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Abstract
In this work, we analyze the uncertainty that
is inherently present in the labels used for su-
pervised machine learning in natural language
inference (NLI). In cases where multiple anno-
tations per instance are available, neither the
majority vote nor the frequency of individual
class votes is a trustworthy representation of the
labeling uncertainty. We propose modeling the
votes via a Bayesian mixture model to recover
the data-generating process, i.e., the posterior
distribution of the “true” latent classes, and thus
gain insight into the class variations. This will
enable a better understanding of the confusion
happening during the annotation process. We
also assess the stability of the proposed estima-
tion procedure by systematically varying the
numbers of i) instances and ii) labels. Thereby,
we observe that few instances with many labels
can predict the latent class borders reasonably
well, while the estimation fails for many in-
stances with only a few labels. This leads us
to conclude that multiple labels are a crucial
building block for properly analyzing label un-
certainty.

1 Introduction

Commonly, binary or multi-class classification set-
tings in machine learning assume that a single gold
label—representing the “true” class of an instance—
can easily be acquired via human annotation. How-
ever, there are numerous examples where remark-
able variations between different annotators exist,
challenging the validity of this assumption (Uma
et al., 2021). This issue is especially prevalent
in datasets relating to the difficult task of perceiv-
ing human language, such as natural language in-
ference (NLI). In NLI, the textual entailment of
two sentences is to be determined. There exists
an increasing body of work documenting inher-
ent disagreement in labeling for NLI (Pavlick and

Figure 1: Scatter plot of the vote distribution of
ChaosSNLI. Each point represents one instance. Its
location is determined by the vote distribution. Corner
points represent 100 votes for the respective class, i.e.,
entailment, neutral, contradiction for the bottom right,
top, and bottom left, respectively. Solid black lines rep-
resent the border of class membership by majority vote.
The color of the points is determined by the estimated
latent class given by our model. Black diamonds de-
scribe the center points of the latent classes. Solid red
lines represent the borders of latent class membership.

Kwiatkowski, 2019; Nie et al., 2020; Zhang and
de Marneffe, 2021; Jiang et al., 2023). Such hu-
man label variation can be caused by context de-
pendency and subjectivity, amongst others, and is
ubiquitous (Plank, 2022). Moreover, human la-
bel variation is different from annotation errors, as
plausible, linguistic reasons for such variation exist
(Jiang and de Marneffe, 2022).

To provide new grounds to study human vari-
ation in labeling, Nie et al. (2020) collected the
ChaosNLI (Collective HumAn OpinionS on Nat-
ural Language Inference) dataset. ChaosNLI
comprises 100 labels per instance from quality-
controlled annotators for each of the ambiguous
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instances from multiple NLI-related datasets. In
this paper, we analyze ChaosSNLI, a sub-dataset
of ChaosNLI based on the Stanford Natural Lan-
guage Inference (SNLI) data (Bowman et al., 2015).
Several works on NLI (Pavlick and Kwiatkowski,
2019; Nie et al., 2020) show that many instances
exhibit high human disagreement or uncertainty,
i.e., human labelers do not agree on a single class,
resulting in a high spread of the annotators’ votes
among multiple classes. Less work has looked at
label variation and stability from a data-generating
process viewpoint in light of uncertainty.

Uncertainty in machine learning and NLP
is, however, gaining increased attention re-
cently (Hüllermeier and Waegeman, 2021; Gruber
et al., 2023; Baan et al., 2023). Different lines of re-
search study sources of uncertainty in various parts
of machine learning, such as the data itself, the
model choice, the estimation procedure, and model
deployment (Gruber et al., 2023). Early works
characterize uncertainty in terms of reducible and
irreducible randomness (Hüllermeier and Waege-
man, 2021), while some works argue that this line
is fuzzy (Gruber et al., 2023; Baan et al., 2023).

Variation in labels is part of the uncertainty in
the data and is ubiquitous given the inherent am-
biguity of language (Zhang et al., 2021). Yet, un-
derstanding the uncertainty in labels enables us
to not only empirically investigate human confu-
sion in annotated data, but also to gain insights
on the classification task itself. For example, the
complexity of detecting certain classes or the com-
position of class structures can be derived from
voting patterns—this information can provide use-
ful insights into task characteristics.

Therefore, in order to analyze the uncertainty
in the label vote distribution of ChaosSNLI, we
model the data-generating process and analyze the
stability of the resulting estimation. To do so, we
employ a Bayesian mixture model and recover the
latent “true” class label, see also Hechinger et al.
(2024). More precisely, we obtain the posterior
probability for each of the classes and can thus
assess the certainty for the class labels given the
votes.

Our results could further be incorporated into
a machine learning pipeline, e.g., by fitting a
model on our latent classes instead of majority
vote classes or class frequencies. This is, how-
ever, beyond the scope of this paper. In this work,
we focus on the fundamental step of quantifying
labeling uncertainty instead. We propose an estima-

tion procedure and analyze its stability for different
amounts of i) instances and ii) labels. Our work
shows that more labels are more beneficial for sta-
ble estimation of uncertainty, while only a few in-
stances already suffice. We also suggest new tools
for visual assessment of the uncertainty in labels
for three-way classification tasks (see Fig. 1).

Contributions With this paper, we contribute to
a better understanding of label variation via a deep
assessment of trustworthiness by 1) quantifying
labeling uncertainty with Bayesian mixture mod-
els, 2) providing a novel visual tool for a better
assessment of labeling uncertainty, and 3) deriving
practical guidance for labeling tasks. We identify
the benefit of using fewer cases with many labels
rather than the other way around.1

2 Related Work

The need to analyze diverse human opinions in
natural language inference is discussed by works
including Pavlick and Kwiatkowski (2019) and Nie
et al. (2020). Nie et al. (2020) show that some state-
of-the-art models (including BERT, RoBERTa, XL-
NET, AL- BERT, DistilBERT, and BART) are nei-
ther designed nor able to capture human variation
in labels and are therefore not appropriate. Their
work also states that predicting the majority vote
and predicting the human label distribution are dis-
tinct and seemingly conflicting objectives. In their
benchmark study, all considered models performed
consistently worse on examples with low human
agreement. This indicates that analyzing label vari-
ation is of significant relevance for a more complete
understanding of natural language inference.

Hovy et al. (2013) already advocated that major-
ity voting might be the simplest but not most ap-
propriate strategy for finding the correct label and,
that modeling the votes leads to improved predicted
label accuracy. The authors propose a method to
separately model annotations from spamming and
non-spamming annotators. Our methods differ in
the way variation in labels is modeled. Hovy et al.
(2013) explicitly model the behavior of annotators
and assumes non-spamming annotators always pro-
vide the correct label, while votes by spamming an-
notators are drawn from a multinomial distribution.
In contrast, our approach models human confusion
in the annotation process, assuming equal levels of
annotation skills. This is a reasonable assumption

1Code and data available at: https://github.com/
corneliagru/label-variation-nli
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for ChaosSNLI as all annotators undergo strict qual-
ity control, see Nie et al. (2020) for details. Nev-
ertheless, both methods share the goal of estimat-
ing the distribution of the data-generating process
and its parameters via an expectation-maximization
(EM) algorithm.

Paun et al. (2018) compare various Bayesian ap-
proaches for modeling annotation. Based on their
taxonomy, we employ a pooled model, i.e., assum-
ing equal quality of the annotators. They conclude
that such pooled models underperform, as the as-
sumption that all annotators share the same ability
is inappropriate in typical crowdsourcing settings.
However, when information on individual annota-
tors is unavailable, as is the case for the investigated
ChaosSNLI dataset, pooling is inevitable.

The benefits of harnessing multiple labels are
presented in Zhang et al. (2021). They demonstrate
that improvements in accuracy can be achieved
by varying the number of annotations for some
examples within a given annotation budget. Our
findings show a more nuanced picture supporting
their claims, as we show the necessity of multi-
ple annotations but a flattening value curve (see
section 5).

3 Dataset and Problem Setting

We examine label uncertainty in NLI, a task for
which textual entailment of two sentences is typ-
ically classified as either entailment, neutral, or
contradiction. In ChaosSNLI (Nie et al., 2020),
multiple annotations for each instance are provided.
Example sentences of ChaosSNLI with their re-
spective votes are shown in Table 1. Since those
annotators do not necessarily agree with each other,
we face a high degree of (human) label uncertainty.
We chose this dataset as it provides a unique ground
to explore label variation. Having access to a high
amount of labels per instance is particularly valu-
able, but unfortunately not a common setting.

Our analysis is based on N = 1, 514 instances
with J = 100 labels, each, that originate from
the development set of the SNLI dataset (Bowman
et al., 2015). The original SNLI development set
was generated by a multistep procedure, where first
an initial annotator provides a text description of
an image, i.e., generating the premise. Second, a
different annotator constructs three hypotheses as
an entailing, neutral, and contradicting description
of the premise. Third, four more annotators, inde-
pendent of the first two steps, provide labels for

the premise-hypothesis pairs, i.e., classify the pairs
into entailment, neutral or contradiction. This pro-
cedure yields five annotations per instance in total.
In ChaosSNLI, examples, where only three out of
those five annotators agree, are then relabeled by
100 quality-controlled annotators. For details on
the quality control procedure, we refer to Nie et al.
(2020). This relabeling procedure leads to a dataset,
where instances with a high degree of uncertainty
are overrepresented. Such a biased sample is valu-
able, as our main interest lies in understanding
exactly those uncertain and hard-to-classify cases.

In the dataset, we observe that the most com-
mon class according to majority voting is neutral,
with 53.7% of all examples, while entailment and
contradiction amount to 27.8% and 18.5%, respec-
tively. This already suggests that identifying neu-
tral seems to be more challenging than discerning
the other classes, as human annotators do not agree
on those especially challenging examples that were
collected for ChaosSNLI.

To gain a better understanding of label uncer-
tainty in NLI, we analyze the annotations for the
premise-hypothesis pairs available in ChaosSNLI.
In order to detect hidden structures and compre-
hend label variation, we follow a statistical ap-
proach for modeling the label distribution. It is thus
distinct from classical machine learning, where
models are optimized for predictive power. How-
ever, our approach can ultimately be incorporated
as a preprocessing step for predictive models. A
precise description of our methodology can be
found in section 4.

4 Modeling Approach

The main goal of this work is to explore the un-
certainty inherent in the (multiple) labels of the
sentence pairs in ChaosSNLI which is expressed
by the distribution of the annotations. In order to
formally describe the dataset with its multiple an-
notations and to assess label uncertainty, we use
tools from statistical modeling. The multinomial
mixture model provides the possibility to put multi-
ple annotations into a distributional framework and
subsequently estimate the associated parameters.
Based on these parameters, a latent ground truth
label can be derived for each instance, incorporat-
ing the uncertainty expressed by the distributions
of the annotations over all instances. We follow the
methodology proposed in Hechinger et al. (2024)
for modeling multiple annotations via a Bayesian
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Context/Premise Statement/Hypothesis [E, N, C]
A boy in an orange shirt sells fruit from a street cart. A boy is a street vendor. [90, 10, 0]
A woman wearing a red hat and black coat. The woman is asleep. [0, 87, 13]
People walk amongst a traffic jam in a crowded city. The cars are zooming past the people. [3, 15, 82]
A woman holding a child in a purple shirt. The woman is asleep at home. [1, 53, 46]

Table 1: Examples of ChaosSNLI. Annotators answered the question: “Given a context, a statement can be either:
definitely correct (Entailment); or definitely incorrect (Contradiction); or neither (Neutral). Your goal is to choose
the correct category for a given pair of context and statement.”

mixture model.

First, let us introduce a formal description of the
data. Each instance is a pair of (X(i),Y (i)), i =
1, . . . , N , where X(i) denotes the sentence pair
of premise and hypothesis and Y (i) denotes the
corresponding vote distribution. For this work, our
focus lies on the latter exclusively, i.e., we only
consider the vector of annotations for each instance.
To explicitly represent votes for K possible classes
by J different annotators, Y (i) is set to Y (i) =

(Y
(i)
1 , . . . , Y

(i)
K ) with Y

(i)
k =

∑J
j=1 1(V

(i)
j = k).

Here, V (i)
j denotes the individual vote for instance

i by annotator j. In ChaosSNLI we do not have
access to individual annotator-specific votes, but
observe Y (i) directly. As mentioned above, we
model the uncertainty inherent in the labels, so
we omit X(i) and only analyze Y (i). It is worth
mentioning that incorporating the actual text is still
possible for downstream tasks, but is out of the
scope of this work.

In order to make use of the multinomial mix-
ture model, we assume that each instance is as-
sociated with one true label, i.e., there exists an
unambiguous ground truth. However, due to the
inherent uncertainty in the perception of language,
annotators are not easily capable of recovering
the ground truth and they might vote for differ-
ent classes. We denote the latent ground truth
of each instance X(i) with Z(i) ∈ {1, . . . ,K}.
Again, to match our notation with the definition
of a multivariate variable, we define Z(i) as a one-
hot encoded vector indicating the latent class, i.e.,
Z(i) = (1{Z(i) = 1}, . . . ,1{Z(i) = K}).

In the context of this particular dataset, as de-
scribed in section 3, there exists a clearly defined
ground truth that annotators should recover. This is
due to the fact, that the annotator had one specific
class in mind while inventing the hypothesis. Thus,
the assumption of exactly one underlying “true” la-
bel is justified. However, this methodology can be
applied beyond scenarios with known ground truth.

In cases where no such information is available, the
distributions of votes can serve as a valuable tool
for deducing the latent labels.

Model Framework Let us now proceed to the
analysis of the voting distribution Y (i), which car-
ries information about the latent true labels. We
employ the following Bayesian modeling frame-
work. First, considering the ground truth labels to
be unobserved (or unobservable), they are assumed
to follow a multinomial distribution

Z(i) ∼ Multi(π, 1) i.i.d.,

where π = (π1, . . . , πK) denote the prior prob-
abilities for all classes. This distribution is also
called the prior distribution. Given the true classes,
the annotations are also assumed to be distributed
multinomially, i.e.,

Y (i)|Z(i) ∼ Multi(θp, J). (1)

This multinomial distribution describes the data
likelihood conditional on Z. Here, the parameter
vector θp depends on the latent true class Z(i), i.e.,
the multinomial probabilities vary based on what
we consider to be the true label. Hence, this pa-
rameter describes the probability of voting for a
class given the true label. We can summarize the
multinomial probability vectors of each latent, true
class into a matrix Θ = (θpk, p, k = 1, . . . ,K),
which can be interpreted as a confusion matrix. For-
mally, θpk describes the probability of an annotator
voting for class k given the instance has the true
class p, i.e., using the notation in Eq. (1) we have
θp = (θp1, θp2, . . . , θpK).

The key component of the model is the posterior
distribution, i.e., the probabilities for an instance
to truly belong to each of the classes given the
observed annotations. These probabilities are cal-
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culated as

τ (i)p = P (Z(i) = p|Y (i);π,Θ)

=
P (Z(i) = p;π)P (Y (i)|Z(i) = p;Θ)

P (Y (i);π,Θ)

=
πpP (Y (i);θp)∑K

p′=1 πp′P (Y (i);θp′)
.

The class with the maximal posterior serves as an
estimate for the latent ground truth, it is however
also possible to use τ in downstream tasks directly,
i.e., for training a classifier on the probabilities
instead of discrete class labels and thus directly
incorporate the label uncertainty.

It is important to note that the prior modeling
assumption of a single ground truth does not dictate
the reality to be discrete, much more it enables us to
compute the posterior distribution and quantify the
evidence for each class, given the vote distribution.
It thus allows us to model settings with ambiguous
labels.

Estimation Procedure The model above in-
cludes unknown parameters, which we suggest es-
timating through maximum likelihood. As we are
in the latent variable framework, straightforward
estimation of the model parameters via maximum
likelihood is, however, not possible. Instead, we
apply an iterative estimation procedure to obtain pa-
rameter estimates. With the help of the expectation-
maximization (EM) algorithm as introduced by
Dempster et al. (1977), we can replace the latent
class label Z(i) with its expectation for each voting
distribution. The expected latent class is thereby
calculated given the data and the current parameter
estimates and can be used afterward to update the
estimates, leading to an iterative procedure that is
performed until convergence. The algorithm can
be outlined as follows, with additional details avail-
able in Hechinger et al. (2024) and in Appendix A.
For the current parameter values at estimation it-
eration (t), Θ = Θ(t) and π = π(t), one iterates
over the two steps:

1. E-Step: Calculate the expectation of the full
data likelihood given the data and the cur-
rent estimates. Applying Bayes’ rule, this
simplifies to the computation of the expected
latent class, given by posterior probabilities
τ
(i)
p , i = 1, ..., N and p = 1, ...,K.

2. M-Step: Update the parameters Θ = Θ(t+1)

and π = π(t+1) based on the posterior τ .

The final estimates are denoted as Θ̂ and π̂. Our
modeling approach harnesses the information re-
trieved from the annotations from all instances, as
in every EM-step all instances are used for recal-
culating the estimates. This enables our method to
incorporate knowledge about all annotation uncer-
tainties and provide a comprehensive and holistic
view of label variation.

Label Switching The classes obtained through
mixture models are subject to label switching, i.e.,
their numbering is arbitrary and does not corre-
spond to the original order anymore. This is a
common issue in mixture models and can be re-
solved in various ways depending on the specific
application at hand, as outlined by Stephens (2000).
In this case, we apply a simple heuristic permu-
tation to the latent classes. The original classes
entailment, contradiction, neutral, denoted with
index k = 1, 2, 3, are assigned to the respective
latent classes p = 1, 2, 3 based on the diagonal en-
tries of the estimated confusion matrix Θ. E.g., the
class entailment is assigned to the mixture com-
ponent, where the highest voting probability is
entailment. This corresponds to the permutation
σ−1(p) = argmaxk(θ̂p) and the latent classes are
re-ordered accordingly.

To summarize, by allowing for human uncer-
tainty, i.e., human confusion while labeling a cer-
tain instance, we can recover information on a la-
tent class Z. The posterior distribution of the latent
class is then a more trustworthy representation of
the “true” class an instance belongs to, since all
information contained in the full dataset is used for
estimation, and not only the specific label distribu-
tion.

5 Results

5.1 Introspection by Visualization
As described earlier, the dataset ChaosSNLI (Nie
et al., 2020) consists of J = 100 annotations for
K = 3 classes. We propose to analyze human label
variation in NLI with a novel visualization tool, to
help gain insights into labeling. Figure 1 illustrates
the distribution of votes present in ChaosSNLI,
which we then contrast to the majority vote and
our model’s estimated class membership votes.

Each point in Figure 1 represents one instance,
where its location is determined by the empirical
distribution of votes. It is clearly visible by the
density of dots that most instances cluster around
the top of the plot, i.e., with many votes for neutral.
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This is consistent with the distribution of majority
votes (with neutral being observed 53.7% of times,
as discussed in section 3). Furthermore, we observe
that there is little confusion between contradiction
and entailment, as almost no points lie close to the
lower horizontal line or the vertical line starting in
the center. This observation is intuitively plausible,
due to the contrasting nature of the two labels of
entailment vs. contradiction. Interestingly, this
visualization tool helps us to quickly identify that
there are cases in the datasets where many labels for
both entailment and contradiction were observed.

In order to analyze our modeling result in rela-
tion to majority voting, we examine the borders
between the three classes. Figure 1 shows the bor-
ders of the majority voting as solid black lines,
which connect the center points of the axes, i.e.,
50:50 votes for two of the classes, to the center, i.e.,
33.33 votes for all three classes.

The borders between the latent classes are shown
as red lines. To calculate these borders between two
latent classes, we determine the vote combinations
that lead to equal posterior probabilities. That is,
we calculate the specific vote distribution Y (i) such
that τk = τj for two classes k, j ∈ {1, 2, 3}, k ̸= j,
while there are no votes for the third class. This
gives us the critical points lying on the axis con-
necting classes k and j. For the middle point, i.e.,
the connection between all three classes, the equa-
tion τ1 = τ2 = τ3 is solved for the corresponding
vote distribution. This results in four critical points.
By connecting the points on the axes to the cen-
ter, we obtain the new borders of the latent classes,
which are now based on posterior probability es-
timates and not just on the empirical distribution
of the votes for one instance. In other words, they
are estimated by taking all data into account. The
exact border points are described in Appendix A.

In Figure 1, for all instances that lie between the
black and red borders, the latent class label does
not agree with the majority vote. It is especially
evident that the latent class neutral comprises a
smaller fraction of vote distributions than it would
have by majority voting (black line). More pre-
cisely, considering all cases with a majority vote
for neutral, our model agrees for 83.3%, however,
entailment is estimated for 6.9% of cases and con-
tradiction for the remaining 9.8%, i.e., 16.7% of
the majority vote neutral are assigned a different
label by our model. This is however desirable, as
many votes for one of the more informative classes
(entailment or contradiction) strongly speak for

exactly those classes, even if there is no majority.
For example, having 40 votes for contradiction, 60
for neutral, and none for entailment, indicates that
entailment is unlikely. Likewise, if neutral would
be the “true” latent class, at least some votes for
entailment are expected. Thus, in this setting, a
latent contradiction is most probable. Analogous
reasoning can be applied for instances with many
votes for entailment, without entailment as the ma-
jority. Further, we argue that negative votes by the
annotators can be regarded as a stronger signal for
the instance actually being contradiction as fewer
of them are required for our model to assign the
label contradiction, compared to entailment. This
becomes evident from Figure 1 as the red border
between neutral and contradiction is much closer
to the neutral corner compared to its counterpart
between neutral and entailment.

To summarize, the model especially refines the
class neutral and alleviates the issue that the major-
ity class neutral does not only contain true neutral
statements, but might also be conflated with exam-
ples where the annotators were indecisive or had
conflicting interpretations (Nighojkar et al., 2023).

5.2 Stability Analysis

Having provided a visualization tool that allows
valuable insights into the dataset, we are now in-
terested in the stability of the modeling procedure.
One common approach to assess the estimation un-
certainty and stability of the resulting parameter
estimates is to employ a resampling method, like
bootstrapping (Efron, 1979). We therefore analyze
the stability of the estimation procedure in relation
to three aspects:

1. overall stability,

2. stability in the number of instances, N ,

3. stability in the number of labels, J .

Overall stability In order to assess the uncer-
tainty of the estimation procedure itself, we em-
ploy a classical bootstrap. That is, we sample from
the data with replacement2 and subsequently esti-
mate the model parameters. Repeating this multiple
times allows us to assess how the estimation would
change if we had different datasets coming from
the same distribution as the initial one.

2i.e., the same instance can be present multiple times, while
other instances might not be included at all.
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Figure 2: The ternary plot contains the decision borders
between the three classes calculated based on B = 50
bootstrapped estimates as gray lines. The range of the
gray lines is outlined in orange. The blue dashed line
indicates the mean of the bootstrapped versions and the
red line shows the original borders for comparison.

We run B bootstrap iterations, producing boot-
strapped versions of the parameter estimates π and
Θ. Based on these values, the borders of the la-
tent classes can be recalculated B times. Figure 2
shows the estimated borders for B = 50 bootstrap
replicates in gray alongside the borders computed
based on the full dataset in red (cf. Fig. 1). This
leads us to conclude that the estimation of the pa-
rameters and, therefore, the latent classes is stable
for the full dataset. Due to the high number of in-
stances in the dataset, this result is not surprising.
However, the question arises whether stable estima-
tion is also possible with a smaller dataset. Reduc-
ing N , the number of multiple annotated instances
on the one hand, and reducing J , the number of an-
notations for the instances on the other hand, could
lead to substantially reduced labeling effort. Hence,
these aspects will be analyzed in the following.

Stability of Number of Instances In many real-
world applications, the number of instances that can
be annotated multiple times is often limited to a
couple of hundred instances (as an example, the ear-
lier multi-annotated NLI dataset from Pavlick and
Kwiatkowski (2019) contained five annotations for
less than 500 instances as available in ChaosNLI).
Therefore, it is worthwhile to examine the stabil-
ity of the estimation procedure and the resulting
estimates for a smaller dataset in terms of sample
size (less than 1.5k instances). Specifically, we are
interested in the location of the decision borders
regarding the latent classes and their stability for

fewer instances.
Therefore, we employ a bootstrap again but

this time randomly sample smaller datasets, i.e.,
N < 1, 514 with replacement to artificially re-
duce the sample size. Figure 3 shows B = 50
bootstrapped borders of the latent classes for var-
ious numbers of samples N with fixed J = 100.
While the bootstrapped borders still show quite
some variation for very small sample sizes (e.g.,
N = 50), the average of all bootstrapped borders
already aligns quite well with the original borders.
For a sample size of N = 100, the variation has
already decreased noticeably, and for even larger
samples, like N = 500, which is only one-third of
the original sample size, almost no differences to
the original results are visible. Hence, we conclude
that reducing the sample size leads to reasonably
good and stable estimation results if a certain mini-
mum of instances is kept.

Stability of Number of Labels While this work
focuses on the ChaosSNLI dataset with J = 100
annotations, the original SNLI development dataset
only contains five labels per instance. In prac-
tice, annotating instances many times is costly and
might seem inefficient. Hence, we are also inter-
ested in the stability of the estimation procedure in
terms of the number of labels as well as the mini-
mal number of labels needed per instance for stable
parameter estimates.

Again, we draw bootstrap samples from the orig-
inal dataset. This time, the sample size is kept
constant at N = 1000 but the number of annota-
tions per sample is reduced. Therefore, we ran-
domly choose J < 100 annotations from the orig-
inal ones. The resulting bootstrapped borders are
shown in Figure 3. As expected, only using J = 5
annotations leads to large variations and unstable
results. For J = 25 annotations, the procedure is
already quite stable. For more than J = 50 anno-
tations, the results show diminishing returns: they
depict similar behavior to the original ones with
the double amount of J , i.e., J = 100 (see Fig. 2).
Therefore, we note that acquiring a smaller number
of labels for each instance is possible, but a suffi-
cient amount of annotations is needed for stable
estimation. Particularly, the number of annotations
seems to be more crucial for the stability of the
results than the sample size. Additional results for
simultaneously varying the amount of N and J
that further support this finding can be found in
Figure 4, Appendix A.
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(a) N = 50 (b) N = 100 (c) N = 250 (d) N = 500

(e) J = 5 (f) J = 10 (g) J = 25 (h) J = 50

Figure 3: The ternary plots show the bootstrapped latent class borders as gray lines, the range of the gray lines in
orange, the mean of the bootstrapped as blue dashed lines, and for comparison, the original borders as red lines
for various sample sizes and annotations. In the top row J is set to J = 100 and N ∈ {50, 100, 250, 500}. In the
bottom row, we set N = 1000 and J ∈ {5, 10, 25, 50}. The total number of annotations, i.e., N · J , is below each
plot.

6 Discussion

Reliable and correct labels are crucial for classifica-
tion models. While it is common practice to gather
multiple annotations to ensure high-quality labels,
these are often summarized into one single final la-
bel via a majority vote (Paun et al., 2018). However,
this strategy leads to a major loss of information
and uncertain ground truth labels in applications
where a high degree of label variation is present.
The statistical approach pursued in this work offers
the possibility to condense information, given in
multiple labels through the whole dataset, into a
single ground truth label. To evaluate the results,
we compared the borders between the classes, i.e.,
we examined the voting combinations where the
ground truth label changes for an instance. By
choosing the estimated latent ground truth instead
of the majority vote, these borders shifted reason-
ably, from a semantic perspective.

Additionally, we showed that the parameters of
the model and, hence, the borders can be estimated
reliably based on the available instances and anno-
tations. However, in many realistic applications,
the data basis might be smaller in terms of both

aspects. Hence, we also conducted a stability anal-
ysis for random subsets of the number of instances
(N ) and the number of votes per instance (J) of
the dataset. The results show that stable estimation
is already possible for a smaller dataset and that
human labeling effort can be decreased, without
loss of information. The quantity of accessible
labels proves to be more important for ensuring
a stable model performance than the sample size.
We assume that this is because the annotations bear
the majority of the inherent uncertainty. Therefore,
acquiring multiple labels, particularly for uncertain
instances, i.e., instances where label variation is
expected, is advisable.

While the results and decision borders obtained
via the proposed model in this work showcase the
problem of label uncertainty, future directions of
research could include the incorporation of this
information into the ML pipeline or the develop-
ment of a quantitative measure for label uncertainty.
This could then lead to a detailed strategy for ac-
quiring labels efficiently. Though these questions
are highly relevant and should be tackled in the
future, they are beyond the scope of the current
work.
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7 Conclusion

In conclusion, by analyzing ChaosSNLI we show-
case the suitability of Bayesian mixture models to
recover the true data-generating process of annota-
tion tasks with access to multiple labels. Our work
provides a framework to deal with multi-annotation
settings in classification and is applicable regard-
less of the underlying task, i.e., NLI. Furthermore,
our results suggest that in the annotation process,
the focus should lie on increasing the number of la-
bels per instance, instead of more instances in total,
as this promotes capturing the labeling uncertainty.

Limitations

Our proposed method analyzes uncertainty in la-
bels for a three-way classification task. However,
since the concept of uncertainty is by definition
vague and fuzzy, it is important to determine which
aspects of uncertainty should be or can be speci-
fied. In our work, we focus on modeling the anno-
tation process. If other aspects of uncertainty are
of relevance, our method might not be the most ap-
propriate anymore. This points to the individuality
of dealing with uncertainty and that no one-fits-all
approach exists.

Further limitations might arise upon the appli-
cation of the model to other datasets. 1) Multiple
annotations per instance are needed. 2) Visual as-
sessment of class memberships (c.f. Fig 1) or the
stability of class borders (c.f. Fig 3) works reason-
ably well for up to three classes. Analyzing datasets
with labels of higher dimensions is straightforward,
as shown by Hechinger et al. (2024) for the classi-
fication of ambiguous images. However, assessing
the stability of class borders needs to be done quan-
titatively, e.g., by computing confidence intervals
of the bootstrapped borders. 3) In case annotator
IDs are available, we recommend extending our
approach in order to incorporate all available in-
formation. This could be done by determining the
impact of individual annotators or a general anno-
tator effect on the results, e.g., by discarding votes
by certain annotators and re-estimating the model,
see Hechinger et al. (2024).

Our work contributes to the understanding of
NLI tasks and provides guidance for the early stage
of data collection. Therefore, analyzing the impact
on the full machine learning pipeline, i.e., improve-
ments on the predictive power of classifiers is be-
yond the scope of this paper, but is open for future
work.

Acknowledgements

CG is supported by the DAAD program Konrad
Zuse Schools of Excellence in Artificial Intelli-
gence, sponsored by the Federal Ministry of Ed-
ucation and Research. KH is supported by the
Helmholtz Association under the joint research
school HIDSS-006 - Munich School for Data Sci-
ence@Helmholtz, TUM&LMU. MA has been par-
tially funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) as part
of BERD@NFDI - grant number 460037581. BP
is supported by European Research Council (ERC)
grant agreement No. 101043235.

References
Joris Baan, Nico Daheim, Evgenia Ilia, Dennis Ulmer,

Haau-Sing Li, Raquel Fernández, Barbara Plank,
Rico Sennrich, Chrysoula Zerva, and Wilker Aziz.
2023. Uncertainty in natural language generation:
From theory to applications.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Arthur P Dempster, Nan M Laird, and Donald B Rubin.
1977. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical
society: series B (methodological), 39(1):1–22.

B. Efron. 1979. Bootstrap methods: Another look at the
jackknife. The Annals of Statistics, 7(1):1 – 26.

Cornelia Gruber, Patrick Oliver Schenk, Malte Schier-
holz, Frauke Kreuter, and Göran Kauermann. 2023.
Sources of Uncertainty in Machine Learning – A
Statisticians’ View. ArXiv:2305.16703 [cs, stat].

Katharina Hechinger, Xiao Xiang Zhu, and Göran
Kauermann. 2024. Categorising the world into local
climate zones: towards quantifying labelling uncer-
tainty for machine learning models. Journal of the
Royal Statistical Society Series C: Applied Statistics,
73:143–161.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning Whom to Trust
with MACE. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1120–1130, Atlanta, Georgia.
Association for Computational Linguistics.

Eyke Hüllermeier and Willem Waegeman. 2021.
Aleatoric and epistemic uncertainty in machine learn-
ing: an introduction to concepts and methods. Ma-
chine Learning, 110(3):457–506.

30

http://arxiv.org/abs/2307.15703
http://arxiv.org/abs/2307.15703
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.48550/arXiv.2305.16703
https://doi.org/10.48550/arXiv.2305.16703
https://doi.org/10.1093/jrsssc/qlad089
https://doi.org/10.1093/jrsssc/qlad089
https://doi.org/10.1093/jrsssc/qlad089
https://aclanthology.org/N13-1132
https://aclanthology.org/N13-1132
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3


Nan-Jiang Jiang and Marie-Catherine de Marneffe.
2022. Investigating reasons for disagreement in natu-
ral language inference. Transactions of the Associa-
tion for Computational Linguistics, 10:1357–1374.

Nan-Jiang Jiang, Chenhao Tan, and Marie-Catherine
de Marneffe. 2023. Ecologically valid explanations
for label variation in NLI. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2023, pages 10622–10633, Singapore. Association
for Computational Linguistics.

Yixin Nie, Xiang Zhou, and Mohit Bansal. 2020.
What Can We Learn from Collective Human
Opinions on Natural Language Inference Data?
ArXiv:2010.03532 [cs].

Animesh Nighojkar, Antonio Laverghetta Jr., and John
Licato. 2023. No strong feelings one way or another:
Re-operationalizing neutrality in natural language
inference. In Proceedings of the 17th Linguistic
Annotation Workshop (LAW-XVII), pages 199–210,
Toronto, Canada. Association for Computational Lin-
guistics.

Silviu Paun, Bob Carpenter, Jon Chamberlain, Dirk
Hovy, Udo Kruschwitz, and Massimo Poesio. 2018.
Comparing Bayesian Models of Annotation. Trans-
actions of the Association for Computational Linguis-
tics, 6:571–585.

Ellie Pavlick and Tom Kwiatkowski. 2019. Inherent
Disagreements in Human Textual Inferences. Trans-
actions of the Association for Computational Linguis-
tics, 7:677–694. Place: Cambridge, MA Publisher:
MIT Press.

Barbara Plank. 2022. The ’Problem’ of Human Label
Variation: On Ground Truth in Data, Modeling and
Evaluation. ArXiv:2211.02570 [cs].

Matthew Stephens. 2000. Dealing with label switch-
ing in mixture models. Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology),
62(4):795–809.

Alexandra N. Uma, Tommaso Fornaciari, Dirk Hovy,
Silviu Paun, Barbara Plank, and Massimo Poesio.
2021. Learning from Disagreement: A Survey.
Journal of Artificial Intelligence Research, 72:1385–
1470.

Shujian Zhang, Chengyue Gong, and Eunsol Choi. 2021.
Learning with Different Amounts of Annotation:
From Zero to Many Labels. ArXiv:2109.04408 [cs].

Xinliang Frederick Zhang and Marie-Catherine
de Marneffe. 2021. Identifying inherent disagree-
ment in natural language inference. In Proceedings
of the 2021 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4908–4915, Online. Association for Computational
Linguistics.

A Appendix

Details on Model and Estimation
The EM algorithm is initialized with π(0) =

(13 ,
1
3 ,

1
3), and Θ(0) is drawn from a Dirichlet distri-

bution where α is set to be a vector with K entries,
where each value is 2·K. In this case α = (6, 6, 6).

The model estimated on the full dataset (i.e.,
N = 1514, J = 100), which is also depicted in
Figure 1, results the following final parameter esti-
mates:

π̂ = (0.314, 0.448, 0.238)

Θ̂ =



θ̂entailment

θ̂neutral

θ̂contradiction


 =



0.73 0.24 0.03
0.14 0.79 0.07
0.03 0.31 0.66




In both parameters, the order of entries/columns is
entailment, neutral, contradiction.

Based on the estimated parameters obtained via
the procedure described in section 4 the decision
borders are defined by connecting the points ([E,
N, C]):

• center point: [35.98, 28.15, 35.86]

• EC axis: [48.46, 0.0, 51.54]

• EN axis: [42.03, 57.97, 0.0]

• NC axis: [0.0, 70.13, 29.87]

Combined Stability Analysis
Figure 4 shows the estimation results and their
bootstrapped stability for various sample sizes and
numbers of annotations. Reducing N and J simul-
taneously leads to unstable results for very small
datasets. However, this visualization supports the
earlier finding that a sufficient number of annota-
tions is more crucial than a large sample for stable
and reliable estimation.
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J = 5 J = 25 J = 50 J = 100

N = 50

N = 250

N = 500

N = 1000

Figure 4: The Figure shows the bootstrapped latent class borders as gray lines, the range of the gray lines in orange,
the mean of the bootstraps as blue dashed lines and the original borders as red lines for different values of N and J .
The total number of annotations, i.e., N · J , is below each plot.
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