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Abstract

Learning from human feedback can improve
models for text generation or passage ranking,
aligning them better to a user’s needs. Data
is often collected by asking users to compare
alternative outputs to a given input, which may
require a large number of comparisons to learn
a ranking function. The amount of compar-
isons needed can be reduced using Bayesian
Optimisation (BO) to query the user about only
the most promising candidate outputs. Pre-
vious applications of BO to text ranking re-
lied on shallow surrogate models to learn rank-
ing functions over candidate outputs, and were
therefore unable to fine-tune rankers based on
deep, pretrained language models. This pa-
per leverages Bayesian deep learning (BDL)
to adapt pretrained language models to highly
specialised text ranking tasks, using BO to tune
the model with a small number of pairwise pref-
erences between candidate outputs. We apply
our approach to community question answer-
ing (cQA) and extractive multi-document sum-
marisation (MDS) with simulated noisy users,
finding that our BDL approach significantly
outperforms both a shallow Gaussian process
model and traditional active learning with a
standard deep neural network, while remaining
robust to noise in the user feedback.

1 Introduction

In many NLP tasks, the ideal output is highly user
or topic-specific, presenting a challenge to general-
purpose models. For example, in community ques-
tion answering (cQA), the system must identify the
most helpful answer to present to a user, by pro-
cessing a complex question on a niche topic, which
assumes substantial background knowledge, and
selecting between long, multi-sentence answers
(Tran et al., 2015; Rücklé et al., 2019; Deng et al.,
2020). Likewise, to provide an optimal summary
of a set of documents, we may need to know what
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information a particular user will find beneficial
and how best to present a topic to them (López
et al., 1999). In these situations, the challenge is to
identify which output a user will prefer.

One way to adapt NLP models to these spe-
cialised tasks is to acquire data through human-in-
the-loop interactive learning, in which a user is pre-
sented with pairs of candidate outputs, and asked to
select the most appropriate candidate in each pair
(Simpson et al., 2020). The pairwise labels can
then be used to train ranking models, which predict
a score for each candidate that can be viewed as
its utility to the user. Typically, such preference
learning approaches use either the Bradley-Terry
(Bradley and Terry, 1952; Luce, 1959; Plackett,
1975) or Thurstone-Mosteller (Thurstone, 1927;
Mosteller, 1951) model to map the utilities to pair-
wise labels. Pairwise labelling typically reduces
the user’s cognitive burden compared with scoring
candidates directly (Yang and Chen, 2011).

In most practical applications of preference
learning, the user effort required to read and com-
pare different candidates needs to be minimal.
Therefore, Simpson et al. (2020) use Bayesian opti-
misation (BO) (Močkus, 1975) to reduce the num-
ber of pairwise labels required to find the optimal
output by actively choosing promising candidates
for the user to compare. The Bayesian approach
accounts for epistemic uncertainty, i.e., the uncer-
tainty in the parameters of the model when learning
from a finite dataset. BO uses this uncertainty to
identify candidates that the model may currently
be underrating – those for which its judgement is
uncertain and could be increased given suitable
training samples. It then asks the user to compare
these selected candidates with its current best can-
didate. BO thus avoids asking the user to compare
outputs that are unlikely to satisfy the user.

A limitation of the approach by Simpson et al.
(2020) is the use of Gaussian process preference
learning (GPPL) as a ranking model, which relies
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Q1: Why is an album in Apple Music marked with an " E " and grayed out ?
A1 (GPPL): If you want your music to be uploaded to iCloud , you must sign up for iTunes Match. Make sure you’re
running the latest version of OS X and iOS. ( El Capitan - iOS 9 are the stable releases right now, although you can get the
public beta of macOS Sierra and iOS 10 ). Then make sure the Apple ID you’ve entered in the Music App on iOS is the ...
A2 (non-Bayesian deep ranker): In my experience, the cover photo is simply the first photo in the album. When you ’re
within an album, hit the button in the upper-right corner to manipulate the photos; then tap and hold a photo until it "inflates",
at which point you can drag it to move it around. You ’ll just have to be happy with your album cover being the first photo...
A3 (Bayesian deep ranker): The E symbol means " Explicit ". You can enable or disable explicit content within Settings
on your device . You’ll find the "ALLOW MUSIC; PODCASTS RATED "option under General − > Restrictions − >
Music Podcasts . You may need to enter a PIN code to access the Restrictions settings. You can disable the ...

Table 1: Example outputs for different methods after 4 interactions in cQA. Only A3 is correct.

on fixed embeddings of questions and answers as
input that cannot be fine-tuned to the task in hand.
GPPL also ignores any model uncertainty in the em-
beddings themselves, which may limit the ability
of BO to identify suitable candidates for compari-
son. We therefore investigate techniques that allow
deep neural networks (DNNs), which are powerful
representation learners, to be used in their place.
Standard DNNs cannot be used as ranking models
for BO, as they do not account for any model un-
certainty: they output point estimates of the utility
of a candidate, whereas a Bayesian approach will
provide a posterior distribution, including the pos-
terior variance, which quantifies uncertainty in the
prediction. Furthermore, in classification tasks, the
predictive probabilities that DNNs output are often
not well-calibrated, especially when generalising
outside the training distribution (Guo et al., 2017).
We therefore turn to Bayesian deep learning (BDL),
which measures model uncertainty, and improves
calibration and generalisation, thereby enabling BO
while keeping the representation learning ability of
neural networks (Maddox et al., 2019).

In this work, we propose BDL methods with
interactive preference learning for non-factoid an-
swer selection (select the appropriate answer from
a list of candidate answers) and summary ranking
(rank candidate summaries by quality). An illustra-
tion of the cQA task is shown in Table 1. Our ap-
proach leverages pretrained models to embed text
and can be fine-tuned end-to-end with user feed-
back, but is able to provide not just a prediction of
the utility score for each candidate output, but also
an estimate of the model’s uncertainty, represented
by its posterior variance.

Experiments using simulated noisy users on an
English cQA dataset (Rücklé et al., 2019) show
that BDL outperforms the shallow GPPL and non-
Bayesian DNN with only 4 interactions, achiev-
ing on average a 15% improvement in accuracy
over the non-Bayesian method. Results for extrac-

tive multi-document English news summarisation
corroborate these results, with BDL outperform-
ing the non-Bayesian approach by 10-12% with
6 interactions. We also show that our Bayesian
approach is robust to noise in the user feedback
and make a preliminary comparison of two BDL
techniques on cQA, Monte Carlo Dropout (MCD)
(Gal and Ghahramani, 2016) and stochastic weight
averaging Gaussian (SWAG) (Maddox et al., 2019),
finding that MCD performs best with limited com-
putational costs. This work highlights the poten-
tial of BO for adapting NLP models to individual
users or novel tasks without the need to collect
large amounts of human feedback, and demon-
strates the benefits of modelling epistemic un-
certainty in NLP. Please find our code available
at https://github.com/edwinrobots/
BayesianOpt_uncertaiNLP2024.

2 Related Work

Recent large language models (LLMs) have been
trained to follow user instructions by acquiring hu-
man preference feedback, training a ranking model,
and using the ranker as a reward function for rein-
forcement learning (Ouyang et al., 2022). This pro-
cess, reinforcement learning from human feedback
(RLHF), is a powerful example of using preference
learning to optimise a latent objective function, but
the prior work does not discuss how to acquire the
labels efficiently. We address this by investigating a
BO method with much smaller NLP models, which
could be applied to RLHF in future to reduce the
data acquisition cost for fine-tuning LLMs.

Many previous works on interactive learning,
such as P.V.S and Meyer (2017), Lin and Parikh
(2017) and Peris and Casacuberta (2018) use un-
certainty sampling to select unlabelled data points
to query users for labels, but measure uncertainty
using conventional DNNs, which are miscalibrated
and overconfident (Guo et al., 2017), or measure
only predictive rather than model uncertainty (Ein-
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Dor et al., 2020). Siddhant and Lipton (2018) con-
ducted a large empirical study of deep active learn-
ing across multiple tasks, showing deep Bayesian
active learning significantly outperforms classical
uncertainty sampling. For text ranking, Simpson
et al. (2020) replaced uncertainty sampling with
BO to find the best solution from a pool of can-
didates, achieving state-of-the-art performance in
both interactive cQA and summarisation. However,
their shallow GPPL ranker cannot fine-tune the in-
put embeddings nor quantify the model uncertainty
in the embeddings.

3 Background

BO with Expected Improvement (EI) BO aims
at finding the maximum or minimum of a function.
For text ranking tasks, this function maps an input
text, x, to a score, f(x), called the utility. BO uses
an acquisition function to decide which input the
user should evaluate next, as part of an iterative
process of gathering pairwise preference labels. In
effect, BO is an active learning process that focuses
on finding the extremum, rather than learning the
function across the whole input space. It is there-
fore suited to NLP tasks where the model must
learn how to produce the best output for a user, e.g.,
the most suitable answer to a question or the most
fitting summary for a topic.

Here, we adopt EI as the acquisition function
(Močkus, 1975), which was previously shown to
outperform other acquisition functions for cQA and
MDS (Simpson et al., 2020). To compute EI, we
require a ranking model that outputs not a point
prediction of the utility of each candidate, f(x),
but a posterior distribution over f(x). For a set of
candidates, x, we assume a Gaussian posterior dis-
tribution over their utilities, N (µ(x),C), where
µ(x) is the posterior mean vector and C is the pos-
terior covariance. Within our set of candidates, x,
we can find the current best candidate, x∗, accord-
ing to the model’s current posterior distribution,
by finding the candidate with the highest posterior
mean, µ∗ = max{µ(x) ∈ µ(x))}. EI compares
the posterior distribution for each candidate text, x,
to that of the current best candidate, x∗, and deter-
mines which x has the most potential to improve
over x∗. To do this, EI considers the probability
that f(x) is higher than f(x∗), and by how much.
The process for computing EI is as follows:

1. Obtain the posterior means and covariances
from the model.

2. Identify the current best candidate, x∗, as de-
scribed above.

3. For each candidate x, the difference in utility
to the current best candidate, (f(x)− f∗) has
a Gaussian posterior distribution. Compute
the posterior variance v of (f(x)− f∗), v =
Cx,x + Cx∗,x∗ − 2Cx,x∗ , where Ca,b is the
element of C at the row corresponding to text
a and column corresponding to text b.

4. Compute the difference between the posterior
means for x and x∗, normalised by its poste-
rior standard deviation,

√
v, z = µ(x)−µ∗

√
v

.

5. Compute EI as follows:

aEI(x) =
√
vzΦ(z) +

√
vN (z; 0, 1), (1)

where aEI is the EI acquisition function, and Φ() is
the cumulative density function of a standard Gaus-
sian distribution. The terms involving z give higher
scores to candidates with a high expected utility,
µ(x), and terms involving v give more weight to
candidates with uncertain utilities. As part of an
iterative active learning process, the candidate x
with highest EI is selected, and the user is asked to
compare this candidate to the current best, x∗, to
provide a new pairwise training label. EI therefore
trades off exploitation of known good candidates
and exploration of uncertain candidates.

Monte Carlo Dropout EI requires us to estimate
posteriors over utilities, but standard DNN infer-
ence outputs point estimates of f(x) rather than dis-
tributions. Gal and Ghahramani (2016) proposed
Monte Carlo Dropout (MCD), a computationally
efficient approximate Bayesian inference method
that applies dropout at inference time to obtain a
set of samples of f(x). MCD samples T times
from a variational posterior distribution over model
weights as follows. For each weight j in the ith
layer, sample zi,j ∼ Bernouilli(pi) to determine
whether dropout is applied to that weight. Then
compute Wi = Mi ·diag(zi), where Mi represents
the weight matrix before dropout and Wi is a sam-
ple of weights with dropout applied. We use each
sample, Wi, to predict the utilities for all candi-
dates, f(x)∀x ∈ x, thereby generating samples of
utilities with potentially different values for each
candidate x. We then compute the empirical mean
and covariance of these sample utilities to estimate
the posterior distribution over the utilities.

72



SWAG Another variational inference method,
SWAG can provide a better approximation to the
posterior than MCD (Maddox et al., 2019). It calcu-
lates the first two moments (mean and covariance)
of an approximate Gaussian distribution over the
weights using SGD iterates. To estimate the mean
of the Gaussian, it adopts SWA (Izmailov et al.,
2018), which averages the weights at selected itera-
tions of SGD. SWAG approximates the covariance
by summing a diagonal covariance and a low-rank
covariance term, also computed from the sampled
weights of the network at chosen iterations. To esti-
mate the posterior over the utilities, sample weights
from the Gaussian weight posterior, predict the util-
ities with each sample of weights, then compute
the empirical mean and covariance of the predicted
utilities.

4 Interactive Learning Process

Figure 1 provides an overview of the interactive
learning process studied in this paper. For a given
input (e.g., a question for QA tasks; a set of source
documents for summarisation) and multiple can-
didate outputs, the model needs to return the best
matched output to a user after several rounds of
interaction. During each interaction, the query
strategy selects a pair of candidates for the user to
compare, based on the acquisition function. Once
the user’s feedback is obtained, it is added into the
training set to train the ranking model. The process
will be repeated a predefined number of times.

Learning the ranking model from scratch would
cause a cold start problem, where we have no in-
formation to guide the query process and may re-
quire a lot of user interactions to learn a reasonable
model. We avoid this by introducing a warm-start
phase, which pretrains the ranking model using
in-domain data for different inputs before the in-
teractive learning process begins. This means that
the ranking model learns a general-purpose rank-
ing function in the warm-start phase, which is then
fine-tuned to a specific topic or user through the
interactive learning phase depicted in Figure 1.

5 Proposed Bayesian Ranking Model

Figure 2 shows the architecture of the deep ranker
used as a surrogate model in the interactive learning
process. In our experiments, we use this same archi-
tecture for both Bayesian and non-Bayesian deep
rankers. It consists of a pretrained encoder, two
fully connected layers and an output layer. We train

Figure 1: Workflow of our Proposed Approach
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Fully connected layer

Fully connected layer

utility
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Fully connected layer
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utility
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Weights

Margin ranking loss
function

Figure 2: Architecture of the proposed ranking model

with pairwise labels, with all weights shared be-
tween candidates 1 and 2 in each pair (as a Siamese
architecture), using margin ranking loss:

L(f1, f2, y) = max(0,−y(f1 − f2 +m)), (2)

where f1 and f2 represent predicted utilities of two
input texts, y ∈ {−1, 1}, indicates which input
should be ranked higher, and y = 1 means candi-
date 1 ranks higher. During inference, each candi-
date is processed individually to predict its utility,
f(x). For the Bayesian variants of the deep ranker,
we use MCD and SWAG to approximate posteriors
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over utilities. For prior distributions over the neu-
ral network weights, recent experiments provide
strong evidence that vague Gaussian priors can in-
duce useful inductive bias (Dmitry et al., 2020).
Therefore, we add L2 regularisation to the loss
function since it can be interpreted as a Gaussian
prior.

6 Experiments

6.1 Experimental Setup

cQA Datasets We conduct experiments on an En-
glish cQA dataset consisting of questions posted on
StackExchange in the communities Apple, Cook-
ing and Travel (Rücklé et al., 2019). For a given
question, there is one accepted answer marked by
the user and 99 candidate answers collected from
answers to similar questions. For the questions,
the dataset retains only the title and discards the
detailed description in the question body. For the
encoder, we use distilRoBERTa (Liu et al., 2019).

To train the initial model in the warm start phase,
we use the original training data and tune hyperpa-
rameters on part of the original validation set. The
hyperparameters used for fine-tuning in the interac-
tion phase are tuned separately, on the remaining
portion of the validation set (Table 2). For the in-
teraction phase, we use the original test set (Table
3). The experiments simulate a setting where the
user provides labels to fine-tune a model for the
test question only. In other words, the cQA sys-
tem helps the user narrow their search for the right
answer with the help of user feedback. In this set-
ting, the model sees pairwise labels for a small
subset of test answers. Our experimental setup
therefore compares active learning methods that
choose which pairwise comparisons the model gets
to see, but does not test the general performance of
the resulting cQA model on other questions.

Topics Train Warm start
validation

Interaction phase
validation

Apple 5,831 1,249 831
Cooking 3,692 791 692
Travel 3,572 765 572

Table 2: Number of cQA questions in the datasets for
training and hyperparameter tuning.

Topics #ques-
tions

#accepted
answers

#candidate
answers

#cand.
per topic

Apple 1,250 1,250 125,000 100
Cooking 792 792 79,200 100
Travel 766 766 76,600 100

Table 3: Statistics for the test dataset used in the cQA
interaction phase.

MDS Datasets For multi-document summarisa-
tion, we use the DUC datasets1. There are three
DUC datasets, i.e., DUC’01, DUC’02, DUC’04,
containing a number of news topics. Each topic
has three distinct model summaries, each of which
was penned by a different expert, offering a var-
ied perspective on what makes an effective sum-
mary. This multi-document summarisation ap-
proach poses a challenge, especially given the di-
verse themes within a document collection, as it is
not straightforward to pinpoint a singular, succinct
summary that would cater to all users.

With MDS, we use SUPERT (Gao et al., 2020)
as the encoder, as also used by Simpson et al.
(2020). For each topic in the dataset, we followed
the approach of Gao et al. (2018) and generated
10,000 candidate summaries, each with no more
than 100 words, by randomly selecting sentences
from the source documents, to enable comparison
with their prior work. The 10,000 summaries for
each topic are then split into train (6,000 sum-
maries), validation (2,000) and test sets (2,000),
hence all topics appear in every split. The valida-
tion set is used to tune hyperparameters in both the
warm-start and interaction phases (refer to Table 4
and Table 5).

As in the cQA task, the goal of the interaction
is to fine-tune the model for a specific topic, rather
than to learn a user’s preferences over summaries in
general. Hence, the pairwise labels obtained in the
interaction phase compare test examples, and the
experiment aims to compare methods for selecting
these examples, rather than learning a model that
can generalise to other topics.

Dataset Train Validation
DUC’01 180,000 60,000
DUC’02 354,000 118,000
DUC’04 300,000 100,000

Table 4: Number of MDS summaries in the datasets for
training and hyperparameter tuning.

1https://duc.nist.gov/
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Data
-set

#top
-ics

#source
docs

#model
summ
-aries

#cand.
summ
-aries

#cand.
per

topic
DUC’01 30 300 90 300000 2,000
DUC’02 59 567 177 590000 2,000
DUC’04 50 500 150 500000 2,000

Table 5: Statistics for the test dataset used in the MDS
interaction phase.

Simulated Users Here, we follow previous work
(Simpson et al., 2020; Gao et al., 2019) to simu-
late user preferences with the user-response model
(Viappiani and Boutilier, 2010). Given utilities of
two candidates, fa and fb, the simulated user will
prefer document a with probability:

p(ya,b|fa, fb) =
1

1 + exp(fa − fb)/t
, (3)

where t controls the noise in the user’s prefer-
ences. We set the default value of t to 0.3, as per
Simpson et al. (2020) and investigate its effect in
Section 6.4. For cQA, we estimate the utilities
fa and fb with ROUGE-L, which calculates the
longest common sub-sequence between candidates
and gold answers. For MDS, we use a combina-
tion of ROUGE1, ROUGE2, and ROUGESU4 that
showed high correlation with human preferences
in previous summarisation work (P.V.S and Meyer,
2017).

Simulated users allow us to test the proposed
method more rapidly at a greater scale. However,
the simulation assumes a consistent latent prefer-
ence function, from which we observe noisy pref-
erences. It is possible that real human feedback
may sometimes violate these assumptions, so we
view our experiments as an initial exploration to
establish whether further experimentation with real
users is warranted.

Evaluation Metrics For cQA, we compute
matching accuracy, which is the fraction of top-
ranked answers that match the gold answers. To
evaluate the first few highest-ranked answers, we
use normalized discounted cumulative gain at 5
(NDCG@5), which uses ROUGE-L as the rele-
vance score to compare the top five candidates to
the gold answer. For MDS, NDCG@100 is used to
compare the top 1% with the reference summary.
The combined ROUGE score for simulating users
is adopted here as the relevance metric. We do not
use ranking metrics that evaluate the entire can-
didate ranking, since the goal of this application
is to find the most appropriate top-ranked items

only – we do not care about the order of unsuitable
outputs.

Hyperparameters For cQA, we set the margin
m (Equation 2) to 0.1 and tuned hyperparameters
at both the warm start and interaction phases (Ap-
pendix A). As shown in Table 6, doubling the num-
ber of MCD samples led to a small improvement in
accuracy, while doubling computation time. Given
limited compute time in interactive settings, we
fixed the number of samples to 20.

SWAG requires sufficient epochs before starting
sampling to approximate the posterior accurately.
Therefore, maintaining the same computation time
for SWAG as MCD limited us to using only three
epochs to compute the weight posteriors in only the
last four layers since the entire cQA ranking model
has over 82M parameters. With the non-Bayesian
method, the time per round of interactive learning
was ~2 seconds.

For the MDS task, we observed a similar pattern
with increasing numbers of MCD samples and fixed
this value to 30. After tuning, the margin loss for
MDS was set to 0.5 and other hyperparameters are
given in Appendix A.

Baselines We compared our models with a non-
Bayesian deep ranker and GPPL (using the imple-
mentation of Simpson et al. (2020)). BO cannot be
used for the non-Bayesian ranker because it does
not compute the variance of the utility, so we use an
established uncertainty sampling approach (UNC)
(P.V.S and Meyer, 2017). For each candidate, a,
we compute unc(a) = 0.5 − |p(a) − 0.5|, where
p(a) = (1 + exp(−fa))

−1 is the probability that
a is accepted by the user and fa is the predicted
utility of a. We query the candidate pair (a, b) with
the highest uncertainty values, unc(a) and unc(b).

#Samples 10 20 30 40

cQA Accuracy 0.828 0.836 0.838 0.841
Time per interaction (s) 7 14 21 28

MDS NDCG@1% 0.684 0.665 0.641 0.675
Time per interaction (s) 4 8 12 16

Table 6: The accuracy and computation times versus
the number of MCD samples on the interaction phase
validation sets. Computation times are for training with
a single NVIDIA RTX2080Ti GPU.

6.2 Results: Performance Comparison
On the cQA task, Table 7 shows that Bayesian
deep ranker outperforms the non-Bayesian deep
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Model Query
Strategy

Cooking
Acc NDCG@5

Apple
Acc NDCG@5

Travel
Acc NDCG@5

Non-Bayesian deep ranker UNC 0.685 0.683 0.417 0.614 0.686 0.634
GPPL EI 0.573 0.644 0.465 0.647 0.702 0.691
Bayesian deep ranker with SWAG EI 0.692 0.67 0.540 0.637 0.713 0.668
Bayesian deep ranker with MCD EI 0.726 0.612 0.650 0.616 0.863 0.675

Table 7: Results of different interactive ranking methods for cQA with 4 interactions.

Model Query
Strat.

#inter-
actions

DUC
’01

DUC
’02

DUC
’04

Non-Bayesian
deep ranker UNC 6 0.524 0.551 0.579

GPPL EI 20 0.624 0.630 0.653
Bayesian deep

ranker with MCD EI 6 0.637 0.661 0.681

Table 8: MDS results, showing NDCG@1%. The
results for GPPL were obtained from Simpson et al.
(2020), which uses the same experimental setup.

ranker and GPPL in terms of top-1 matching accu-
racy. For the topic Apple, the accuracy of the deep
ranker with MCD is 23% higher than that of the
non-Bayesian deep ranker. This gain comes from
the ability to quantify uncertainty in the model
weights due to a lack of knowledge as posterior
variance in the utilities. This enables us to apply
BO to find the optimal candidate as quickly as pos-
sible. In contrast, the non-Bayesian ranker does not
quantify model uncertainty: rather than outputting
a distribution over utility, it simply provides a point
estimate, its “best guess”. Since it lacks informa-
tion about the model’s epistemic uncertainty, the
non-Bayesian query strategy cannot select pairs on
this basis. Instead, it relies on a heuristic, whereby
it selects predicted utilities close to zero, assum-
ing that these candidate answers have a probability
close to 0.5 of being accepted by the user, and
hence the highest uncertainty. The issue is that
many of these candidates could be of middling
quality, rather than simply of uncertain utility, so
labelling effort could be wasted in selecting such
candidates. The shallow GPPL method also outper-
forms the non-Bayesian deep ranker with UNC by
3.3% and 5.7% (Accuracy) under the topic Apple
and Travel.

As shown in Table 7, MCD outperforms SWAG
under our computation time constraints. For
SWAG, the weight covariance obtained from just
three samples is relatively small, so the posterior
tends to be sharply peaked. Moreover, with SWAG

1 2 3 4
Number of interactions

50

60

70

80

Ac
cu

ra
cy

Apple
Cooking
Travel

Figure 3: The performance change on cQA topics in
relation to the number of interactions.

we only update the posteriors for the last four lay-
ers, while MCD is applied to all layers. The vari-
ance is thereby underestimated, impeding EI from
exploring new points. Therefore, when compu-
tation time is very limited, MCD appears more
effective.

For the MDS task, Table 8 demonstrates the
Bayesian deep ranker again out-performs the non-
Bayesian deep ranker with UNC sampling method,
and is able to outperform GPPL despite using far
fewer simulated user interactions.

6.3 The Impact of number of interactions

We investigated how the performance changes in
relation to the number of interactions for the cQA
task. We varied the number of simulated human
interactions from 1 to 4 and conducted experiments
with the MCD-based Bayesian ranker. As visu-
alised in Figure 3, we observe that as the number
of interactions increases, the performance improves
across all topics. For questions under the topic Ap-
ple and Travel, with only one interaction, the MCD-
based Bayesian deep ranker outperforms both the
Non-Bayesian deep ranker and shallow Bayesian
ranker with GPPL which adopts 10 interactions.
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6.4 Noisy User Experiment
To test the robustness of our proposed models, we
vary the noise level t in the simulated labels (Equa-
tion (3)) and observe its effect on the Bayesian
deep ranker with MCD, examining accuracy for the
cQA topic Travel and NDCG@1% for the DUC’01
topics. Table 9 shows that as noise increases, the
matching accuracy decreases, but does not drop
substantially when the noise parameter t rises from
0.3 to 2.5. This indicates that the Bayesian deep
ranker with MCD is robust under noisy circum-
stances.

cQA, Travel: Noise Level 0.3 1 2.5
Accuracy 0.833 0.828 0.795

MDS, DUC’01: Noise Level 0.5 1 2.14
NDCG@1% 0.643 0.632 0.618

Table 9: Effect of simulated user noise on the Bayesian
deep ranker with MCD.

7 Conclusion

We proposed a Bayesian approach to learning from
human feedback in the form of pairwise prefer-
ences, which combines pretrained language models
with end-to-end Bayesian deep learning to gauge
uncertainty in the model’s predictions. We showed
how this approach enables a Bayesian optimisation
strategy for active learning, which selects pairs to
be labelled by the user to find the most appropriate
solution with only a few round of user interaction.
We applied our method to community question an-
swering and multi-document summarisation, but
the method can be generalised to any interactive
ranking task where the aim is to identify strong can-
didate outputs for a given input. Our experiments
showed the Bayesian deep learning can outperform
a non-Bayesian deep ranker and a shallow Bayesian
method in an active preference learning setting,
and performs well when there is a high level of
noise in the user feedback. We also showed when
approximating posterior distributions under tight
compute time constraints, MCD can outperform
SWAG, although further investigation is needed to
evaluate SWAG under different conditions and on
other tasks.

There is a wealth of other tasks that this ap-
proach could be evaluated on, including for fine-
tuning large language models with human feedback
(Ouyang et al., 2022), which we plan to investigate
in future work. The experiments in this paper used
interaction to learn models specialised to particular

questions or summary topics, so the application of
Bayesian optimisation to learning general-purpose
models is yet to be explored. A key benefit that
merits further research is that more efficient sam-
pling of training data for the reward model in RLHF
could help to make fine-tuning language models
more accessible to smaller organisations by reduc-
ing annotation costs.

8 Limitations

Although we demonstrate that Bayesian deep
learning-based preference learning can efficiently
acquire human feedback for text ranking tasks, i.e.,
cQA and multi-document summarisation, there are
several limitations that call for future research. The
primary limitation of our work is that we use simu-
lated users to approximate human preferences. In
future work, we aim to evaluate the approach with
real users to determine whether the labelling effi-
ciency we found with simulated users is observed
with human labellers.

The experimental setup was constrained to learn-
ing models for a specific question or summary topic.
As such, the pairwise feedback was obtained for
examples in the test set. The experimental results
are therefore not a reflection of how well the mod-
els generalise to new questions or news topics, nor
how well the interactive learning method helped
the models’ question answering or summarisation
performance in general, as this was not within the
scope of this paper. This is a limitation that we plan
to address in future work on BO for personalising
and fine-tuning more versatile models.

Considering the technical limitations of BO,
there is a time cost to the sampling steps in
Bayesian inference, which could be sped up in
future implementations by using parallel sampling
from posteriors. Our investigation into SWAG
was highly constrained by computational resources,
and should be seen as a preliminary investigation
only – further work is needeed to investigate alter-
native BDL methods in comparison with SWAG
and MCD. A promising approach is Bayesian Lay-
ers (Tran et al., 2019), which offers more efficient
Bayesian inference over larger transformer mod-
els.

9 Ethical Considerations

There is a risk with automatic answer selection and
recommender systems that the content directed can
have undesirable effects, for instance if the user
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receives conspiracies or propaganda as answers
to a question. This may happen unintentionally
when user goals diverge from system goals, such
as distributing advertisements. To some extent, in-
teractive systems, such as that proposed here, hand
more control to users and could reduce these issues.
Nonetheless, further investigation is needed to de-
termine the effect of interactive cQA and MDS sys-
tems on the answers and summaries that users get
to see, to determine how this biases their content
consumption or to identify other negative conse-
quences.

Our experiments evaluate the method on English
data as an initial investigation into the potential for
BDL in answer or summaries selection tasks. The
proposed method can be applied to other languages
and tasks, but will require further evaluation to
determine whether users can provide suitable labels
in such domains, how many interactions are needed
for the chosen language, and whether the mode of
interaction is equally accessible to users of different
backgrounds.
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A Hyperparameter Tuning for cQA

We fixed the hidden layer sizes of our model as
shown in Table 10, and did not tune them. At the
warm start stage, we use the AdamW optimizer
for the deep ranker which includes implicit L2 reg-
ularization using weight decay. For the SWAG-
based model, we use SGD with momentum as the
optimizer since it will update the parameters of
posterior distributions along the SGD trajectory.

Layer name # Hidden size

DistilRoBERTa original size, 768
Fully-connected layer 1 100
Fully-connected layer 2 10

Table 10: Hidden layer sizes in the cQA model

For the warm-start phase, we empirically set the
search space of learning rate ∈ {2e−5, 5e−5} for
conventional deep learning, {1e−4, 5e−5} for the
SWAG-based model, batch size ∈ {16, 32} and
weight decay ∈ {0.01, 0.001}. We exhaustively
searched these combinations to find the optimal
combination and the selected values are shown in
Table 11. The number of training epochs during
warm-start was fixed to 3 for the non-Bayesian
deep ranker and the deep ranker with MCD, and 6
epochs for the SWAG-based ranker. The Dropout
rate was the default value, 0.1.

At the interaction phase, all models were trained
with SGD with momentum and the number of
epochs was fixed to 4 with early stopping. We
tuned learning rate ∈ {1e− 4, 5e− 5} and weight
decay ∈ {0.01, 0.001}. We did not tune batch size
as we fine-tune only with the 4 data points obtained
from the simulated user. The selected values are
shown in Table 12.

B Hyperparameter Tuning for MDS

For summarisation, Table 13 shows the hidden
layer sizes of our model. At the warm start stage,
we again used AdamW optimizer.
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Topic/Dataset Model Learning rate Batch size Weight decay

Cooking Non-Bayesian DR 5e-5 16 0.01
Cooking DR + MCD 5e-5 16 0.01
Cooking DR + SWAG 1e-4 32 0.001
Apple Non-Bayesian DR 2e-5 32 0.001
Apple DR + MCD 2e-5 32 0.001
Apple DR + SWAG 1e-4 16 0.001
Travel Non-Bayesian DR 2e-5 16 0.01
Travel DR + MCD 2e-5 16 0.01
Travel DR + SWAG 1e-4 16 0.01

Table 11: Hyperparameters selected at the warm-start phase for each cQA topic.

Topic/Dataset Model Learning rate Weight decay

Cooking Non-Bayesian DR 5e-5 0.001
Cooking DR + MCD 1e-4 0.01
Cooking DR + SWAG 1e-4 0.001
Apple Non-Bayesian DR 1e-4 0.01
Apple DR + MCD 1e-4 0.001
Apple DR + SWAG 1e-4 0.001
Travel Non-Bayesian DR 1e-4 0.01
Travel DR + MCD 1e-4 0.01
Travel DR + SWAG 5e-5 0.001

Table 12: Hyperparameters selected for the interaction phase for each cQA topic.

Layer name # Hidden size

SUPERT original size, 1024
Fully-connected layer 1 256
Fuly-connected layer 2 128

Table 13: Hidden layer sizes in the MDS model

Hyperparameters for the warm-start phase were
tuned, considering learning rate ∈ {1e − 4, 2e −
5, 5e− 5} and weight decay ∈ {0.01, 0.001}. For
all MDS models, we found the best choice to be
learning rate = 5e-5 and weight decay = 0.001.

For the interaction phase, the learning rate was
tuned ∈ {1e − 4, 5e − 5} and weight decay ∈
{0.01, 0.001}, finding optimal values of learning
rate = 1e-4 for all cases, and weight decay = 0.001
for all cases except the non-Bayesian deep ranker
on DUC’02 and DUC’04, which used weight decay
= 0.01.
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