@inproceedings{zhu-etal-2024-resolving,
title = "Resolving Transcription Ambiguity in {S}panish: A Hybrid Acoustic-Lexical System for Punctuation Restoration",
author = "Zhu, Xiliang and
Chang, Chia-Tien and
Gardiner, Shayna and
Rossouw, David and
Robertson, Jonas",
editor = "Pyatkin, Valentina and
Fried, Daniel and
Stengel-Eskin, Elias and
Liu, Alisa and
Pezzelle, Sandro",
booktitle = "Proceedings of the Third Workshop on Understanding Implicit and Underspecified Language",
month = mar,
year = "2024",
address = "Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.unimplicit-1.3",
pages = "33--41",
abstract = "Punctuation restoration is a crucial step after Automatic Speech Recognition (ASR) systems to enhance transcript readability and facilitate subsequent NLP tasks. Nevertheless, conventional lexical-based approaches are inadequate for solving the punctuation restoration task in Spanish, where ambiguity can be often found between unpunctuated declaratives and questions. In this study, we propose a novel hybrid acoustic-lexical punctuation restoration system for Spanish transcription, which consolidates acoustic and lexical signals through a modular process. Our experiment results show that the proposed system can effectively improve F1 score of question marks and overall punctuation restoration on both public and internal Spanish conversational datasets. Additionally, benchmark comparison against LLMs (Large Language Model) indicates the superiority of our approach in accuracy, reliability and latency. Furthermore, we demonstrate that the Word Error Rate (WER) of the ASR module also benefits from our proposed system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhu-etal-2024-resolving">
<titleInfo>
<title>Resolving Transcription Ambiguity in Spanish: A Hybrid Acoustic-Lexical System for Punctuation Restoration</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiliang</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chia-Tien</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shayna</namePart>
<namePart type="family">Gardiner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Rossouw</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonas</namePart>
<namePart type="family">Robertson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Understanding Implicit and Underspecified Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Valentina</namePart>
<namePart type="family">Pyatkin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Fried</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elias</namePart>
<namePart type="family">Stengel-Eskin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alisa</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandro</namePart>
<namePart type="family">Pezzelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Punctuation restoration is a crucial step after Automatic Speech Recognition (ASR) systems to enhance transcript readability and facilitate subsequent NLP tasks. Nevertheless, conventional lexical-based approaches are inadequate for solving the punctuation restoration task in Spanish, where ambiguity can be often found between unpunctuated declaratives and questions. In this study, we propose a novel hybrid acoustic-lexical punctuation restoration system for Spanish transcription, which consolidates acoustic and lexical signals through a modular process. Our experiment results show that the proposed system can effectively improve F1 score of question marks and overall punctuation restoration on both public and internal Spanish conversational datasets. Additionally, benchmark comparison against LLMs (Large Language Model) indicates the superiority of our approach in accuracy, reliability and latency. Furthermore, we demonstrate that the Word Error Rate (WER) of the ASR module also benefits from our proposed system.</abstract>
<identifier type="citekey">zhu-etal-2024-resolving</identifier>
<location>
<url>https://aclanthology.org/2024.unimplicit-1.3</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>33</start>
<end>41</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Resolving Transcription Ambiguity in Spanish: A Hybrid Acoustic-Lexical System for Punctuation Restoration
%A Zhu, Xiliang
%A Chang, Chia-Tien
%A Gardiner, Shayna
%A Rossouw, David
%A Robertson, Jonas
%Y Pyatkin, Valentina
%Y Fried, Daniel
%Y Stengel-Eskin, Elias
%Y Liu, Alisa
%Y Pezzelle, Sandro
%S Proceedings of the Third Workshop on Understanding Implicit and Underspecified Language
%D 2024
%8 March
%I Association for Computational Linguistics
%C Malta
%F zhu-etal-2024-resolving
%X Punctuation restoration is a crucial step after Automatic Speech Recognition (ASR) systems to enhance transcript readability and facilitate subsequent NLP tasks. Nevertheless, conventional lexical-based approaches are inadequate for solving the punctuation restoration task in Spanish, where ambiguity can be often found between unpunctuated declaratives and questions. In this study, we propose a novel hybrid acoustic-lexical punctuation restoration system for Spanish transcription, which consolidates acoustic and lexical signals through a modular process. Our experiment results show that the proposed system can effectively improve F1 score of question marks and overall punctuation restoration on both public and internal Spanish conversational datasets. Additionally, benchmark comparison against LLMs (Large Language Model) indicates the superiority of our approach in accuracy, reliability and latency. Furthermore, we demonstrate that the Word Error Rate (WER) of the ASR module also benefits from our proposed system.
%U https://aclanthology.org/2024.unimplicit-1.3
%P 33-41
Markdown (Informal)
[Resolving Transcription Ambiguity in Spanish: A Hybrid Acoustic-Lexical System for Punctuation Restoration](https://aclanthology.org/2024.unimplicit-1.3) (Zhu et al., unimplicit-WS 2024)
ACL