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Abstract

This study investigates the factors influenc-
ing the performance of multilingual large lan-
guage models (MLLMs) across diverse lan-
guages. We study 6 MLLMs, including
masked language models, autoregressive mod-
els, and instruction-tuned LLMs, on the SIB-
200 dataset, a topic classification dataset en-
compassing 204 languages. Our analysis con-
siders three scenarios: ALL languages, SEEN
languages (present in the model’s pretraining
data), and UNSEEN languages (not present
or documented in the model’s pretraining data
in any meaningful way). We examine the im-
pact of factors such as pretraining data size,
general resource availability, language family,
and script type on model performance. Deci-
sion tree analysis reveals that pretraining data
size is the most influential factor for SEEN lan-
guages. However, interestingly, script type and
language family are crucial for UNSEEN lan-
guages, highlighting the importance of cross-
lingual transfer learning. Notably, model size
and architecture do not significantly alter the
most important features identified. Our find-
ings provide valuable insights into the strengths
and limitations of current MLLMs and hope to
guide the development of more effective and
equitable multilingual NLP systems.1

1 Introduction

Multilingual large language models (MLLMs) have
revolutionized natural language processing by en-
abling applications like machine translation and
sentiment analysis across numerous languages
(Barbieri et al., 2022; Yang et al., 2023). Un-
derstanding how these models perform across lan-
guages with diverse linguistic properties is crucial
for further development (Devlin et al., 2019; Wu
and Dredze, 2020; Scao et al., 2022; Lai et al.,
2023; Ahuja et al., 2023). Despite significant

1https://github.com/PortNLP/MLLMs_performance

progress, linguistic disparities persist in NLP, high-
lighting the need for models that perform effec-
tively and safely across a wider range of languages
(Joshi et al., 2020; Ranathunga and de Silva, 2022;
Agrawal et al., 2023; Wang et al., 2023).

The factors contributing to the effectiveness of
MLLMs, however, remain unclear. While several
studies suggest the amount of language-specific
pretraining data as a key factor (Wu and Dredze,
2020; Scao et al., 2022; Shliazhko et al., 2022;
Ahuja et al., 2023), most investigations are limited
in scope, focusing on a small set of languages, spe-
cific tasks, or training paradigms like masked lan-
guage modeling (MLM) or autoregressive models.
Crucially, prior work often overlooks the distinc-
tion between languages encountered during pre-
training (SEEN), languages entirely new to the
model (UNSEEN), and the complete set of lan-
guages available in the evaluation dataset (ALL).
The question remains – what factors are important
in the case of unseen languages where language-
specific pretraining data is not one of the relevant
factors? This distinction is essential for under-
standing how MLLMs generalize to languages with
varying levels of familiarity.

Our work takes a deeper look at the various fac-
tors under several experimental settings. Our key
contributions are as follows:

• We conduct a comprehensive evaluation of 6
MLLMs, including MLM, autoregressive, and
instruction-tuned LLMs, on a text classification
task spanning a wide range of languages. This di-
verse set of models includes mBERT (Devlin et al.,
2019), XLM-R (Conneau et al., 2020), GPT-3.5
(Brown et al., 2020), Bloom (Scao et al., 2022) in
5 sizes, Bloomz (Muennighoff et al., 2023) in 5
sizes, and XGLM (Lin et al., 2022) in 4 sizes. Ad-
ditionally, we consider three training scenarios:
zero-shot, 2-shot, and fully supervised.

• We consider four key factors in our analysis: pre-
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Reference Factors Task Languages

Wu and Dredze (2020) Pretraining data size, Task-specific data
size, Vocabulary size

NER 99

Scao et al. (2022) Pretraining data size, Task-specific data
size, Language family, Language script

Probing 17

Shliazhko et al. (2022) Pretraining data size, Language script,
Model size

Perplexity 61

Ahuja et al. (2023) Pretraining data size, Tokenizer fertility Classification, QA, Se-
quence Labeling, NLG

2-48

Ours Pretraining data size, Language family,
Language script, General resource avail-
ability

Text classification 204

Table 1: Factors considered in related works and this work.

training data size, general resource availability
levels, language family, and script type. This
allows for a more nuanced understanding of the
factors influencing MLLM performance.

• We leverage the recently introduced SIB-200
dataset (Adelani et al., 2023), which includes
204 languages, enabling us to investigate MLLM
performance across a diverse and extensive lin-
guistic landscape. Between the languages per-
taining to the models and the dataset, we are
able to further distinguish them along the dimen-
sions of SEEN, UNSEEN, or ALL, depending on
whether the languages were seen during pretrain-
ing, or unseen during pretraining, or the set of
all languages available in the evaluation dataset,
respectively.

By analyzing these factors across different mod-
els and training setups, we aim to provide deeper
insights into the development of effective and eq-
uitable MLLMs for a truly multilingual NLP land-
scape.

2 Related Work

Multilingual NLP research has flourished in re-
cent years, with the development and evaluation
of numerous multilingual language models trained
on diverse and extensive language datasets. No-
table examples include mBERT (Devlin et al., 2019),
XLM-R (Conneau et al., 2020), mBART (Liu et al.,
2020), mT5 (Xue et al., 2021), BLOOM (Scao et al.,
2022), GPT-3 (Brown et al., 2020), GPT-4 (Ope-
nAI, 2023), LLaMA (Touvron et al., 2023), PaLM
(Chowdhery et al., 2022), and PaLM 2 (Anil et al.,
2023).

Researchers are increasingly interested in investi-
gating the factors influencing MLLM performance.

Wu and Dredze (2020) examined the impact of
pretraining data size, task-specific data size, and
vocabulary size on named entity recognition per-
formance. Scao et al. (2022) explored the correla-
tion between probing performance and factors like
language family, task-specific dataset size, and pre-
training dataset size for the BLOOM model. Shli-
azhko et al. (2022) assessed the impact of language
script, pretraining corpus size, and model size on
language modeling performance, while Ahuja et al.
(2023) investigated the influence of tokenizer fertil-
ity and pretraining data on MLLM performance.

While these studies provide valuable insights,
they often focus on a limited set of languages, pri-
marily due to the historical scarcity of annotated
multilingual datasets. Additionally, research by
Blasi et al. (2022) highlights the significant inequal-
ities in the development and performance of lan-
guage technologies across the world’s languages,
with a strong bias towards resource-rich languages
like English and other Western European languages.
Further exacerbating this issue is the lack of repre-
sentation for dialects, varieties, and closely-related
languages within existing datasets. As noted by
Faisal et al. (2024), this absence hinders the devel-
opment of NLP systems capable of effectively han-
dling the nuances of linguistic diversity. However,
the recent emergence of comprehensive multilin-
gual datasets like SIB-200 (Adelani et al., 2023),
and GLOT500 (ImaniGooghari et al., 2023) offers
exciting opportunities for more extensive and nu-
anced analyses. Table 1 summarizes the factors
considered in related works and our study. For
a more comprehensive overview of contributing
factors to cross-lingual transfer in multilingual lan-
guage models, readers are encouraged to refer to
the review by Philippy et al. (2023).
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3 Methodology

Several factors can influence the performance of
multilingual models. In this section, we briefly
describe the distinct factors related to typology and
data, the dataset of more than 200 languages used
for evaluation, and the models we consider in this
study.

3.1 Typology and Data Factors
We consider various factors to understand their
impact on model performance including:

• Pretraining Data Size: This refers to the per-
centage of language-specific data used during the
pretraining of each model2.

• General Resource Availability (Res Level): Be-
yond model-specific resources such as pretrain-
ing data size, we also consider a more general no-
tion of resource availability, as per the linguistic
diversity taxonomy which categorizes languages
into six resource levels (Joshi et al., 2020), where
level 0 corresponds to low-resource and level
5 corresponds to high-resource level languages.
This classification helps us understand the in-
fluence of more general resource availability on
model performance, and may serve as a proxy
when model-specific statistics may not be avail-
able (such as in the case of proprietary models).
Language resource levels generally correlate pos-
itively with models pretraining data sizes, with
varying degrees of alignment across different
models: mBERT (0.52) and XLM-R (0.48) ex-
hibit relatively stronger correlations, while GPT-
3 (0.18), BLOOM (0.37), and XGLM (0.31)
show comparatively weaker associations.

• Language Family (Lang Family): The lan-
guage families that the languages belong to cap-
ture some of their linguistic relationships. The
information was sourced from the Ethnologue3

(Ethnologue, 2022).

• Script: The script of a language refers to the
writing system it employs. This information was
sourced from ScriptSource4.

2We obtained the train dataset distribution val-
ues for mBERT from https://github.com/mayhewsw/
multilingual-data-stats and for GPT-3.5 we use proxy
statistics from https://github.com/openai/gpt-3/blob/
master/dataset_statistics/languages_by_word_
count.csv. Distribution of train dataset for XLM-R, BLOOM,
BLOOMZ and XGLM were obtained from their respective papers.

3https://www.ethnologue.com
4https://www.scriptsource.org

3.2 Data

We systematically study the multilingual models
under an important NLP task – text classification
(Chang and Bergen, 2023). The SIB-200 dataset
(Adelani et al., 2023) offers a valuable resource for
evaluating MLLM performance in a large-scale text
classification task, enabling simultaneous analysis
of approximately 200 languages, with text samples
categorized into one of seven classes. F1 score is
used as the metric for this task.

Exploratory analysis of the dataset reveals sev-
eral interesting insights:

• As shown in Figure 1, most languages in SIB-
200 are classified as resource level 1, indi-
cating a deliberate focus on low-resource lan-
guages. This allows us to assess how MLLMs
perform on languages with limited linguistic
resources available.

• Figure 4 in Appendix B illustrates the distribu-
tion of language families within the SIB-200
dataset. Notably, the dataset encompasses 23
different language families, providing a rich
linguistic landscape for our analysis. Indo-
European languages constitute a significant
portion (approximately 36%) of SIB-200, re-
flecting their status as the most widely spo-
ken language family globally (Ethnologue,
2022). However, Niger-Congo, Afro-Asiatic,
and Austronesian languages also have con-
siderable representation in the dataset. This
diverse language family distribution enables
us to analyze MLLM performance across dif-
ferent linguistic groups.

• The SIB-200 dataset encompasses text sam-
ples written in 29 different script types, offer-
ing a diverse range of writing systems for our
analysis. As shown in Figure 5 in Appendix B,
the Latin script, used by nearly 70% of the
global population (Vaughan, 2020), is the
most prevalent writing system in the dataset,
followed by Arabic and Cyrillic scripts. This
distribution allows us to investigate the impact
of script type on MLLM performance.

For all evaluations, we use the default train and
test splits recommended by the SIB-200 authors.
This ensures consistency and comparability across
different models and training settings.
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Figure 1: Distribution of resource levels in SIB-200.

3.3 Models
We study the following 6 multilingual language
models spanning various architectures and sizes:

• Masked Language Models (MLMs):

– mBERT (bert-base-multilingual-cased) (De-
vlin et al., 2019)

– XLM-R (xlm-roberta-base) (Conneau et al.,
2020)

• Autoregressive Language Models

– GPT-3.5 (text-davinci-003) (Brown et al.,
2020)

– Bloom (Scao et al., 2022) in 5 sizes (560m,
1.1b, 1.7b, 3b, and 7.1b parameters)

– XGLM (Lin et al., 2022) in 4 sizes (564m,
1.7b, 2.9b, and 7.5b parameters)

• Instruction-tuned LLMs:

– Bloomz (Muennighoff et al., 2023) in 5 sizes
(560m, 1.1b, 1.7b, 3b, and 7.1b parameters)

These models were chosen for several key rea-
sons:

1. These models provide broad language cov-
erage, allowing us to analyze performance
across a diverse set of languages and maxi-
mize the linguistic diversity in our study.

2. By including MLMs, autoregressive models,
and instruction-tuned LLMs, we can investi-
gate how different model architectures influ-
ence performance.

3. The inclusion of models with varying parame-
ter sizes allows us to investigate the interplay
between model scale and the factors influenc-
ing performance.

4. mBERT and XLM-R, despite being relatively
smaller models, have demonstrated compet-
itive performance even compared to larger
models like ChatGPT after fine-tuning (Lai
et al., 2023; Zhu et al., 2023).

5. The inclusion of both Bloom and XGLM, both
autoregressive models, allows us to investi-
gate the impact of pretraining data composi-
tion. Bloom focuses more on low-resource
languages during pretraining, whereas XGLM
emphasizes high-resource languages. This de-
liberate selection enables us to analyze how
the distribution of languages in the pretrain-
ing data affects performance across different
resource levels.

Note that we primarily focus on models that are
open-source or have made the list of pretraining
languages and data composition available.

Additionally, we consider the following training
and inference scenarios:

• Zero-shot: GPT-3.5, Bloom, Bloomz, and
XGLM were evaluated directly on the test set
without any specific fine-tuning. This assesses
the model’s ability to generalize to unseen
tasks and languages based on its pretrained
knowledge.

• Two-shot In-Context Learning (ICL): Bloom,
Bloomz, and XGLM were also evaluated in two-
shot ICL setting where the models were pro-
vided with two labeled examples for each
class from the train set. This allows us to
particularly investigate effective factors for
improving performance of unseen languages.
We opted for two demonstrations in ICL to
keep the input length shorter than the context
length of our models across all languages.

• Full-shot: mBERT and XLM-R were fine-tuned
on the SIB-200 training set and evaluated on
the test set.

For full-shot training of mBERT and XLM-R,
we adhered to the hyperparameters recommended
by the SIB-200 paper authors to ensure consistency
with the original dataset benchmarks. For Bloom,
Bloomz, and XGLM in both zero-shot and two-shot
ICL settings, as well as for GPT-3.5 in zero-shot
setting, we use prompts to frame the text classifica-
tion task, which are detailed in Appendix A.

4 Results and Analysis

Now we discuss the results of our comprehen-
sive experiments. We focus on analyzing the
performance of models across three distinct sce-
narios: ALL, SEEN, and UNSEEN. The ALL
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Figure 2: Decision tree for Bloom-560m (zero-shot, SEEN languages). “General resource level“ emerges as the
most important feature, with a significant performance difference between languages above and below the 2.5
threshold (p < 0.001 as per Mann-Whitney U test).

scenario considers all languages in the SIB-200
dataset for which resource level information is
available5. The SEEN scenario focuses on lan-
guages included in the pretraining data of the re-
spective MLLMs, while the UNSEEN scenario ex-
amines performance on languages not present in
the pretraining data.

In total, results are obtained from 93 distinct
experimental settings (models of different sizes,
training scenarios, and language categories of
seen/unseen/all).

To understand the complex interplay of multiple
factors influencing MLLM performance, we em-
ploy decision tree analysis for statistical inference.
This approach is well-suited for handling factors
of different types, including categorical, ordinal,
and numeric data. Decision trees are trained to
predict the F1 score of models based on language
features. By analyzing the resulting tree structure,
we can gain insights into the relative importance of
different features and their interactions.

As decision trees were trained on the entirety
of our data, traditional methods for testing their
performance were not applicable. Instead, we em-
ployed the Mann-Whitney U test (Mann and Whit-
ney, 1947), to ensure that the features appearing
at the root of the decision trees were indeed rele-
vant and contributed significantly to the differenti-
ation between the language splits. This approach
allowed us to validate the significance of the fea-
tures identified by the decision tree in delineating

5This information is available for 190 languages.

distinct language groups without relying solely on
the performance metrics of the decision tree models
themselves.

Figure 2 presents the decision tree analysis for
the Bloom-560m model on SEEN languages, reveal-
ing general resource level as the most influential
feature. Specifically, the tree distinguishes between
languages with resource levels below 2.5 (levels
0,1,2) and those above 2.5 (levels 3,4,5). Among
the 44 SEEN languages, the 29 languages with re-
source levels below 2.5 exhibit a mean F1 score
of 0.174, while the 15 languages with higher re-
source levels achieve a significantly higher mean
F1 score of 0.379. A Mann-Whitney U test con-
firms a statistically significant difference in perfor-
mance between these two groups (p < 0.001). This
suggests that for the Bloom-560m model on SEEN
languages, the general resource level of a language
plays a crucial role in determining its performance,
with higher resource levels leading to better perfor-
mance. By employing this combined approach of
decision tree analysis and statistical testing, we can
effectively disentangle the complex relationships
between various factors and their impact on MLLM
performance.

The summarized results6 of all 93 decision tree
analyses are presented in Table 2. We observe
distinct patterns in feature importance across the
three scenarios:

6Detailed decision trees for all models and setups are
available in our repository: https://github.com/PortNLP/
MLLMs_performance
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Zero-shot

Model ALL SEEN UNSEEN

Bloom-560m Pretrain data (<=0.125%) Resource level (<=2.5) Script (Latin or not)
Bloom-1b1 Pretrain data (<=0.125%) Resource level (<=2.5) Script (Devanagari or not)
Bloom-1b7 Pretrain data (<=0.175%) Resource level (<=2.5) Script (Latin or not)
Bloom-3b Pretrain data (<=0.175%) Resource level (<=2.5) Script (Latin or not)
Bloom-7b1 Pretrain data (<=0.125%) Resource level (<=2.5) Script (Devanagari or not)
Bloomz-560m Script (Latin or not) Pretrain data (<=0.03%) Script (Latin or not)
Bloomz-1b1 Pretrain data (<=0.008%) Pretrain data (<=0.03%) Script (Latin or not)
Bloomz-1b7 Pretrain data (<=0.008%) Pretrain data (<=0.03%) Script (Latin or not)
Bloomz-3b Pretrain data (<=0.002%) Pretrain data (<=0.013%) Script (Latin or not)
Bloomz-7b1 Pretrain data (<=0%) Pretrain data (<=0.9%) Script (Latin or not)
XGLM-564m Pretrain data (<=0.003%) Resource level (<=2) Lang. family (Austronesian or not)
XGLM-1.7b Pretrain data (<=0.006%) Pretrain data (<=1.487%) Script (Devanagari or not)
XGLM-2.9b Pretrain data (<=0.003%) Script (Latin or not) Script (Devanagari or not)
XGLM-7.5b Pretrain data (<=0%) Pretrain data (<=1.122%) Script (Devanagari or not)
GPT-3.5 Resource level (<= 2.5) Pretrain data (<=0.003%) Lang. family (Indo-European or not)

Two-shot ICL

Model ALL SEEN UNSEEN

Bloom-560m Pretrain data (<=0.045%) Pretrain data (<=0.045%) Lang. family (Indo-European or not)
Bloom-1b1 Pretrain data (<=0.095%) Pretrain data (<=0.095%) Script (Latin or not)
Bloom-1b7 Pretrain data (<=0.175%) Pretrain data (<=0.175%) Script (Latin or not)
Bloom-3b Pretrain data (<=0.008%) Pretrain data (<=0.008%) Script (Latin or not)
Bloom-7b1 Pretrain data (<=0.008%) Pretrain data (<=0.008%) Script (Latin or not)
Bloomz-560m Pretrain data (<=0.03%) Pretrain data (<0.03%) Script (Devanagari or not)
Bloomz-1b1 Pretrain data (<=0.008%) Pretrain data (<=0.013%) Script (Latin or not)
Bloomz-1b7 Pretrain data (<=0.005%) Pretrain data (<=0.013%) Script (Cyrillic or not)
Bloomz-3b Pretrain data (<=0%) Pretrain data (<=0.9%) Script (Latin or not)
Bloomz-7b1 Pretrain data (<=0%) Pretrain data (<=0.013%) Script (Latin or not)
XGLM-564m Pretrain data (<=0.003%) Pretrain data (<=0.095%) Lang. family (Niger-Congo or not)
XGLM-1.7b Pretrain data (<=0.003%) Resource level (<=2) Script (Devanagari or not)
XGLM-2.9b Pretrain data (<=0.003%) Script (Latin or not) Lang. family (Indo-European or not)
XGLM-7.5b Pretrain data (<=0.003%) Pretrain data (<=0.15%) Lang. family (Indo-European or not)

Full-shot

Model ALL SEEN UNSEEN

mBERT Pretrain data (<=0.032%) Pretrain data (<=0.073%) Lang. family (Indo-European or not)
XLM-R Pretrain data (<=0.005%) Pretrain data (<=0.031%) Lang. family (Indo-European or not)

Table 2: Top features identified by decision tree analysis for each model and scenario. For SEEN languages,
pretraining data size and resource level dominate (except for XGLM-2.9b, where script type is most influential).
For UNSEEN languages, linguistic characteristics (script type and language family) take precedence. All features
exhibit statistically significant differences in performance (p < 0.001).

ALL Languages:

• For the ALL languages scenario, decision trees
clearly reveal that pretraining data is the most
influential factor in 29 out of 31 cases. Because
ALL includes languages SEEN and UNSEEN,

notably, our deeper look at the decision tree anal-
yses indicates that this factor in most cases boils
down to whether the language was part of the
training set or not, rather than the amount of
language-specific data, as indicated by the values

21



Figure 3: F1 Score vs. model-specific pretraining data (percentage) for GPT-3.5, mBERT and XLM-R models.

of the pretraining data percentages which range
from 0% to at most 0.175%. GPT-3.5 model
draws the distinction along general resource lev-
els whether a language is low resource (0, 1, or
2) or level 3 and higher.

SEEN Languages:

• For SEEN languages, model-specific pretrain-
ing data continues to remain the most influential
factor in 22 out of 31 model and scenario com-
binations. However, this time because there are
no unseen languages in the mix, the model per-
formance seems to be impacted by the amount
of pretraining data, as indicated by the slightly
higher percentage values as compared to the ALL
languages scenario.

• Interestingly, general resource availability based
on linguistic diversity taxonomy (Joshi et al.,
2020) appears to be the most important factor for
Bloom models in the zero-shot setup, as well as
for xglm-564m (zero-shot) and xglm-1.7b (two-
shot). For Bloom models, the distinction is along
resource levels 0/1/2 or higher, whereas for xglm
models, it is along 0/1 and higher. Additionally,
xglm-2.9b in both zero-shot and two-shot sce-
narios shows a stronger influence of script type
(Latin or not). These cases indicate that factors
beyond pretraining data size can also play a sig-
nificant role for specific models and settings.

• Furthermore, Figure 3 plots the performance of
mBERT, XLM-R, and GPT-3.5 models in relation
to model-specific pretraining data amounts. The
figure demonstrates a clear trend: as the model-
specific language data increases, so does the
model’s performance. This observation aligns
with the finding that pretraining data size is a
crucial factor for SEEN languages.

UNSEEN Languages:

• In contrast to SEEN languages, UNSEEN lan-
guages show quite a different pattern. Naturally,
because UNSEEN languages do not have pre-
training data as one of their relevant factors, it
is absent from this column. However, out of 31
models, 23 are most impacted by script type, and
8 are most influenced by language family. This
shift in importance towards linguistic features
suggests that when models encounter unfamiliar
languages, they rely more heavily on similari-
ties in writing systems to generalize from their
existing knowledge.

• Within the scripts and language families, there
are nuanced differences. For instance, while gen-
erally the models make the distinction along the
lines of whether the script is Latin or not, occas-
sionally Devanagari script also seems important,
particularly for XGLM models. Similarly, while
Indo-European is the most common influential
language family, we also observe an instance
each of Austronesian and Niger-Congo. Addi-
tionally, models of different sizes from the same
family may prefer not just a different script or
a different language family when moving from
zero-shot to two-shot setting, they may prefer
an entirely different factor (e.g., Bloom-560m in
zero-shot vs. two-shot settings), further compli-
cating the matters.

5 Discussion

Our comprehensive analysis of 6 multilingual mod-
els on the SIB-200 dataset reveals valuable in-
sights into the factors influencing their performance
across a diverse range of languages.

Our key findings can be summarized as follows:

• Pretraining data size consistently emerges as a
crucial factor, but the distinction is less along

22



the quantity of data but rather whether the lan-
guages have been encountered during training
or not.

• For UNSEEN languages, script type and lan-
guage family are influential, suggesting that
MLLMs rely on cross-lingual transfer learn-
ing to generalize to unfamiliar languages.

• General resource availability plays a less
prominent role overall but appears to be impor-
tant for one specific model under one setting
(Bloom in zero-shot for seen languages).

• Interestingly, the performance of Bloomz, an
instruction-tuned model, is more influenced
by the distribution of languages in its pretrain-
ing corpus than the fine-tuned dataset used
for instruction tuning. This suggests that the
initial pretraining stage plays a crucial role in
shaping the model’s capabilities, even after
further fine-tuning for specific tasks.

• Finally, our analysis also indicates that while
model size and architecture may influence
overall performance, they do not significantly
alter the most important features identified
by the decision trees. The distribution of lan-
guages in the pretraining data and the linguis-
tic characteristics of the target languages con-
sistently emerge as the dominant factors re-
gardless of the specific model architecture or
scale.

Several future directions remain to be explored.
We observed that script type can be more influential
for specific models and settings. Further investi-
gation is needed to understand the reasons behind
these preferences and how they can be leveraged
to achieve more consistent performance across lan-
guages. It is also not clear why models lean towards
different factors under different settings (for in-
stance, resource level is important in Bloom-560m
zero-shot setting but pretraining data is important
in its two-shot ICL setting).

6 Conclusion

This study analyzed 6 multilingual language mod-
els on the SIB-200 dataset, revealing key insights
into their performance across around 200 lan-
guages. We found that the size of the pretraining
data significantly affects performance. For unseen
languages, script type and language family become

more crucial, highlighting the importance of cross-
lingual transfer learning. While general resource
availability plays a less prominent role overall, it
can be significant for specific models and settings.
Interestingly, model size and architecture do not
significantly change the most important features
identified in our analysis. Our work contributes
to a deeper understanding of MLLMs and hopes
to guide the development of more effective and
equitable multilingual NLP systems.

Limitations

This study provides insights into multilingual lan-
guage model performance, but it is important to
acknowledge certain limitations. The SIB-200
dataset, while extensive, may contain biases in lan-
guage representation and genre distribution, poten-
tially affecting the generalizability of our findings.
Additionally, our analysis focuses on the text clas-
sification task, and the findings may not directly
generalize to other NLP tasks. While we analyzed
a diverse set of models, our findings may not be
fully representative of the entire MLLM landscape.
Finally, our analysis is based on the current state
of MLLMs, and the relative importance of differ-
ent factors may change as these models continue to
evolve. Future research should address these limita-
tions by expanding to more diverse datasets, inves-
tigating different NLP tasks, evaluating a broader
range of models, and conducting longitudinal stud-
ies.
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A Appendix: Prompts

This appendix provides the specific prompts used
for evaluating Bloom, Bloomz, XGLM, and GPT-3.5
in the zero-shot and two-shot in-context learning
(ICL) settings on the SIB-200 text classification
task.

Zero-shot Prompt (Bloom, Bloomz, XGLM):
SENTENCE: “{input sentence}”
Is this SENTENCE science, travel, politics,
sports, health, entertainment, geography?
OPTIONS:
-science
-travel
-politics
-sports
-health
-entertainment
-geography
ANSWER:

Two-shot ICL Prompt (Bloom, Bloomz,
XGLM):
What category does SENTENCE belong to?

SENTENCE: “{sentence1}”
LABEL: {label1}
SENTENCE: “{sentence2}”
LABEL: {label2}
...
SENTENCE: “{sentence14}”
LABEL: {label14}
SENTENCE: “{input sentence}”
OPTIONS:
-science
-travel
-politics
-sports
-health
-entertainment
-geography

LABEL:

Zero-shot Prompt (GPT-3.5):
You will be provided with a text, and
your task is to classify its category
as science, travel, politics, sports,
health, entertainment, geography.
{input sentence}

Category:

B Appendix: Supplemental plots
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Figure 4: Distribution of language family in SIB-200.

Figure 5: Distribution of scripts in SIB-200.
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