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Abstract

Generative Large Language Models (LLMs)
have garnered significant attention for their abil-
ity to generate human-like text across diverse
domains. However, a major obstacle preventing
their widespread adoption in production envi-
ronments is their propensity for ’hallucinations’
– the generation of non-factual statements that
can erode confidence in their output. Exist-
ing hallucination detection approaches either
require access to the categorical distribution
of the output or rely on external databases to
retrieve evidence about generated output. An
alternative strategy employs sampling-based
techniques, which generate responses multiple
times to identify hallucinations. This paper pro-
poses a novel black-box approach to automati-
cally detect and classify hallucinations at a fact
level by transforming the problem into a knowl-
edge graph alignment task. This approach,
unique in its applications, also allows us to clas-
sify detected hallucinations as either intrinsic
or extrinsic. Our methodology was evaluated
on the WikiBio GPT-3 hallucination dataset for
hallucination detection and the XSum hallu-
cination annotations dataset for hallucination
classification. Our method achieved a 0.889 F1
for the hallucination detection and 0.825 F1 for
the hallucination type classification, without
any further training, fine-tuning, or producing
multiple samples of the LLM response.

1 Introduction

Large Language Models (LLMs) have showcased
impressive performance in significant tasks such as
natural language understanding (Du et al., 2022),
language generation (Axelsson and Skantze, 2023),
and complex reasoning (Hao et al., 2023). Despite
their widespread applications, LLMs are prone to
hallucinate (Ji et al., 2023), which makes them
difficult to rely on.

Existing literature focuses on robust hallucina-
tion detection mechanisms to ensure the reliability
and accountability of NLP systems (Corlett et al.,

2019). However, recent approaches require access
to either the token-level probability distribution
(Manakul et al., 2023) or external databases (Bayat
et al., 2023) that are rarely available. Another ap-
proach relies on sampling that requires multiple
LLM calls (Manakul et al., 2023).

Due to these limitations, we introduce a novel
approach that transforms hallucination detection
into a knowledge graph alignment task.

Our approach is established on the notion that
faithful generation should be semantically aligned
with the source text. The degree of alignment was
modeled as a metric to score the faithfulness of the
generated text. Extending beyond mere detection,
our approach is capable of classifying detected hal-
lucinations into intrinsic and extrinsic categories.
According to (Maynez et al., 2020), intrinsic hallu-
cinations are defined as manipulation of the infor-
mation present in the input document, while extrin-
sic hallucinations involve adding information not
directly inferable from the input document. By dis-
tinguishing between these categories, our method
enhances the interpretability of detected hallucina-
tions, providing valuable insights into the underly-
ing causes.

2 Related Work

Current hallucination detection approaches can be
classified according to the type of input required
from the generative model as grey-box or black-
box. Grey-box approaches, such as average and
maximum token-level log probabilities (Manakul
et al., 2023) are not restricted in their access to the
generated text. However, token-level probabilities
are not always accessible (e.g.: ChatGPT). Black-
box approaches handle this limitation by only
requiring the generated text. These approaches
include proxy LLM-based approaches, external
databases-dependent approaches, and sampling-
based approaches.
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Figure 1: Hallucination detection and classification pipeline

Proxy LLM-based approaches, such as
BARTScore (Yuan et al., 2021) use a proxy LLM
to obtain token-level probabilities given the input
text. The main limitation of these models is that
the produced scores cannot be used to classify
individual sentences.

Factual data-dependent approaches compare
the generated text to factual data. For example,
AlignScore (Zha et al., 2023) uses 4.7M training
examples from several datasets to train a model
on predicting an alignment score between factual
and generated data. Other approaches like (Thorne
et al., 2018) utilize external sources, which is useful
when there is no or limited source text.

Sampling-based approaches stochastically sam-
ple multiple outputs and detect hallucinations based
on their consistency with the original output. For
example, SelfCheckGPT (Manakul et al., 2023)
samples outputs and judges their consistency with
the original output using either BERTScore (Zhang
et al., 2019), multiple-choice question answering,
textual entailment, or prompting an LLM. In HaLo
(Elaraby et al., 2023), a pairwise entailment is com-
puted between pairs of sentences from the original
response and other sample responses using SUM-
MAC (Laban et al., 2022).

3 Hallucination Detection and
Classification Approach

Our approach detects and classifies hallucina-
tions at a fact level using knowledge graph align-
ment. As shown in Figure 1, the KG Constructor
takes source and generated text as inputs and gener-
ates the corresponding KGs. The constructed KGs

Figure 2: Knowledge graph construction

are passed to the Alignment module to produce the
alignment score for each generated triplet which is
used to determine whether the generated triplet is
hallucinated or factual. The KG triplets from the
source text and the hallucinated KG triplets from
the generated text are passed to the Knowledge
Change Detector (KCD), which produces a contra-
diction score for each of the hallucinated triplets,
which in turn is used to classify whether the hallu-
cination in this triplet is intrinsic or extrinsic.

Knowledge Graph Construction We used a sim-
ple approach to automatically construct a Knowl-
edge Graph from the text (see Figure 2). First, we
resolved each coreference to its reference using
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coreference resolution model1. The text is then
passed to NER2 to extract the named entities3. Fi-
nally, relation extraction4 is performed on the text.
The produced relational triplets are filtered to re-
move triplets where the subject or the object is not
in the named entities produced by the NER model.

3.1 Hallucination Detection as KG Alignment
A simple approach for solving the KG alignment
is to treat it as an assignment problem (Mao et al.,
2021). Given the set of all source entities Es and
the set of all generated entities Eg, the input con-
sists of four matrices: As ∈ R|Es|×|Es| and Ag ∈
R|Eg |×|Eg |, which are the adjacency matrices of
KGs and KGg, respectively, and Hs ∈ R|Es|×de

and Hg ∈ R|Eg |×de which are the entity represen-
tation matrices for KGs and KGg, where de is the
dimension of the entity representation vector space.
A permutation matrix P is used to represent the
entity correspondences between KGs and KGg,
such that Pi,j = 1 indicates that ei ∈ KGs and
ej ∈ KGg are an equivalent entity pair. Then, un-
der the one-to-one constraint, the assignment prob-
lem can be solved using the following objective
function

argmin
P∈P|E|

L∑

l=1

||PAl
sHs −Al

gHg||2F (1)

where l represents the depth of the adjacency ma-
trix, ||.||F represents the Frobenius norm and PN

represents the set of all N-dimensional permutation
matrices.

The above equation can be solved using algo-
rithms like the Hungarian algorithm (Kuhn, 1955)
and the Sinkhorn operation (Cuturi, 2013).

We choose to perform alignment on the level
of triplets instead of entities. For each triplet, a
triplet representation is calculated by concatenating
the elements of the triplet as a piece of text and
passing it to a transformer-based model5. This
results in representation matrices Fs ∈ R|Ts|×dt

and Fg ∈ R|Tg |×dt , where Ts is the sets of triplets
1The FastCoref Python package was used (Otmazgin et al.,

2022)
2Multi-lingual NER BERT was used to obtain named enti-

ties (Devlin et al., 2018)
3We consider the following entity types: Person, Organiza-

tion, Location, Date.
4Relation Extraction from CoreNLP (Manning et al., 2014)

was used to obtain relational triplets.
5DistilRoberta pre-trained model from the SentenceTrans-

formers (Reimers and Gurevych, 2019) Python framework
was used as our transformer-based model.

Figure 3: Knowledge Change Detector (KCD) takes the
sets of triplets Tg of knowledge graph KGg and Ts of
KGs. For each triplet tj ∈ Tg, an NLI model is used
to compute the contradiction scores between tj and ti
∀ti ∈ KGs and find the maximum contradiction score.

from KGs, Tg is the set of triplets from KGg, and
dt is the dimension of the triplet representation
vector space. We simplify Equation 1 by relaxing
the one-to-one constraint, such that one triplet from
the KGs can support multiple triplets from the
KGg.

The best match for each generated triplet tj ∈ Tg

from all source triplets ti ∈ Ts is calculated using
the following formula

argmin
ti∈Ts

||vTi Fs − vTj Fg||2 (2)

where vi and vj are the one-hot vectors correspond-
ing to ti and tj , respectively.

The corresponding alignment score sa is com-
puted as

sa = 1− min
ti∈Ts

||vTi Fs − vTj Fg||2 (3)

where 0 ≤ sa ≤ 1. If sa is higher than a specific
threshold (described in Section 4), the triplet is
considered to be factual, and is considered to be
hallucinated otherwise as shown in Figure 1.

3.2 Hallucination Classification
We extend our approach beyond hallucination de-
tection to classification using a Knowledge Change
Detector (KCD) module (see Figure 3) that com-
putes a contradiction score (ranging from 0 to 1)
between hallucinated and source triplets using an
NLI model 6. This score quantifies knowledge al-
teration introduced by LLMs. If this score is higher
than a specific threshold (described in section 4),
the generated knowledge is considered to be ma-
nipulated (intrinsic hallucination). Otherwise, it is

6DeBERTa-v3-base-mnli-fever-anli was used for NLI
(Laurer et al., 2022)
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considered to be unsupported by the original text
(extrinsic hallucination).

4 Experimental Setup

Datasets To evaluate our hallucination detection
approach, we used the WikiBio GPT-3 hallucina-
tion dataset (Manakul et al., 2023) which contains
238 Wikipedia-like passages generated using GPT-
3 (text-davinci-003). The passages are divided into
sentences, each annotated as containing accurate
information, minor inaccuracies, or major inaccu-
racies. We grouped major and minor inaccurate
labels into a hallucinated class, labeled as 1, while
the accurate class was labeled as 0. 10% of the
data was reserved for hyperparameter optimization
and the results were reported on the rest of the
dataset. For the hallucination classification task,
we used the XSum hallucination annotated dataset
(Maynez et al., 2020), containing 500 randomly
sampled articles from the XSum dataset (Narayan
et al., 2018) and the corresponding summaries from
multiple generative models. Hallucinated spans
were annotated as containing intrinsic or extrinsic
hallucination.

Hyperparameter Optimization Bayesian opti-
mization 7 was performed for 30 iterations to de-
cide the alignment and contradiction score thresh-
olds (set to 0.863 and 0.984, respectively).

Baselines We evaluate our method against two
baselines: SelfCheck with NLI (Manakul et al.,
2023) and AlignScore-Large (Zha et al., 2023). For
both methods, the threshold is set to the value that
maximizes the F1 score (0.54 for SelfCheck and
0.7 for AlignScore).

5 Results

The proposed method was evaluated on the tasks
of hallucination detection using precision, recall,
and F1-score. The evaluation was performed on
the level of sentences to be compared to sentence-
level hallucination detection baselines. Given a
generated sentence si ∈ S, where S is the set of all
generated sentences in the test set, we computed
the set of triplets tj ∈ Tg, where Tg is the set of
triplets constructed from the generated sentence
si. A sentence was classified as hallucinated if it
included at least one hallucinated triplet.

7Scikit-optimize (Head et al., 2020) was used for Bayesian
optimization.

As shown in table 1, our hallucination detection
method achieves a recall of 0.992 on the task of
sentence-level hallucination detection on WikiBio,
which is higher than that achieved by the reported
baselines without any fine-tuning, training, or us-
ing of additional generated samples. While our
method obtained less precision compared to the
baselines, the overall F1-score of FactAlign is still
higher. The results show the effectiveness of fact-
level hallucination detection used in our method.

Table 2 reports the fact-level results for intrinsic
vs. extrinsic hallucination classification, where
each triplet constitutes a generated fact. For the
sets of annotated hallucination spans P and the set
of extracted triplets Tg in a test example, a triplet
tj ∈ TG was annotated as hallucinated if its text
overlapped with a hallucinated span pi ∈ P . As
shown in the table, FactAlign achieves reasonable
fact-level hallucination classification metrics.

Table 1: Sentence-level hallucination detection results
on the WikiBio GPT-3 hallucination dataset

Precision Recall F1
SelfCheck 0.843 0.917 0.879
AlignScore 0.809 0.981 0.886
FactAlign 0.805 0.992 0.889

Table 2: Fact-level hallucination classification results
on the XSum hallucination annotations dataset

Precision Recall F1
0.833 0.817 0.825

6 Conclusion

In this paper, we introduced a black-box halluci-
nation detection technique based on constructing
knowledge graphs from the source and generated
text, aligning these knowledge graphs, and compar-
ing the aligned triplets. Our method achieved an
F1-score of 0.889 on hallucination detection on the
WikiBio dataset and 0.825 on hallucination-type
classification on the XSum hallucination annota-
tions dataset. These results show the effectiveness
of the knowledge graph alignment approach in the
discovery and classification of individual halluci-
nated triplets. Basing our approach on the level of
triplets makes the hallucination detection output
explainable and highlights the correct triplets that
can later be used to correct hallucinations.
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Limitations

Although our method can obtain high scores on the
task of hallucination detection and classifying hal-
lucinations, the method contains some limitations.
This section highlights the limitations and possible
future research directions.

Knowledge Graph Construction Our approach
limits the entities in the constructed triplets to
named entities, which means that this knowledge
graph construction method may miss important
triplets where the entities are not named entities.
In future studies, we plan to explore further rela-
tion extraction techniques to build more reliable
knowledge graphs and explore their effect on hal-
lucination detection.

Large-Scale Hallucination Detection Detecting
Hallucination as a KG alignment task on scale
presents a formidable challenge, considering that
each generated triplet necessitates alignment with
the entire source knowledge graph. In future stud-
ies, retrieval augmented generation (RAG) (Lewis
et al., 2020) is investigated as a way to retrieve
relevant triplets. This will allow selective retrieval
of the relevant sub-graph that demands alignment,
thereby circumventing the need to align with the
entirety of the expansive KG.
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