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Abstract
This paper discusses the re-usability of existing
approaches, tools and automatic techniques for
the manual annotation and automatic extraction
of events in a challenging variant of centuries
old Dutch in documents of the Dutch East India
Company. We describe our annotation process
and provide a thorough analysis of different
versions of manually annotated data and the
first automatic results from two fine-tuned Lan-
guage Models. The paper studies to what extent
we can use NLP theories and tasks formulated
for modern English to design an annotation
task for early modern Dutch and to what ex-
tent we can use NLP models and tools built for
modern Dutch (and other languages) on early
modern Dutch. We believe these analyses give
us insight into how to deal with the large varia-
tion that language shows in describing events,
and how this variation may differ across do-
mains. We release the annotation guidelines,
annotated data, and code (https://github.
com/StellaVerkijk/VarDial2024).

1 Introduction

Event extraction is a well-researched but very
challenging task in Natural Language Processing
(NLP). Though there are many datasets, systems
and ontologies created for event extraction, there
is little consensus on how to create a robust sys-
tem for heterogeneous material. This problem is
amplified when the texts are centuries old and the
context is to a large extent unknown.

In this paper, we study a use case of annotating
early modern Dutch texts for event trigger detection
and classification. These texts originate from the
Dutch East India Company (VOC) archives. This
corpus of handwritten communications within the
VOC holds a vast amount of information on trade,
culture, business, slavery and early globalisation,
which took place across much of the Indian Ocean
World in the 17th and 18th centuries. The complete
corpus consists of twenty-five million pages. It has

Figure 1: Snippet of the VOC archives

been hard to conduct historical research with this
corpus, because of its size, and because not many
people can read the handwritten text (see Figure
11).

This paper describes the creation of a small an-
notated dataset that serves as a starting point for an
automatic system that labels the archival material
and enables a human-computer interaction solution:
we are developing an event reconstruction pipeline
to support a (re)search interface for historians.

The challenging nature of event extraction is
showcased in recent results as reported in Hong
et al. (2018) where deep learning systems achieve
f-scores in the seventies for English, but drastically
drop in performance when tested on data from a
slightly different domain. Hong et al. (2018) also
show how reaching high recall is a persistent prob-
lem in event extraction. We hypothesize that the
main reason for this is because there is so much
variation in how language is used to refer to events.
We note that high recall is essential when building
software that should support a search engine. In our
case, we start our task unknown to the type and de-
gree of variation in the language used, since much
of the corpus’ content and form remains unstud-
ied. Although this poses considerable challenges,
we can utilize event extraction as a looking glass

1National Archive, The Hague, The Netherlands, 1.04.02
(Archive of the VOC), inventory no. 1812, p. 33. https:
//www.nationaalarchief.nl/onderzoeken/archief/1.
04.02/invnr/1812/file/NL-HaNA_1.04.02_1812_0803
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through which we study the variation in the lan-
guage.

In order to create any automatic system for event
extraction, we have to ask ourselves the question:
What kind of variation of Dutch are we dealing
with? The subjects discussed and the way they are
discussed might be vastly different from other early
modern sources. We are looking at two centuries
of history of a huge organization that in the early
17th century had more operations in Asia than all
other European nations combined (Lucassen, 2004).
There were no spelling conventions, countless dif-
ferent clerks writing, summarizing or translating
texts, and intricate political and cultural conven-
tions to adhere to in the language.

We find that i) the challenging nature of event
extraction as a task, ii) the fact that the performance
of automatic solutions highly depends on how sim-
ilar the domain they were trained on was and iii)
the complexity of the language we work with it-
self specifically call for a tailored solution. In our
case this begins with defining a new annotation
task and subsequently fine-tuning language models
pre-trained on different varieties of Dutch.

Our contributions are the following. Firstly, we
discuss and illustrate the complexity of interpret-
ing the language in this specific corpus, provid-
ing deep analyses of examples of our data. Sec-
ondly, we evaluate the re-usability of existing tools
and resources by employing them on these exam-
ples, showing how models trained on modern lan-
guage struggle with the variation present in our
data. Thirdly, we present a new annotation ap-
proach where annotators work in teams and an-
notations are guided by an ontology specifically
built for our data. We provide agreement analyses
at different stages of the annotation process and
show how our approach leads to an inter-annotator
agreement (IAA) of 84% for trigger detection, 86%
for classification (of 80+ event types) and 72% for
the combined task of detection and classification.
We also provide first insights of automatic solutions
fine-tuned on the annotated data. Lastly, we pub-
lish our annotated datasets, containing a thoroughly
analysed test set with annotations adjudicated by
four historians and a linguist.

2 Related Work

Various English datasets have been annotated with
events. While these approaches yielded valuable
insights, none of the existing annotation schemes

satisfies the needs of our use case. The main lim-
itation lies in the selection of events annotated.
Some of the proposed schemes only cover event
types that refer to an event’s aspectuality (distin-
guishing between state, process, action etc.) such
as in Saurí et al. (2006) (as used in for exam-
ple TempEval-3 (UzZaman et al., 2013)), ISO-
TimeML (Pustejovsky et al., 2010) and THYME-
TimeML (Styler IV et al., 2014) (as used in
SemEval-2016: Clinical TempEval (Bethard et al.,
2016)). Other datasets contain semantically more
informative event types like TRANSPORT, but still
only represent one corner of a modern Western
world, such as ACE (Walker et al., 2006) and a
light-weight version of ACE, ERE (Chen et al.,
2023), both created to represent a limited num-
ber of event types of interest to the military, the
latter created to make annotation easier and more
consistent (Aguilar et al., 2014). FrameNet (Baker
et al., 1998) is too specific for our purposes, requir-
ing specialised linguistic knowledge about frame
semantics not relevant for historical analysis. Prop-
Bank (Kingsbury and Palmer, 2003) and VerbNet
(Schuler, 2005) are overly driven by syntax and lex-
ica. Existing lexical and syntax-driven approaches
do not fit our purposes because we are dealing with
text that has no clear sentence boundaries (see Sec-
tion 4) and for which we have very limited lexical
semantic resources.

There has also been extensive research in the
field of event-centric ontologies. However, the
event classes they contain are mostly not representa-
tive for an early modern Dutch world (e.g., SUMO
(Pease et al., 2002), DOLCE (Borgo et al., 2022)).
For example, SUMO has a class for PoliticalRev-
olution, but none for Mutiny or a revolt that does
not result in overthrowing of government. Also,
while it has an entity class for HumanSlave, it does
not feature an event like Enslaving. Still, we can
draw on the way general ontologies include certain
axioms, such as the Brandeis Semantic Ontology
(BSO) (Pustejovsky et al., 2006) and the Rich Event
Ontology (REO) (Bonial et al., 2021) that explicitly
incorporate qualia relations. Even more relevant in
this respect is the Circumstantial Event Ontology
(CEO) (Segers et al., 2017), which includes pre-,
during- and post- states of events, to incorporate
weak causality. One event possibly causes a second
when the post-state of the first equals a pre-state
of the second. Pustejovsky (2021) urges to embed
the state-change model from AI within the com-
positional model of semantics adopted in linguis-
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Figure 2: Event Reconstruction pipeline

tics. Verkijk and Vossen (2023) take Pustejovsky’s
and Segers’ frameworks as a starting point and
model Static Events (states) as logically inferred
post-conditions of Dynamic Events (changes), e.g.
an event like killing leads to a post-state of someone
being dead. For this ontology, a team of histori-
ans identified and formulated event classes that are
relevant for historical research in the VOC archive.

Recent state-of-the-art event extraction models
using distributional embedding representations do
not acquire an F-score above 0.77 for trigger de-
tection and 0.74 for trigger detection + event clas-
sification on the ACE dataset (Hong et al., 2018).
Hong et al. (2018) also show that systems trained
on the broadcast news and newswire parts of the
dataset and evaluated on the webblogs drop in F1
performance with 19.5-22 percentage points. This
shows that even when adhering to the same an-
notation scheme, a difference in domain heavily
influences performance. Finally, Hong et al. (2018)
show that many systems demonstrate large gaps
between precision and recall, where precision is al-
most always higher. We speculate that the variation
in describing events is much larger than expected
and requires other approaches than those offered
by traditional NLP. We therefore expect that an
end-to-end neural system for our use case can only
partially reconstruct events and needs to be aug-
mented with richer and more explicit semantics to
connect the dots.

3 Approach

In order to support event-centric search in the
archives, we aim to build an event-centric Knowl-
edge Graph (KG). There are several steps that have
to be undertaken to reach this end product: Figure 2
shows the most important steps in this pipeline.
The handwritten documents first have to go through
Handwritten Text Recognition (HTR) in order to
become digitised (see Section 4). We then per-
form manual annotation on the digitised text. We
plan to perform and experiment with some data
augmentation at a later stage of the project, i.e. cre-
ate synthetic training data. Finally, we fine-tune a

Language Model (LM) to automatically annotate
the rest of the corpus. This will provide us triple
representations of events, which we gather in a
KG. Through ontological reasoning we filter and
complement our KG.

For the last step, we utilise the event ontology
described by Verkijk and Vossen (2023). This event
ontology is made for VOC archival material and
models Static Events (SEs) as logical implications
of Dynamic Events (DEs). For example, the elec-
tion of a new person as king or raja in a certain
region implies their status of being a leader from
the moment of the election onward. Similarly, the
Agent of a Leaving event is no longer at the place
it left from the time of the event onward. These
post-states of events are automatically inferable
through the ontology. The ontology also features
a taxonomic structure of DEs, allowing for gen-
eralizations like a Leaving event being a type of
Translocation event. Such generalizations capture
the variation in the data and language.

The ontology features 65 dynamic and 18 static
events. Of the DEs, 50 of them imply a SE as a
post-condition. There are only two SEs that cannot
be inferred from the occurrence of a DE. The class
Dynamic Event branches out in two classes that
do not have any subclasses and five broad classes
that branch out into more fine-grained subclasses.
Those five classes are SocialStatusChange, Change-
OfPossession, SocialInteraction (with subclasses
like Mutiny, StartingAConflict), Translocation and
InternalChange (with subclasses like Dying, In-
creasing, FallingIll). The taxonomic structure of
DEs is four steps at the deepest level.

The choice to create new manually annotated
data following the event classes of Verkijk and
Vossen’s (2023) ontology was motivated by results
of preliminary experiments we performed where
we tried to use existing resources for automatic
event detection (see Section 5). Furthermore, the
ontology forms a closed world that guides annota-
tions, where the richer semantics steer annotators to
look for specific information in the text. It also en-
ables us to alleviate some of the annotation labour:
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The possibility of automatic inference allows us to
infer unexpressed information. We expect that the
automatic extraction of SEs will help solve a recall
gap in future automatic labelling systems.

4 Data

4.1 The Corpus and its Contents

The corpus is the collection of Overgekomen
Brieven en Papieren (Received Letters and Papers,
OBP) within the VOC archive. The OBP contains
the Generale Missiven (General Missives) and a
large and varied collection of documents on which
these missives are based. The General Missives
are reports from the VOC’s central administration
(Council of India) in Batavia to the board (Gen-
tlemen Seventeen) in the Dutch Republic. They
contain accounts of all things current for the VOC
world over almost two centuries, including, for
example, detailed overviews of historical events,
as well as social, political, economic and ecologi-
cal developments. These narrative accounts begin
with a brief introduction and then report in long
sentences events that are more broadly described
in the other documents that make up the OBP. In
the margins are small summaries, which we call
marginalia (see Figure 1).

The OBP spans the period 1610-1796 and con-
tains around seven million handwritten pages.
While the OBP has an average document length
of 28 pages, a General Missive is on average 207
pages. For annotation, we selected pages from dif-
ferent types of documents from a range of different
years. The annotated data we are releasing upon
publication comprise 62 pages of 6 different doc-
uments. They include parts of General Missives,
original missives, letters, journals and notes and
they span a period of 151 years (1626-1777).

Throughout this paper we will refer to Example
(1), the transcribed text of Figure 1, to illustrate
the complexity of interpreting our data through an
event annotation task. Example (1) is a snippet
of a paragraph that spans four pages1. Within the
paragraph, there is no indication of the end or be-
ginning of a sentence. The text is written as one
long description of happenings in a specific place
at a specific time, which is a very common way of
writing in our corpus. In order to illustrate the type
of language used, we offer a word-by-word transla-
tion to English in (1b). For a paraphrased and more
readable version and its translation to English, see
Appendix A. Event triggers are printed in boldface.

Corresponding event classes from our annotation
scheme are Getting; Request; SocialInteraction;
Giving; HavingInPossession; ForcingToAct; Finan-
cialTransaction; FinancialTransaction.

(1a) Original source
‘(...) op ontfangst van dat „schrijvens, dato
29„e xb: te laten versoecken, dat hij ten
Eersten ordre geliefde te stellen, aen wie dat
men, de gestipuleerde recognitie goederen
nu geeven bal, en niet verpligt, als pro dato
soo Lange aen tehouden, sulx thans de zijde
buijten belastinge daer van overgaet, en na
deesen dat bedragen, eerst het comptoir gen-
erael aengereekend; en ten Lasten gebragt
sal kunnen werden, (...)2

(1b) Literal translation
(...) on reception of that writing, date 29 xb
to be requested that he firstly an order would
like to establish, to who that one, the before
identified taxable goods now shall give, and
not obliged, if per the date so long to hold, so
that the silk free of tax there from go off, and
after these the amounts, first the local office
general charged; and debited will be, (...)

4.2 Data Processing: HTR
For HTR we use Loghi3. As mentioned, the archive
contains handwritings of a vast amount of different
people living in time periods that can differ more
than a hundred years and there were no spelling
conventions in early modern Dutch. On top of
that, defining reading order and separating main
text from marginalia is very challenging. Because
of this, we are often dealing with very noisy out-
put. For example, (1) showcases a character mis-
classification that transforms a verb into a noun.
The transcribed ‘bal’ (ball) in ‘aan wie men de
gestipuleerde recognitie goederen nu geeven bal"
(to whom one the identified taxable goods now give
ball) represents ‘sal’ (shall) in the original text.
The untouched transcription of (1) is given in Ap-
pendix A, also showcasing how the HTR pipeline
mis-identifies text regions, complicating the anno-
tation process. Different transcription conventions
in the different ground truth sets that Loghi was
trained on, especially for punctuation, affect the
transcriptions and make the Character Error Rate
(CER) currently quite high (>10 percent). However,

2HTR errors related to region detection have been taken
out of this example for clarity reasons

3https://github.com/knaw-huc/loghi
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Loghi’s HTR quality on our data using a classify-
ing tool that was created for our data4 shows that
the HTR quality of a large majority of our corpus
is what domain experts on the project classify as
‘good’. Loghi is still under development and we
expect to have digitized data of sufficient quality
for our Event Extraction pipeline in the future.

5 Early Modern Dutch and Existing Tools

Since we have seen how unique our corpus is, we
can expect existing NLP tools and models to per-
form poorly on our data. Also, we expect a high
degree of variation, so even in cases where modern
Dutch is similar, it is extremely hard to generalise.
For example, early modern Dutch contains lexical
items that no combination of subtokens in a Dutch
Language Model (LM) trained on modern data can
approximate to represent. An example of this is
the word ‘natgierig’ (having alcoholic tendencies
being described as an illness), which would be split
in ‘nat’ (wet) and ‘gierig’ (greedy). We conducted
several preliminary experiments to assess to what
degree existing resources could be used to process
our data, which we will discuss in this section.

5.1 Predicate Mapping
With a large amount of data to be annotated with
a large amount of event classes, it is good prac-
tice to adopt heuristic methods to narrow down
trigger and type candidates and automatically pre-
label to help annotators (Wang et al., 2020). In the
NewsReader pipeline (Vossen et al., 2016), events
were extracted by linking them to FrameNet frames
with the Predicate Matrix (PM) (Lopez de Lacalle
et al., 2016). This matrix links entries in WordNet,
VerbNet, PropBank, and FrameNet in different lan-
guages. As an experiment we tried to apply this
approach on our data. We first extracted possible
predicates with dependency parsing with spaCy,
after which we automatically annotated the possi-
ble predicates with the corresponding lemmas and
POS-tags by mapping them to a historic Dutch lex-
icon created by the Institute for Dutch Language
(INT) made for OCR and OCR-postcorrection (for
the period from 1550 to around 1970)5. We pro-
ceeded to select the set of lemmas with a verb
POS-tag annotation of a mid-frequency range (oc-
curring between 5 and 15 times in the corpus we

4https://github.com/LAHTeR/
htr-quality-classifier

5https://taalmaterialen.ivdnt.org/download/
tstc-int-historische-woordenlijst/

had available at that time). We then provided those
with translations to modern Dutch lemmas man-
ually, using a dictionary that covers Dutch word
meanings over several ages (Woordenboek der Ned-
erlandsche Taal, WNT)6. Those translations were
mapped to the PM and the corresponding FrameNet
frames were extracted. We performed a small error
analysis of this experiment which showed that the
PM produced more false positives (126) than true
positives (95)7. These results indicate that using ex-
isting resources for pre-annotation poses too many
issues; we expect that developing our own lexicon
for pre-annotation will be more fruitful.

5.2 Zero-shot POS-tagging

In order to see to what extent several LMs are famil-
iar with lexical and syntactic aspects of early mod-
ern Dutch sentences, we tested their zero-shot POS-
tagging accuracy on sample (1). Measuring zero-
shot performance can give us insight into which
models are best suited to fine-tune on our event
extraction task. We do this by masking each token
in the sample one by one and asking the models
to fill the masked token each time. We then manu-
ally label the predicted tokens with POS-tags and
compare these to the gold labels. Gold labels as
well as the labelling of the predictions was done by
an expert linguist. We also test two Dutch spaCy
models.

The LMs we compare are RobBERT (Delobelle
et al., 2020), trained on modern Dutch, XLM-R
(Conneau et al., 2019), a multilingual RoBERTa
model, which outperformed Dutch LMs in an entity
labeling task on early modern Dutch in a study by
Arnoult et al. (2021), and two versions of GysBERT
(Manjavacas and Fonteyn, 2022), a LM pre-trained
on historical Dutch. The first version of GysBERT
was trained on 7.1B tokens spanning almost 500
years of Dutch data (up to 20th-century Dutch).
Early modern Dutch was underrepresented in the
training data. The second version of GysBERT was
pre-trained in exactly the same way but with the
inclusion of 1.3B extra tokens from early modern
Dutch datasets, of which 940M tokens from our
HTR’ed VOC archival material.

As we can see in Table 1, all scores are low. The
second version of GysBERT outperforms all other
models but not the best performing spaCy model. It
is noteworthy that GysBERT outperforms XLM-R

6https://ivdnt.org/woordenboeken/
woordenboek-der-nederlandsche-taal/

7The full report of this experiment can be found here
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and RobBERT but has severely lower performance
than GysBERT-v2.

model accuracy
spacy_sm .61
spacy_lg .66
RobBERT .38
XLM-R .38
GysBERT .46
GysBERT-v2 .65

Table 1: Zero-shot performance on POS-tagging of sam-
ple text in early modern Dutch

Looking at the individual predictions8, we see
a trend where XLM-R predicts very general to-
kens (adverbs, adpositions, determiners, pronouns,
auxiliary verbs, conjunctions). This makes sense
since XLM-R is trained to carry general informa-
tion about several languages and is expected to be
stronger when fine-tuned. This is worth further
investigation. Parsing example (1) with the best
performing model at this task, the largest spaCy
model, still shows many issues, for example with
‘versoucken’ (requesting) being labeled as a noun,
‘buijten’ (free/outside) and ‘bedragen’ (amounts)
as verbs and ‘belastinge’ (tax) as an adjective.

The results indicate that existing models seem to
have encountered a diverging lexicon and syntactic
structure in their training data. Though a base un-
derstanding of syntactic structure is necessary for
any meaningful NLP task, we want to investigate
whether existing models can be useful for other
aspects of linguistic modelling.

5.3 Fill-mask for Events

In order to see whether LMs perform better at a
semantically relevant task, we check how they fill
masked event triggers (to control for cases where
a model for example predicts the verb ‘receive’ in
the place of the noun ‘reception’).

We used all LMs to fill masked event triggers
in example (1) and provide results in Tables 11
and 12 in Appendix B. RobBERT, GysBERT and
XLM-R all show very poor results. XLM-R and
RobBERT do not predict the right token in any of
their top 5 predictions for any masked event trig-
ger, nor a token that has a similar meaning, and
GysBERT only once. Noteworthy is that XLM-R
predicts Dutch words in almost all cases both in
this task and zero-shot POS-tagging. It therefore
recognises this version of the language as Dutch.

8https://github.com/StellaVerkijk/VarDial2024

Also telling is the fact that RobBERT never pre-
dicts any token with a confidence score of above
0.39; for GysBERT this is even lower, namely 0.27.
GysBERT-v2 outperforms all models by far.

Existing resources and tools show unpromis-
ing results when confronted with our data. Even
a model trained on historical Dutch but not on
the VOC letters (GysBERT) is enormously out-
performed by the exact same model but in which
the VOC letters were included in the pretraining
(GysBERT-v2). Additionally, pre-annotation meth-
ods using existing resources and heuristics also fail.
We therefore argue for a new annotation scheme
that captures the information we want to extract by
clearly establishing i) our model of the world and
ii) the way we deal with the variation in sense and
reference, since the language in our corpus is often
vague and woolly.

6 Annotation

6.1 Task

Annotators are presented with a document and are
instructed to label any token or span of tokens that
refers to an event that corresponds to one of the 83
event classes described in the ontology of Dynamic
and Static events (Verkijk and Vossen, 2023). Apart
from event trigger detection and classification, our
annotators also labeled participants of each event.
Which participants could be annotated for each
specific event was specified in our event wiki.9

One of the most challenging parts of this task
is deciding what it means for a string of tokens
to refer to an event class (trigger detection). In or-
der to facilitate the labelling of explicitly described
events (directly referring to an event class) as well
as implicitly described events (indirectly referring
to an event class), we adopt two types of reference.
A (span of) tokens either isOfType <eventclass>
or evokes <eventclass>. We adopt this distinction
from Postma et al. (2020) and Remijnse and Min-
nema (2020), who propose a very similar distinc-
tion for FrameNet annotation. The distinction is
important for our annotation task because of the
vague language in our data. For example, in (1),
‘requested’ directly refers to our event class Re-
quest, while ‘order’ is a noun that directly refers
to an intangible entity, while it evokes a type of
SocialInteraction. Also, ‘to hold’ directly refers
to keeping something, but evokes HavingInPosses-

9https://github.com/globalise-huygens/
nlp-event-detection/wiki
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sion and also BeingAtAPlace. Indirect referrals are
essential to extract and model as much important
information as possible (i.e., that fits in our model
of the world, i.e. the predefined event classes).

The combination of the difficulties of the
HTR’ed handwritten language we work with, as il-
lustrated in Section 4.2, the linguistic and historical
knowledge needed to annotate, and the inclusion of
implicit reference annotation makes our task very
challenging. We tried out different annotation set-
tings in order to see what best practices are, which
we will describe in the following section.

6.2 Annotation Settings

All annotations were performed by expert histo-
rians. They annotated individually in the first set-
ting. Agreement was analysed on annotations of a
General Missive of 162810, where we noticed that
agreement in trigger detection was very low. We
asked individual annotators to check each other’s
annotations, which we will refer to as the check-
task. This check-task consisted of the following:
each annotator was presented individually with all
spans annotated by the other annotators as trigger-
ing an event, but not by them. They were asked to
indicate whether they would now, reviewing it for a
second time, also label it with an event class, and if
so, with which one. We saw that they often agreed
with each other’s mention detection – hence, anno-
tators were initially missing event triggers, most
probably due to the demanding nature of the task.
We further adjudicated the document we performed
this experiment on into a test set, which meant we
discussed each possible annotation among all an-
notators and an expert linguist after the check-task.
We calculated precision and recall scores for trig-
ger detection (no classification) before and after the
check-task compared to the final test set. We see a
steep increase in recall scores after the check-task
(see Tables 7 and 8 in Appendix B). We therefore
performed all further annotations in teams of two,
so that annotators can discuss annotations and cor-
rect each other. We performed two more annotation
rounds in this team setting. After each round, we
sharpened the annotation guidelines, taking into
account continuous feedback and questions.

10National Archive, The Hague, The Netherlands, 1.04.02
(Archive of the VOC), inventory no. 1092, folio 1, r. https:
//www.nationaalarchief.nl/onderzoeken/archief/1.
04.02/invnr/1092/file/NL-HaNA_1.04.02_1092_0017

6.3 Ontological Resolutions
In order to compensate for the difficulty of the an-
notation task and provide a valuable IAA analysis,
we also analyse results after performing two types
of automatic resolutions.

Taxonomic resolutions We resolve disagree-
ments on direct subclasses of the same class. E.g.,
when one annotator labels a token as a trigger for
Leaving and another labels it for Voyage, it is re-
solved to a Translocation annotation (the superclass
of Leaving, Voyage, Arriving and Transportation).
If one annotator uses the superclass (Translocation)
and another a direct subclass (Transportation), it is
also resolved to the superclass.

Implicative resolutions The second type of res-
olution has to do with the implications built in
the ontology, modeling how some dynamic events
automatically imply a change in state, hence the
occurrence of a static event (Section 3). Any event
trigger label disagreements where one annotator
chose a dynamic event and the other a related static
event (e.g., one annotator chose Attacking and the
other BeingAtConflict), the annotation was counted
as an agreement and resolved to the static event
(BeingAtConflict). This was done because the static
event is the most conservative meaning (there are
often multiple dynamic events that share the same
static event as implication).

6.4 IAA Evaluation
Agreement on event mention detection + classifi-
cation among annotators or annotator teams, pre-
sented in Table 2, was calculated with

Ā =
1

2
(
Axy

Sx
+

Axy

Sy
)

where Axy is the number of spans both teams la-
beled with the same event class (using span overlap,
not exact span matching), Sx is the total number
of spans annotated with an event class by one an-
notator team and Sy is the total number of spans
annotated with an event class by the other annotator
team. We then calculate the ratio of agreed upon an-
notations out of all annotations made by one of the
teams. We calculate this ratio for both teams and
then take the average of the ratios as our agreement
score. We decide to use a simpler calculation than
Cohen’s Kappa (Cohen, 1960), which includes a
chance of accidental agreement in the calculation.
Since we have many class types, chance of acciden-
tal agreement is quite low. Given that the Kappa
score is not transparent and sensitive to skewed
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distributions, it is more informative to consider a
simple ratio. We also provide results on only class
agreement in Table 2. These results were calculated
by comparing how often two annotators agreed on
the class label, only considering those spans that
received a class label from both annotators. In the
first annotation round, there were four individual
annotators. In the second annotation round, there
were three teams of two, of which one new to the
task. In the third round there were four, of which
also one new to the task. The scores in Table 2
are average scores: for individual comparisons, see
Appendix B, Tables 4 to 6.

Det. + Class. Class.
R1* R2 R3 R1* R2 R3

Before Resolution .32 .49 .57 .59 .70 .68
After Resolution .48 .55 .72 .91 .78 .86

Table 2: Average agreement scores on event detection +
classification (Det. + Class.) and class agreement scores
(Class.) between individuals* or teams in different an-
notation rounds (R = Round) (partial span overlap)

The results show that agreement increased with
each round, indicating the task became more clearly
defined through several rounds of discussion and re-
flection. The high score in classification in Round 1
can be explained through the low score in detection:
the most obvious event triggers are also easiest to
classify. In Round 2, trained teams annotated a
total of 79 and 62 triggers respectively, whereas the
untrained team annotated a total of only 21 triggers.
In Round 3, trained teams annotated a total of 139,
147 and 151 triggers and the untrained team 141.
Agreement score on only event trigger detection
for the last round was 84% (see Table 9 in Ap-
pendix B), while in Round 2 this score was 63%
comparing only trained teams and 45% including
the untrained team. Note that class agreement is
high in spite of a large selection of event classes
(more than 80). It is hard to compare our results to
IAA scores of other annotated datasets (like ACE)
because they either do not evaluate trigger detec-
tion, cover much fewer event types, or report on
different metrics. Wang et al. (2020) report a Co-
hen’s Kappa score for trigger and type annotation
of 38.2% and 42.7% respectively for crowd-source
annotation with 168 event types in their contempo-
rary English dataset MAVEN using pre-annotation
with heuristics. See Table 10 in Appendix B for an
overview of the annotated data we are releasing.

7 Automatic Baselines

The annotations should serve as training data for
software that supports event-centric search in the
VOC archives. In order to establish a baseline for
this, we fine-tuned XLM-R and GysBERT-v2 on
our event trigger detection task. Although XLM-
R showed disappointing results in our preliminary
experiments, it has shown to outperform general
LMs at NLP tasks on historical Dutch (Arnoult
et al., 2021) and there might be ways to leverage its
general knowledge of language in the fine-tuning
phase. For this experiment we split the develop-
ment data we currently have available (‘Dev’ in
Table 10) into a train set of 171KB and a test set of
22KB (json format). We fine-tuned both LMs on
a token classification task for event mention detec-
tion (binary BIO classification). Since results with
fine-tuned versions with early stopping showed low
scores, we decided to try the grokking principle
(Power et al., 2022; Murty et al., 2023) and eval-
uate several versions of fine-tuned models trained
for increasing amounts of epochs, thereby training
far beyond overfitting.

XLM-R GysBERT-v2
epochs P/R P/R
6 0 / 0 .31 / .06
9 .35 / .24 .20 / .08
12 .40 / .36 .26 / .14
20 .40 / .43 .35 / .16
50 .54 / .32 .42 / .20
150 .47 / .32 .55 / .22

Table 3: Precision and recall scores of fine-tuned models
on event trigger detection

Table 3 shows precision and recall scores on
token level, which were obtained by mapping the
model’s prediction of the first sub-token to the com-
plete token. The results show that GysBERT-v2
learns earlier from our data than XLM-R, which
is in line with the results of our zero-shot experi-
ments (Section 5). Surprisingly, XLM-R surpasses
GysBERT-v2 in recall, and, for several epoch set-
tings, also in precision. GysBERT-v2 eventually
reaches slightly higher precision. The results in-
dicate potential to leverage different LMs for dif-
ferent aspects of our task. Users could leverage
different LMs at different levels of the system, al-
lowing them to chose a model that suits their needs.

8 Discussion & Conclusion

This paper motivated a newly defined event an-
notation task by on the one hand discussing ex-
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isting literature and theories on event extraction
and on the other hand experimenting with exist-
ing tools. We show that the early modern Dutch
used in the archives of the VOC is different from
modern Dutch to such an extent that it calls for a
tailored solution. We presented our bespoke anno-
tation scheme and showed that a reasonable IAA
could be reached by taking into account annotator
needs and following an ontology that allows for the
grouping of event classes through inference where
necessary. Experiments with baseline automatic
solutions for a VOC event-centric search engine
show that we need to do more research into what
kind of training strategies are needed for this task,
and whether grokking can be a solution. Results
seem to indicate that both more general LMs and
more domain-specific LMs can be useful for dif-
ferent purposes. Future research should include
a thorough comparison of different LMs, such as
GysBERT and GysBERT-v2. We also aim to create
more manually annotated data, develop a domain-
specific lexicon for pre-annotation and experiment
with automatic data augmentation techniques.
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A Example texts

• Original source, parts of marginalia in
boldface and in brackets11

‘(...) op ontfangst van dat „schrijvens, dato
29„e xb: te laten versoecken, dat hij ten
Eersten [zomee conconeren„] ordre geliefde
te stellen, aen wie dat men, de gestipuleerde
recognitie goederen nu geeven bal, en niet
verpligt, als pro dato soo Lange aen tehouden,
sulx thans de zijde buijten belastinge daer van
overgaet, en na deesen dat bedra„ „gen, eerst
het comptoir generael aengereekend; en ten
Lasten gebragt sal kunnen werden(...)’1

• Literal translation
(...) on reception of that writing, date 29 xb
to be requested that he firstly would like to
be put an order, to who that one, the beforely
identified taxable goods shall give, and not be
obliged, if per the date so long to hold, so that
the silk free of tax there be shipped off, and
after these the amounts, first the local office
general charged; and debited will be, (...)

11‘zomee conconeren„’ is one line in a marginalium that
originally reads ‘zo meede concerneerende(...)’, meaning also
concerning....
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• Paraphrased Dutch
(...) op ontvangst van die brief, heeft hij op
29 december verzocht om instructies te krij-
gen aan wie dat men de besproken belastbare
goederen zal geven, zodat hij niet gedwon-
gen is de goederen zo lang ter plaatse te laten
blijven dat hij daardoor belasting zal moeten
betalen over de zijde, wat het lokale comptoir
zal worden aangerekend, (...)

• Paraphrased English
(...) on receiving the letter, he requested
instructions on the 29th of December as to
whom the goods should be given to, so that
he will not be forced to keep the goods for
such a long time that he would be forced to
pay taxes for the silk, for which the regional
office would be charged, (...)

B IAA results, data characteristics,
fill-mask results
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T1/T2 T2/T1 T1/T3 T3/T1 T2/T3 T3/T2 avg-tr avg
Before Resolution .46 .58 .19 .71 .26 .76 .52 .49
After Resolution .52 .66 .22 .81 .27 .81 .59 .55

Table 4: Agreement between seperate teams in Round 2 on event trigger detection + classification. avg-tr: only
trained teams, avg: including the untrained team

T4/T5 T5/T4 T4/T6 T6/T4 T4/T7 T7/T4 T5/T6 T6/T5 T5/T7 T7/T5 T6/T7 T7/T6 avg
BR .52 .51 .60 .56 .57 .60 .53 .57 .57 .60 .60 .58 .57
AR .68 .67 .72 .68 .71 .76 .74 .77 .71 .74 .74 .74 .72

Table 5: Agreement between separate teams in Round 3 on event trigger detection + classification. avg: including
the untrained team

Ann1 Ann2 Ann3 Ann4
Before Resolution

Ann1 x .36 .40 .31
Ann2 .26 x .29 .22
Ann3 .43 .43 x .34
Ann4 .25 .25 .25 x

After Resolution
Ann1 x .59 .49 .54
Ann2 .43 x .38 .43
Ann3 .54 .59 x .50
Ann4 .44 .47 .37 x

Table 6: Agreement between individual annotators on
event trigger detection + classification (Round 1).

P R n
Ann1 .85 .55 131
Ann2 .95 .35 75
Ann3 .81 .43 108
Ann4 .85 .44 105

Table 7: Precision and recall scores per annotator on
event trigger detection before check-task. Gold = test
set. n = true + false positives

P R n
Ann1 .83 .81 199
Ann2 .85 .80 192
Ann3 .86 .70 166
Ann4 .82 .71 176

Table 8: Precision and recall scores per annotator on
event trigger detection after check-task. Gold = test set.
n = true + false positives

T4/T5 T4/T6 T4/T7 T5/T6 T5/T7 T6/T7
.82 .84 .83 .85 .83 .86

Table 9: Event trigger detection agreement in Round 3

Pages Docs Agreement years
Dev 57 5 59% 1626-1777
Test 5 1 100% 1628

Table 10: Characteristics of annotated data currently
processed and of acceptable quality, which includes
data annotated by the two trained teams in Round 2 and
the adjudicated test set. The third annotation round is
currently still in process
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RobBERT XLM-R
Masked token Prediction Probability L2C? FW? Prediction Probability L2C? FW?
ontfangst grond 0.26 no no grond 0.55 no no
(reception) basis 0.13 no no basis 0.01 no no
Getting een 0.09 no yes Grund 0.01 no no

straffe 0.05 no no aanleiding 0.01 no no
elk 0.02 no yes grond 0.01 no no

versoucken weten 0.15 no no weten 0.77 no no
(requesting) zien 0.05 no no zien 0.04 no no
Request staan 0.04 no no wissen 0.02 no no

toe 0.04 no yes merken 0.02 no no
zeggen 0.03 no no horen 0.02 no no

ordre is 0.05 no no de 0.21 no yes
(order/instruction) om 0.03 no yes , 0.07 no yes
SocialInteraction , 0.02 no yes een 0.04 no yes

heeft 0.02 no no is 0.03 no no
bekent 0.01 no no in 0.02 no yes

geeven te 0.10 no yes te 0.04 no yes
(giving) , 0.05 no yes reeds 0.02 no no
Giving niet 0.04 no yes al 0.02 no no

kan 0.02 no no betalen 0.02 no no
sal 0.02 no no , 0.02 no yes

verpligt meer 0.07 no no meer 0.12 no no
(obliged/ to oblige) anders 0.02 no no langer 0.07 no no
ForceToAct is 0.02 no no , 0.05 no yes

ook 0.01 no yes zoo 0.02 no yes
zijnde 0.01 no no zo 0.02 no yes

belastinge , 0.39 no yes , 0.30 no yes
(tax) en 0.09 no yes d 0.04 no yes
FinancialTransaction de 0.08 no yes s 0.04 no yes

ende 0.06 no yes en 0.04 no yes
daer 0.02 no no der 0.03 no no

aengereekend is 0.12 no no , 0.08 no yes
(charged) wordt 0.03 no no aan 0.03 no yes
FinancialTransaction eert 0.02 no no zal 0.03 no no

e 0.02 no yes naar 0.02 no no
int 0.01 no yes dient 0.01 no no

Table 11: Top 5 predicted tokens per model with probability scores. L2C = whether the predicted token is linkable
to the corresponding event class. FW = whether the predicted token is a function word.
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GysBERT GysBERT-v2
Masked token Prediction Probability L2C? FW? Prediction Probability L2C? FW?
ontfangst ordre 0.17 no no ontfang 0.14 yes no
(reception) copie 0.10 no no antwoorde 0.10 no no
Getting grond 0.04 no no antwoord 0.08 no no

last 0.04 no no grond 0.06 no no
ende 0.03 no yes dato 0.04 no no

versoucken weten 0.27 no no versoeken 0.70 yes no
(requesting) weeten 0.24 no no dienen 0.06 no no
Request volgen 0.15 no no weten 0.04 no no

blijken 0.04 no no weeten 0.03 no no
verstaan 0.03 no no versoecken 0.03 yes no

ordre , 0.07 no yes ordre 0.82 yes no
(order/instruction) soo 0.05 no yes ordres 0.07 yes no
SocialInteraction dat 0.03 no yes vast 0.06 no no

vast 0.03 no no order 0.01 yes no
daer 0.02 no no uijt 0.00 no yes

geeven te 0.13 no yes soude 0.04 no no
(giving) doen 0.02 no no toe 0.03 no yes
Giving sal 0.02 no no kan 0.02 no no

geeven 0.02 yes no moet 0.02 no no
, 0.01 no yes sal 0.02 no no

verpligt anders 0.17 no no anders 0.41 no no
(obliged/ to oblige) meer 0.14 no no meer 0.09 no no
ForceToAct deselve 0.05 no yes langer 0.09 no no

die 0.03 no yes verder 0.05 no no
om 0.03 no yes deselve 0.05 no no

belastinge , 0.09 no yes , 0.05 no yes
(tax) cours 0.05 no no verwagting 0.05 no no
FinancialTransaction die 0.04 no yes verantwoording 0.04 no no

ende 0.02 no yes factuur 0.04 yes no
##waerts 0.02 no yes gebruijk 0.03 no no

aengereekend is 0.07 no no belast 0.13 yes no
(charged) , 0.02 no yes gebragt 0.08 no no
FinancialTransaction gebracht 0.02 no no overgebragt 0.08 no no

overgegeven 0.02 no no verantwoord 0.07 yes no
gehouden 0.02 no no toegesonden 0.04 no no

Table 12: Top 5 predicted tokens per model with probability scores. L2C = whether the predicted token is linkable
to the corresponding event class. FW = whether the predicted token is a function word.
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