@inproceedings{anand-etal-2024-dont,
title = "Don`t Blame the Data, Blame the Model: Understanding Noise and Bias When Learning from Subjective Annotations",
author = "Anand, Abhishek and
Mokhberian, Negar and
Kumar, Prathyusha and
Saha, Anweasha and
He, Zihao and
Rao, Ashwin and
Morstatter, Fred and
Lerman, Kristina",
editor = {V{\'a}zquez, Ra{\'u}l and
Celikkanat, Hande and
Ulmer, Dennis and
Tiedemann, J{\"o}rg and
Swayamdipta, Swabha and
Aziz, Wilker and
Plank, Barbara and
Baan, Joris and
de Marneffe, Marie-Catherine},
booktitle = "Proceedings of the 1st Workshop on Uncertainty-Aware NLP (UncertaiNLP 2024)",
month = mar,
year = "2024",
address = "St Julians, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.uncertainlp-1.11/",
pages = "102--113",
abstract = "Researchers have raised awareness about the harms of aggregating labels especially in subjective tasks that naturally contain disagreements among human annotators. In this work we show that models that are only provided aggregated labels show low confidence on high-disagreement data instances. While previous studies consider such instances as mislabeled, we argue that the reason the high-disagreement text instances have been hard-to-learn is that the conventional aggregated models underperform in extracting useful signals from subjective tasks. Inspired by recent studies demonstrating the effectiveness of learning from raw annotations, we investigate classifying using Multiple Ground Truth (Multi-GT) approaches. Our experiments show an improvement of confidence for the high-disagreement instances."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="anand-etal-2024-dont">
<titleInfo>
<title>Don‘t Blame the Data, Blame the Model: Understanding Noise and Bias When Learning from Subjective Annotations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhishek</namePart>
<namePart type="family">Anand</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Negar</namePart>
<namePart type="family">Mokhberian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prathyusha</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anweasha</namePart>
<namePart type="family">Saha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zihao</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashwin</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fred</namePart>
<namePart type="family">Morstatter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kristina</namePart>
<namePart type="family">Lerman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Uncertainty-Aware NLP (UncertaiNLP 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Raúl</namePart>
<namePart type="family">Vázquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hande</namePart>
<namePart type="family">Celikkanat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dennis</namePart>
<namePart type="family">Ulmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swabha</namePart>
<namePart type="family">Swayamdipta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wilker</namePart>
<namePart type="family">Aziz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joris</namePart>
<namePart type="family">Baan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St Julians, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Researchers have raised awareness about the harms of aggregating labels especially in subjective tasks that naturally contain disagreements among human annotators. In this work we show that models that are only provided aggregated labels show low confidence on high-disagreement data instances. While previous studies consider such instances as mislabeled, we argue that the reason the high-disagreement text instances have been hard-to-learn is that the conventional aggregated models underperform in extracting useful signals from subjective tasks. Inspired by recent studies demonstrating the effectiveness of learning from raw annotations, we investigate classifying using Multiple Ground Truth (Multi-GT) approaches. Our experiments show an improvement of confidence for the high-disagreement instances.</abstract>
<identifier type="citekey">anand-etal-2024-dont</identifier>
<location>
<url>https://aclanthology.org/2024.uncertainlp-1.11/</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>102</start>
<end>113</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Don‘t Blame the Data, Blame the Model: Understanding Noise and Bias When Learning from Subjective Annotations
%A Anand, Abhishek
%A Mokhberian, Negar
%A Kumar, Prathyusha
%A Saha, Anweasha
%A He, Zihao
%A Rao, Ashwin
%A Morstatter, Fred
%A Lerman, Kristina
%Y Vázquez, Raúl
%Y Celikkanat, Hande
%Y Ulmer, Dennis
%Y Tiedemann, Jörg
%Y Swayamdipta, Swabha
%Y Aziz, Wilker
%Y Plank, Barbara
%Y Baan, Joris
%Y de Marneffe, Marie-Catherine
%S Proceedings of the 1st Workshop on Uncertainty-Aware NLP (UncertaiNLP 2024)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St Julians, Malta
%F anand-etal-2024-dont
%X Researchers have raised awareness about the harms of aggregating labels especially in subjective tasks that naturally contain disagreements among human annotators. In this work we show that models that are only provided aggregated labels show low confidence on high-disagreement data instances. While previous studies consider such instances as mislabeled, we argue that the reason the high-disagreement text instances have been hard-to-learn is that the conventional aggregated models underperform in extracting useful signals from subjective tasks. Inspired by recent studies demonstrating the effectiveness of learning from raw annotations, we investigate classifying using Multiple Ground Truth (Multi-GT) approaches. Our experiments show an improvement of confidence for the high-disagreement instances.
%U https://aclanthology.org/2024.uncertainlp-1.11/
%P 102-113
Markdown (Informal)
[Don’t Blame the Data, Blame the Model: Understanding Noise and Bias When Learning from Subjective Annotations](https://aclanthology.org/2024.uncertainlp-1.11/) (Anand et al., UncertaiNLP 2024)
ACL
- Abhishek Anand, Negar Mokhberian, Prathyusha Kumar, Anweasha Saha, Zihao He, Ashwin Rao, Fred Morstatter, and Kristina Lerman. 2024. Don’t Blame the Data, Blame the Model: Understanding Noise and Bias When Learning from Subjective Annotations. In Proceedings of the 1st Workshop on Uncertainty-Aware NLP (UncertaiNLP 2024), pages 102–113, St Julians, Malta. Association for Computational Linguistics.