this implication, signifying that there
exists backdoor(s). Note that a single statistically
significant case (e.g. P ⊥̸⊥ Y |G = g) is sufficient
to show P ⊥̸⊥ Y |G. Details are in Table 1.

4.2 Finding Potential Backdoor Paths
Having known that the backdoors exist, we can
conjecture potential backdoor paths shown in Fig. 4
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SQuAD

Methods
Hypothesis

P ⊥⊥ Y |G R ⊥⊥ Y |G

Zero-shot

DetectGPT 4e−2 0
Logrank 9e−3 0

Likelihood 8e−3 0
Entropy 7e−3 2e−3

Supervised Roberta-base 0 1e−1
XSum

Methods
Hypothesis

P ⊥⊥ Y |G R ⊥⊥ Y |G

Zero-shot

DetectGPT 3e−2 5e−3
Logrank 3e−2 2e−2

Likelihood 2e−2 5e−3
Entropy 9e−3 1e−3

Supervised Roberta-base 0 3e−3

Table 1: The lowest p-value over the support of G is
shown (up to three decimal points) on SQuAD and
XSum.

Figure 4: A causal diagram with two backdoor paths. U
denotes some unobserved latent variable.

based on inductive bias.
Path 1 : For all the methods, the detection score is
a function of a language model, which is not shown
to reduce clutter. This language model is trained
using the real texts as well, which may mediate
the effect of R to Y . Without adjusting for any
variables, G−R−Path 1 and G− P −R−Path
1 are backdoor paths to Y .

The causal diagram with Path 1 added im-
plicates the following conditional independence:
P ⊥⊥ Y |(G,R). When adjusting for only one of G
or R, several paths are open from P to Y (shown
in Appendix Fig. 8), which will lead to some level
of association. We compute the unconditional MI
and MI conditioned on several sets of variables to
compare the level of association. We expect that
MI(P ;Y |(G,R)) will be the lowest as it blocks all
paths. The results in Fig. 5 show a clear trend for
the zero-shot methods: conditioning only on G and
R tends to lead to a lesser change in the depen-
dence of P and Y . However, when conditioning on
both of the variables, the MI significantly decreases,
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Figure 5: MI conditioned on the three sets of variables.
All are normalized by the unconditional MI indicated
by the horizontal dotted line corresponding to 1.0.

bolstering the existence of Path 1 .
Conversely, this is not the case for the supervised

method. Adjusting for G leads to a significant
increase in the dependence. Similarly, adjusting
for the two variables leads to an increase in the
MI. This implies that adjusting for G leads to a
d-connected path, indicating that our hypothesized
graphical model does not accurately depict the data
generating process for the supervised method. This
is possible when G is a collider, opening up a path
when observed as shown in Fig. 6.
Path 2 : When only Path 1 is added to the ex-
isting links, this indicates P ⊥⊥ Y |(G,R), hence
MI(P ;Y |G,R) = 0. However, this is not the case
for several cases, hinting at another path from P
that is d-connected to Y . We show this as a bidi-
rectional path owing to some unobserved latent
variable. This may be caused by the same mech-
anism of Path 1 whereby the language model is
mediating the effect or by another mechanism that
both affects P and Y (see Fig. 4).

4.3 Closing the Backdoor Paths and
Implications

Last, we validate the backdoor paths directly by
quantifying the level of association between the
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Figure 6: A causal diagram with G as a collider owing
to an unobserved latent variable U . When G is condi-
tioned, P → G ← Y is d-connected. Other paths and
R are removed to reduce clutter.

generated text and its detection score when back-
door variables (P,R) are adjusted. We show in A.5
how Path 1 and 2 is blocked using the Backdoor
Criterion (Javidianm and Valtorta, 2018). Our re-
sults in Fig. 7 demonstrate that adjusting for the
backdoor variables leads to a decreased association
(MI) for all the zero-shot methods (72.7% ↓ relative
to the unconditional MI on average). This shows
that the detection score of the generated text is in-
deed affected by factors other than the text itself.
Once again, for the supervised classifier, adjust-
ing for the variables has a marginal effect on the
conditional MI.

What does the findings imply for detection meth-
ods? Since the detection scores computed by the
current detection methods are affected by prompts
as well, taking this into consideration might aid in
enhancing the separability of human and machine
texts. To illustrate this point, we show that cer-
tain prompts are indeed more difficult / easier to
detect. As done in existing works (Mitchell et al.,
2023; Gehrmann et al., 2019), we compute AU-
ROC using the detection scores of real texts and
generated texts. However, we do this by condition-
ing on the prompt. Then we perform permutation
tests to see whether the highest and the lowest AUC
are statistically significant. This tests whether the
prompt with the highest AUC (easiest to detect)
comes from the same distribution as a random sub-
set of equal size. Our results in Table 2 show that
all methods in the two datasets have at least one
prompt cluster that is statistically easier or harder
to detect.

This hints at the possibility of devising prompt-
dependent detection methodology. For instance,
for prompts that have low separability the API
providers might want to resort to using more ‘ac-
tive’ methods such as watermarking. Another po-
tential application is adjusting for this backdoor
to quantify the direct effect of generated text on
the detection score. This can be done by counter-
factual reasoning, which subtract out the indirect
effect from the total effect (See Section 6.1 of Sobel
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Figure 7: Relative MI of G, Y when unconditioned and
when adjusted for the backdoor variables (top: XSum,
bottom: SQuAD). All show a considerable decrease
except the supervised method.

Methods
SQuAD XSum

easier harder easier harder

Zero-shot

DetectGPT 2e−2 7e−3 0 5e−2
Logrank 2e−4 0 3e−3 3e−2

Likelihood 4e−4 0 8e−3 1e−2
Entropy 4e−2 8e−2 1e−1 7e−3

Supervised Roberta-base 3e−1 0 1e−1 0

Table 2: The p-values using permutation test for the
null hypothesis that "a prompt that is {easier, harder}
to detect follows the same distribution with a randomly
sampled subset" under α = .05. Significant prompts
that have lower p-values (< α) are marked in red.

(1996)).

5 Conclusion

In summary, we demonstrate that backdoor vari-
ables exist between the machine texts and their
detection scores. While all methods have back-
doors, the results hint that the causal relationships
are distinct for the supervised classifier, the precise
mechanism of which is yet to be investigated. Our
work opens up new research direction in detecting
machine-generated texts without non-causal paths.
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Limitations

The results shown in this study is limited to few
datasets and a small-scale model. In addition, mod-
eling the raw texts into a probability distribution
is a non-trivial task to achieve without losing po-
tentially important information. This may be a
bottleneck in finding association between the vari-
ables. Nonetheless, our preliminary study opens
up various research directions. Namely, the frame-
work can be used to overhaul existing methods that
rely on confounding biases. Another practical chal-
lenge is that prompts are generally unknown when
trying to detect machine text. This makes devising
prompt-dependent method difficult even if account-
ing for it is indeed helpful. To overcome this, using
proxy variables such as topics or semantics instead
of prompts might be necessary.
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A Appendix

A.1 Validating the Model
After binning Y , we use the G-test for the four
relationships (P −R, P −G, R−G, G− Y ). For
all the studied methods, the p-values of the four
relationships are statistically significant at α = .05.

A.2 More Details on Experimental Settings
Modeling Random Variables For all the zero-shot
methods, we use the last token embedding of GPT
as the representation. For the supervised method,
we use the classifier’s [CLS] token embedding as
the representation. For clustering, we first conduct
dimensionality reduction using PCA and apply K-
Means Clustering. For the detection score, the
scores between 1% and 99% quantiles are kept
so as to remove the outliers. We apply Box-Cox
transformation to skewed score distributions before
discretizing them. The number of clusters, PCA
dimension, and the bins for the scores are all chosen
from {5,10} such that the conditions in §3.2 are
satisfied.
Metrics G-test measures the difference of likeli-
hood given the null hypothesis that the two vari-
ables are independent and thus, lower p-value in-
dicates association between variables. Conversely,
MI measures the level of association, hence higher
values indicate association. We use the adjusted
MI (Vinh et al., 2009) to account for randomness
and add a uniform prior of 0.01 for all bins as the
samples are sparse when conditioning on multiple
variables. This tends to bias the measure towards
higher mutual information, but leads to a more ro-
bust estimation towards noise due to limited sample
sizes. This is especially important when condi-
tioning on more than one variable as the number
of bins when conditioning on two variables be-
comes 25-100 if 5-10 clusters are used for each
variable, which can become sparse or noisy even
when 10,000 samples are generated. Empirically,
we observe that by adding the uniform prior the
MI and the G-test lead to consistent results: when
G-test is not significant, the MI is always close to
zero.

The most computation-heavy part of our experi-
ment was generating the samples, which around 24
gpu-hours on Titan RTX.

A.3 Proof of Claim
Proof. Given the causal diagram in Fig. 2, if
P ⊥̸⊥ Y |G, this means there exist d-connected

path(s) from P to Y . Paths through the only con-
nected variable G are blocked as G admits an ar-
row towards Y . Thus, R → Y (notice the direc-
tion) must exist or P ← Y , P → Y must ex-
ist. The same argument applies for the case when
R ⊥̸⊥ Y |G.

A.4 Visualization of a collider variable,
Causal and Biasing Paths

We visualize the active causal path(s) and the bi-
asing path(s) in green and red (shown in Fig. 8).
A path is active if all the triplets in the path are
d-connected. A path is causal if the target variable
(Y ) is a descendant of the treatment variable (G).

Figure 8: Causal diagram visualizing the d-connected
causal and non-causal paths from P to Y when adjusting
for variables.

A.5 Blocking Path 1 and 2
For completeness, we state the backdoor criterion.

Definition (Backdoor Criterion). A set Z satisfies
the backdoor criterion with respect to X and Y if

1. no node in Z is a descendant of X and

2. conditioning on Z blocks every d-connected
path between X and Y that contains an arrow
into X .

Adjusting forZ = {P,R} satisfies the backdoor
criterion.
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