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Abstract

This report presents the results of the shared
tasks organized as part of the VarDial Evalu-
ation Campaign 2024. The campaign is part
of the eleventh workshop on Natural Language
Processing (NLP) for Similar Languages, Va-
rieties and Dialects (VarDial), co-located with
NAACL 2024. Two shared tasks were included
this year: dialectal causal commonsense reason-
ing (DIALECT-COPA), and Multi-label classi-
fication of similar languages (DSL-ML). Both
tasks were organized for the first time this year,
but DSL-ML partially overlaps with the DSL-
TL task organized in 2023.

1 Introduction

The workshop series on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial), tradi-
tionally co-located with international conferences,
has reached its eleventh edition. Since the first
edition, VarDial has hosted shared tasks on vari-
ous topics such as language and dialect identifi-
cation, morphosyntactic tagging, question answer-
ing, and cross-lingual dependency parsing. The
shared tasks have featured many languages and di-
alects from different families and data from various
sources, genres, and domains (Aepli et al., 2023,
2022; Chakravarthi et al., 2021; Gaman et al., 2020;
Zampieri et al., 2019, 2018, 2017; Malmasi et al.,
2016; Zampieri et al., 2015, 2014).

As part of the VarDial Evaluation Campaign
2024, we offered two shared tasks which we
present in this paper:

• DIALECT-COPA: Dialectal causal common-
sense reasoning1

• DSL-ML: Multi-label classification of similar
languages2

1Task organizers: Nikola Ljubešić, Ivan Vulić, Goran
Glavaš.

2Task organizers: Adrian Chifu, Radu Ionescu, Aleksandra
Miletić, Filip Miletić, Yves Scherrer.

DSL-ML continues the long line of language
and dialect identification (Jauhiainen et al., 2019)
shared tasks at VarDial, whereas DIALECT-COPA
features a task novel to the evaluation campaigns.

The evaluation campaign took place in January
– March 2024. The call for participation and the
training data sets for the shared tasks were pub-
lished in the second half of January, and the results
were due to be submitted on March 11th.3

In the following sections, the two tasks are dis-
cussed in detail, focusing on the data, the partici-
pants’ approaches, and the obtained results. Sec-
tion 2 is dedicated to DIALECT-COPA and Sec-
tion 3 to DSL-ML.

2 The DIALECT-COPA Task on Causal
Commonsense Reasoning

2.1 Motivation

The causal commonsense reasoning (CCR) task
has been established as an important task in evalua-
tion of natural language understanding (NLU) ca-
pabilities of pretrained language models, including
the latest family of the so-called Large Language
Models (LLMs). The original English dataset,
Choice Of Plausible Alternatives (COPA) (Roem-
mele et al., 2011) has been used as the standard
evaluation benchmark for the English CCR task
since its release, and it is also included in the En-
glish SuperGLUE benchmark (Wang et al., 2019).

Language-specific variants of COPA have also
been created, where the bulk of the data is covered
in the multilingual XCOPA dataset (Ponti et al.,
2020). The original XCOPA covers 11 standard
language varieties from 11 language families, in-
cluding some lower-resource languages such as
Haitian Creole, Tamil, and Southern Quechua. It
has been included into the established XTREME-
R benchmark (Ruder et al., 2021) for the evalua-

3https://sites.google.com/view/vardial-2024/
shared-tasks
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tion of cross-lingual transfer, and has consequently
been used as a de facto evaluation benchmark for
CCR in cross-lingual and multilingual scenarios.
Besides XCOPA, there also exist single-language
translations of adaptations of COPA into other
languages such as Slovenian (Žagar and Robnik-
Šikonja, 2022), Russian (Shavrina et al., 2020), and
Catalan,4 among others.

While COPA and XCOPA were considered
challenging benchmarks for previous encoder-
style models such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) and XLM-R (Con-
neau et al., 2020), current state-of-the-art LLMs
now provide impressive performance on these
datasets (Chowdhery et al., 2023; Zhong et al.,
2022; Shi et al., 2023): they are able to reach
≥ 90% accuracy for diverse languages such as
Thai, Estonian, Indonesian, Tamil, Vietnamese or
Turkish (Shi et al., 2023). Whereas LLMs have
been proven to perform extremely well on high-
resource and even moderately resourced standard
languages, their ability to conduct CCR for truly
low-resource languages (Senel et al., 2024) and
especially dialects (Joshi et al., 2024) has been
much less investigated and empirically measured.
For instance, lower performance on the standard
lower-resource languages of the XCOPA dataset
(e.g., Haitian Creole, Quechua, Swahili) already
indicates additional difficulty for and reduced ca-
pability of current LLMs.

All COPA datasets to date comprise the same
set of instances covering the same or similar set of
topics. The only core difference between different
datasets is the actual, target language variety of a
particular dataset. Another property of COPA and
its derivatives is its simple and easy-to-evaluate
data format. In a nutshell, each data instance con-
sists of three sentences: a statement (premise) and
two possible effects or causes (termed alternatives)
for the premise. Given an English example, a
premise ‘The man turned on the faucet.’ is com-
bined with two alternatives ‘The toilet filled with
water.’ and ‘Water flowed from the spout’. The task
is then to select the alternative that more plausibly
has a causal relation with the premise, where each
instance is manually annotated with a correct an-
swer. The standard evaluation measure is accuracy,
where the random baseline is therefore at 50% accu-
racy, and errors made by the systems could be due

4https://huggingface.co/datasets/projecte-ain
a/COPA-ca

to subtle details related to understanding causality
relationships.

The above background related to CCR in gen-
eral and COPA-style datasets in particular has mo-
tivated us to create a first shared task on CCR for
dialectal data, DIALECT-COPA, which we discuss
next. In summary, the selection of the task has been
guided by the following observations and criteria:

• CCR is an established and important NLU task
for the evaluation of language models in mono-
lingual, multilingual, and cross-lingual setups;

• CCR has never been in focus of VarDial eval-
uation campaigns and, vice versa, there have
been no attempts to date to extend the CCR task
and the corresponding COPA-style data to non-
standard language varieties and dialects;

• CCR based on the standard COPA data format
offers an excellent balance between the structural
simplicity and semantic complexity of the task,
with clear and straightforward evaluation proto-
cols and measures.

• The standardized COPA format and the multi-
parallel nature of COPA-based datasets in differ-
ent standard language varieties combined with
newly created dialectal COPA variants offer am-
ple opportunity for cross-linguistic and cross-
dialectal analyses and studies of model behavior
and performance, as part of the shared task as
well as for future research.

• For dialects chosen for DIALECT-COPA, ob-
taining large quantities of raw text is typically
not possible, which renders good out-of-the-box
performance of LLMs for them difficult and un-
likely; this calls for new and creative approaches
in order to mitigate the current gaps of LLMs
when faced with CCR on dialectal data.

2.2 Data
The focus of the first DIALECT-COPA shared task
has been on micro-dialects of several South-Slavic
languages. This choice has been partially moti-
vated by the recent creation of COPA datasets for
standard language varieties of several, moderately
resourced in NLP terms, South-Slavic languages:
Slovenian COPA-SL (Žagar and Robnik-Šikonja,
2022), Croatian COPA-HR (Ljubešić, 2021), Ser-
bian COPA-SR (Ljubešić et al., 2022b) and Mace-
donian COPA-MK (Ljubešić et al., 2022a). All
the datasets were translated by human translators,
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native speakers of the target languages, from the
English COPA dataset (Roemmele et al., 2011),
with all the datasets, except for COPA-SL, follow-
ing the XCOPA translation and adaptation method-
ology (Ponti et al., 2020). COPA-SL was trans-
lated without any additional adaptation as part of
the Slovenian SuperGLUE benchmark (Žagar and
Robnik-Šikonja, 2022). Serbian and Macedonian
datasets are written in Cyrillic, while the other data
are in the Latin script.

For the shared task, the COPA-* datasets in
the standard South-Slavic languages were then ex-
tended to three micro-dialects that are spoken in
narrow micro-geographical areas (Ljubešić et al.,
2024a): 1) the Cerkno dialect of Slovenian (COPA-
SL-CER), spoken in the Slovenian Littoral region,
specifically from the town of Idrija; 2) the Chaka-
vian dialect of Croatian from northern Adriatic
(COPA-HR-CKM), specifically from the town of
Žminj, and 3) the Torlak dialect from southeast-
ern Serbia (COPA-SR-TOR), specifically from the
town of Lebane in Serbia.

The three dialectal datasets featuring in the
DIALECT-COPA task were again created fol-
lowing the established translation and adaptation
methodology of XCOPA. All data instances were
translated and adapted from the closest standard
language COPA (e.g., COPA-HR was used to de-
rive COPA-HR-CKM), allowing the human trans-
lators to also consult the original English COPA
as the additional source. Following the original
COPA data split, COPA-SL-CER and COPA-SR-
TOR contain 400 instances for training, 100 for
development and 500 test instances. COPA-HR-
CKM was treated as a surprise dialect, and it com-
prises only the 500 translated and adapted test in-
stances. We allowed the use of any external data
except the 500 test instances in any language for
which a COPA dataset variant exists,5 given the
multi-parallel nature of the COPA datasets.

While the contamination of todays’ LLMs with
the English COPA dataset is very likely, we are
rather sure that there is a minimum danger of the
results of this shared task to be contaminated, and
this is for the following reasons: (1) the dialec-
tal datasets were not published before this shared
task, (2) inspections of performance of various re-
cent LLMs has shown not-perfect results on the
English dataset, and (3) comparable results to the

5This of course refers to all the other ‘COPA languages’
beyond the South Slavic languages, e.g., all the XCOPA lan-
guages, Russian, and Catalan

English ones were achieved on the non-English
datasets, that are available for a short period of
time. Finally, to ensure future validity of the mea-
surements on this shared task’s data, the test data
of the DIALECT-COPA dataset are not published
publicly, but are available only upon request of
fellow researchers.

The evaluation metric regularly used in the
COPA datasets, as well as inside this shared task,
is accuracy, which puts the random baseline, given
the binary nature of the task, at 50%. Ljubešić
et al. (2024a) propose already competitive base-
lines, with Mixtral 8x7B Instruct (Jiang et al., 2024)
zero-shotting achieving results around 70% accu-
racy on standard South Slavic datasets, but random
to 63% accuracy on the dialectal datasets. Simi-
larly, with zero-shotting the GPT-4 model (OpenAI
et al., 2024), results of around 95% accuracy are re-
ported for the standard South Slavic datasets, while
the dialectal datasets achieve results between 60%
and 93%. The significantly lower results on di-
alectal datasets, regardless of the model applied,
show for the DIALECT-COPA dataset to be a very
much open challenge and therefore a great fit for
this evaluation campaign.

2.3 Participants

gmu-nlp. The team from the George Mason Uni-
versity submitted 10 runs, which is the maximum
number of allowed runs in the shared task. Their
approach (Faisal and Anastasopoulos, 2024) pri-
marily focused on adaptation to dialects through
various techniques of data augmentation: namely
transforming cause instances into effect instances
(and vice versa) by switching the place of the
premise and the correct hypothesis, generating the
non-available Chakavian training data by trans-
lating the standard data into the dialect via the
the Claude 3 (Anthropic, 2024) and GPT-4 (Ope-
nAI et al., 2024) models prompted with dialec-
tal translation examples and rules, and fine-tuning
a model on a combination of training data from
specific languages and dialects. They inspected
two models: the smaller Electra-style BERTić
model (Ljubešić and Lauc, 2021), and the mT5-
based aya-101 model (Üstün et al., 2024). The
authors also used the ‘trick’ of independently fine-
tuning a cause and an effect model.

JSI. The team from the Jožef Stefan Insitute sub-
mitted six runs, all based on zero- and few-shotting
the Mixtral 8×7B Instruct model (Jiang et al., 2024)
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team run name API-only adapt sl-cer hr-ckm sr-tor mean

gmu-nlp 1 orgl_hr_ckm_test N FT 0.700 0.750 0.824 0.758
gmu-nlp 2 aya N FS 0.694 0.756 0.84 0.763
gmu-nlp 3 orglc_omix_mk_hr_ckm_test N FT 0.690 0.756 0.836 0.761
gmu-nlp 4 orgl_sl_cer_test N FT 0.686 0.718 0.836 0.747
gmu-nlp 5 orgl_test N FT 0.682 0.760 0.824 0.755
gmu-nlp 6 orgl_mk_hr_ckm_test N FT 0.660 0.742 0.848 0.750
gmu-nlp 7 orgl_mk_hr_ckm N FT 0.582 0.634 0.682 0.633
gmu-nlp 8 all_train_rev_genx_omixmatch_select N FT 0.576 0.622 0.692 0.630
gmu-nlp 9 orgl_mk_hr_ckm_10 N FT 0.572 0.626 0.722 0.640
gmu-nlp 10 orgl_10 N FT 0.540 0.622 0.700 0.621
JSI 1 gpt4-zero Y ZS 0.594 0.754 0.908 0.752
JSI 2 gpt4-task Y FS 0.734 0.890 0.974 0.866
JSI 3 gpt4-list Y FS 0.696 0.846 0.946 0.829
JSI 4 mixtral-zero N ZS 0.518 0.576 0.706 0.600
JSI 5 mixtral-task N FS 0.542 0.640 0.724 0.635
JSI 6 mixtral-list N FS 0.578 0.618 0.722 0.639
WueNLP 1 MixtralLoRA-en-last N FT 0.562 0.626 0.714 0.634
WueNLP 2 MixtralLoRA-en-val N FT 0.574 0.620 0.706 0.633
WueNLP 3 MixtralLoRA-x-last N FT 0.556 0.606 0.738 0.633
WueNLP 4 MixtralLoRA-x-val N FT 0.550 0.608 0.738 0.632
UNIRI 1 RAG_simple_1 Y ZS 0.688 0.760 - -
UNIRI 2 simple_1 Y ZS 0.664 0.774 0.894 0.777
UNIRI 3 RAG_with_reasoning_1 Y ZS 0.708 0.764 - -
UNIRI 4 with_reasoning_1 Y ZS 0.608 0.664 0.806 0.693

Table 1: Official results on the DIALECT-COPA shared task. The evaluation metric is accuracy, with a random
baseline of 0.5. The API-only column encodes whether the system is based on a closed model, available only through
API calls or not. The adapt column categorizes the system adaptations whether they are based on fine-tuning (FT),
few-shot (FS) or zero-shot (ZS) approaches.

and the GPT-4 model (OpenAI et al., 2024), the
few-shotting approach exploiting their finding that
correct answers are not crucial for the in-context
learning of the dialect, and that the first N test in-
stances, where correct answers are not given, can
easily be exploited for that task, with great enhance-
ments in results (Ljubešić et al., 2024b). The team
also investigated a plethora of other models, the
two selected models being by far the best perform-
ing in the group of open-source models (Mixtral
8x7B) and closed-source models (GPT-4).

WueNLP. The team from the University of
Würzburg submitted four runs, all being focused
on LoRA-fine-tuning the Mixtral 8×7B Instruct
model (Jiang et al., 2024) either on English or on
standard language data, following upon the logic
that dialectal data might not be available for fine-
tuning the model (Ljubešić et al., 2024b). The team
regularly fine-tuned the model on the training sub-
set only, keeping the development data for selecting
the checkpoint with the best results.

UNIRI. The team from the University of Ri-
jeka submitted four runs, all exploiting the GPT-

4 model, the basic zero-shot approach being ex-
tended with a step-by-step-reasoning prompt and
a retrieval-augmented-generation-based use of di-
alectal lexicons (Perak et al., 2024). The dialectal
lexicons, available for two out of the three dialects
in question, have previously been extended with
examples generated by GPT-4.

2.4 Results

The official results of the four teams that have sub-
mitted their system descriptions are given in Ta-
ble 1. The first observation to be made is that all
of the runs on all of the systems have beaten the
random baseline of 50% accuracy.

Starting with the gmu-nlp team, their results
show an expected improvement in results when
the aya-101 model is employed (runs 1-6) in com-
parison to the smaller BERTić model (runs 7-
10). While the team provides very interesting ap-
proaches to data augmentation, the second run,
based only on few-shotting the aya model, achieves
very competitive results to the remaining runs em-
ploying the same model, but relying on LoRA-
fine-tuning on various combinations and enhance-
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ments of the training data. Important to note is that
the gmu-nlp team provided the best results overall
when an open-source backbone LLM is used.

Moving on to the JSI team, they have reached the
best results overall, but with the API-only closed-
source GPT-4 model. They propose a simple zero-
shot prompt, and two improvements of that prompt,
both exploiting the first 10 instances from the test
set. While the list prompt only gives exemplary
sentences of the target dialect, the task prompt con-
tains the structure and the goal of the task, but
without an answer given. Both 10-shot prompts im-
prove the zero-shot approach significantly, the list
prompt being inferior to the task prompt, showing
that, while learning about the dialect in-context is
the biggest source of improvement, learning about
the task itself does help further.

The WueNLP team, exploiting LoRA-based fine-
tuning of Mixtral, obtained very similar results to
those few-shot results of the JSI team. This shows
that fine-tuning an LLM on 400 training instances
on the specific task, either on English data (runs
1 and 2), or on the standard language data closest
to the target dialect (runs 3 and 4), is equivalent to
in-context learning from 10 instances in the target
dialect (JSI team runs 5 and 6), even if the task
itself (JSI team run 6), or an answer (JSI team
run 5), are not provided. Interestingly, there is
no difference in the results regardless of whether
the English or the standard-variety training data
are used for fine-tuning, showing that fine-tuning
successfully informs the model of the task (the
results are three points better than JSI team run
4 - Mixtral zero-shot results), but not of the final
dialect.

Finally, the UNIRI team exploits, similarly to
the JSI team, the GPT-4 model, but obtains bet-
ter results on simple zero-shotting (UNIRI team
run 2 vs. JSI team run 1), quite likely due to a
better stated prompt, starting with This is a rea-
soning task. Where UNIRI do not improve is with
the step-by-step-reasoning prompt, which lowers
all their results (run 4). Interestingly enough, the
step-by-step-reasoning prompt improves their re-
sults on standard languages (reported in their pa-
per), showing that even GPT-4 is challenged by
reasoning in a dialect to a level where the step-by-
step-reasoning requirement hurts the performance.
Interestingly, the retrieval-augmented-generation
approach of UNIRI does help on the Slovenian Cer-
kno dialect, but slightly hurts the performance on

the Chakavian dialect. A potential reason is that
the overall performance on the Cerkno dialect is
lower: therefore, the additional lexical information
is more helpful than in the case with the Chakavian
dialect.

2.5 Conclusions
The overall conclusions that can be drawn from
the results of the DIALECT-COPA task are the fol-
lowing. First, there is a large dialectal gap present,
given the difference between the results reported on
the standard datasets and the dialectal datasets. Sec-
ond, open-source models do not perform as well as
the closed API-based models; however, few-shot
or fine-tuned open models achieve the level of per-
formance of zero-shot closed models. Third, data
augmentation or retrieval-augmented-generation
through dialectal lexicons seems to be as efficient
as simply in-context learning from a few dialectal
examples. Finally, the highly-efficient in-context
learning seems to benefit mostly from the addi-
tional information on the dialect to be processed,
rather than on the task itself.

3 The DSL-ML Task on Multi-Label
Similar Language Identification

3.1 Motivation
VarDial has run shared tasks on the topic of discrim-
inating between similar languages and varieties
since its first edition. The DSL shared tasks orga-
nized from 2014 to 2017 focused on languages with
several varieties like English, Spanish, Portuguese,
and BCMS (Bosnian, Croatian, Montenegrin, Ser-
bian) (Zampieri et al., 2017; Malmasi et al., 2016;
Zampieri et al., 2015, 2014). These tasks were
based on the DSL Corpus Collection (DSLCC Tan
et al., 2014),6 a collection of journalistic texts com-
piled assuming that each instance’s variety label
is determined by where the text is retrieved from.
Previous research (e.g. Goutte et al., 2016) has
shown the limitations of this problem formulation,
as some texts (especially short texts such as single
sentences) may not contain any linguistic marker
that would allow systems, or even native speakers,
to discriminate between two similar language va-
rieties. In the past years, several proposals were
made to address this issue:

• The DSL-TL dataset (Zampieri et al., 2023),
introduced in conjunction with a shared task

6http://ttg.uni-saarland.de/resources/DSLCC/
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English Portuguese Spanish French BCMS

Number of varieties 2 (UK, US) 2 (PT, BR) 2 (AR, ES) 4 (BE, CA, CH, FR) 4 (BS, HR, ME, SR)
Annotation Human Human Human Automatic Human
Train labeling Multi-label Multi-label Multi-label Multi-label Single-label
Dev labeling Multi-label Multi-label Multi-label Multi-label Multi-label
Test labeling Multi-label Multi-label Multi-label Single-label Multi-label
Named entities Present Present Present Masked Present
Avg. tokens/instance in train 33 38 52 64 5548
Training instances 2097 3467 3467 340,363 368
Multi-label instances in dev 13% 14% 32% 0.7% 20%

Table 2: Key properties of the datasets used in the DSL-ML task.

at VarDial 2023 (Aepli et al., 2023), contains
Spanish, Portuguese and English sentences
that were manually annotated using crowd-
sourcing. The annotation setup is restricted
to two varieties per language (e.g. Peninsular
and Argentinian Spanish), but allows a third
option “Both or neither” if the instance does
not provide sufficient grounds for reliable clas-
sification.

• Bernier-Colborne et al. (2023) argue that lan-
guage variety identification is best framed as
a multi-label classification problem. They
analyze the FreCDo corpus (Găman et al.,
2023) used in the VarDial 2022 FDI shared
task (Aepli et al., 2022) and find substantial
amounts of near-duplicate sentences associ-
ated with different labels in FreCDo. This
near-duplicate analysis allows them to auto-
matically derive a variant of FreCDo where
ambiguous instances are annotated with mul-
tiple labels.

• Keleg and Magdy (2023) analyze different
datasets used for Arabic dialect identification
and find that many of the analyzed samples
are valid in multiple dialects. As a result, the
performance of dialect identification models
is underestimated, as about two thirds of false
positives are actually not true errors. Like
Bernier-Colborne et al. (2023), they recom-
mend multi-label annotations as a solution for
future dialect identification tasks.

• Miletić and Miletić (2024) propose a reannota-
tion of a single-annotator, single-label dataset
for BCMS based on Twitter data (Rupnik
et al., 2023). They explicitly introduce multi-
label annotation based on labels produced by
multiple annotators from all target regions. A

re-evaluation of a previously proposed DSL
system (Rupnik et al., 2023) against the multi-
label annotation shows an improvement of the
accuracy assessment (+4.1 points), indicating
that some of the model predictions that were
considered as wrong in the single-label setting
are not necessarily errors. These results fur-
ther support the multi-label annotation for the
DSL task.

3.2 Data
The DSL-ML task is based on three data sources
from five different languages. The choice of lan-
guages was mainly motivated by the availability of
existing multi-label-annotated datasets. The five
datasets have rather distinct properties in terms of
size, instance lengths, genre, annotation and pre-
processing. Table 2 summarizes these differences
across the datasets (detailed statistics are provided
in Table 3 in the appendix). For this reason, we
provide distinct datasets for the five languages and
evaluate the participants’ submissions separately
on each of them.

English, Portuguese, Spanish. For these lan-
guages, we re-use the DSL-TL dataset with the
same split as in the VarDial 2023 task. We merely
transform the “neither/both” labels to a comma-
separated list of variant annotations. For example,
the generic label ES becomes ES-ES,ES-AR.

French. The French training and development
sets are obtained by combining the FreCDo (Gă-
man et al., 2023) and DSLCC v4 (Tan et al., 2014)
datasets, which comprise French (FR-FR), Swiss
(FR-CH), Belgian (FR-BE), and Canadian (FR-CA)
samples of text collected from the news domain.
The topics used to collect most of the training and
development data are available in the FreCDo pa-
per. For the test data, we choose a new set of
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Training Development Test

Language Label # Samples # Tokens # Samples # Tokens # Samples # Tokens

English

EN-GB 755 21,011 211 5,767 114 3068
EN-GB, EN-US 273 8,686 76 2,409 30 978
EN-US 1,069 49,761 312 12,380 156 6352

Total 2097 79,458 599 20,556 300 10,398
Multi-label 13.0% 12.7% 10.0%

Spanish

ES-AR 851 49,009 227 12,725 133 8,034
ES-AR, ES-ES 1,131 61,559 318 17,421 156 8,528
ES-ES 1,485 93,584 444 28,021 206 13,290

Total 3,467 204,152 989 58,167 495 29,852
Multi-label 32.6% 32.2% 31.5%

Portuguese

PT-BR 2,136 98,061 588 26,848 299 13,605
PT-BR, PT-PT 420 17,684 134 5,562 59 2,232
PT-PT 911 38,524 269 11,379 137 5,887

Total 3,467 154,269 991 43,789 495 21,724
Multi-label 12.1% 13.5% 11.9%

French

FR-BE 120,653 8,147,415 7,444 508,853 3,000 333,001
FR-BE, FR-CA 2 108
FR-BE, FR-CH 603 44,991 31 1,920
FR-BE, FR-CH, FR-FR 61 2,681
FR-BE, FR-FR 1,052 81,602 82 5,295
FR-CA 19,041 557,468 2,167 148,669 3,000 334,755
FR-CA, FR-FR 2 161
FR-CH 115,664 7,530,080 1,021 70,245 3,000 317,727
FR-CH, FR-FR 162 12,218 3 186
FR-FR 83,127 5,280,740 6,338 432,269 3,000 323,485

Total 339,537 21,657,195 17,090 1,167,706 12,000 1,308,959
Multi-label 0.6% 0.7% 0.0%

BCMS

BS 45 257,856 7 66,186 10 65,660
BS, HR 4 29,596 3 9,661
BS, HR, ME 1 1,634
BS, HR, ME, SR 1 7,294
BS, ME 5 24,791 4 42,262
BS, ME, SR 2 26,958
BS, SR 4 23,398 1 2,015
HR 53 385,385 16 128,760 16 131,821
HR, SR 6 25,496 2 10,247
ME 34 242,084 4 20,385 8 66,157
ME, SR 5 45,738 3 17,340
SR 236 1,489,997 70 434,136 73 479,606

Total 368 2,375,322 122 805,780 123 853,361
Multi-label 0.0% 13.0% 13.0%

Table 3: Distribution of samples and tokens in the DSL-ML datasets.

topics, namely “inflation” (En.: “inflation”), “jeux
olympiques” (En.: “olympic games”), and “reine
d’angleterre” (En.: “queen of england”). Each
topic was used to query two sources per coun-
try. We underline that the training and test top-
ics and sources are disjoint, which generates a
cross-domain evaluation setting. Multi-label anno-
tations are inferred using the approach of Bernier-
Colborne et al. (2023), which converts near du-
plicates into multi-label samples. After applying

this data cleaning procedure, the training set re-
mains with 340,363 samples, while the develop-
ment and test sets consist of 17,090 and 12,000
samples, respectively. The training and develop-
ment data are multi-label, meaning that samples
may belong to more than one class, while the test-
ing samples are single-label.7 In contrast to the
datasets of the other languages, named entities are

7Running the code of Bernier-Colborne et al. (2023) on
the test data did not result in finding near duplicates.
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replaced with the $NE$ tag to prevent systems from
learning named-entity-related shortcuts. The com-
plete dataset contains approximately 370K samples
and 33M tokens.

BCMS. The training set is the same as the
BENCHIC-langTwitter training set (Rupnik et al.,
2023) (except that retweets were removed from the
data for the shared task) and thus only contains
single-label annotations. The development and test
sets come from the same collection, but were man-
ually reannotated with multiple labels (Miletić and
Miletić, 2024). The instances in this dataset cover
the entire tweet production of a user and are thus
much longer than the single-sentence instances of
the other datasets.

Table 3 shows the number of samples and tokens
per label and split for all DSL-ML languages, as
well as the corresponding percentages of multi-
label samples.

3.3 Baseline

The baseline proposed by the shared task organizers
is based on an SVM classifier applied on a com-
bination of TF-IDF-weighted character and word
n-grams.8 The classifier follows a multi-class (but
not multi-label) setup where label combinations are
added as distinct atomic labels. For example, the
English task would have three distinct labels: the
two single-variety labels EN-GB and EN-US as well
as the multi-variety-label EN-GB,EN-US. This setup
is equivalent to the one used in DSL-TL, except
that the EN label is renamed to EN-GB,EN-US.

3.4 Participants

Brandeis. The Brandeis team (Sälevä and Palen-
Michel, 2024) submitted 3 runs for each of the five
languages. Their first run is based on a simple clas-
sifier applied to bag-of-n-gram features, where the
n-grams are considered at both word and character
levels. Aside from count n-gram-based statistics,
they also employ the TF-IDF scheme as an alter-
native representation. For the classification, they
alternatively consider logistic regression models,
linear-kernel SVMs and random forest models.

For their second run, Sälevä and Palen-Michel
(2024) employ a pre-trained multi-lingual BERT
(mBERT) (Devlin et al., 2019) and independently

8The code for the baseline system is available at https:
//github.com/yvesscherrer/DSL-ML-2024/tree/mai
n/baseline. The system described here corresponds to the
atomic option in the provided script.

fine-tune it on each subset of languages. To ad-
dress the multi-label classification task, the authors
attach a linear classification layer with a sigmoid
activation for each unit, and use a threshold of 0.5
for the label to be included in the set of predicted
labels. However, if there is no label surpassing the
initial threshold, they gradually lower the threshold
to 0.25 and 0.05, respectively.

The third run submitted by Brandeis is a vari-
ation of the second run, where the fine-tuning of
mBERT is jointly performed on all languages (from
all sub-tasks) at once.

Jelly. The Jelly team (Gillin, 2024) submitted
3 runs for English, Spanish and Portuguese and
1 run for French; they did not participate in the
BCMS subtask. All submitted runs except one
are based on one-shot prompting a large language
model (LLM). The authors choose the open-source
Mistral-7B model (Jiang et al., 2023). For each
test sample, the authors provide a prompt contain-
ing one training example per language variety and
expect the model to produce the multi-label predic-
tion for the given test sample. The different runs
differ in the postprocessing of the model output and
the back-off strategy chosen if the model output
did not contain any valid label.

For the English sub-task, run 2 refers to a vari-
ant of in-context learning where the prompt also
contains instructions for the labeling task, and run
3 is an ensemble of runs 1 and 2. This team also
submitted the raw outputs of Mistral-7B without
postprocessing and backoff for comparison - these
runs are marked as open.

VLP. The VLP team (Ngo et al., 2024) submitted
one or two runs for each language. Their first run
is based on a bidirectional long short-term memory
network (BiLSTM) (Graves et al., 2013). It com-
prises an embedding layer, several BiLSTM layers
and two dense layers, where the last one performs
the classification of samples via softmax.

The second run employs the same architecture,
but the input is based on ConceptNet embeddings
(Speer et al., 2017). More specifically, the authors
use ConceptNet Numberbatch semantic vectors,
which provide a representation of word meanings
extracted from ConceptNet. The ConceptNet em-
beddings are not available for BCMS, therefore
only run 1 is submitted for that subtask. The VLP
submissions consider all target labels as atomic, in
the same way as the baseline.
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English
Rank Team Run Macro-F1 Multi-label EM

1 Brandeis 3 0.855 0.267
2 Brandeis 2 0.853 0.267
3 Brandeis 1 0.806 0.267
4 VLP 2 0.770 0.167
5 VLP 1 0.759 0.267
6 Jelly 2 0.755 0.133
7 Jelly 2-open 0.752 0.367
8 Baseline 0.751 0.100
9 Jelly 1 0.751 0.300
10 Jelly 3 0.750 0.367
11 Jelly 1-open 0.717 0.233

Spanish
Rank Team Run Macro-F1 Multi-label EM

1 Brandeis 2 0.823 0.500
2 Brandeis 3 0.821 0.551
3 Baseline 0.770 0.391
4 VLP 1 0.754 0.455
5 Brandeis 1 0.746 0.455
6 VLP 2 0.741 0.423
7 Jelly 1 0.663 0.333
8 Jelly 2 0.655 0.289
9 Jelly 3 0.649 0.289

10 Jelly 1-open 0.601 0.199

Portuguese
Rank Team Run Macro-F1 Multi-label EM

1 Brandeis 3 0.752 0.424
2 Brandeis 1 0.724 0.220
3 Brandeis 2 0.714 0.136
4 Baseline 0.683 0.068
5 VLP 1 0.664 0.136
6 Jelly 1 0.629 0.356
7 Jelly 2 0.593 0.136
8 Jelly 3 0.586 0.136
9 VLP 2 0.566 0.000
10 Jelly 1-open 0.388 0.034

French
Rank Team Run Macro-F1

1 Brandeis 3 0.385
2 Baseline 0.372
3 Jelly 1 0.313
4 Brandeis 1 0.270
5 Brandeis 2 0.265
6 VLP 2 0.260
7 VLP 1 0.257

BCMS
Rank Team Run Macro-F1 Weighted F1 Multi-label EM

1 Brandeis 1 0.762 0.843 0.000
2 Brandeis 2 0.719 0.756 0.125
3 Baseline 0.606 0.737 0.000
4 VLP 1 0.272 0.370 0.000
5 Brandeis 3 0.199 0.453 0.000

Table 4: Results of the DSL-ML shared task. The official metric is macro F1 score. We do not report weighted
F1 score for English, Spanish, Portuguese and French since their test sets are (relatively) balanced and produce
the same ranking. For BCMS, we report both macro-averaged and weighted F1-scores. Multi-label exact match
(EM) refers to the proportion of correctly predicted instances with multiple labels. The French test set does not have
multiple labels.
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3.5 Results
We evaluate each subtask separately, using macro-
averaged F1-score as the main metric. We addi-
tionally report weighted-average F1-score for the
BCMS task since the class distribution in the test
set is much less balanced than in the other tasks.

Furthermore, we measure the models’ ability
to perform multi-label classification by measuring
multi-label exact match, i.e., the proportion of gold
instances containing two or more labels for which
the same set of labels was predicted. The results
are presented per language in Table 4.

In general, we see that Brandeis is the only team
that consistently beats the baseline on all subtasks.
While their traditional machine learning submis-
sion (run 1) obtained first rank for BCMS, the
BERT-based submissions (runs 2 and 3) are ranked
highest on the other subtasks. VLP beats the base-
line for English, is slightly below the baseline for
Spanish and Portuguese, and considerably lower
for French and BCMS. Their two runs perform
roughly on par. Finally, Jelly narrowly outperforms
the baseline for English, but remains several points
below it for the other subtasks.

It can also be seen that the baseline does a com-
paratively poor job in correctly predicting the multi-
labeled instances. While all three participating
teams outperform the baseline in terms of multi-
label exact match, team Brandeis again shows the
most consistent performance.

Multi-Label Classification of the DSL-TL Data.
Among all languages of this subtask, the overall
results are the most encouraging for English. Seven
out of ten submitted runs scored above the baseline
based on the macro-F1 score (all three runs from
Brandeis, runs 1 and 2 from VLP, and runs 2 and
2-open from Jelly), with the top-ranked system
achieving a 10% improvement over the baseline.
All systems also outperform the baseline on the
multi-label exact match score. However, the multi-
label exact match score remains relatively low, with
the best score at 36.67%, achieved by runs 2-open
and 3 submitted by Jelly, which are based on the
Mistral-7B model. These runs ranked 7th and 10th,
respectively.

For Spanish, only runs 2 and 3 by Brandeis
score above the baseline, with the best VLP system
scoring 3% below the baseline, and the Jelly runs
lagging by 10 or more points. On this language,
highly ranked systems also achieve solid results
on the multi-label exact match score compared to

other languages. In particular, run 3 from Brandeis
reaches 55.13%.

For Portuguese, the three runs from Brandeis
are the only systems that outperform the baseline
on the macro-F1 score. Overall, the results on the
multi-label exact match score are lower for this
dataset than for other languages except BCMS.
However, the top-ranked system does achieve
42.37%, and the second-best system on this metric
is run 1 from Jelly, with 35.59%. This is another
example of a system that lags behind the baseline
based on the macro-F1 score (in this case, by 6
points), but which has a solid performance com-
pared to other systems when it comes to labelling
multi-label instances.

Multi-Label French Dialect Identification. For
French, two models, one proposed by the Brandeis
team and the other by the organizers, stand out from
the rest. The top scoring model is based on jointly
fine-tuning the mBERT model on all languages.
Interestingly, this model is significantly better than
the mBERT version fine-tuned on French data (run
2 of Brandeis team), indicating a large benefit from
training on multiple languages.

The baseline is a shallow approach (linear SVM)
based on basic features, which generalizes fairly
well to the cross-domain setup of the French sub-
task. It is able to compete with the deep model
based on multi-lingual fine-tuning submitted by the
Brandeis team, being only 1.3% behind.

The third best model, submitted by the Jelly
team, uses the Mistral-7B LLM based on in-context
learning. Although in-context learning seems to
work fairly well, the approach is clearly below the
system based on multi-lingual fine-tuning proposed
by Brandeis. The Jelly team (Gillin, 2024) obtained
much better results on the English sub-task, likely
because Mistral-7B is mostly trained on English
text. Therefore, in the future, it would be interest-
ing to explore approaches that combine fine-tuning
and in-context learning.

The other models submitted by the participants
are barely able to surpass the random chance base-
line (with an F1 score of 0.25). The last three
models are based on deep architectures, and their
poor results are likely to be attributed to overfitting.
In summary, we conclude that the French sub-task
proposed for the 2024 edition of VarDial is very
challenging, particularly because of the domain-
shift between training and test data, as well as the
generally short text samples which may not always

10



contain dialectal patterns.

Multi-Label BCMS Variety Identification.
Only Brandeis and VLP submitted runs on the
BCMS data. Runs 1 and 3 by the Brandeis team
score above the baseline, whereas the remaining
submissions score significantly lower on both re-
ported F1 scores. The top two systems achieve
solid F1 results, on par with the ones they achieve
on Portuguese, although lagging somewhat behind
the top scores on English and Spanish.

As noted above, the Brandeis run 1, based on
traditional machine learning approaches, achieves
the best overall scores on BCMS. However, it is
notable that only the Brandeis run 2, based on
mBERT, scores above zero on the Multi-label Exact
Match score. In other words, this is the only system
that manages to correctly label any multi-label in-
stances in the test set. Overall, the multi-label EM
is the lowest on BCMS out of all of the languages
of this subtask. These results indicate that, while
the general task of distinguishing between the va-
rieties of BCMS may be less difficult than it is for
French, correctly labelling multi-label instances
remains very challenging.

3.6 Conclusions

For the first time at VarDial, we proposed a lan-
guage and dialect identification task that accepts
multi-label scenarios with any number of classes. It
includes three two-country settings (with three pos-
sible labels, for English, Spanish and Portuguese)
as well as two four-country settings (with up to
fifteen possible labels, for French and BCMS).

Among the five languages, French turned out to
be the most challenging one in terms of obtained
macro F1-scores. There are several possible ex-
planations for this. The French data distinguishes
itself from the other datasets by a domain shift
between training and test data, by its reliance on
automatic labeling (both for the initial single-label
annotations and the inference of multi-label an-
notations), and by the masking of named entities.
The relative impact of these properties is hard to
quantify at the moment and will require additional
experiments.

The BCMS task has also been found difficult, es-
pecially in terms of multi-label exact match. Eleven
labels (country combinations) occur in the test set,
but only four of them were observed in the training
data, and nine of them in the development set. In
such scenarios, it is crucial to use specific multi-

label classifiers that can produce combinations of
labels unseen at training time.

In terms of methods, both traditional classifiers
and embedding-based models were proposed, but
none of the two approaches clearly outperforms
the other across languages. The Jelly submission
introduces few-shot prompting as a potentially ap-
pealing training-free approach, but the results are
not competitive yet with task-specific models. The
used large language model often fails to provide the
output labels in the correct format, and therefore
heavy post-processing is required.

The five datasets used in the DSL-ML task differ
widely in size and annotation procedures, and it
can be seen that the different submissions are sensi-
tive to different aspects of multi-label classification
of similar varieties. We hope to have paved the
way for further tasks that embrace the multi-label
scenario.

4 Conclusion

This paper presented an overview of the two shared
tasks organized as part of the VarDial Evaluation
Campaign 2024: Dialectal causal commonsense
reasoning (DIALECT-COPA) and Multi-label clas-
sification of similar languages (DSL-ML).

Among all the conclusions from the results on
the DIALECT-COPA shared task presented in Sec-
tion 2.5, the most interesting one is that in-context
learning on dialectal examples seems to be a highly
potent method of adapting an LLM to dialectal
tasks. The intuition we have developed through this
shared task is that it is all about managing expec-
tations of LLMs, and that letting the LLM simply
know about the modified language variant it will be
tested on improves its performance significantly.

When it comes to the DSL-ML task, the obser-
vations stemming from this iteration further jus-
tify the multi-label approach to this task. This is
supported both by the proportion of multi-label in-
stances found in the data and by the multi-label
exact match scores, which point to the difficulty of
the task. We also noted that there were no clear
winners in terms of methods between traditional
classifiers and embedding-based models. However,
as indicated above, the level of disparity between
the five datasets used in this year’s shared task
makes it challenging to identify the impact of dif-
ferent factors on model performance. One possible
way forward for this task would consist in creating
a homogeneous dataset, taking advantage of best
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practices from the existing datasets.
Both tasks were shown to be rather challeng-

ing, opening up opportunities for future evaluation
campaigns.
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Mihaela Găman, Adrian-Gabriel Chifu, William
Domingues, and Radu Tudor Ionescu. 2023. FreCDo:
A large corpus for French cross-domain dialect identi-
fication. Procedia Computer Science, 225:366–373.

Mihaela Gaman, Dirk Hovy, Radu Tudor Ionescu,
Heidi Jauhiainen, Tommi Jauhiainen, Krister Lindén,
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Tanja Samardžić. 2022b. Choice of plausible alter-
natives dataset in Serbian COPA-SR. Slovenian lan-
guage resource repository CLARIN.SI.
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Nikola Ljubešić, Taja Kuzman, Peter Rupnik, Goran
Glavaš, Fabian David Schmidt, and Ivan Vulić.
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