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Abstract
The tasks of lexical complexity prediction
(LCP) and complex word identification (CWI)
commonly presuppose that difficult to under-
stand words are shared by the target population.
Meanwhile, personalization methods have also
been proposed to adapt models to individual
needs. We verify that a recent Japanese LCP
dataset is representative of its target popula-
tion by partially replicating the annotation. By
another reannotation we show that native Chi-
nese speakers perceive the complexity differ-
ently due to Sino-Japanese vocabulary. To ex-
plore the possibilities of personalization, we
compare competitive baselines trained on the
group mean ratings and individual ratings in
terms of performance for an individual. We
show that the model trained on a group mean
performs similarly to an individual model in
the CWI task, while achieving good LCP per-
formance for an individual is difficult. We also
experiment with adapting a finetuned BERT
model, which results only in marginal improve-
ments across all settings.

1 Introduction
Complex word identification (CWI) is a task of
identifying difficult to understand words in text.
CWI systems can be used as components of lexical
simplification and readability assessment systems.
Lexical complexity prediction (LCP) extends CWI
by predicting complexity of words on a continuous
scale (Shardlow et al., 2020).

For both tasks, it is necessary to specify for
whom we are predicting the complexity. Non-
native speakers have very different needs from peo-
ple with dyslexia (Paetzold and Specia, 2016) or
children (Oshika et al., 2024). For non-native
speakers, their L1 background (Machida, 2001; Ide
et al., 2023) or proficiency level (Lee and Yeung,
2018b) further determines their needs.

A case has recently been made for personalized
CWI, which predicts complex words for an individ-
ual (Lee and Yeung, 2018b; Gooding and Tragut,
2022), and similar methods were earlier proposed

for personalized reading assistance (Ehara et al.,
2013). While most research has been done on En-
glish as a second language, a personalized CWI
system for Chinese as a second language has also
been proposed (Lee and Yeung, 2018a). A shared
element of the previously proposed systems is a bi-
nary classifier based on a small number of features,
such as word frequency or a level from a pedagog-
ical word list. This fits the hypothetical scenario
of deployment to user devices and training them
using very little labeled data.

Meanwhile, models of increasing size have been
applied to lexical complexity prediction targeting
relatively wide target populations. In a recent
multi-lingual shared task (Shardlow et al., 2024b),
systems based on large language models (GPT-4)
or encoder models (BERT) performed well, espe-
cially on relatively high-resource languages such
as English or Japanese. The systems were, how-
ever, evaluated only on the basis of complexity av-
eraged across all annotators.

We will attempt to answer the following ques-
tions for the specific case of the Japanese data
employed by the shared task (Shardlow et al.,
2024a,b), MultiLS-Japanese:
1. Is the data representative of the intended tar-

get population?
2. Can complexity predictions for individuals be

improved by training personalized models?
3. How does a simple frequency-basedmodel us-

ing a suitable corpus compare to the recent
computationally intensive models?

2 Analysis
The MultiLS-Japanese dataset is designed as an
evaluation dataset consisting of 30 trial instances
and 570 test instances. Annotation instructions, an-
notator profiles, and separate complexity data for
each annotator were released online as well.1 Each
instance of the dataset is a target word in a sentence

1https://github.com/naist-nlp/multils-
japanese
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Original Data Non-CK L1 Replication Chinese L1 Reannotation

Native languages English (5), Swedish (1),
Portuguese & English (1),
French & English (1),
Basque & Spanish (1),

French (1)

Czech (7),
English & Czech (1),

Czech & Ukrainian (1),
Slovak (1)

Chinese (9),
Chinese & Cantonese (1)

JLTP level 1 (3), N1 (3), N2 (3), 2 (1) N2 (7), N1 (3) N1 (5), N2 (4), 1 (1)
Studied Japanese at university 7 of 10 10 of 10 2 of 10
Currently lives in Japan 10 of 10 0 of 10 10 of 10
Lived in Japan (total yrs) 16.7 (8.3) 0.7 (0.4) 4.6 (2.5)
Reading in Japanese (hrs/week) 5.7 (7.6) 2.6 (2.3) 9.5 (8.7)
Age (yrs) 40.8 (9.1) 23.6 (2.7) 28.2 (2.5)
Education (total yrs) 18.4 (3.7) 17.2 (2.4) 19.5 (2.9)
Non-native languages 1.7 (0.5) 3.1 (1.1) 2.6 (0.8)

Table 1: Comparison of the annotator groups of the original data, our replication (same conditions), and our reanno-
tation by Chinese L1 speakers. In the last five rows, we report means followed by standard deviations in parentheses.

context, for which lexical complexity values and
simpler substitutions are provided. In this study,
we ignore the substitutions as well as the context.

Each instance of both trial and test datawas rated
by the same set of annotators, which allows us to
use the individual ratings in a personalized setting.

2.1 Target Population
The annotators were holders of Japanese Language
Proficiency Test (JLPT) levels N1 or N2 (or their
older equivalents 1 and 2). These levels of JLPT
are often required by employers and universities
(JASSO, 2024) and have been compared to CEFR
levels B2 and C1 (Sophia University, 2024). The
native language of the annotators was purposely
not Chinese or Korean (non-CK), as both lan-
guages share a large part of their vocabulary with
Japanese. Maekawa et al. (2014) estimates the pro-
portion of words of Chinese origin2 in Japanese
text as 17% to 47% based on register. Heo (2010)
estimates the proportion of words of Chinese ori-
gin in Korean text as 66%.

As shown in Figure 1, the distribution of com-
plexity values in the trial set closely mimics the test
set. The distributions of word origins and parts of
speech are comparable as well (see Appendix A).
We therefore used the trial set to evaluate how rep-
resentative the dataset is of its target population.
For this purpose we had the trial set reannotated by
two groups of annotators: one is from the same tar-
get population, while the other has Chinese as their
native language. Demographics of each group are
summarized in Table 1.

2The traditional terminology for Japanese vocabulary dis-
tinguishes between wago, indigenous Japanese words; kango
Sino-Japanese words; and gairaigo, foreign words from other
languages (e.g. English). For simplicity we will call them
words of Japanese, Chinese, and other origin, respectively.
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Figure 1: Complexity histogram of the trial and test
sets.

For the non-CK L1 replication we recruited
annotators fulfilling the conditions of the origi-
nal data. Notably, their native languages are nei-
ther Chinese nor Korean, but have almost no over-
lap with native languages of the original annota-
tors. Additionally, while the original annotators
have been living in Japan for an average 16.7 years,
for the replication we have recruited undergradu-
ate students or recent graduates of Japanese studies
from Charles University in Prague, most of whom
have been learning Japanese for 3 to 4 years, out of
which no more than 1 year was spent in Japan.

The Chinese L1 reannotation group consists
entirely of native Chinese speakers, students or re-
cent graduates of Nara Institute of Science of Tech-
nology. The distribution of their proficiency levels
is the same as that of the original annotators (six
hold JLPT level N1/1 and four hold N2/2). Their
mean age and time spent in Japan falls between the
means of the original annotators and replication an-
notators.

We measured inter-annotator agreement (IAA),
using Krippendorff’s (1970) 𝛼 for interval values,
as well as the mean pairwise correlation between
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TUBELEX Original Data Difference in Complexity From Original Data
Word Origin #Words log10 frequency Complexity Non-CK L1 Replication Chinese L1 Reannotation

Japanese 12 −5.423 (1.427) 0.327 (0.231) +0.040 (0.129) +0.079 (0.102)
Chinese 13 −5.247 (0.913) 0.342 (0.180) +0.029 (0.119) −0.131 (0.093)
𝑝-value 0.714 0.866 0.843 < 0.0001

Table 2: Difference in complexity perceived by two groups of annotators and by the original annotators according
to word origin. Mean values are followed by standard deviations in parentheses. We also show log-frequency and
original complexity. The 𝑝-values were obtained from the two-sided unpaired exact permutation test (Good, 2004).
Bold font denotes a statistical significant difference in the means between words of Japanese and Chinese origin.
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Figure 2: Inter-annotator agreement and mean pairwise
correlation in the three annotator groups, the unions of
their pairs, and union of all three. Light text denotes
that union decreases agreement (correlation).

annotators. As we can see in Figure 2, the values
achieved in both the replication and the Chinese
L1 reannotation are similar to the original data.
When we merge the original data with the replica-
tion, however, the inter-annotator agreement does
not drop below the agreements in the two groups.
In other words, the annotators agree across these
two groups as much as within them. This contrasts
with the Chinese L1 reannotation, which lowers
the agreement when combined with the original
data, the replication, or their union. The same ap-
plies to the mean pairwise correlation. A similar
tendency for IAA of CK and non-CK L1 annota-
tors was reported by Ide et al. (2023) for an ear-
lier non-native Japanese LCP dataset, but their na-
tive Chinese and Korean annotators also tended to
have higher proficiency levels, which complicates
the interpretation. In this study, they have the same
distribution of proficiency levels.

The underlying cause is a different perception
of complexity of words of Japanese and Chinese
origin between native Chinese speakers and others.
The words perceived as less complex by the native
Chinese annotators are almost exclusively words of
Chinese origin and vice versa (details provided in
Appendix C). As we can see in Table 2, the gap in
complexity perceived by the two groups differs sig-
nificantly between words of Chinese and Japanese

origin. The words of Chinese and Japanese origin
do not, however, differ significantly in their fre-
quency, complexity perceived by the original an-
notators, or the gap between complexity perceived
by the original and the Chinese L1 annotators.

The statistical similarity with annotations by a
group with very different demographics supports
the hypothesis that the dataset is representative of
the target population of non-native Japanese speak-
ers with JLPT proficiency level N2 and higher,
whose L1 is not Chinese or Korean.

While the difference between native Chinese
speakers and others was to be expected, the similar-
ity with the replication is remarkable. Within the
boundaries of target population, we tried to find a
homogeneous group of annotators with much less
exposure to Japanese language than the original an-
notators. The students who replicated the trial an-
notation usually reach level N2 or N1 around their
graduation after three to four years of study with
limited exposure to Japanese outside their classes.
The original annotators not only have lived on av-
erage 16.7 years in Japan, but in four cases also ac-
quired their JLPT certificates before year 2010 (as
evidenced by old JLPT levels 1 and 2 as opposed
to N1 and N2), having ample opportunity to widen
their vocabulary beyond the certified level. It is
rather surprising how well the two groups agree.

We would like to emphasize that similarly low
levels of IAA are common for LCP (e.g. 𝛼 = 0.32
or 0.31 reported by Ide et al., 2023), which reflects
the subjectivity of the task and shows that there is
a room for improvement by personalization.

2.2 Correlation Analysis
Word frequency has long been used as a feature
for modeling lexical complexity (Devlin and Tait,
1998, is an early example). Furthermore, Nohejl
et al. (2024) demonstrated for multiple languages
including Japanese that frequency in TUBELEX, a
YouTube subtitle corpus, has a stronger correlation
with lexical complexity than frequency in other cor-
pora. We examine correlation with several other
variables, not considered by Nohejl et al. (2024).
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Variable Data Source PCC Potential PCC

Word
Log-Frequency

TUBELEX −0.66 −0.66
Lang-8-non-CK −0.64 −0.64
Lang-8-CK −0.61 −0.61
CSJ −0.57 −0.56
BCCWJ −0.55 −0.57

L2 Level JEV 0.43 0.63

Character
Log-Frequency

BCCWJ −0.35 −0.37
Lang-8-non-CK −0.35 −0.36
Lang-8-CK −0.33 −0.34

L1 Familiarity WLSP (Asahara) −0.23 −0.55

Table 3: Correlation (PCC) of MultiLS-Japanese test
set complexity with log-frequencies, learner levels and
native familiarity. For BCCWJ, CSJ, JEV, and WLSP,
values were looked up by lemma. Potential PCC only
considers words present in each data source. Rows are
ordered by PCC strength (absolute value): naturally,
high complexity is associated with low frequency and
familiarity, hence the negative values.

For a fair comparison, we measure Pearson’s cor-
relation coefficients (PCC) on the full MultiLS-
Japanese data. The handling of words missing in
data sources is detailed in Appendix B. We also
report “Potential PCC” measured only on words
present in the individual data sources, thus effec-
tively evaluating each data source on a different
subsets of MultiLS-Japanese.

As shown in Table 3, TUBELEX achieves the
strongest correlation, followed by the subset of the
learner corpus Lang-8 (Mizumoto et al., 2011),
where the learners’ L1 is not Chinese or Korean
(Lang-8-non-CK). The difference between the two
is not statistically significant, whereas the differ-
ence between Lang-8-non-CK and Lang-8-CK (L1
is Chinese or Korean) is significant.3

Among word frequencies, the weakest correla-
tions are achieved by the corpora CSJ (NINJAL,
2016) and BCCWJ (Maekawa et al., 2014). Char-
acter frequencies further underperform word fre-
quencies. The Japanese Educational Vocabulary
(JEV)4 by Sunakawa et al. (2012), targeting L2
learners, and theWLSP-Familiarity database (Asa-
hara, 2019), rated by native speakers, have strong
potential correlations, but their practical useful-
ness for LCP is limited by their low coverage, re-
flected by low actual PCC.

3 Experiments
Following the design of MultiLS-Japanese, we use
the 30 trial instances for training, and the 570 test

3Based on Steiger’s (1980) test for dependent correlations
with significance level 𝛼 = 0.01.

4http://jhlee.sakura.ne.jp/JEV/

instances for evaluation. We only use the datasets
original data, not the replication or reannotation,
for the experiments.

We evaluate models in four settings deter-
mined by training and test data, e.g. the “Group-
Individual” denotes training on group data (mean
for LCP or majority class for CWI) and evalua-
tion on individual data. With the exception of the
Group-Group setting, where a single model is eval-
uated on a single test set, we therefore report the re-
sults as means and standard deviations. In the case
of Individual-Individual, we evaluate each model
trained on individual data only on the correspond-
ing individual test data.

We also evaluate models in the CWI task by con-
sidering complexity values ≥ 0.375 (the midpoint
between the easy and neutral ratings in MultiLS-
Japanese) to be complex. The results in CWI are
easier to interpret, and can be compared with pre-
vious personalized CWI research. In addition to
CWI models (binary classifiers), we also evaluate
LCP models in CWI (henceforth LCP-CWI) by in-
terpreting their values as the positive class if they
exceed the threshold.

For LCP, we measure 𝑅2, the coefficient of de-
termination. For CWI, we measure performance
using macro-averaged F1 score, i.e. the average of
F1 scores for the positive and negative class, in line
with previous research (Yimam et al., 2018; Good-
ing and Tragut, 2022).

Detailed information about the experimental
models is provided in Appendix D.

3.1 Frequency Baseline
As a baseline for LCP, we fit a linear regres-
sion using log-frequency in TUBELEX to the trial
data. As shown in Table 4, the model performs
well in the Group-Group setting (0.41), on par
with the best 𝑅2 result for Japanese in the shared
task (0.413) obtained using a GPT-4-based model
(Enomoto et al., 2024).

If we, however, train and evaluate the same base-
line on individual data, the performance drops dras-
tically (0.13). This may be counter-intuitive, as we
are training and evaluating on the data annotated
by the same individual, but it shows that that the
strong correlation with log-frequency, and conse-
quently the good performance of the baseline on
group data, is mostly a result of individual idiosyn-
crasies being smoothed out by the group average.
For LCP, the personalized Individual-Individual
frequency baseline did not fare well. Results in
the other settings were even worse with mean 𝑅2

below zero.
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Test Group Individual
Train

Group 0.41 −0.10 (0.41)
Individual −0.06 (0.64) 0.13 (0.15)

Table 4: LCP results (𝑅2) using TUBELEX log-
frequency as a single feature.

Test Group Individual
Model Train

LCP-CWI Group 0.71 0.65 (0.05)
Individual 0.56 (0.18) 0.56 (0.11)

CWI Group 0.78 0.67 (0.06)
Individual 0.77 (0.02) 0.67 (0.04)

Table 5: CWI results (F1) using TUBELEX log-
frequency as a single feature.

For CWI, we fit a logistic regression model us-
ing the same single feature, and compare it with
the LCP model, evaluated as LCP-CWI. As in the
previous case, the results in Table 5 show that both
kinds of models perform worse in the Individual-
Individual setting than in the Group-Group setting,
although the difference is smaller in CWI. Sur-
prisingly, however, the CWI model in the Group-
Individual setting reaches almost the same F1
score as personalized Individual-Individual CWI
models. Additionally, the LCPmodel in the Group-
Individual setting is very competitive when eval-
uated as LCP-CWI (0.65), outperforming the per-
sonalized LCPmodel (0.56) and nearing the perfor-
mance of personalized CWI models (0.67). While
it is difficult to predict the exact complexity in LCP,
models trained on the group perform relativelywell
in the CWI task, even for individuals.

3.2 BERT-Based Model
The target population of MultiLS-Japanese is sim-
ilar to that of non-CK L1 data of the Japanese
Lexical Complexity for Non-Native Readers (JaLe-
CoN) dataset (Ide et al., 2023). We finetuned the
BERT model described by Ide et al. for CK and
non-CK data of the whole JaLeCoN dataset. To
adapt it to MultiLS-Japanese, we used its output
(predicted complexity) as a feature for linear and
logistic regression either alone or together with the
TUBELEX log-frequency. Appendix E provides
results of all variants.

The best results, shown in Tables 6 and 7,
were achieved by combining frequency with the
model finetuned on JaLeCon-non-CK. All settings
achieved only a marginal improvement over the fre-
quency baseline.

Test Group Individual
Train

Group 0.43 −0.08 (0.41)
Individual −0.04 (0.65) 0.15 (0.15)

Table 6: LCP results (𝑅2) using TUBELEX log-
frequency and output of the BERT model trained on
JaLeCoN-non-CK.

Test Group Individual
Model Train

LCP-CWI Group 0.72 0.66 (0.05)
Individual 0.57 (0.19) 0.57 (0.12)

CWI Group 0.79 0.67 (0.06)
Individual 0.77 (0.02) 0.67 (0.04)

Table 7: CWI results (F1) using TUBELEX log-
frequency and output of the BERT model trained on
JaLeCoN-non-CK.

4 Conclusion

We demonstrated that the MultiLS-Japanese
dataset is representative of its intended target
population by comparing its IAA and correlation
with an annotation replicated by a group with dif-
ferent demographics but fulfilling the conditions
of proficiency and not having a Chinese or Korean
L1 background.

Additionally, we demonstrated a clear difference
in complexity perception of Japanese words, based
on word origin, between this population and native
Chinese speakers of the same proficiency levels in
Japanese. To which extent this applies to native
Korean speakers is a question for future research.

We found that achieving good performance in
individual LCP is more difficult than in individual
CWI. In individual LCP, personalization resulted
in a small improvement over training on group data,
but in individual CWI, personalization and training
on group data performed similarly well.

The TUBELEX frequency baseline performed
on par with the GPT-4-based model that achieved
the best result in a recent shared task. Combin-
ing the frequency feature with a fine-tuned BERT
model resulted only in marginal improvements in
both the group and the individual setting.

In future work, we would like to investigate the
effect of larger training data paired with additional
features (e.g. register of a word) and the perfor-
mance of different methods of sampling training
data, such as uncertainty sampling.
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Lay Summary
To make text easier to understand using an auto-
mated system, it is necessary to identify difficult
words, which depends on the text’s reader. The au-
tomated systems, therefore, need to focus on a spe-
cific target population, such as non-native speakers,
or be personalized for the reader. The difficulty
of words is called “lexical complexity” and can be
rated on a scale.

The performance of systems for estimating lex-
ical complexity can be scored using specialized
datasets in which complexity is rated by people
from the target population. The systems for esti-
mating lexical complexity are usually scored based
on the average rating by a group from the target
population, not individuals. Additionally, some
of the best performing systems use large language
models such as GPT-4, which are costly to run.

Our study uses a dataset targeting highly profi-
cient non-native Japanese speakers, excluding na-
tive Chinese and Korean speakers, who would
have the advantage of knowing vocabulary shared
among the three languages. We explore the follow-
ing questions:
1. Is the dataset representative of the target pop-

ulation?
2. Can personalized systems improve estimates

over those for the group average?
3. How does a simple word-frequency-based

system compare to the costlier models?
By having the data rerated by two new groups,

we confirmed that the dataset represents the target
group well and that native Chinese speakers per-
ceive Japanese complexity differently.

We compared personalized systems and systems
based on the group average in terms of perfor-
mance for individuals in two scenarios: When es-
timating lexical complexity rated on a scale, per-
sonalized systems performed slightly better. When
we only classified the words as difficult or not dif-
ficult, the systems based on the group average and
the personalized ones performed similarly. Regard-
less of the system or the scenario, we found it much
more challenging to achieve good performance for
the individuals than for the group average, which
smooths out individual idiosyncrasies.

A simple frequency-based system using word
frequency in YouTube subtitles slightly outper-
formed a recent model based on GPT-4, which is
much more expensive to run.

In future work, we would like to investigate the
effect of larger training data paired with more com-
plex systems, which would consider other features
of the words, such as register (formal vs. informal).

Limitations
We focused on a specific target population of non-
native speakers defined by the exclusion of two
specific L1s and relatively high proficiency levels.
Even the simple personalization methods, which
did not perform particularly well in our setting,
may provide an advantage for a more diverse pop-
ulation, effectively providing adaptation to large
differences in proficiency. We also have not eval-
uated different methods of training data sampling
(e.g. uncertainty sampling in an active learning sce-
nario, which may improve performance while us-
ing the same size of training data). We only per-
formed objective metric-based evaluation of the
system’s performance. An additional human eval-
uation would also be desirable.
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A Comparison of Word Origins and Parts of Speech in the Test and Trial Sets

Test Trial

Word Origin Chinese 55.4% 50.0%
English 5.3% 10.0%

Part of Speech

Noun 45.6% 36.7%
Verb 27.5% 36.7%
Adjectival Noun 7.4% 3.3%
MWE 7.0% 6.7%
Adverb 6.0% 10.0%
Adjective 2.1% 3.3%
Particle 1.8% —
Pronoun 0.9% —
Conjunction 0.7% 3.3%
Suffix 0.5% —
Auxiliary 0.4% —
Prefix 0.2% —

Table 8: Comparison of the test set and trial set in terms of proportions of words containing tokens of Chinese
or English origin and parts of speech. The remaining target words are purely of indigenous Japanese origin. We
distinguish between adjectives (形容詞, so-called i-adjectives) and adjectival nouns (形容動詞 or 形状詞, na-
adjectives and to/taru-adjectives). The Particle category excludes conjunctive particles (接続助詞), which we
categorize as Auxiliaries together with auxiliary verbs (助動詞). MWE are multi-word expressions, typically noun-
verb phrases.

B Handling of Words Missing in Data Sources

Handling of Sequence of Tokens
Data Source Values Missing Values Formula for One Token or Character 𝑥 or Characters s

All Corpora Log-Frequency Laplace smoothing 𝑓 (𝑥) = log
(

count(𝑥) + 1
#tokens + #types

)
𝑓 (s) = min

𝑥∈s
𝑓 (𝑥)

JEV Levels 1–6 Dummy values 𝑓 (𝑥) =
{
level(𝑥) if 𝑥 ∈ JEV
7 otherwise 𝑓 (s) = max

𝑥∈s
𝑓 (𝑥)

WLSP-Familiarity 𝐹 ⊂ R Dummy values 𝑓 (𝑥) =
{
familiarity(𝑥) if 𝑥 ∈ WLSP
min(𝐹) otherwise 𝑓 (s) = min

𝑥∈s
𝑓 (𝑥)

Table 9: Handling of words (or characters) missing in data sources used for PCC computation in Table 3. For all
corpora, we use Laplace smoothing recommended by Brysbaert and Diependaele (2013) to provide log-frequency
values even for words missing in the corpora. To words missing in JEV, we assign the value corresponding to a level
beyond those present in the data. To words missing in WLSP-Familiarity, we assign the minimum familiarity level
present in the data. To sequences consisting of multiple tokens or characters, we assign the minimum or maximum
value assigned to the individual items as appropriate.
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C Difference of Complexity Perception by Annotators’ L1 and Word Origin
C.1 Original Annotation and Chinese L1 Reannnotation

TUBELEX Complexity
Target Word Word Origin log10 Frequency Original Chinese L1 Difference ↓−+
掲載した Chinese −4.744 0.400 0.100 −0.300
恩を売り Ch. + Ja. −5.166 0.700 0.450 −0.250
標題 Chinese −7.173 0.375 0.125 −0.250
考慮した Chinese −4.815 0.400 0.175 −0.225
強盗被害 Chinese −5.554 0.400 0.225 −0.175
各種の Chinese −4.978 0.200 0.025 −0.175
気にかけない Ch. + Ja. −3.588 0.475 0.300 −0.175
書き添えられて Japanese −6.817 0.600 0.450 −0.150
長大な Chinese −6.317 0.475 0.325 −0.150
随所 Chinese −5.857 0.725 0.600 −0.125
応用した Chinese −4.935 0.225 0.125 −0.100
旧 Chinese −4.613 0.150 0.075 −0.075
市電 Chinese −6.232 0.475 0.400 −0.075
募集し Chinese −4.664 0.100 0.050 −0.050
諫める Japanese −7.068 0.775 0.775 0.000
変更されて Chinese −4.105 0.100 0.100 0.000
または Japanese −2.939 0.075 0.075 0.000
戦闘曲 Chinese −4.224 0.425 0.425 0.000
ロック English −4.245 0.025 0.050 +0.025
はじめ Japanese −4.239 0.025 0.075 +0.050
繰り返し Japanese −4.232 0.200 0.275 +0.075
小物 Japanese −5.112 0.225 0.325 +0.100
馴染み深かった Japanese −7.913 0.500 0.600 +0.100
再び Japanese −4.462 0.075 0.175 +0.100
連れ戻す Japanese −6.602 0.300 0.400 +0.100
ピックアップして English −4.977 0.050 0.175 +0.125
直ちに Japanese −5.383 0.275 0.400 +0.125
なおかつ Japanese −5.103 0.500 0.700 +0.200
キレさせる Japanese −5.205 0.375 0.625 +0.250
コーナー English −4.325 0.100 0.400 +0.300

Table 10: Target words in the trial set of MultiLS-Japanese; their word origin; log-frequency; mean complexity
annotated by the original annotators, whose L1 was neither Chinese or Korean, and the Chinese L1 annotators;
difference between the former and the latter. The table is sorted by the complexity difference to highlight the overlap
between words of Chinese origin and words perceived as less complex by the Chinese L1 annotators compared to
the original annotators. “Ch. + Ja.” denotes expressions mixing content words of Chinese and Japanese origin. We
ignore the origin of common functional words such as particles and light verbs.
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Figure 3: Mean complexity of target words in the the trial set of MultiLS-Japanese and in the Chinese L1 reanno-
tation, plotted against log-frequency. Lines show linear fit with 95% confidence interval as a shaded area.
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C.2 Original Annotation and Replication

TUBELEX Complexity
Target Word Word Origin log10 Frequency Original Replication Difference ↓−+
長大な Chinese −6.317 0.475 0.300 −0.175
繰り返し Japanese −4.232 0.200 0.050 −0.150
気にかけない Ch. + Ja. −3.588 0.475 0.375 −0.100
考慮した Chinese −4.815 0.400 0.325 −0.075
市電 Chinese −6.232 0.475 0.400 −0.075
変更されて Chinese −4.105 0.100 0.050 −0.050
各種の Chinese −4.978 0.200 0.150 −0.050
再び Japanese −4.462 0.075 0.025 −0.050
書き添えられて Japanese −6.817 0.600 0.550 −0.050
随所 Chinese −5.857 0.725 0.700 −0.025
または Japanese −2.939 0.075 0.050 −0.025
はじめ Japanese −4.239 0.025 0.000 −0.025
恩を売り Ch. + Ja. −5.166 0.700 0.700 0.000
連れ戻す Japanese −6.602 0.300 0.325 +0.025
ピックアップして English −4.977 0.050 0.075 +0.025
強盗被害 Chinese −5.554 0.400 0.425 +0.025
直ちに Japanese −5.383 0.275 0.300 +0.025
小物 Japanese −5.112 0.225 0.275 +0.050
旧 Chinese −4.613 0.150 0.200 +0.050
馴染み深かった Japanese −7.913 0.500 0.550 +0.050
掲載した Chinese −4.744 0.400 0.475 +0.075
諫める Japanese −7.068 0.775 0.850 +0.075
応用した Chinese −4.935 0.225 0.325 +0.100
コーナー English −4.325 0.100 0.225 +0.125
標題 Chinese −7.173 0.375 0.525 +0.150
なおかつ Japanese −5.103 0.500 0.700 +0.200
戦闘曲 Chinese −4.224 0.425 0.625 +0.200
募集し Chinese −4.664 0.100 0.325 +0.225
ロック English −4.245 0.025 0.275 +0.250
キレさせる Japanese −5.205 0.375 0.725 +0.350

Table 11: Target words in the trial set of MultiLS-Japanese; their word origin; log-frequency; mean complexity
annotated by the original annotators, and the replication annotators; difference between the mean complexities
perceived by the two groups. Neither annotator group contained native Chinese or Korean speakers, hence compared
to Table 10, there is not any clear tendency for words of Chinese origin.
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Figure 4: Mean complexity of target words in the the trial set of MultiLS-Japanese and in the replication. Lines
show linear fit with 95% confidence interval as a shaded area.
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D Model Details

Task Model Description Implementation Postprocessing

LCP Linear regression with L2
regularization (𝛼 = 1)

Ridge() Clip values to the valid
range [0, 1].

CWI Logistic regression with
balanced class weights

LogisticRegression(
class_weight=’balanced’)

—

Table 12: Details of the models used for experiments in Section 3, implemented using the scikit-learn Python
package, namely classes from sklearn.linear_model. For baselines, the only feature is log-frequency in
TUBELEX (see Appendix B). For the BERT-based models, the features are (1) output of the finetuned BERT
model and optionally (2) log-frequency in TUBELEX. The BERT models are exactly as described by Ide et al.
(2023), except that we finetuned them for CK and non-CK complexity of the whole JaLeCoN dataset (not using any
train-test split of the data).

E Results of the BERT-based Model Variants

Test Group Individual
Train

Group 0.14 −0.24 (0.40)
Individual −0.30 (0.62) −0.01 (0.13)

Table 13: LCP results (𝑅2) using output of the BERT model trained on JaLeCoN-non-CK.

Test Group Individual
Model Train

LCP-CWI Group 0.47 0.47 (0.09)
Individual 0.46 (0.17) 0.47 (0.12)

CWI Group 0.73 0.63 (0.06)
Individual 0.73 (0.01) 0.64 (0.06)

Table 14: CWI results (F1) using output of the BERT model trained on JaLeCoN-non-CK.
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Test Group Individual
Train

Group 0.41 −0.10 (0.41)
Individual −0.06 (0.64) 0.13 (0.15)

Table 15: LCP results (𝑅2) using TUBELEX log-frequency and output of the BERT model trained on JaLeCoN-
CK.

Test Group Individual
Model Train

LCP-CWI Group 0.71 0.65 (0.05)
Individual 0.56 (0.18) 0.56 (0.11)

CWI Group 0.78 0.67 (0.06)
Individual 0.77 (0.01) 0.67 (0.04)

Table 16: CWI results (F1) using TUBELEX log-frequency and output of the BERT model trained on JaLeCoN-
CK.

Test Group Individual
Train

Group 0.00 −0.32 (0.39)
Individual −0.43 (0.58) −0.09 (0.13)

Table 17: LCP results (𝑅2) using output of the BERT model trained on JaLeCoN-CK.

Test Group Individual
Model Train

LCP-CWI Group 0.34 0.35 (0.08)
Individual 0.34 (0.01) 0.37 (0.07)

CWI Group 0.62 0.59 (0.06)
Individual 0.62 (0.01) 0.59 (0.07)

Table 18: CWI results (F1) using output of the BERT model trained on JaLeCoN-CK.
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