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Abstract

Large language models are increasingly de-
ployed for high-stakes decision making, for
example in financial and medical applications.
In such applications, it is imperative that we
be able to estimate our confidence in the an-
swers output by a language model in order to
assess risks. Although we can easily compute
the probability assigned by a language model
to the sequence of tokens that make up an an-
swer, we cannot easily compute the probability
of the answer itself, which could be phrased
in numerous ways. While other works have
engineered ways of assigning such probabili-
ties to LLM outputs, a key problem remains:
existing language models are poorly calibrated,
often confident when they are wrong or unsure
when they are correct. In this work, we de-
vise a protocol called calibration tuning for
finetuning LLMs to output calibrated probabili-
ties. Calibration-tuned models demonstrate su-
perior calibration performance compared to ex-
isting language models on a variety of question-
answering tasks, including open-ended gener-
ation, without affecting accuracy. We further
show that this ability transfers to new domains
outside of the calibration-tuning train set.

1 Introduction

Whereas early successes of large language mod-
els (LLMs) highlighted their fluency and vast
knowledge (Radford et al., 2019), they still lack
many necessary capabilities, particularly as they
are used and interpreted by a general audience. One
such desiderata of LLMs is the ability to answer
factually-based questions with factually correct an-
swers. Further, it is desirable that LLMs be able
to respond with a well-calibrated confidence, cor-
responding to a probability of correctness, when
responding to such fact-based questions.

Autoregressive language models (Touvron et al.,
2023b; OpenAI, 2023) allow us to compute the
probability of a particular sequence of tokens they
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Figure 1: We propose calibration tuning (see Section 4)
as a method for deriving calibrated uncertainty esti-
mates from language models on question answering
tasks (multiple choice or open-ended). Uncertainty esti-
mates come from prompting the language model for its
correctness and fine-tuning directly on this task. Our ap-
proach outperforms common baselines, including tem-
perature scaling and probing methods (see Section 5).

output by utilising the chain rule of probability
to multiply the conditional probabilities of each
generated token. For example, a model performing
medical diagnosis may output "This patient
experienced numbness on one side
of the body and degraded vision,
so they likely suffered a stroke"
with associated probability 0.2%; however, there
are innumerable ways to phrase this diagnosis,
and we need to add up all their corresponding
probabilities to measure the concept-level proba-
bility of the stroke diagnosis. This calculation is
infeasible since there are simply too many such
sequences. Thus, the token-level probabilities
of existing language models do not allow for
useful confidences for open-ended generation,
limiting their value for decision making beyond
multiple-choice scenarios.

While a number of works propose methods
for extracting probabilities from language models,
many of these methods are inapplicable to open-
ended generation (Jiang et al., 2020; Zhao et al.,
2021) or are prohibitively expensive to compute
(Kuhn et al., 2023). Moreover, existing language
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models are simply miscalibrated (Chen et al., 2022;
Zhang et al., 2023).

In this work, we propose an instruction tuning-
inspired method for LLMs to output well-calibrated
concept-level uncertainty estimates which are use-
ful for both multiple-choice question answering
and open-ended generation alike.

Our method, calibration tuning, produces supe-
rior calibration to existing approaches across ques-
tion answering tasks, including out-of-distribution
tasks. While we perform calibration tuning on
questions phrased as multiple-choice with known
answers, we show that our method generalizes to
open-ended evaluations too. Calibration tuning is
easy to implement, cheap to deploy for inference,
and does not impact model performance.

2 Related Work

Calibration. A model is well-calibrated when an
outcome predicted with probability p does occur
p fraction of the time in reality. This alignment
between predictions and reality is measured using
the expected calibration error (ECE) via empirical
binning (Naeini et al., 2015), such that an ECE of
0 corresponds to perfect calibration, i.e. a model
knows when its wrong. Having well-calibrated
probabilities is crucial for effective downstream
decision-making.

Guo et al. (2017) reignited the discussion of cali-
bration for neural network classifiers by demon-
strating that many modern neural networks are
poorly calibrated, and post-hoc temperature scaling
is an effective method for calibration of pretrained
models. Subsequent literature, however, shows that
calibration can be directly improved at train time
via improved learning objectives (Minderer et al.,
2021; Mukhoti et al., 2020; Müller et al., 2019;
Tran et al., 2022). In similar spirit, our work shows
that well-calibrated large language models (LLMs)
are indeed possible by careful modification of the
language modeling objective during fine-tuning.

Calibration in LLMs. Defining calibration for
language models is challenging, especially for vari-
able length response sequences. In one instance,
Braverman et al. (2019) define calibration in terms
of the entropy of distribution of fixed-length se-
quences. Under this definition, the entropy rates
of generation dramatically drift upwards as the se-
quence lengths increase, hinting severe miscalibra-
tion of language models. Our framework, building

on ECE, allows for a general definition of calibra-
tion of language models that is broadly applicable.

Contrary to prior observations, Chen et al. (2022)
suggest that language models do not necessarily
learn to become better calibrated by pretraining
longer. Following this observation, we show that
a carefully devised fine-tuning objective can sig-
nificantly improve calibration of large language
models.

For auto-regressive LLM generation, Jiang et al.
(2020) provide an early investigation (e.g. T5 (Raf-
fel et al., 2019), BART (Lewis et al., 2019), GPT-2
(Radford et al., 2019)) and report very poor out-of-
the-box calibration for question-answering tasks.
Such miscalibration is then shown to improve via
logit temperature scaling. This approach, however,
is limited by the requirement of candidate answers
at both train and test time. Calibration tuning in-
stead does not rely on a pre-existing set of candi-
date answers.

Calibration tuning is most closely inspired by
Kadavath et al. (2022), that shows evidence that
LLMs can in fact be well-calibrated for question-
answering tasks when the answers are provided as
choices, or true/false statements. Yin et al. (2023)
take a step back to evaluate an LLMs ability to
identify whether a question is answerable or not.
Their focus, however, remains on evaluating self-
knowledge. The uncertainty of an answer is evalu-
ated via representational similarity to a set of refer-
ence sentences that encompass uncertain meanings,
a restriction that limits broader applicability. Cali-
bration tuning on the other hand only requires a sub-
set of existing training data for instruction-tuning,
without needing a reference set, while providing a
framework to directly improve calibration.

An alternative class of approaches to estimate
confidence rely on linguistic features — Kuhn et al.
(2023) propose semantic uncertainty which clusters
generated sequences via bi-directional entailment
to account for semantic similarity among multiple
candidate answer sequences. Verbal elicitation ap-
proaches ask the model to express its confidence
in words (Lin et al., 2022). Zhou et al. (2023) in-
vestigate the impact of linguistic features such as
hedges or epistemic markers on natural language
generation.1 Such approaches, however, remain
out of scope for our work since we aim to modify
existing models to improve calibration rather than

1See Xiong et al. (2023) for a detailed recent survey on
methods for verbal elicitation.
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extract better expressions of uncertainty.
In summary, we emphasize that calibration tun-

ing (1) provides a broadly applicable definition
of calibration for variable-length language gener-
ation, (2) builds on prior literature that suggests
fine-tuning is necessary for improving calibration,
(3) does not require additional data beyond the
instruction-tuning dataset(s), and (4) prescribes a
carefully constructed instruction-tuning loss that
helps improve calibration.

3 Background

Autoregressive Language Models. LLMs per-
form next-token prediction over sequences. The
model parameters, θ, are trained with cross-entropy
loss, and parameterize a conditional distribution

pθ(wt+1|w0:t), (1)

where the prompt w0:t, is the input tokens, and
wt+1 is the next token. In this paper we consider us-
ing LLMs for question answering, which involves
the following inputs

• P : the text prompt used to contextualize the
question.

• Q: the question, in text.

• A: the ground-truth answer in text.

• Â: the language model’s answer.

LLM Prompting. LLM generations can be
guided by modifying the prompt text that precedes
sampled tokens. In question answering tasks, care-
ful prompting (often called "prompt engineering")
can be essential for eliciting good performance.
A simple form of prompting is providing the lan-
guage model with examples from a particular task -
this is referred to as ‘few-shot’ prompting (Brown
et al., 2020). In multiple-choice question answer-
ing, for example, it is common practice to provide
the model with multiple question-answer pairs be-
fore generating a final answer to a question (Brown
et al., 2020). We show this prompting strategy in
Figure 2.

LLM Finetuning. From an engineering perspec-
tive, prompting is simple and lightweight, as it
does not require updating model parameters, but
can often be limited in its effectiveness. As a re-
sult, many finetuning procedures have also been
developed to make LLMs useful for downstream
tasks. For example, instruction tuning (Wei et al.,

2021) can be used to improve the controllability of
a model, or DPO (Rafailov et al., 2023) can be used
to align a language model with human preferences.
Although prompt-tuning was initially favored be-
cause the most powerful models were intractably
large or blocked behind APIs, rapid improvements
in open source availability, base model sizes, and
finetuning procedures (e.g. LoRA with quantized
base weights) have made finetuning practical on a
more limited compute budget. In our work, we take
advantage of these advances to improve the over-
all calibration of LLMs with a simple finetuning
procedure.

Expected Calibration Error (ECE). A model’s
uncertainties are well calibrated if they align with
the empirical probabilities–i.e. an event assigned
probability p occurs at rate p in reality. Following
(Naeini et al., 2015), we estimate ECE by binning
the maximum output probability of each of n sam-
ples into b equally-spaced bins B = {Bj}bj=1 w.r.t.
the prediction confidence estimated for each sam-
ple. The empirical ECE estimator is given by,

ÊCE =
b∑

j=1

|Bj |
n

|conf(Bj)− acc(Bj)| , (2)

where conf(Bj) is the average confidence of sam-
ples in bin Bj and acc(Bj) is the corresponding
accuracy within the bin. As is typical in literature,
we use b = 10 bins. An ECE of 0 corresponds
to a perfectly calibrated model, i.e. in each bin,
the predicted confidence perfectly aligns with the
proportion of the correct predictions of the model.

We now describe calibration tuning in detail.

4 Calibration Tuning

To perform calibration tuning (CT), we need
ground truth question-answer pairs (Q,A), the lan-
guage model’s generation of the answer, Â, the
language model’s assessment of the correctness of
its generated answer, Ĉ, and whether the answer
actually is correct, C. In multiple choice question
answering, it easy to ascertain whether Â is the
same as A with exact string matching; C = True
if and only if A = Â. In open-ended question
answering, we use an auxiliary grading prompt to
assign C since the phrasings of A and Â could be
different but semantically the same.

The goal of calibration tuning is to construct an
estimate for p(C = True) and have that estimate
be well calibrated. To obtain this estimate, we
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Few-shot prompt (P ) Uncertainty query (U) Grading

Question: Which of the following
represents an accurate statement
concerning arthropods?
Answer: They possess an open
circulatory system with a dorsal
heart.

...

Question: Which of the following
contain DNA sequences required
for the segregation of chromo-
somes in mitosis and meiosis?
Answer: Centromeres

Question: Q
Answer: Â </s>

P

Question: Q
Answer: Â

Is the proposed answer
correct?
(i) no
(ii) yes

Answer: Ĉ </s>

For Multiple choice:
C = True iff A = Â

For Open-ended: Grading prompt (G)
The problem is: Q
The correct answer for this problem is: A
A student submitted the answer: Â
The student’s answer must be correct and spe-
cific but not overcomplete (for example, if
they provide two different answers, they did
not get the question right). However, small
differences in formatting should not be penal-
ized (for example, ‘New York City’ is equiv-
alent to ‘NYC’). Did the student provide an
equivalent answer to the ground truth? Please
answer yes or no without any explanation: C
</s>

Figure 2: For calibration tuning, we use the few-show prompt and uncertainty query to yield the generated answer Â
and the correctness estimate Ĉ. For multiple choice question answering, we grade the answer with an exact-match
to the ground truth choice. For open-ended, we use a grading prompt. The token </s> refers to the end of sentence
token. Blue text is included in the loss function.

follow Kadavath et al. (2022) and use the language
model itself, in tandem with an uncertainty query U
(shown in Figure 2). The language model predicts
Ĉ conditioned on the concatenation [P,Q, Â, U ].
The loss for each answered question (Q,A, Â, C)
in the dataset is therefore

L̃CT (θ) = − log pθ(Ĉ = C | [P,Q, Â, U ]) (3)

In order to make predicting Ĉ easy for a lan-
guage model, we pose the problem as a multiple-
choice response with two values. As shown in
Figure 2, the uncertainty query U is restricted to
answer with only two possible target tokens "i"
and "ii". While we can potentially retain the full
vocabulary to compute the language modeling loss
for calibration-tuning, restricting to only two to-
kens prevents logit mass from spreading over to-
kens which are unrelated to the uncertainty query.
Therefore, L̃CT (θ) in Eq. (3) is simply a language
modeling loss normalized over the restricted set of
tokens.

However, modifying the existing model can
lead to a drift in the generation distribution of
the underlying language model whose uncer-
tainty calibration properties we are trying to
improve. To counter such a drift, we regularize the
training by matching the generation distribution

with a divergence-based regularization term.
Specifically, let pθ0 be the language modeling
distribution in Eq. (1) of the language model
we wish to calibration-tune, and qθ be the cor-
responding language modeling distribution as a
consequence of calibration-tuning. We then use
the Jenson-Shannon Divergence JSD(pθ0 ∥ qθ)
(MacKay, 2004) between the two language
modeling distributions as the regularizer, where
JSD(p ∥ q) ≜ 1/2(KL(p ∥ m) + KL(q ∥ m)),
where m ≜ 1/2(p+ q) is the mixture distribution.
JSD regularization is applied only to the logits
corresponding to the target sequence A. Denoting
the JSD regularization term by RCT(θ; θ0), and
weighting with a parameter κ for flexibility, the
final regularized loss for calibration-tuning is,

LCT(θ;κ, θ0) = L̃CT(θ) + κ · RCT(θ; θ0) (4)

4.1 Evaluating Correctness (C)

As stated above, for a given question with known
and generated answers (Q,A, Â) the correctness
C is True if the generated answer Â matches
the ground truth answer A. For multiple-choice
question-answering, the matching process only in-
volves checking the first token generated via greedy
decoding.

For open-ended evaluations, determining if the
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answer given is correct is more complex. One
simple approach is to check if the ground truth
answer A appears as a substring of answer Â.
However, this does not capture rephrasings that
may be essentially equivalent - such as "NYC"
for "New York City," or "Daoism" and "Taoism."
Conversely, it also has the potential to be over-
generous if the model is particularly verbose and
emits many incorrect answers along with the cor-
rect string. Given the difficulty involved in writing
a rule-based method for evaluating open-ended an-
swer correctness, we use instead a strong auxiliary
language model to evaluate correctness. The aux-
iliary language model is shown the query Q, the
ground truth answer A, and the model’s output Â,
and is prompted to grade the answer whilst toler-
ating nuance. For full details of the prompt used
see (Figure 2). In this paper we utilise GPT 3.5
Turbo as the auxiliary grading model. We conduct
a comparison of human grading, substring grading,
and GPT 3.5 Turbo grading on select subsets of
MMLU in Appendix C. We find that humans and
GPT 3.5 Turbo have much greater agreement than
humans and the substring method.

4.2 Measuring Calibration

Because we frame correctness as a classification
problem, i.e. predicting Ĉ, we now have the abil-
ity to assign sequences of variable length a single
probability value for its correctness, instead of as-
signing a probability based on the logits of the
primary generation Â. Consequently, we can easily
compute the ECE using the normalized probabil-
ity of the token ii (corresponding to choosing the
yes option) to compute each conf(Bb) in Eq. (2).

5 Experiments

We now test the effectiveness of calibration tuning
(CT) via empirical evaluations.

Models. All our experiments are conducted with
decoder-only LLaMA-2 models (Touvron et al.,
2023a,b). To make training feasible, we rely on 8-
bit quantization of the base models (Dettmers et al.,
2022), and use Low-Rank Adapters (LoRA) (Hu
et al., 2021) as the only trainable parameters. Note
that the usage of 8-bit quantization and LoRA are
merely engineering considerations, and the calibra-
tion tuning framework remains applicable indepen-
dently. We use HuggingFace Transformers (Wolf
et al., 2020) and PyTorch (Paszke et al., 2019) for
the implementation of these models.

Training Datasets. To allow our models to
reach reasonable performance for subsequent anal-
ysis, we fine-tune on a large collection of com-
monly used datasets from literature (full list in
Appendix A.2). All datasets are formatted as
question-answers with the prompt containing mul-
tiple choices.

Training. Following the prescription of FLAN
(Wei et al., 2021; Chung et al., 2022), we use a
diverse combination of the training datasets men-
tioned above, and follow standard instruction tun-
ing framework. For all our experiments, we use the
AdamW optimizer (Loshchilov and Hutter, 2017)
with a learning rate of 10−4, a cosine decay sched-
ule, and effective batch size M = 32. The training
runs for G = 10000 with an initial linear warmup
schedule for 1000 steps. For LoRA (Hu et al.,
2021), we keep the default hyperparameters – rank
r = 8, α = 32, and dropout probability 0.1. For
calibration-tuning, we use κ = 1. Each training
run takes approximately 4 GPU days with NVIDIA
V100 (32GB).

Evaluation Datasets. For all our evaluations, we
use the Massive Multitask Language Understand-
ing (MMLU) (Hendrycks et al., 2020) benchmark.
MMLU is a suite of tasks that covers 57 subjects
including STEM, humanities, and social sciences,
providing a diverse test bed for generalization. Sim-
ilar to training, we provide options in the prompt
for the case of multiple-choice question-answering
tasks. For the case of open-ended answer genera-
tion, we do not provide options in the prompt. As
typical in literature, we report results with 5-shot
prompting.

5.1 Base Instruction Tuning
Before calibration tuning, we construct instruction-
tuned models that are able to generalize well on the
MMLU benchmark in terms of accuracy.

We report the average accuracy over all 57 tasks
of MMLU in Table 1. In addition, we also com-
pute the LOGITS ECE, which corresponds to the
evaluation of ECE in Eq. (2), where the confidence
is estimated directly from the logits of the target
token prediction. These numbers help us establish
a baseline without the calibration-tuning interven-
tion.

Note that our purpose here is not to achieve
the state-of-the-art on MMLU, but only serve as
a proxy for a reasonable instruction-tuned model
that one might want to improve the calibration of.
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Table 1: Instruction tuning (IT) on LLaMA-2 7b. BASE
refers to the pretrained LLaMA-2 7b weights (Touvron
et al., 2023b).

MODEL ACC. ↑ LOGITS ECE

BASE 31.4% 13.8%

IT 49.3% 22.7%

Further, while the base model’s LOGITS ECE may
appear significantly better, the accuracy is signif-
icantly worse and the ECEs are therefore not di-
rectly comparable.

An important detail, that we expand later in Sec-
tion 5.2 is the choice of training data distribution
— we only instruction-tune on a subset of all the
training datasets. The remainder of the datasets are
used for calibration tuning.

5.2 Calibration Tuning
Building on top of the instruction-tuned (IT)
model as summarized in Algorithm 1, we now
apply calibration-tuning, while starting with the
instruction-tuning checkpoint.

In Section 5.2, we report the query accuracy
UQ ACC. which corresponds to the accuracy of
the uncertainty query prompt from Figure 2. All
subsequent usage of the term ECE corresponds to
confidences estimated from the uncertainty query
prompt as described in Section 4.2.

MODEL QUERY ACC. ↑ ECE ↓
IT 53.0% 15.3%

CT 64.0% 12.1%

Notably, the uncertainty query prompt combined
with our computation of the ECE already provides
a strong improvement over the LOGITS ECE com-
putation in Table 1. Nevertheless, we are further
able to significantly improve the calibration of our
instruction-tuned model. Therefore, calibration-
tuning acts as a more effective uncertainty estima-
tor. In Figure 6, we show a comparison of the ECE
(c.f. Section 4.2) between both IT and CT among
all the tasks of MMLU.

Before we compare calibration-tuning to base-
lines, we highlight two important design considera-
tions when using calibration-tuning:

Choice of Data Distribution. We find that cal-
ibration tuning is marginally less effective when
trained on the same data distribution as the un-
derlying instruction-tuned model we are trying to

improve the calibration of. In Table 2, we show
that while the query accuracy is similar, using the
same data distribution can lead to a degraded ECE.

Table 2: Calibration Tuning with the same data distri-
bution (DATA DIST.) leads to marginally worse calibra-
tion.

DATA DIST. QUERY ACC. ↑ ECE ↓
DIFFERENT 64.0% 12.1%
SAME 64.2% 13.2%

Restricting the amount of data we instruction-
tune on can be marginally detrimental to accuracy,
we next show that

Choice of Uncertainty Query Evaluation Model.
By design, calibration-tuning modifies the same
set of parameters as the starting model parameters,
while using JSD regularization to keep the output
distribution of the calibration-tuned model Qθ sim-
ilar to the starting model Pθ0 . As a consequence,
the uncertainty estimator built via the uncertainty
query is most effective for similar generating dis-
tributions as Pθ0 . To exploit this fact, we continue
using our instruction-tuned model to generate the
answers, while the uncertainty estimation is done
by the calibration-tuned model. In Table 3, when
the calibration-tuned model is used for both answer
generation and uncertainty estimation, we denote
it by SAME. If the calibration-tuned model only
computes uncertainty, we denote it by DIFFERENT.

Table 3: When using CT, using the same model for gen-
eration and uncertainty estimation leads to a degraded
ECE.

QUERY MODEL ACC. QUERY ACC. ↑ ECE ↓
DIFFERENT 49.3% 64.0% 12.1%
SAME 47.0% 64.2% 13.6%

We find that while the query accuracy (QUERY

ACC.) remains similar, there is a drop in the cali-
bration (ECE) indicating a drop in the performance
of the uncertainty estimator. Subsequently, unless
otherwise specified, we do not use SAME query
model for evaluations.

Using a different model for uncertainty esti-
mation increases the computational requirements.
However, since we rely on LoRA (Hu et al., 2021)
in practice, we incur only a marginal additional
cost compared to using a single model.

We now discuss and compare against baselines
that directly attempt to improve the calibration of
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LLMs. A summary of numerical comparisons is
provided in Table 4.

5.3 Multiple-Choice Question Answering
We now compare with existing baselines in liter-
ature. Each of the following methods presented
in Table 4 either directly aim to improve calibra-
tion in LLMs or can be used towards estimating
calibration. Unless otherwise noted, confidence of
predictions for computation of calibration is done
directly from the answer logits.

Table 4: Comparison with baselines on instruction-
tuned LLaMA-2 7b (Touvron et al., 2023b) as discussed
in Section 5.3, for multiple-choice question-answering
tasks.

METHOD ECE ↓
CS (JIANG ET AL., 2020) 22.8%
LTS (JIANG ET AL., 2020) 31.0%
LTS-MMLU (JIANG ET AL., 2020) 12.5%
CTX-C (ZHAO ET AL., 2021) 29.9%
CC (AZARIA AND MITCHELL, 2023) 20.3%
IT (WEI ET AL., 2021) 15.3%
CT (OURS) 12.1%

Candidate Answer Softmax Score (CS). As in
Jiang et al. (2020), among a set of candidate tar-
gets T , we pick the highest probability sequence
[S, T ] for all T ∈ T . Unlike calibration-tuning
which estimates the uncertainty in a single forward
pass, this approach requires |T | number of forward
passes. In addition, requiring a set of candidate
targets makes such an approach less broadly appli-
cable.

Logit Temperature Scaling (LTS). (Jiang et al.,
2020) Using a calibration dataset, we continue
instruction-tuning, except only optimizing a single
temperature parameter to scale the logits. Using
the train set of MMLU for calibration (denoted
by LTS-MMLU in Table 4) does indeed prove
effective in improving calibration when tested on
MMLU. However, when using the held out datasets
from our training distribution, a setup closer to real
world applications, we find that temperature scaling
significantly deteriorates calibration of the model,
unlike calibration tuning. This observation is in
line with prior work where temperature scaling is
not robust to distribution shifts between the calibra-
tion set and the test set.

Contextual Calibration (CTX-C). (Zhao et al.,
2021) This approach is a generalization of Platt

scaling (Platt, 1999) for text inputs, where the
scaling parameters are input-dependent. By first
replacing an input sequence S, with a context-
free input Sϕ (e.g. the string "N/A"), we find
the logit transform such that the target probabil-
ities are uniform (e.g. logits are all zero). Subse-
quently, the same logit transform is applied to the
original context. We construct an ensemble from
E = 3 such context-free inputs to mitigate sen-
sitivity to context-free inputs. Unlike single-shot
estimation with calibration-tuning, this approach
requires E + 1 forward passes for uncertainty es-
timation. Such an approach requires prompt engi-
neering to be effective, which is less desirable.

Correctness Classifier (CC). Azaria and
Mitchell (2023) use the last-layer features from
a held-out set of sequences to train a linear
classifier that predicts correctness probabilities,
p(Ĉ = True), which are then used to compute
ECE. We find that finetuning the existing model
is more effective for calibration than training
an auxiliary model on top of frozen features,
leading to better calibration in terms of ECE in
our large-scale evaluation. These results suggest
that calibration tuning might generalize more
effectively than an auxiliary correctness classifier.

Instruction Tuning (IT). Finally, we also com-
pare calibration tuning to vanilla instruction-tuning,
while evaluating with the uncertainty query prompt
as in Figure 2. In Figure 3(a), we show the distri-
bution of the relative improvement that calibration
tuning achieves over uncertainty tuning in the case
of multiple-choice question answering. We see that
a bulk of the mass lies to the positive side, indi-
cating improvements across a broad set of MMLU
tasks.

5.4 Open-Ended Generation

We additionally test the ability of calibration-tuning
on open-ended generation. Notably, we do not
explicitly tune the model on open-ended genera-
tions but apply the same calibration-tuning pro-
cedure on LLaMA-2 13b-chat model (Touvron
et al., 2023b) only using multiple-choice question-
answering. We perform this task to quantify how
well multiple-choice calibration-tuning impacts
open-ended performance, given that open-ended
is the more widely used application. In future
work, we plan to expand to open-ended calibration-
tuning.
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Figure 3: We plot the relative performance of calibration tuning (CT) w.r.t. instruction tuning (IT) in terms of
calibration as measured by ECE over all 57 MMLU tasks. A positive relative performance indicates improved
(lower) ECE. Noticeably, a bulk of the mass lies to the positive half for both (a) multiple choice question answering
and (b) open-ended answer generation, indicating that calibration tuning does generalize effectively. See Appendix B
for a precise breakdown comparison of uncertainty query accuracies and ECEs across all tasks.

In Figure 2, we provide an example of the
prompt used by GPT 3.5 Turbo for grading the
(semantic) similarity between the ground truth an-
swer A and model’s generated answer Â.

Surprisingly, calibration-tuning on MCQ QA
also improves calibration for open-ended gener-
ation without having been explicitly trained for this
format. In Figure 3 we visualize the relative calibra-
tion improvement over instruction tuning across the
MMLU benchmark suite, showing an improvement
over all but one of the 57 tasks.

We highlight a small caveat. For some MMLU
tasks, the query accuracy in Figure 7 remains low,
i.e. the calibration-tuned model still lacks a good
understanding of what topics it does not know.
Combined with conservative probability estimates
as a consequence of calibration tuning, we end up
with better calibration. For such tasks, any cali-
bration improvements are less significant, and we
hope in future work to address this with calibration-
tuning on open-ended answer generation.

6 Discussion

We have setup calibration tuning as a general pur-
pose method that relies on existing training data
to improve the calibration of LLMs. By using an
uncertainty query prompt, we are able to provide
a definition of calibration for LLMs that is appli-
cable in broad contexts. For question-answering
tasks, we show that calibration tuning is able to
generalize out-of-distribution to the MMLU tasks
when evaluated with LLaMA-2 7b. Surprisingly,
calibration tuning with multiple-choice question-
answering also improves the calibration of the base

LLaMA-2 13b-chat model for open-ended answer
generation.

Future Work. Calibration tuning sets us up for
exciting broader scoped future work. While we
have shown that calibration tuning on question-
answering provides an improved calibration even
for open-ended generation, we can improve fur-
ther by explicitly instruction-tuning our models on
open-ended generations. Such tuning will allows
us to break away from biases specific to multiple-
choice question answering.

RLHF (Ouyang et al., 2022) is now a standard
tool to align language generations with human pref-
erences. Prior work (Kadavath et al., 2022) hints
that RLHF models may suffer from degraded cali-
bration, and provides us an exciting opportunity to
use a general-purpose method that improves cali-
bration of such models too.

Limitations. A key ingredient of calibration tun-
ing is the uncertainty query. While we currently
only use one format for the prompt (Section 4.2), it
is likely that better prompt engineering allows us to
significantly improve model’s calibration. Further,
despite calibration tuning, we do not necessarily
expect the language model to follow the rules of
probability across the space of semantically cor-
rect answers. We hypothesize that the model can
be nudged towards such characteristics by biasing
the loss, such as an unsupervised consistency loss
(Burns et al., 2022).

Overall, calibration tuning remains a promising
framework to develop further.
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A Method

A.1 Algorithm

The complete general framework for calibration tuning (CT) is summarized in Algorithm 1.

Algorithm 1: Calibration-Tuning (CT)
Input :Dataset U , Batch size M , Number of gradient steps G, Regularization weight κ

1 repeat
2 Sample minibatch UM = {[Sj , Tj ]}Mj=1

3 Generate outputs T̂M = {T̂j}Mj=1

4 Construct uncertainty queries ÛM = {Ûj = [Sj , T̂j , Qj , Rj ]}Mj=1

5 Compute loss LCT(θ;κ, θ0) in Eq. (4)
6 Update using gradients ∇θLCT(θ;κ, θ0)

7 until G updates have been completed

A.2 Training Data

We reserve the following datasets for training.

• AI2 Reasoning Challenge (ARC) (Clark et al., 2018),

• Boolean Questions (BoolQ) (Clark et al., 2019),

• CommonsenseQA (Talmor et al., 2019),

• CosmosQA (Huang et al., 2019),

• HellaSwag (Zellers et al., 2019),

• MathQA (Amini et al., 2019),

• Recognizing Textual Entailment (RTE/SNLI) (Bowman et al., 2015),

• Adversarial NLI (Nie et al., 2019),

• OpenBookQA (Mihaylov et al., 2018),

12



• PIQA (Bisk et al., 2019),

• SciQ (Welbl et al., 2017),

• The CommitmentBank (CB) (de Marneffe et al., 2019),

• Multi-Sentence Reading Comprehension (MultiRC) (Khashabi et al., 2018),

• Choice of Plausible Alternatives (CoPA) (Gordon et al., 2011),

• TREC (Li and Roth, 2002),

• Adversarial Winograd (Winogrande) (Sakaguchi et al., 2019).

B Additional Results

B.1 MMLU Task Breakdown for Multiple-Choice Question Answering
We report the breakdown of uncertainty query accuracy and ECE on all MMLU tasks in Figures 4 and 5.
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Figure 4: Calibration Tuning (CT) improves ECE (lower is better) on 39 out of 57 tasks from the MMLU benchmark
suite (IDs assigned alphabetically for visualization) (Hendrycks et al., 2020), when compared to instruction tuning
(IT). This breakdown validates that the calibration improvements we see in Section 5.2 are in fact meaningful. See
Figure 5 for the corresponding graph of query accuracies.
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Figure 5: Calibration Tuning (CT) maintains or improves the accuracy of the uncertainty query on 52 out of 57
tasks from the MMLU benchmark suite (IDs assigned alphabetically for visualization) (Hendrycks et al., 2020),
when compared to instruction tuning (IT). See Figure 4 for the corresponding graph of query accuracies.

B.2 MMLU Task Breakdown for Open-Ended Answer Generation
We provide a similar breakdown of uncertainty query accuracy and ECEs in Figures 6 and 7 for open-ended
answer generation.

C Comparison of Open-Ended Evaluation Grading Techniques

We conducted an analysis of the methods outlined in 4.1 for open-ended evaluation. First, the base
LLaMA-2 13b-chat model was prompted with questions from the following test subsets of MMLU: World
Religions, Philosophy, Anatomy, High School Chemistry and Elementary School Math. The questions
were stripped of their multiple-choice options before being supplied to the model.

A response was generated by the model via greedy decoding and this response was compared to the
ground truth answer. The grading methods tested were Human, Substring Match, GPT 3.5 Turbo, and
GPT 4.
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Figure 6: Calibration Tuning (CT) on multiple-choice questions appears to generalize to open-ended evaluations.
Calibration improves over the base LLaMA-2 13b-chat model on all but one of the MMLU tasks (Hendrycks
et al., 2020). MMLU Task IDs are assigned alphabetically for visualization. See Figure 7 for the corresponding
uncertainty query accuracies.
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Figure 7: Calibration Tuning (CT) tends to perform slightly worse on some MMLU tasks in terms of the uncertainty
query accuracy when evaluating the LLaMA-2 13b-chat model. This degraded performance is partly attributed to
the lack of fine-tuning on open-ended answer generation. See Figure 6 for the corresponding ECE.

The humans (a subset of our authors) were tasked to judge if the model response was essentially
equivalent to the ground truth. For substring match, equivalence was determined by simply checking
whether the ground truth answer existed as a substring within the model response. For GPT 3.5 Turbo and
GPT 4, the models were supplied with the question, the ground truth, and the base model response, as
well as a prompt indicating they should determine essential equivalence - see Figure 2.

MMLU SUBSET SUBSTRING MATCH GPT3.5 GPT4

WORLD RELIGIONS 21.6% 6.4% 1.8%
PHILOSOPHY 22.8% 2.3% 14.5%
ANATOMY 13.3% 14.8% 1.5%
CHEMISTRY 13.8% 5.4% 1.0%
MATH 12.4% 14.8% 3.7%

AVERAGE 16.8% 8.7% 4.5%

Table 5: Absolute differences in accuracy % for the different grading methods vs human estimated accuracy. A
lower value corresponds to an accuracy estimate closer to the human estimate.

We recorded the binary decision on correctness for each query and response by each of the grading
methods above. Taking the human scores as the gold standard of correctness, we computed the model
accuracy for each subset, and then derived the absolute error in estimate of model accuracy by each of
the other grading methods. These are displayed in Table 5. We see that GPT4 is a better estimator of
human-judged correctness than GPT 3.5 Turbo, which in turn is substantially better than substring match;
although there is some variance on a per-subset basis. For expediency of processing time and cost, we
chose to use GPT 3.5 Turbo in this paper.
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