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Abstract
Recent advancements in Natural Language Processing (NLP) have spurred remarkable progress in language
modeling, predominantly benefiting English. While Ukrainian NLP has long grappled with significant challenges due
to limited data and computational resources, recent years have seen a shift with the emergence of new corpora,
marking a pivotal moment in addressing these obstacles. This paper introduces LiBERTa Large, the inaugural
BERT Large model pre-trained entirely from scratch only on Ukrainian texts. Leveraging extensive multilingual text
corpora, including a substantial Ukrainian subset, LiBERTa Large establishes a foundational resource for Ukrainian
NLU tasks. Our model outperforms existing multilingual and monolingual models pre-trained from scratch for
Ukrainian, demonstrating competitive performance against those relying on cross-lingual transfer from English. This
achievement underscores our ability to achieve superior performance through pre-training from scratch with additional
enhancements, obviating the need to rely on decisions made for English models to efficiently transfer weights. We
establish LiBERTa Large as a robust baseline, paving the way for future advancements in Ukrainian language modeling.

Keywords: Ukrainian, LiBERTa, Pre-training from Scratch, Language Models, Natural Language Under-
standing, Transformers

1. Introduction

In recent years, there has been remarkable
progress in language modeling, evidenced by the
multitude of research papers emerging annually.
This progress stems from a variety of advance-
ments, including novel architectural improvements
(Shaw et al., 2018; Su et al., 2021; He et al., 2020;
Fedus et al., 2021), innovative training objectives
(Clark et al., 2020; Raffel et al., 2019; Joshi et al.,
2020; Wang et al., 2019b), different tokenization
approaches (Xue et al., 2022), methods for data
curation (Gunasekar et al., 2023), and other re-
finements, consistently enhancing state-of-the-art
results, particularly for English.

However, the field of natural language process-
ing (NLP) in Ukrainian has encountered substan-
tial obstacles compared to its English counterpart,
primarily due to limited data availability and com-
putational resources. Unlike English, which ben-
efits from abundant datasets and robust comput-
ing infrastructure, Ukrainian has historically lacked
comprehensive resources essential for robust NLP
research and development.

Until recently, NLP researchers working with
Ukrainian had to resort to cross-lingual transfer
learning due to the scarcity of substantial Ukrainian
text corpora suitable for pre-training monolingual
models from scratch. However, with the release of
datasets like CulturaX (Nguyen et al., 2023), we
are venturing to train a BERT Large model entirely
from scratch in Ukrainian. Our goal is to ascer-
tain whether the available resources now enable us

to compete with models transferred from English
using sophisticated techniques.

To ensure a fair comparison, we adopt an al-
most vanilla RoBERTa (Liu et al., 2019) pre-training
setup, encompassing both objective and architec-
ture, thus mitigating potential confounding factors
that could disrupt our comparison.

In this paper, we make several contributions:

• We introduce LiBERTa Large – the first BERT-
like Large model pre-trained from scratch for
Ukrainian. Leveraging multilingual text cor-
pora containing a substantial subset of docu-
ments in Ukrainian, we provide a foundational
resource for natural language understanding
tasks.

• Our model achieves state-of-the-art perfor-
mance compared to existing multilingual al-
ternatives and monolingual language models
for Ukrainian that are pre-trained from scratch
on multiple downstream tasks. Additionally,
it exhibits competitive results against models
that rely on the cross-lingual transfer of heavily
trained English models.

• By establishing this baseline, we pave the way
for future research in Ukrainian language mod-
eling from scratch, enabling researchers to
leverage the latest advancements to further
enhance performance on downstream tasks.
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2. Related Work

The Transformer architecture, introduced by
Vaswani et al. (2017) for Machine Translation,
marked a significant advancement by showcas-
ing the effectiveness of attention mechanisms over
traditional recurrent networks. Building upon this,
Radford et al. (2018) extended the Transformer
architecture to Natural Language Understanding
(NLU) tasks, demonstrating its adaptability through
pre-training with causal language modeling and
subsequent fine-tuning for specific tasks, thereby
achieving state-of-the-art results.

Devlin et al. (2019) further enhanced
Transformer-based models with bidirectional-
ity, employing Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP) objectives,
leading to substantial performance improvements
over unidirectional models. It was observed that
scaling the model size consistently enhanced
performance across various downstream tasks.
Subsequent studies suggested alternative strate-
gies for improvement, such as omitting NSP in
favor of data augmentation, dynamic masking,
increased batch sizes, and training on longer
sequences (Liu et al., 2019).

Continued research efforts focused on refining
pre-training objectives and enhancing model ar-
chitectures. Modifications to the Masked Lan-
guage Modeling objective included predicting token
spans (Joshi et al., 2020) and employing binary
classification through Replaced Token Detection
(RTD) (Clark et al., 2020). Additionally, innovations
such as relative positional encoding (Shaw et al.,
2018) and disentangled attention mechanisms con-
tributed to further improvements (He et al., 2020,
2021).

While initial efforts primarily concentrated on
English, subsequent research expanded to en-
compass other languages. Multilingual models
like mBERT (Devlin et al., 2019), XLM (Lample
and Conneau, 2019), and XLM-RoBERTa (XLM-R)
(Conneau et al., 2020) achieved state-of-the-art
results across numerous low-resource languages.
However, increasing the number of languages in
multilingual models often led to performance degra-
dation on language-specific tasks, highlighting the
challenge known as the curse of multilinguality.

Consequently, efforts turned towards develop-
ing monolingual models tailored to specific lan-
guages, resulting in superior performance for lan-
guages such as French (Martin et al., 2020; Le
et al., 2020), German (Chan et al., 2020), Dutch
(de Vries et al., 2019; Delobelle et al., 2020), and
Finnish (Virtanen et al., 2019). The release of Her-
BERT (Mroczkowski et al., 2021) pre-trained for
Polish was particularly noteworthy, given the lin-
guistic proximity to Ukrainian (Beaufils and Tomin,

2020).
With the advent of increasingly powerful Large

Language Models (LLMs), questions arose regard-
ing the necessity of pre-training BERT-like mod-
els. Hadeliya and Kajtoch (2023) investigated In-
Context Learning (ICL) approaches in Polish for
models like Llama 2 (Touvron et al., 2023), com-
paring them with full fine-tuning of models like Her-
BERT. Their findings indicated that full fine-tuning
consistently outperformed ICL approaches across
various downstream tasks. Notably, the Ukrainian
portion of datasets used for LLM pre-training either
matched or significantly lagged behind their Polish
counterparts in terms of representation (Touvron
et al., 2023; Chowdhery et al., 2022).

Recent years have witnessed notable advance-
ments in the development of Ukrainian language
processing, traditionally considered low-resource.
These advancements were facilitated by the re-
lease of multi- and monolingual text corpora (Wen-
zek et al., 2020; Conneau et al., 2020; Chaplynskyi,
2023; Nguyen et al., 2023), enabling the training of
larger-scale models. Earlier initiatives aimed at de-
veloping Ukrainian language models by Radchenko
(2020) and Schweter (2020), further referred to as
Ukr-RoBERTa and Ukr-ELECTRA respectively, rep-
resent crucial foundational steps in monolingual
language modeling for Ukrainian. These efforts un-
derscored the potential of this domain, demonstrat-
ing improved performance compared to multilingual
models like mBERT. In addition to the aforemen-
tioned advancements, there has also been notable
progress in the Causal Language Models training
(Kyrylov and Chaplynskyi, 2023).

A recent breakthrough in Ukrainian language
processing emerged with the introduction of the
WECHSEL embedding initialization method (Minix-
hofer et al., 2022). This facilitated efficient
cross-lingual transfer during the pre-training of
WECHSEL-RoBERTa, leading to performance en-
hancements that surpassed multilingual baselines
like XLM-R in Natural Language Understanding
(NLU) tasks. This development marks a significant
stride forward in Ukrainian language representation
learning and processing capabilities.

3. LiBERTa

In this section, we outline the comprehensive steps
taken to pre-train the LiBERTa Large model for the
Ukrainian language.

3.1. Training and Validation Data
We carefully selected two multilingual text corpora,
namely CulturaX and CC-100, from which we ex-
tracted the Ukrainian subset without any additional
cleaning or deduplication. To manage data effi-



122

Tokenizer Size Avg. Hits
XLM-RoBERTa 250K 1.739 54.46%
Ukr-RoBERTa 52K 1.846 42.16%
WECHSEL-RoBERTa 50K 1.866 40.89%
Ukr-ELECTRA 32K 1.443 69.89%
LiBERTa 32K 1.442 70.02%

Table 1: Evaluation results of tokenizers for Ukrai-
nian. Size is the size of the vocabulary, Avg. is
the average tokens per word ratio, and Hits is the
percent of words directly present in the vocabulary.

ciently during training, we leveraged the Datasets
library (Lhoest et al., 2021).

3.1.1. CulturaX

CulturaX, a compilation of mC4 (Raffel et al., 2019)
and OSCAR (Ortiz Su’arez et al., 2020; Ortiz
Su’arez et al., 2019) corpora, serves as an invalu-
able resource for our endeavor. The Ukrainian sub-
set of CulturaX comprises over 38 billion tokens
distributed across 44 million documents. The inclu-
sion of lengthy documents within this corpus facil-
itates the model’s capacity to capture long-range
dependencies, rendering it an apt choice for pre-
training.

3.1.2. CC-100

CC-100, a multilingual text corpus sourced from
Wikipedia and CommonCrawl, was processed fol-
lowing the CCNet1 methodology. The Ukrainian
segment of CC-100 encompasses 6.5 billion to-
kens, equivalent to 84 GiB of data2. This corpus
primarily aids in training the tokenizer.

3.1.3. Ukrainian UD

The Gold standard Universal Dependencies corpus
for Ukrainian (Ukrainian UD) (Kotsyba et al., 2018)
is a highly diverse and meticulously curated collec-
tion of high-quality text documents in Ukrainian. It
comprises over 100,000 tokens, providing a robust
foundation for reliable and multi-faceted evaluations
of Masked Language Modeling.

3.2. Tokenizer
We trained the Byte Pair Encoding (BPE) (Gage,
1994) tokenizer on the subset of CC-100 using Sen-
tencePiece (Kudo and Richardson, 2018) with byte

1https://github.com/facebookresearch/cc_net
2We believe there is a mistake in the original resource,

reporting 6.5 million tokens. That would not comply with
the number of tokens per 1 GiB ratio in other languages
with Cyrillic script.

fallback for robustness. The training dataset com-
prised 10 million paragraphs, amounting to 2.5 GiB
of raw uncompressed text. The resulting tokenizer
features a vocabulary of 32,000 cased tokens. Prior
to tokenization, input texts are being pre-tokenized
based on Unicode script boundaries and manually
defined punctuation symbols.

Evaluation of the tokenizer’s performance, con-
ducted against XLM-R’s tokenizer trained on a mul-
tilingual corpus and other Ukrainian language mod-
els, was based on the Ukrainian UD corpus. No-
tably, our tokenizer, on par with Ukr-ELECTRA’s,
despite possessing the smallest vocabulary, yields
the least subtokens per word and achieves the high-
est ratio of words represented as a single subtoken
in its vocabulary according to the metrics presented
in Table 1. Other tokenizers appear to be less
suited for the Ukrainian language according to our
validation corpus.

Additionally, tokenization was performed on
nearly 50 atypical words encompassing named
entities, dialectisms, domain-specific terminology,
slang, swear words, neologisms, anglicisms, words
with orthographic errors, as well as English or Pol-
ish words. Results indicate a consistent perfor-
mance across all tokenizers, albeit XLM-R’s tok-
enizer exhibits superior handling of English words,
while monolingual Ukrainian tokenizers demon-
strate poor performance in English contexts.

3.3. Model’s Architecture
The architecture of LiBERTa aligns with the original
BERT Large, comprising 24 layers, 16 attention
heads, and 1024 hidden dimensions. We employ
absolute positional embeddings with a maximum
sequence length of 512.

Implementation is facilitated through the Trans-
formers library (Wolf et al., 2019) by HuggingFace,
integrating Flash Attention (Dao et al., 2022) for
efficient processing. Model weights are initialized
randomly using PyTorch (Paszke et al., 2019).

3.4. Optimization
Optimization entails the utilization of the AdamW
optimizer (Loshchilov and Hutter, 2017) coupled
with a cosine learning rate schedule with a warm-
up. Following RoBERTa’s paradigm, the training
objective is structured around Masked Language
Modeling, wherein there is a 15% probability of
a token being replaced with a <mask> token, a
random token, or remaining unchanged.

3.5. Pre-training Process
LiBERTa was pre-trained with hyperparameters,
as delineated in Table 2. The training duration
spanned 39 hours, leveraging a computational

https://github.com/facebookresearch/cc_net
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Hyperparameter Value
Peak Learning Rate 2e-4
Warm-up Steps 5K
Learning Rate Decay Cosine
Effective Batch Size 1024
Batch Size per GPU 32
Gradient Accumulation Steps 4
Max Steps 85K
Weight Decay 0.01
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Gradient Clipping 1.0
Gradient Clipping Algorithm L2

Table 2: The hyperparameters used for pretraining
LiBERTa Large. The remaining parameters are the
defaults from the Huggingface library.

node equipped with 8 NVIDIA A100-SXM4-40GB
GPUs. Distributed Data Parallel (DDP) strategy
(Li et al., 2020) was employed to efficiently dis-
tribute training data and gradients across the GPUs.
bfloat16 adaptive mixed precision was used to
enhance throughput.

To accommodate longer documents present in
the corpus, they were partitioned into multiple
chunks, each comprising 510 subtokens besides
<cls> at the beginning and <sep> at the end. The
final chunk in a document was padded to match
the longest sequence in the batch.

Throughout the training process, validation was
conducted to assess metrics such as loss, perplex-
ity, and Masked Language Modeling Accuracy us-
ing the Ukrainian UD.

4. Evaluation

In this section, we present the evaluation tasks
utilized to assess LiBERTa’s performance in com-
parison to existing models for Ukrainian language
understanding.

4.1. Tasks
Given the absence of a standardized Natural Lan-
guage Understanding benchmark for the Ukrainian
language, we delineate the downstream tasks em-
ployed for evaluating our model.

4.1.1. NER-UK

NER-UK, sourced from lang-uk3, comprises over
6.7K named entities spanning 217K tokens from
the BrUK corpus of contemporary Ukrainian4. Eval-

3https://lang.org.ua/uk/
4https://github.com/brown-uk/corpus

uation is conducted via micro-averaged F1 Score
as calculated by seqeval (Nakayama, 2018).

4.1.2. WikiANN

WikiANN (Pan et al., 2017; Rahimi et al., 2019),
a multilingual named entity recognition dataset,
encompasses Wikipedia articles. The Ukrainian
subset comprises over 54K named entities across
318K tokens. Notably, the average document is
quite short, often a single sentence with 8 tokens
and containing only 1-2 named entities. Conse-
quently, this emphasizes how well the common
knowledge is embedded into the model besides its
ability to infer from the context. Evaluation employs
micro-averaged F1 Score via seqeval.

4.1.3. Part-of-Speech Tagging

Universal Dependencies (Nivre et al., 2017) is a
multilingual dataset with a consistent annotation of
grammar (parts of speech, morphological features,
and syntactic dependencies). In our evaluation, we
have concentrated on the Ukrainian Part-of-Speech
(POS) tagging. For this task, the metric used for
evaluation is accuracy.

4.1.4. Ukrainian News Classification

This task (Panchenko, 2021; Panchenko et al.,
2022) involves a corpus of news articles gathered
from popular Ukrainian media outlets. It is an unbal-
anced text classification task focused on predicting
news publication sources. Data preprocessing en-
sures the removal of implicit data leakages, with
mentions of sources being replaced by a special to-
ken. Evaluation utilizes macro-averaged F1 Score
to mitigate class imbalance effects.

4.2. Results
We compare LiBERTa’s performance against the
results reported5 by Minixhofer et al. (2022) for
NER-UK, WikiANN, and POS tagging, as shown in
Table 3.

LiBERTa demonstrates comparable performance
to the previous state-of-the-art in NER-UK (i.e.
WECHSEL-RoBERTa), exhibiting a slight perfor-
mance improvement (+0.03 pp.). Interestingly, for
this task, the second large model XLM-R achieves
results worse than all the base models. It also
has the highest variation. This result underscores
the necessity for training language-specific mod-
els since both WECHSEL-RoBERTa and LiBERTa
have lower variance.

Conversely, LiBERTa’s performance on WikiANN
is worse than all the other models, besides XLM-R

5https://huggingface.co/benjamin/roberta-large-
wechsel-ukrainian

https://lang.org.ua/uk/
https://github.com/brown-uk/corpus
https://huggingface.co/benjamin/roberta-large-wechsel-ukrainian
https://huggingface.co/benjamin/roberta-large-wechsel-ukrainian
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Model NER-UK
micro-f1

WikiANN
micro-f1

UD POS
acc

News
macro-f1

Base Models
XLM-R 90.86 (0.81)† 92.27 (0.09)† 98.45 (0.07)† –
WECHSEL-RoBERTa 90.81 (1.51)† 92.98 (0.12)† 98.57 (0.03)† –
Ukr-ELECTRA 90.43 (1.29)† 92.99 (0.11)† 98.59 (0.06)† –

Large Models
XLM-R 90.16 (2.98)† 92.92 (0.19)† 98.71 (0.04)† 95.13 (0.49)
WECHSEL-RoBERTa 91.24 (1.16)† 93.22 (0.17)† 98.74 (0.06)† 96.48 (0.09)
LiBERTa 91.27 (1.22) 92.50 (0.07) 98.62 (0.08) 95.44 (0.04)

Table 3: Evaluation results on the downstream tasks as a mean of 5 runs with different seeds. The values
in the parentheses denote the standard deviation of the metric values. ·† denotes the results reported by
Minixhofer et al. (2022).

base. This is interesting since even though the task
is the same as the first task, the average perfor-
mance on this dataset for all the models is higher
than in the first task. This discrepancy may arise
from the dataset’s nature, characterized by short
sentences and reliance on Wikipedia as the only
knowledge source. Multilingual models such as
XLM-R are typically trained on Wikipedia since the
data is of high quality, and it is very easy to make
sure it contains mostly texts in a given language.
But the names on Wikipedia are a mix of language-
specific and international (mostly English) words.
LiBERTa tokenizer was trained mostly on Ukrainian
texts and the model was trained only for 1 epoch.
This result indicates that it might be reasonable to
include English texts when training the tokenizer, to
better process anglicisms in Ukrainian and strikes
the importance of longer pre-training.

For the Part-of-Speech tagging task, LiB-
ERTa achieves marginally inferior (-0.12 pp. vs.
WECHSEL-RoBERTa) results compared to the cur-
rent state-of-the-art. The results for this task are
very high for all models, which indicates it is pretty
simple to tag POS in Ukrainian. The differences be-
tween the models might, in fact, be random and the
models might just learn the errors in the annotation.
Anyway, the results show that the model is able to
learn POS tagging very well, and it stresses the
importance of including the other tasks (morpholog-
ical feature prediction, lemmatization) in future work
since these tasks might be harder for the models.

While not exhaustively evaluated against all
available models, LiBERTa’s performance on the
Ukrainian News Classification dataset (as shown
in the last column of Table 3) surpasses the XLM-R
Large (+0.31pp.), albeit with inferior performance
compared to WECHSEL-RoBERTa.

5. Conclusion

In this study, we present LiBERTa Large, an
encoder-only language model for Ukrainian, trained

entirely from scratch. Our model demonstrates
competitive performance on various Natural Lan-
guage Understanding (NLU) tasks, rivaling the cur-
rent state-of-the-art models. Through our explo-
ration, we have observed that leveraging new text
corpora and employing a straightforward BERT ar-
chitecture with a Masked Language Modeling objec-
tive enables our model to effectively compete with
other models, which are exploiting cross-lingual
transfer of robustly pre-trained English models like
RoBERTa (trained for about 40 epochs on 160 GiB
of text).

The development of LiBERTa Large establishes
a novel baseline for future research endeavors,
opening avenues for investigating diverse architec-
tural enhancements, optimization objectives, and
data curation methodologies. Prior to this work,
the scarcity of data or computational resources of-
ten necessitated reliance on decisions made for
existing language models, such as RoBERTa, to fa-
cilitate effective cross-lingual weight transfer. How-
ever, our findings indicate promising prospects for
the development of language models trained from
scratch, thereby reducing the dependency on pre-
existing models and enabling greater flexibility in
model design and training.

Throughout our investigation, we encountered
challenges in evaluating and comparing Ukrainian
language models. The absence of a standardized
benchmark, akin to GLUE and SuperGLUE for En-
glish (Wang et al., 2018, 2019a) or KLEJ for Pol-
ish (Rybak et al., 2020), renders comprehensive
and consistent model comparisons across diverse
NLU tasks, including Natural Language Inference
(NLI), Extractive Question Answering (EQA), and
Machine Reading Comprehension (MRC), impos-
sible.

Additionally, we encountered instances of modal
collapse during our pre-training experiments, partic-
ularly evident while training on shorter sequences,
leading to a huge spike in loss and the inability
to continue the experiment. Notably, the model
tended to generate commas for every token in the
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input sequence. Mitigating modal collapse required
the implementation of techniques such as gradi-
ent clipping, adjusting input sequence lengths, and
decreasing the peak learning rate to ensure the
stability and convergence of the training process.

We believe our reported results will inspire NLP
researchers to explore pre-training Ukrainian lan-
guage models from scratch, leveraging novel tech-
niques to establish a new state-of-the-art.

Limitations

One limitation of our study lies in the scope of our
evaluation, which may not cover all available mod-
els, potentially missing alternative approaches or
architectures that could yield superior results. Re-
source constraints, including computational and
time limitations, may have prevented us from fully
exploring LiBERTa’s potential, leaving room for fur-
ther optimization and refinement.

Furthermore, our training dataset, CulturaX, may
have included biases inherent in its collection pro-
cess or source material. These biases could af-
fect the model’s understanding and representation
of certain linguistic patterns or social phenomena.
Further investigation into the nature and extent of
these biases is warranted to enhance the model’s
robustness and fairness in real-world applications.
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