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Abstract

Code-switching research depends on fine-
grained language identification. In this work,
we study existing corpora used to train token-
level language identification systems. We ag-
gregate these corpora with a consistent la-
belling scheme and train a system to iden-
tify English code-switching in multilingual
text. We show that the system identifies code-
switching in unseen language pairs with abso-
lute F1 measure 2.3-4.6% better than language-
pair-specific SoTA. We also analyse the cor-
relation between typological similarity of the
languages and difficulty in recognizing code-
switching.

1 Introduction

Code-switching is when bilinguals alternate be-
tween languages at the sentence or word level. In-
creasing attention is being placed on computational
approaches to code-switching, driven by six code-
switching workshops to date (Solorio et al., 2014;
Molina et al., 2016; Aguilar et al., 2018b; Solorio
et al., 2020, 2021; Winata et al., 2023). In part,
this line of research is due to the rise in the use of
code-switching on social media (Jose et al., 2020),
potentially as a result of language contact (Gardner-
Chloros, 2020).

Language technology users now expect auto-
matic speech recognition systems, text-to-speech
engines, generative models etc. to handle code-
switching as a natural form of language. But
even SoTA large language models (LLMs) per-
form poorly on zero-shot NLP tasks with code-
switching data (Zhang et al., 2023). They are out-
performed by smaller fine-tuned models. Further,
Yong et al. (2023) report acceptability judgements
of LLM-generated code-switching, showing few
generations are acceptable. Despite the prevalence
of code-switching in spoken and online discourse,
code-switching is likely a linguistic phenomenon
severely underrepresented in the training data of

models like those in the GPT family (Brown et al.,
2020). The availability of code-switching data has
therefore become a common barrier to address the
limitations of existing NLP tools on code-switching
input. A tool required to address this barrier is fine-
grained and multilingual language identification
systems.

In this paper, we develop a fine-grained tool that
distinguishes words between English and any other
language.1 We make our models and code avail-
able.2

2 Background

There are many works aimed at identifying lan-
guages in documents at more fine-grained levels,
e.g. the word-level (Lyu and Lyu, 2008; Solorio
et al., 2014; Mave et al., 2018; Zhang et al., 2018;
Nguyen et al., 2021; Hidayatullah et al., 2022;
Hegde et al., 2024) or even sub-word level (Mager
et al., 2019; Sabty et al., 2021). Figure 1b shows the
annotation scheme of one German–English work
which aims for very fine-grained classification.

Approaches to compile code-switching corpora
traditionally involved collecting spoken recordings
of bilinguals (Myers-Scotton, 1992; Deuchar, 2009;
Nguyen and Bryant, 2020) or more recently gener-
ating synthetic code-switching (Chang et al., 2019;
Gupta et al., 2020; Rizvi et al., 2021). Manually
collecting recordings is an expensive, arduous and
lengthy task; meanwhile, synthetic code-switching
is inherently limited in the code-switching phenom-
ena it exhibits. But with automatic code-switching
identification systems, much larger corpora of nat-
urally occurring code-switching have begun to be
collected (Nayak and Joshi, 2022; Sterner and

1In practice, the choice to focus only on languages
switched with English was as a result of data availability.

2Code-switching identification: https://huggingface.
co/igorsterner/AnE-LID, binary named entity recog-
nition: https://huggingface.co/igorsterner/AnE-NER,
code: https://github.com/igorsterner/AnE
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Teufel, 2023; Wintner et al., 2023). The source
of such data is large troves of social media posts.

Such corpora offer the potential to test various
theories of code-switching, theories of when hu-
mans code-switch and why. An example is the trig-
gering hypothesis (Clyne, 1980), which suggests
that shared lexical items (e.g. named entities) are
triggers of code-switching. Broersma and De Bot
(2006) and Broersma (2009) found statistical sig-
nificance between such lexical triggers and code-
switching points for a small handful (c. 100) of
switch points in recorded corpora. Soto et al. (2018)
test on the larger Spanish–English spoken corpus
of Deuchar (2009), but limit their study to a small
list of cognates. Wintner et al. (2023) test on data
of three different language pairs (Arabic–English,
Spanish–English and German –English) with a to-
tal of 648,498 switch points from almost 10M to-
kens of mostly automatically language-identified
social media content. They found statistical cor-
relation suggesting switch points tend to be close
to the shared lexical items. For this to be possible,
substantial effort was invested to build word-level
language identifiers specific to each of the three
language pairs they explore (Aguilar et al., 2020;
Shehadi and Wintner, 2022a; Osmelak and Wint-
ner, 2023). Corpus-linguistic approaches to code-
switching will continue to depend on the quality of
such fine-grained language identification tools.

Existing code-switching identification systems
are language-specific; they distinguish between
a fixed number of (typically two) specified lan-
guages in a training corpus. This approach fails to
support code-switching research in lower-resource
languages, where annotated training data is either
not available or available at much smaller scales.
To collect more data for low-resource language
pairs requires an identification system, a circular
problem. This circular problem applies more gen-
erally to language identification. But it is espe-
cially challenging in code-switching because code-
switching sentences are often only found in seas
of spoken/written data of primarily monolingual
sentences.

3 Existing Corpora

Large language-identified corpora of code-
switching with English only exist in a small set
of language pairs, namely Hindi–English (Singh
et al., 2018), Spanish–English (Molina et al., 2016;
Aguilar et al., 2018a), Nepali–English (Solorio

et al., 2014), German–English (Osmelak and
Wintner, 2023) and Arabic–English (Shehadi
and Wintner, 2022b). Smaller corpora of code-
switching of low-resource language pairs also
exist, e.g. Indonesian–English (Barik et al., 2019),
Turkish–English (Yirmibeşoğlu and Eryiğit, 2018)
and Vietnamese–English (Nguyen and Bryant,
2020). These corpora are derived from posts on
social media platforms such as Twitter and Reddit,
except for the Vietnamese–English corpus which
is of spoken code-switching.

Of the corpora, there is a variation in the labelset
used to classify the words. The variation is centred
around the annotation of shared words and words of
mixed morphology. Example labelsets, alongside
the frequency of words of each label, are given in
Tables 1 and 2.

In many public corpora of low-resource language
pairs, code-switching is identified at a coarser-
grained level. These corpora only include labels
for each of the two languages, and sometimes a
third label for all tokens not of the two languages.
Meanwhile, higher-resource language pairs include
the identification of named entities, or more gener-
ally shared words, mixed words and foreign words
not of either the two languages in question. The
labelset proposed by (Molina et al., 2016, the sec-
ond shared task on language identification in code-
switching) includes ‘lang1’, ‘lang2’, ‘other’, ‘ne’
(named entity), ‘fw’ (foreign word), ‘mixed’, ‘unk’
and ‘ambiguous’ labels. This labelset was adapted
from Solorio et al. (2014, the first shared task)
which has the same labels except without ‘fw’ or
‘unk’.

Hindi–English, Spanish–English and Nepali–
English code-switching datasets have been brought
together in the LinCE benchmark (Aguilar et al.,
2020), under a language identification (LID) task
for code-switching data. They use the labels of
Molina et al. (2016) or Solorio et al. (2014).

In addition to code-switching identification,
LinCE includes a benchmark for named entity
recognition (NER) in code-switching data. The
code-switching examples in the LID and NER
benchmarks are different.

In the Denglisch corpus of Osmelak and Wintner
(2023), German–English code-switching is iden-
tified at a more fine-grained level. Figure 1b dis-
plays the fine-grained labels they annotate words
for, demonstrating the number of linguistic phe-
nomena in code-switching inter-play. In their work,
they use 100% of their human-annotated data in the
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1 2 punct EOS EOP 4b 3a 3a-D 3a-E 3a-AD 4a 3a-AE url 4c 3-O 3c-C

Train (3364) 24134 23598 9016 3351 2976 899 460 405 311 210 206 191 184 99 96 80
Dev (420) 2621 3093 992 420 212 58 51 37 46 26 18 18 15 10 2 11
Test (421) 3125 2914 1082 417 279 80 62 43 35 26 19 21 10 9 12 9

3c-M 4d 4b-D 3-D 3b 4 3-E 4d-D 3c-EC 4e-E 4b-E 4d-E 3c 3 3c-EM

Train (3364) 76 71 65 60 58 48 46 41 22 15 14 14 12 7 5
Dev (420) 13 10 4 0 13 1 9 7 1 0 3 5 2 0 1
Test (421) 9 7 5 0 16 2 6 3 5 1 0 2 0 0 0

(a) Label frequencies

(b) Annotation scheme. Source: Osmelak and Wintner (2023)

Table 1: Details of the Denglisch corpus of German–English code-switching (Osmelak and Wintner, 2023)

lang1 lang2 other ne fw mix unk amb

Train (4823) 54720 19134 14017 6069 398 33 10 8
Dev (744) 8942 3303 2210 837 29 5 2 1
Test (1854) 20635 7487 5369 2432 106 14 5 32

(a) Hindi–English (Singh et al., 2018)

lang2 lang1 other ne amb unk mix fw

Train (21030) 111422 77843 53851 4725 263 210 27 22
Dev (3332) 14787 16618 7810 769 37 32 3 2
Test (8289) 42850 31916 20311 2059 100 80 17 8

(b) Spanish–English (Molina et al., 2016)

lang2 lang1 other ne mix amb

Train (8451) 49936 38827 29847 3146 90 72
Dev (1332) 8385 5557 4653 452 13 11
Test (3228) 19881 14009 11321 1268 48 32

(c) Nepali–English (Solorio et al., 2014)

id un en

Test (825) 11200 5917 5608

(d) Indonesian–English (Barik et al., 2019)

t e

Test (377) 3941 1489

(e) Turkish–English (Yirmibeşoğlu and Eryiğit, 2018)

@vie @eng @non

Test (3313) 16974 7219 614

(f) Vietnamese–English (Nguyen and Bryant, 2020)

Table 2: Code-switching identification corpora, with
frequencies of labels. lang1 is always English.

cross-validation setup. Their data can be collapsed
to have a labelset similar to the data in LinCE.

The Arabic–English code-switching dataset con-
tains labels for ‘Shared Other’ words, which are
less simple to adapt to the LinCE labelset, likely
requiring some further annotation.

For low-resource language pairs, Turkish–
English (Yirmibeşoğlu and Eryiğit, 2018) in-
cludes only binary labels (Turkish and English),
Indonesian–English (Barik et al., 2019) adds an
‘other’ (or ‘unknown’ as they called it) category
for named entities, punctuation and other non-
language units. The Vietnamese–English CanVEC
corpus includes the same three categories, but their
data is semi-automatically annotated; a human only
corrects words not contained in wordlists of either
language, and words in both wordlists.

SoTA language identification performance for
the high-resource language pairs is displayed on
the LinCE benchmark leaderboard.3 As of 23 April
2024, the best system is the XLM-RoBERTa lan-
guage model (Conneau et al., 2020) fine-tuned sep-
arately for classification on each of the language
pairs. This is an anonymous submission and no
reference is given to the exact training setup. There
is no existing language identification baseline on
the Vietnamese–English corpus, likely because it is
semi-automatically annotated data. For Indonesian–
English and Turkish–English, SoTA language iden-
tification performance remains from the original
works; both using conditional random field (CRF)
classifiers. Like Osmelak and Wintner (2023) do
for German–English, these systems also use 100%
of their corpora in the cross-validation setup. They
release no separate test set.

The disparity in size and labelset of these code-
switching corpora has presented a challenge to re-
search in this field. The best code-switching iden-

3https://ritual.uh.edu/lince/leaderboard
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tification systems are language pair-specific. This
has left low-resource language pairs behind in code-
switching research. In addition, there is no base-
line for research on new language pairs to evaluate
against.4

4 AnE

Our goal is to develop an Any-English (AnE) code-
switching identification system, which we refor-
mulate as the task of identifying English code-
switching in a sea of text of other languages. En-
glish here encompasses the many local varieties
of English present in the aforementioned corpora
of code-switching. We aim to achieve our goal by
matching up the labelsets of existing corpora with
this task in mind. A key challenge we face is that
some corpora distinguish named entities, whilst
others do not.

To alleviate this challenge, we will train two
classifiers:

1. Code-switching identification - one will dis-
tinguish between English, other languages
(hereinafter notEnglish), words that mix En-
glish and another language within the word
(Mixed) and other words such as punctuation,
emojis and mentions (Other).

2. Binary named entity recognition - the other
will make a binary distinction as to whether a
word is part of a named entity or not.

The data we searched for to train these classi-
fiers broadly fits into three categories. The first
is corpora that classify the language of the words
but also have a named entity class (LID+NER).
These corpora are labelled with the previously dis-
cussed labelsets of Molina et al. (2016) or Solorio
et al. (2014). The second is corpora that only clas-
sify the language of the words as L1 or L2 (LID).
Some of these corpora also have an ‘other’ category
which includes named entities/punctuation/emojis
etc., and some simply remove ‘other’ words from
the data by manual means. The third is derived
from the task of named entity recognition on code-
switching text; such corpora include the named
entity labels and classes in BIO (Ramshaw and
Marcus, 1995) format (NER).

We preprocess the corpora as follows.

4Except by prompting LLMs, of which only the largest
models perform well (Zhang et al., 2023). This is currently a
subpar and prohibitively expensive solution.

English notEnglish Mixed Other

Train (4823) 54720 19550 33 14017

(a) Hindi–English (LinCE-LID, Singh et al., 2018)

Train (21030) 77843 111917 27 53851

(b) Spanish–English (LinCE-LID, Molina et al., 2016)

Train (33611) 78588 199723 45 110015

(c) Spanish–English (LinCE-NER, Aguilar et al., 2018a)

Train (8451) 38827 50008 90 29847

(d) Nepali–English (LinCE-LID, Solorio et al., 2014)

Train (3364) 24725 24865 195 16525

(e) German–English (Osmelak and Wintner, 2023)

Table 3: Collapsed LID training data statistics

I O

Train (4823) 6069 88320

(a) Hindi–English (Singh et al., 2018)

Train (21030) 4725 243638

(b) Spanish–English (Molina et al., 2016)

Train (8451) 3146 118772

(c) Nepali–English (Solorio et al., 2014)

Train (3364) 1577 65193

(d) German–English (Osmelak and Wintner, 2023)

Train (1243) 2222 17806

(e) Hindi–English (Singh et al., 2018)

Train (33611) 11722 385055

(f) Spanish–English (Aguilar et al., 2018a)

Table 4: Binary NER training data statistics

• LID+NER Each corpora becomes two sub-
corpora. In the first, the language other than
English, foreign words, ambiguous words and
unknown words all become nonEnglish. The
English, Mixed and Other tags stay as English,
Mixed and Other. Named entities receive a
special ID to be ignored in all training updates.
In the second subcorpora, named entities be-
come a generic inside (I) and all other labels
become outside (O).

• LID All labels are taken directly, which al-
ways includes English and notEnglish. Other
is also taken if included in the data. There
were no Mixed labels in any of these corpora.
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• NER All B or I labels of any type become an
inside (I) label. All outside (O) labels stay.

Table 3 gives statistics for the output from the
collapse of the corpora into our LID scheme, and
Table 4 for the collapse into binary NER. Statis-
tics for the LID-only category of corpora follow
directly from Table 2 (d)-(f).

5 Experiment

5.1 Experimental Setup

Systems and Baselines Our AnE system is an
ensemble of the language identification (AnELID)
and binary named entity recognition (AnENER)
classifiers. The ensemble is achieved by classifying
words based on each classifier separately, and then
overwriting labels of words AnENER predicts to
be named entities. For the high-resource language
pairs, these labels make up the NamedEntity class.
For the low-resource language pairs with an Other
category, they are moved into there. For languages
without any Other category, AnENER is not used
and AnELID’s Other labels become NotEnglish.
The low-resource language pair copora also do not
include a Mixed category, so such predicted words
become NotEnglish.

For the LinCE benchmark language pairs, and
German–English, we train separate baseline clas-
sifiers using only data from each single language
pair. This baseline corresponds to reproducing the
SoTA (anonymous) system on the LinCE leader-
board. For the low-resource language pairs, we
test on 100% of the data. Therefore, we are un-
able to train a baseline system. Instead, we use the
best-performing system from the original works
as baseline, even though these were trained in the
cross-validation setup.5

All classifiers are single-layer perceptron classi-
fication heads on XLM-RoBERTa (large).

Data We use the data described in Section 4.
In particular, we use the provided splits from the
LinCE benchmark (Aguilar et al., 2020), which
includes three language pairs. We also mix in
Denglisch (German–English) data from Osmelak
and Wintner (2023). In their work, they train with
the cross-validation setup. We instead split their
data into train/dev/test with splits 80:10:10%.

5Therefore, numbers are not directly comparable. But
either way, our system is not favoured as it does not have any
training data for these language pairs.

We balance the training data between these four
language pairs by up-sampling until all language
pairs contribute the same number of training sen-
tences.

We also evaluate on 100% of the three low-
resource language pair corpora, namely Indonesian–
English, Turkish–English and Vietnamese–English.
We remind the reader that the Vietnamese–English
corpus is different to all other corpora in that (a) it
is a corpus of spoken code-switching and (b) it is
only silver-standard data.

Training We train all systems for 3 epochs with
a learning rate of 1e-5 and a batch size of 32. All
parameters are updated using a cross-entropy loss
criterion and the Adam optimizer (Kingma and Ba,
2014). We use weight decay = 0.01 for the op-
timizer with β = (0.9, 0.999) and ϵ =1e-8. For
the named entity tokens without language subcat-
egorization, as described in Section 4, losses are
zeroed. These hyperparameters were chosen based
on recommendations from prior work (e.g., De-
vlin et al., 2019). No hyperparameter tuning was
performed.

When training the baseline systems, we continue
training for additional epochs until the same num-
ber of sentences are seen as in the up-sampled AnE
data for the language pair in question. We found
validation accuracy monotonically increases and
plateaus by the end of training; there was no evi-
dence of overfitting despite this extended training
setup.

Metrics We will compare the performance of the
AnE system against baseline by computing preci-
sion (P ), recall (R) and weighted-average F1 mea-
sure. All the measures are word-based. The LinCE
submission portal generates P , R and F1 metrics
for each label, and an overall weighted F1 mea-
sure.6 We also use weighted-average F1 measure
for other evaluations.

XLM-RoBERTa uses byte-pair encoding for sub-
word tokenization. If there is more than one unique
subword label for a given word, we select the most
frequent label. In the event of a tie, we select the
label which appeared first. This detail is likely
to particularly affect the classification of mixed-
morphology words, which will often be split into
subwords. Further investigation of this effect is
beyond the scope of this work.

6No overall P or R is provided.
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English notEnglish Mixed
P R Ft P R Ft P R Ft

Hindi–English (20635) (7487) (14)
hi-en only 98.39 98.47 98.43 95.77 96.66 96.21 47.37 64.29 54.55
AnE 98.32 98.49 98.40 94.24 96.61 95.41 61.54 57.14 59.26

Spanish–English (42850) (31916) (17)
es-en only 98.22 98.94 98.58 98.98 99.22 99.10 0.00 0.00 0.00
AnE 98.51 98.62 98.57 99.01 99.13 99.07 54.55 35.29 42.86

Nepali–English (19881) (14009) (48)
ne-en only 96.34 96.90 96.62 98.27 98.07 98.17 54.29 39.58 45.78
AnE 96.71 96.25 96.48 97.78 98.40 98.09 62.50 41.67 50.00

German–English (3134) (2978) (23)
de-en only 98.76 99.23 99.00 99.39 98.93 99.16 78.26 78.26 78.26
AnE 97.13 99.27 98.19 99.06 98.62 98.84 63.64 60.87 62.22

Named Entity Other Ambiguous

Hindi–English (2432) (5369) (32)
hi-en only 90.18 89.14 89.66 99.16 98.96 99.06 0.00 0.00 0.00
AnE 91.77 87.54 89.60 98.38 98.44 98.41 0.00 0.00 0.00

Spanish–English (2059) (20311) (100)
es-en only 87.76 82.18 84.88 99.82 99.78 99.80 0.00 0.00 0.00
AnE 77.45 81.40 79.37 99.81 99.82 99.82 0.00 0.00 0.00

Nepali–English (1268) (11321) (32)
ne-en only 73.07 74.68 73.87 97.63 97.32 97.48 8.33 3.12 4.55
AnE 72.52 75.95 74.19 97.68 97.06 97.37 0.00 0.00 0.00

German–English (187) (1877)
de-en only 90.67 93.58 92.11 100.00 99.63 99.81 - - -
AnE 88.54 90.91 89.71 99.89 96.70 98.27 - - -

Unknown Foreign Word Overall

Hindi–English (5) (106) (36080)
hi-en only 0.00 0.00 0.00 87.10 50.94 64.29 - - 97.33
AnE 0.00 0.00 0.00 0.00 0.00 0.00 - - 96.86

Spanish–English (80) (8) (97341)
es-en only 50.00 5.00 9.09 0.00 0.00 0.00 - - 98.58
AnE 0.00 0.00 0.00 0.00 0.00 0.00 - - 98.44

Nepali–English (46559)
ne-en only - - - - - - - - 96.76
AnE - - - - - - - - 96.66

German–English (8199)
de-en only - - - - - - 99.03 99.02 99.03
AnE - - - - - - 98.17 98.15 98.15

Table 5: Results for the LID task for language pairs in the training data

5.2 Results

Table 5 gives test results on the four language pairs
included in the training data. Mixing the data to
train one AnE model does not result in a large
change in performance compared to the separate
baseline models. Overall F1 measures for the base-
line and AnE are 97.33/96.86% for Hindi–English,
98.58/98.44% for Spanish–English, 96.76/96.66%
for Nepali–English, and 99.03/98.15% for German–
English. AnE is numerically worse for all language
pairs, but only by a small margin of less than 1%
absolute F1.

For the first three, which are all from LinCE,
the differences are all less than 0.5%. For German–
English, it is slightly larger (-0.88%). We collapsed
the labels for German–English to match the LinCE
evaluation labels where possible. But there may
be some differences between the LinCE data and
the German–English data scheme. This may be
a cause of the slightly greater drop in the overall
performance of AnE for this language pair.

AnE also does not have predictive classes ‘Am-

biguous’, ’Unknown’ or ’Foreign Word’. There are
few (all < 106) words in these categories in the test
data. Nevertheless, the AnE system scores zero for
all these categories, which may be another reason
for the small numerical drop in overall performance
compared to the baselines.

The separate baseline classifiers perform near-
identical to the anonymous SoTA reported on the
LinCE leaderboard.

In terms of evaluating our approach of separat-
ing out the binary NER task, the results show that
AnENER in the AnE ensemble is near-identical
to the baseline where ‘Named Entity’ is simply
a label amongst the other labels. In particular,
named entity F1 measure for the baseline and AnE
is recorded at 89.66/89.60% for Hindi–English,
84.88/79.37% for Spanish–English, 73.87/74.19%
for Nepali–English and 92.11/89.71% for German–
English. The reduced performance in Spanish–
English compared to the baseline can be attributed
to a substantially worse precision (77.45 vs. the
baseline 87.76). AnENER was trained on both the
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English notEnglish Other Overall
P R Ft P R Ft P R Ft P R Ft

Indonesian–English (5608) (11200) (5917) (22725)
id-en SoTA 89.90 84.42 87.07 88.13 96.22 91.99 94.99 83.96 89.14 90.70 87.38 88.86
AnE 86.86 97.63 91.93 95.44 94.86 95.15 97.13 86.83 91.69 93.76 93.45 93.45

Turkish–English (1489) (3941) (5430)
tr-en SoTA 91.7 92.2 91.9 97.2 96.8 97.0 - - - 95.7 95.5 95.6
AnELID 94.16 98.46 96.26 99.41 97.69 98.54 - - - 97.97 97.90 97.91

Vietnamese–English (7219) (16974) (614) (24807)
AnE 90.64 95.07 92.80 98.17 95.82 96.98 60.72 65.96 63.23 95.05 94.86 94.93

Table 6: Zero-shot LID results. SoTA results from Barik et al. (2019); Yirmibeşoğlu and Eryiğit (2018). No existing
Vietnamese–English SoTA.

training sets of the LID task we are evaluating here,
and collapsed NER training splits. It is possible
that introducing these NER datasets brings a con-
flict of annotation guidelines. Alternatively it is
possible that introducing additional data here was
simply not necessary. Either way, we have shown
here that AnENER is an optional NER module in
our system that performs on-par with baseline.

We now proceed to evaluate performance on
low-resource language pairs, for which AnE is
not explicitly fine-tuned on any code-switching
data. Table 6 gives results in P , R and F1 mea-
sure on the Indonesian–English, Turkish–English
and Vietnamese–English language pairs.

Zero-shot AnE outperforms SoTA classifiers
fine-tuned directly (in the cross-validation setup)
for the language pairs. F1 measures in all
categories are improvements over SoTA. For
Indonesian–English code-switching, AnE is eval-
uated at overall F1 = 93.45%, outperforming the
previous SoTA of 88.86%. The same holds for
Turkish–English, where AnELID is evaluated at
F1 = 97.9% compared to the previous SoTA of
95.6% (significant figures/digits reduced to match
reported SoTA).

Overall F1 for Vietnamese–English is 94.93, but
this is severely affected by the low score in the
‘Other’ category of F1 = 63.23%. This is because
their ‘X’ category (which we collapse to ‘Other’)
represents language-neutral words, rather than
named entities/punctuation/emojis as our ‘Other’
here is targeted at. There is a mismatch here. Such
labelled words only arise as a result of human in-
tervention in their semi-automatic language iden-
tification process, which may be a factor. Another
factor is that the Vietnamese–English data is the
only corpus originating from recordings. Many of
these ambiguous words arise from the conversa-
tional discourse setting not present in social me-
dia, like interjections and fillers. AnE is not able
to effectively handle such words. We have still

set baseline performance for Vietnamese–English
code-switching identification.

We hypothesize the good zero-shot performance
of AnE may be attributed to two factors. The first
is the multilingual pre-training of XLM-RoBERTa.
Monolingual training data in Indonesian, Turkish
and Vietnamese as well as English is included in the
multilingual pre-training data of XLM-RoBERTa.
This may contribute to the performance of AnE in
distinguishing these languages from English. The
second factor is the way we formulated this task:
distinguishing English from not English. This task
formulation aimed to be independent of the other
language.

This zero-shot evaluation shows that AnE per-
forms well at identifying code-switched English
amongst words of other languages not seen in the
fine-tuning data. We consider this a good result,
and it means AnE can be a baseline system for
future research on code-switching between any lan-
guage and English. It can also be a tool to quickly
gather more data for low resource language pairs
in code-switching research.

5.3 Correlation With Typological Similarity

We finish by investigating the connection between
language typology and difficulty in recognizing
code-switching. To this end, we used lexical sim-
ilarity as a measure of linguistic similarity. We
note that our language identification task is mostly
lexical, in identifying the language of individual
words. But for lexically similar languages it can-
not be solved perfectly even with an ideal lexicon;
interlingual homographs, words with the same sur-
face form in two languages but different meanings,
are one example for why.

A challenge in this investigation is what measure
of difficulty in recognizing code-switching to use.
We found earlier that overall F1 score is heavily
affected by how named entities and other words are
annotated. Meanwhile, annotation schemes also
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Figure 1: Normalized Levenshtein distance (LDN) be-
tween the ASJP wordlists in each of the languages,
against English recall of AnE.

lead to some large variations between precision and
recall. In the end, we decided to use the recall of
English words as our measure. Ultimately, we an-
ticipate this is the measure of most interest to those
searching for code-switching in large corpora.

Figure 1 presents a plot of this recall measure
against a measure of lexical similarity for each
of the language pairs we explored in this work.
Lexical similarity is computed as a distance using
the ASJP corpus (Wichmann et al., 2022) and as-
sociated methods of Müller et al. (2010), but we
acknowledge that no measure will be perfect.7 We
find a strong (ρ=-0.82) and significant (p=0.02)
Spearman’s correlation between lexical distance
and English recall. But the correlation is nega-
tive, indicating that lexically similar languages are
easier to distinguish. This is a surprising result,
as one would expect that lexically dissimilar lan-
guages could be distinguished near-perfectly with a
hashtable. We posit that an explanation may reside
in the monolingual pre-training of the language
model. It is plausible that the model learns repre-
sentations that better distinguish lexically similar
languages. An alternate hypothesis is that this cor-
relation arises from the volume of pre-training data
in each of the languages. It is also possible that the
correlation is just a facet of the difficulty of each
code-switching corpus we investigate.

6 Conclusion

In this work, we have presented a system (AnE) that
distinguishes English words and words of other lan-
guages in multilingual text. On high-resource lan-
guage pairs, the system underperforms language-

7We use the numbers released here.

pair-specific SoTA by a numerically small margin
(always less than 1% absolute F1). Meanwhile,
it outperforms SoTA on low-resource language
pairs, even though it was not trained on any code-
switching of these language pairs. Analysis of our
results revealed a negative correlation between lex-
ical similarity and difficulty in recognizing code-
switching, a surprising result which we leave to
future work for further exploration. We believe
our work bridges some of the resource-gap in code-
switching research. We make it possible to com-
pile new large-scale code-switching corpora of cur-
rently underrepresented language pairs. AnE is also
a new and competitive baseline in code-switching
identification research between any language and
English.

Limitations

The main limitation of this work is in the language
pairs AnE is able to support. The main motiva-
tion for this work was to make the most of exist-
ing high-resource code-switching data to support
research on lower-resource language pairs in code-
switching. We achieved this, but only for language
pairs where one language is English.

There are of course many code-switching lan-
guage pairs that do not involve English. But we
found the data is not available today to train an
AnE-type system to support those lines of research.
For example, we would have wished to train a
system that distinguished between code-switching
of different language families, e.g. Romance vs.
notRomance.
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ing code-switching between turkish-english language
pair. In Proceedings of the 2018 EMNLP Workshop
W-NUT: The 4th Workshop on Noisy User-generated
Text, pages 110–115.

Zheng Xin Yong, Ruochen Zhang, Jessica Forde, Skyler
Wang, Arjun Subramonian, Holy Lovenia, Samuel
Cahyawijaya, Genta Winata, Lintang Sutawika, Jan
Christian Blaise Cruz, Yin Lin Tan, Long Phan, Long
Phan, Rowena Garcia, Thamar Solorio, and Alham
Aji. 2023. Prompting multilingual large language
models to generate code-mixed texts: The case of
south East Asian languages. In Proceedings of the
6th Workshop on Computational Approaches to Lin-
guistic Code-Switching, pages 43–63, Singapore. As-
sociation for Computational Linguistics.

Ruochen Zhang, Samuel Cahyawijaya, Jan Chris-
tian Blaise Cruz, Genta Winata, and Alham Aji.
2023. Multilingual large language models are not
(yet) code-switchers. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 12567–12582, Singapore.
Association for Computational Linguistics.

Yuan Zhang, Jason Riesa, Daniel Gillick, Anton
Bakalov, Jason Baldridge, and David Weiss. 2018.
A fast, compact, accurate model for language iden-
tification of codemixed text. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 328–337, Brussels, Bel-
gium. Association for Computational Linguistics.

173

http://asjp.clld.org/
http://asjp.clld.org/
https://aclanthology.org/2023.calcs-1.0
https://aclanthology.org/2023.calcs-1.0
https://aclanthology.org/2023.calcs-1.0
https://doi.org/10.1162/tacl_a_00613
https://doi.org/10.1162/tacl_a_00613
https://doi.org/10.18653/v1/2023.calcs-1.5
https://doi.org/10.18653/v1/2023.calcs-1.5
https://doi.org/10.18653/v1/2023.calcs-1.5
https://doi.org/10.18653/v1/2023.emnlp-main.774
https://doi.org/10.18653/v1/2023.emnlp-main.774
https://doi.org/10.18653/v1/D18-1030
https://doi.org/10.18653/v1/D18-1030

