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Preface

These proceedings include the 22 papers presented at the Eleventh Workshop on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial 2024), co-located with the 2024 annual conference of the North
American Chapter of the Association for Computational Linguistics (NAACL). VarDial was held in Me-
xico City, Mexico, in a hybrid format, allowing participants to attend on-site or remotely.
Now at its eleventh edition, we are pleased to see that VarDial continues to serve the community as the
main venue for researchers interested in the computational processing of diatopic language variation. The
papers accepted this year address a wide range of topics, such as language variety identification, corpus
creation, and machine translation. These proceedings once again illustrate the great linguistic diversity
that VarDial embodies. They include work on Germanic (historical Dutch, Limburgish, Norwegian,
Swiss German), Romance (Portuguese, Spanish, Occitan), and Slavic languages (South Slavic, Slovak),
as well as Arabic and Nahuatl.
As in previous editions, VarDial 2024 features an evaluation campaign with two shared tasks: The
DIALECT-COPA shared task on dialectal causal commonsense reasoning, and the DSL-ML shared task
on multi-label classification of similar languages. Both tasks were organized for the first time this year,
although DSL-ML relies on datasets built for earlier tasks. This volume includes the system description
papers prepared by the participating teams, as well as a report written by the task organizers summarizing
the results and findings of the evaluation campaign.
Finally, we would like to take this opportunity to thank all the shared task organizers and the participants
for their hard work. We further thank the VarDial program committee members, and particularly the 14
PC members who newly joined this year, for being an important part of the workshop’s success.

The VarDial workshop organizers:

Yves Scherrer, Tommi Jauhiainen, Nikola Ljubešić, Preslav Nakov, Jörg Tiedemann, and Marcos Zam-
pieri

https://sites.google.com/view/vardial-2024
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Abstract

This report presents the results of the shared
tasks organized as part of the VarDial Evalu-
ation Campaign 2024. The campaign is part
of the eleventh workshop on Natural Language
Processing (NLP) for Similar Languages, Va-
rieties and Dialects (VarDial), co-located with
NAACL 2024. Two shared tasks were included
this year: dialectal causal commonsense reason-
ing (DIALECT-COPA), and Multi-label classi-
fication of similar languages (DSL-ML). Both
tasks were organized for the first time this year,
but DSL-ML partially overlaps with the DSL-
TL task organized in 2023.

1 Introduction

The workshop series on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial), tradi-
tionally co-located with international conferences,
has reached its eleventh edition. Since the first
edition, VarDial has hosted shared tasks on vari-
ous topics such as language and dialect identifi-
cation, morphosyntactic tagging, question answer-
ing, and cross-lingual dependency parsing. The
shared tasks have featured many languages and di-
alects from different families and data from various
sources, genres, and domains (Aepli et al., 2023,
2022; Chakravarthi et al., 2021; Gaman et al., 2020;
Zampieri et al., 2019, 2018, 2017; Malmasi et al.,
2016; Zampieri et al., 2015, 2014).

As part of the VarDial Evaluation Campaign
2024, we offered two shared tasks which we
present in this paper:

• DIALECT-COPA: Dialectal causal common-
sense reasoning1

• DSL-ML: Multi-label classification of similar
languages2

1Task organizers: Nikola Ljubešić, Ivan Vulić, Goran
Glavaš.

2Task organizers: Adrian Chifu, Radu Ionescu, Aleksandra
Miletić, Filip Miletić, Yves Scherrer.

DSL-ML continues the long line of language
and dialect identification (Jauhiainen et al., 2019)
shared tasks at VarDial, whereas DIALECT-COPA
features a task novel to the evaluation campaigns.

The evaluation campaign took place in January
– March 2024. The call for participation and the
training data sets for the shared tasks were pub-
lished in the second half of January, and the results
were due to be submitted on March 11th.3

In the following sections, the two tasks are dis-
cussed in detail, focusing on the data, the partici-
pants’ approaches, and the obtained results. Sec-
tion 2 is dedicated to DIALECT-COPA and Sec-
tion 3 to DSL-ML.

2 The DIALECT-COPA Task on Causal
Commonsense Reasoning

2.1 Motivation

The causal commonsense reasoning (CCR) task
has been established as an important task in evalua-
tion of natural language understanding (NLU) ca-
pabilities of pretrained language models, including
the latest family of the so-called Large Language
Models (LLMs). The original English dataset,
Choice Of Plausible Alternatives (COPA) (Roem-
mele et al., 2011) has been used as the standard
evaluation benchmark for the English CCR task
since its release, and it is also included in the En-
glish SuperGLUE benchmark (Wang et al., 2019).

Language-specific variants of COPA have also
been created, where the bulk of the data is covered
in the multilingual XCOPA dataset (Ponti et al.,
2020). The original XCOPA covers 11 standard
language varieties from 11 language families, in-
cluding some lower-resource languages such as
Haitian Creole, Tamil, and Southern Quechua. It
has been included into the established XTREME-
R benchmark (Ruder et al., 2021) for the evalua-

3https://sites.google.com/view/vardial-2024/
shared-tasks
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tion of cross-lingual transfer, and has consequently
been used as a de facto evaluation benchmark for
CCR in cross-lingual and multilingual scenarios.
Besides XCOPA, there also exist single-language
translations of adaptations of COPA into other
languages such as Slovenian (Žagar and Robnik-
Šikonja, 2022), Russian (Shavrina et al., 2020), and
Catalan,4 among others.

While COPA and XCOPA were considered
challenging benchmarks for previous encoder-
style models such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) and XLM-R (Con-
neau et al., 2020), current state-of-the-art LLMs
now provide impressive performance on these
datasets (Chowdhery et al., 2023; Zhong et al.,
2022; Shi et al., 2023): they are able to reach
≥ 90% accuracy for diverse languages such as
Thai, Estonian, Indonesian, Tamil, Vietnamese or
Turkish (Shi et al., 2023). Whereas LLMs have
been proven to perform extremely well on high-
resource and even moderately resourced standard
languages, their ability to conduct CCR for truly
low-resource languages (Senel et al., 2024) and
especially dialects (Joshi et al., 2024) has been
much less investigated and empirically measured.
For instance, lower performance on the standard
lower-resource languages of the XCOPA dataset
(e.g., Haitian Creole, Quechua, Swahili) already
indicates additional difficulty for and reduced ca-
pability of current LLMs.

All COPA datasets to date comprise the same
set of instances covering the same or similar set of
topics. The only core difference between different
datasets is the actual, target language variety of a
particular dataset. Another property of COPA and
its derivatives is its simple and easy-to-evaluate
data format. In a nutshell, each data instance con-
sists of three sentences: a statement (premise) and
two possible effects or causes (termed alternatives)
for the premise. Given an English example, a
premise ‘The man turned on the faucet.’ is com-
bined with two alternatives ‘The toilet filled with
water.’ and ‘Water flowed from the spout’. The task
is then to select the alternative that more plausibly
has a causal relation with the premise, where each
instance is manually annotated with a correct an-
swer. The standard evaluation measure is accuracy,
where the random baseline is therefore at 50% accu-
racy, and errors made by the systems could be due

4https://huggingface.co/datasets/projecte-ain
a/COPA-ca

to subtle details related to understanding causality
relationships.

The above background related to CCR in gen-
eral and COPA-style datasets in particular has mo-
tivated us to create a first shared task on CCR for
dialectal data, DIALECT-COPA, which we discuss
next. In summary, the selection of the task has been
guided by the following observations and criteria:

• CCR is an established and important NLU task
for the evaluation of language models in mono-
lingual, multilingual, and cross-lingual setups;

• CCR has never been in focus of VarDial eval-
uation campaigns and, vice versa, there have
been no attempts to date to extend the CCR task
and the corresponding COPA-style data to non-
standard language varieties and dialects;

• CCR based on the standard COPA data format
offers an excellent balance between the structural
simplicity and semantic complexity of the task,
with clear and straightforward evaluation proto-
cols and measures.

• The standardized COPA format and the multi-
parallel nature of COPA-based datasets in differ-
ent standard language varieties combined with
newly created dialectal COPA variants offer am-
ple opportunity for cross-linguistic and cross-
dialectal analyses and studies of model behavior
and performance, as part of the shared task as
well as for future research.

• For dialects chosen for DIALECT-COPA, ob-
taining large quantities of raw text is typically
not possible, which renders good out-of-the-box
performance of LLMs for them difficult and un-
likely; this calls for new and creative approaches
in order to mitigate the current gaps of LLMs
when faced with CCR on dialectal data.

2.2 Data
The focus of the first DIALECT-COPA shared task
has been on micro-dialects of several South-Slavic
languages. This choice has been partially moti-
vated by the recent creation of COPA datasets for
standard language varieties of several, moderately
resourced in NLP terms, South-Slavic languages:
Slovenian COPA-SL (Žagar and Robnik-Šikonja,
2022), Croatian COPA-HR (Ljubešić, 2021), Ser-
bian COPA-SR (Ljubešić et al., 2022b) and Mace-
donian COPA-MK (Ljubešić et al., 2022a). All
the datasets were translated by human translators,
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native speakers of the target languages, from the
English COPA dataset (Roemmele et al., 2011),
with all the datasets, except for COPA-SL, follow-
ing the XCOPA translation and adaptation method-
ology (Ponti et al., 2020). COPA-SL was trans-
lated without any additional adaptation as part of
the Slovenian SuperGLUE benchmark (Žagar and
Robnik-Šikonja, 2022). Serbian and Macedonian
datasets are written in Cyrillic, while the other data
are in the Latin script.

For the shared task, the COPA-* datasets in
the standard South-Slavic languages were then ex-
tended to three micro-dialects that are spoken in
narrow micro-geographical areas (Ljubešić et al.,
2024a): 1) the Cerkno dialect of Slovenian (COPA-
SL-CER), spoken in the Slovenian Littoral region,
specifically from the town of Idrija; 2) the Chaka-
vian dialect of Croatian from northern Adriatic
(COPA-HR-CKM), specifically from the town of
Žminj, and 3) the Torlak dialect from southeast-
ern Serbia (COPA-SR-TOR), specifically from the
town of Lebane in Serbia.

The three dialectal datasets featuring in the
DIALECT-COPA task were again created fol-
lowing the established translation and adaptation
methodology of XCOPA. All data instances were
translated and adapted from the closest standard
language COPA (e.g., COPA-HR was used to de-
rive COPA-HR-CKM), allowing the human trans-
lators to also consult the original English COPA
as the additional source. Following the original
COPA data split, COPA-SL-CER and COPA-SR-
TOR contain 400 instances for training, 100 for
development and 500 test instances. COPA-HR-
CKM was treated as a surprise dialect, and it com-
prises only the 500 translated and adapted test in-
stances. We allowed the use of any external data
except the 500 test instances in any language for
which a COPA dataset variant exists,5 given the
multi-parallel nature of the COPA datasets.

While the contamination of todays’ LLMs with
the English COPA dataset is very likely, we are
rather sure that there is a minimum danger of the
results of this shared task to be contaminated, and
this is for the following reasons: (1) the dialec-
tal datasets were not published before this shared
task, (2) inspections of performance of various re-
cent LLMs has shown not-perfect results on the
English dataset, and (3) comparable results to the

5This of course refers to all the other ‘COPA languages’
beyond the South Slavic languages, e.g., all the XCOPA lan-
guages, Russian, and Catalan

English ones were achieved on the non-English
datasets, that are available for a short period of
time. Finally, to ensure future validity of the mea-
surements on this shared task’s data, the test data
of the DIALECT-COPA dataset are not published
publicly, but are available only upon request of
fellow researchers.

The evaluation metric regularly used in the
COPA datasets, as well as inside this shared task,
is accuracy, which puts the random baseline, given
the binary nature of the task, at 50%. Ljubešić
et al. (2024a) propose already competitive base-
lines, with Mixtral 8x7B Instruct (Jiang et al., 2024)
zero-shotting achieving results around 70% accu-
racy on standard South Slavic datasets, but random
to 63% accuracy on the dialectal datasets. Simi-
larly, with zero-shotting the GPT-4 model (OpenAI
et al., 2024), results of around 95% accuracy are re-
ported for the standard South Slavic datasets, while
the dialectal datasets achieve results between 60%
and 93%. The significantly lower results on di-
alectal datasets, regardless of the model applied,
show for the DIALECT-COPA dataset to be a very
much open challenge and therefore a great fit for
this evaluation campaign.

2.3 Participants

gmu-nlp. The team from the George Mason Uni-
versity submitted 10 runs, which is the maximum
number of allowed runs in the shared task. Their
approach (Faisal and Anastasopoulos, 2024) pri-
marily focused on adaptation to dialects through
various techniques of data augmentation: namely
transforming cause instances into effect instances
(and vice versa) by switching the place of the
premise and the correct hypothesis, generating the
non-available Chakavian training data by trans-
lating the standard data into the dialect via the
the Claude 3 (Anthropic, 2024) and GPT-4 (Ope-
nAI et al., 2024) models prompted with dialec-
tal translation examples and rules, and fine-tuning
a model on a combination of training data from
specific languages and dialects. They inspected
two models: the smaller Electra-style BERTić
model (Ljubešić and Lauc, 2021), and the mT5-
based aya-101 model (Üstün et al., 2024). The
authors also used the ‘trick’ of independently fine-
tuning a cause and an effect model.

JSI. The team from the Jožef Stefan Insitute sub-
mitted six runs, all based on zero- and few-shotting
the Mixtral 8×7B Instruct model (Jiang et al., 2024)

3



team run name API-only adapt sl-cer hr-ckm sr-tor mean

gmu-nlp 1 orgl_hr_ckm_test N FT 0.700 0.750 0.824 0.758
gmu-nlp 2 aya N FS 0.694 0.756 0.84 0.763
gmu-nlp 3 orglc_omix_mk_hr_ckm_test N FT 0.690 0.756 0.836 0.761
gmu-nlp 4 orgl_sl_cer_test N FT 0.686 0.718 0.836 0.747
gmu-nlp 5 orgl_test N FT 0.682 0.760 0.824 0.755
gmu-nlp 6 orgl_mk_hr_ckm_test N FT 0.660 0.742 0.848 0.750
gmu-nlp 7 orgl_mk_hr_ckm N FT 0.582 0.634 0.682 0.633
gmu-nlp 8 all_train_rev_genx_omixmatch_select N FT 0.576 0.622 0.692 0.630
gmu-nlp 9 orgl_mk_hr_ckm_10 N FT 0.572 0.626 0.722 0.640
gmu-nlp 10 orgl_10 N FT 0.540 0.622 0.700 0.621
JSI 1 gpt4-zero Y ZS 0.594 0.754 0.908 0.752
JSI 2 gpt4-task Y FS 0.734 0.890 0.974 0.866
JSI 3 gpt4-list Y FS 0.696 0.846 0.946 0.829
JSI 4 mixtral-zero N ZS 0.518 0.576 0.706 0.600
JSI 5 mixtral-task N FS 0.542 0.640 0.724 0.635
JSI 6 mixtral-list N FS 0.578 0.618 0.722 0.639
WueNLP 1 MixtralLoRA-en-last N FT 0.562 0.626 0.714 0.634
WueNLP 2 MixtralLoRA-en-val N FT 0.574 0.620 0.706 0.633
WueNLP 3 MixtralLoRA-x-last N FT 0.556 0.606 0.738 0.633
WueNLP 4 MixtralLoRA-x-val N FT 0.550 0.608 0.738 0.632
UNIRI 1 RAG_simple_1 Y ZS 0.688 0.760 - -
UNIRI 2 simple_1 Y ZS 0.664 0.774 0.894 0.777
UNIRI 3 RAG_with_reasoning_1 Y ZS 0.708 0.764 - -
UNIRI 4 with_reasoning_1 Y ZS 0.608 0.664 0.806 0.693

Table 1: Official results on the DIALECT-COPA shared task. The evaluation metric is accuracy, with a random
baseline of 0.5. The API-only column encodes whether the system is based on a closed model, available only through
API calls or not. The adapt column categorizes the system adaptations whether they are based on fine-tuning (FT),
few-shot (FS) or zero-shot (ZS) approaches.

and the GPT-4 model (OpenAI et al., 2024), the
few-shotting approach exploiting their finding that
correct answers are not crucial for the in-context
learning of the dialect, and that the first N test in-
stances, where correct answers are not given, can
easily be exploited for that task, with great enhance-
ments in results (Ljubešić et al., 2024b). The team
also investigated a plethora of other models, the
two selected models being by far the best perform-
ing in the group of open-source models (Mixtral
8x7B) and closed-source models (GPT-4).

WueNLP. The team from the University of
Würzburg submitted four runs, all being focused
on LoRA-fine-tuning the Mixtral 8×7B Instruct
model (Jiang et al., 2024) either on English or on
standard language data, following upon the logic
that dialectal data might not be available for fine-
tuning the model (Ljubešić et al., 2024b). The team
regularly fine-tuned the model on the training sub-
set only, keeping the development data for selecting
the checkpoint with the best results.

UNIRI. The team from the University of Ri-
jeka submitted four runs, all exploiting the GPT-

4 model, the basic zero-shot approach being ex-
tended with a step-by-step-reasoning prompt and
a retrieval-augmented-generation-based use of di-
alectal lexicons (Perak et al., 2024). The dialectal
lexicons, available for two out of the three dialects
in question, have previously been extended with
examples generated by GPT-4.

2.4 Results

The official results of the four teams that have sub-
mitted their system descriptions are given in Ta-
ble 1. The first observation to be made is that all
of the runs on all of the systems have beaten the
random baseline of 50% accuracy.

Starting with the gmu-nlp team, their results
show an expected improvement in results when
the aya-101 model is employed (runs 1-6) in com-
parison to the smaller BERTić model (runs 7-
10). While the team provides very interesting ap-
proaches to data augmentation, the second run,
based only on few-shotting the aya model, achieves
very competitive results to the remaining runs em-
ploying the same model, but relying on LoRA-
fine-tuning on various combinations and enhance-
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ments of the training data. Important to note is that
the gmu-nlp team provided the best results overall
when an open-source backbone LLM is used.

Moving on to the JSI team, they have reached the
best results overall, but with the API-only closed-
source GPT-4 model. They propose a simple zero-
shot prompt, and two improvements of that prompt,
both exploiting the first 10 instances from the test
set. While the list prompt only gives exemplary
sentences of the target dialect, the task prompt con-
tains the structure and the goal of the task, but
without an answer given. Both 10-shot prompts im-
prove the zero-shot approach significantly, the list
prompt being inferior to the task prompt, showing
that, while learning about the dialect in-context is
the biggest source of improvement, learning about
the task itself does help further.

The WueNLP team, exploiting LoRA-based fine-
tuning of Mixtral, obtained very similar results to
those few-shot results of the JSI team. This shows
that fine-tuning an LLM on 400 training instances
on the specific task, either on English data (runs
1 and 2), or on the standard language data closest
to the target dialect (runs 3 and 4), is equivalent to
in-context learning from 10 instances in the target
dialect (JSI team runs 5 and 6), even if the task
itself (JSI team run 6), or an answer (JSI team
run 5), are not provided. Interestingly, there is
no difference in the results regardless of whether
the English or the standard-variety training data
are used for fine-tuning, showing that fine-tuning
successfully informs the model of the task (the
results are three points better than JSI team run
4 - Mixtral zero-shot results), but not of the final
dialect.

Finally, the UNIRI team exploits, similarly to
the JSI team, the GPT-4 model, but obtains bet-
ter results on simple zero-shotting (UNIRI team
run 2 vs. JSI team run 1), quite likely due to a
better stated prompt, starting with This is a rea-
soning task. Where UNIRI do not improve is with
the step-by-step-reasoning prompt, which lowers
all their results (run 4). Interestingly enough, the
step-by-step-reasoning prompt improves their re-
sults on standard languages (reported in their pa-
per), showing that even GPT-4 is challenged by
reasoning in a dialect to a level where the step-by-
step-reasoning requirement hurts the performance.
Interestingly, the retrieval-augmented-generation
approach of UNIRI does help on the Slovenian Cer-
kno dialect, but slightly hurts the performance on

the Chakavian dialect. A potential reason is that
the overall performance on the Cerkno dialect is
lower: therefore, the additional lexical information
is more helpful than in the case with the Chakavian
dialect.

2.5 Conclusions
The overall conclusions that can be drawn from
the results of the DIALECT-COPA task are the fol-
lowing. First, there is a large dialectal gap present,
given the difference between the results reported on
the standard datasets and the dialectal datasets. Sec-
ond, open-source models do not perform as well as
the closed API-based models; however, few-shot
or fine-tuned open models achieve the level of per-
formance of zero-shot closed models. Third, data
augmentation or retrieval-augmented-generation
through dialectal lexicons seems to be as efficient
as simply in-context learning from a few dialectal
examples. Finally, the highly-efficient in-context
learning seems to benefit mostly from the addi-
tional information on the dialect to be processed,
rather than on the task itself.

3 The DSL-ML Task on Multi-Label
Similar Language Identification

3.1 Motivation
VarDial has run shared tasks on the topic of discrim-
inating between similar languages and varieties
since its first edition. The DSL shared tasks orga-
nized from 2014 to 2017 focused on languages with
several varieties like English, Spanish, Portuguese,
and BCMS (Bosnian, Croatian, Montenegrin, Ser-
bian) (Zampieri et al., 2017; Malmasi et al., 2016;
Zampieri et al., 2015, 2014). These tasks were
based on the DSL Corpus Collection (DSLCC Tan
et al., 2014),6 a collection of journalistic texts com-
piled assuming that each instance’s variety label
is determined by where the text is retrieved from.
Previous research (e.g. Goutte et al., 2016) has
shown the limitations of this problem formulation,
as some texts (especially short texts such as single
sentences) may not contain any linguistic marker
that would allow systems, or even native speakers,
to discriminate between two similar language va-
rieties. In the past years, several proposals were
made to address this issue:

• The DSL-TL dataset (Zampieri et al., 2023),
introduced in conjunction with a shared task

6http://ttg.uni-saarland.de/resources/DSLCC/
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English Portuguese Spanish French BCMS

Number of varieties 2 (UK, US) 2 (PT, BR) 2 (AR, ES) 4 (BE, CA, CH, FR) 4 (BS, HR, ME, SR)
Annotation Human Human Human Automatic Human
Train labeling Multi-label Multi-label Multi-label Multi-label Single-label
Dev labeling Multi-label Multi-label Multi-label Multi-label Multi-label
Test labeling Multi-label Multi-label Multi-label Single-label Multi-label
Named entities Present Present Present Masked Present
Avg. tokens/instance in train 33 38 52 64 5548
Training instances 2097 3467 3467 340,363 368
Multi-label instances in dev 13% 14% 32% 0.7% 20%

Table 2: Key properties of the datasets used in the DSL-ML task.

at VarDial 2023 (Aepli et al., 2023), contains
Spanish, Portuguese and English sentences
that were manually annotated using crowd-
sourcing. The annotation setup is restricted
to two varieties per language (e.g. Peninsular
and Argentinian Spanish), but allows a third
option “Both or neither” if the instance does
not provide sufficient grounds for reliable clas-
sification.

• Bernier-Colborne et al. (2023) argue that lan-
guage variety identification is best framed as
a multi-label classification problem. They
analyze the FreCDo corpus (Găman et al.,
2023) used in the VarDial 2022 FDI shared
task (Aepli et al., 2022) and find substantial
amounts of near-duplicate sentences associ-
ated with different labels in FreCDo. This
near-duplicate analysis allows them to auto-
matically derive a variant of FreCDo where
ambiguous instances are annotated with mul-
tiple labels.

• Keleg and Magdy (2023) analyze different
datasets used for Arabic dialect identification
and find that many of the analyzed samples
are valid in multiple dialects. As a result, the
performance of dialect identification models
is underestimated, as about two thirds of false
positives are actually not true errors. Like
Bernier-Colborne et al. (2023), they recom-
mend multi-label annotations as a solution for
future dialect identification tasks.

• Miletić and Miletić (2024) propose a reannota-
tion of a single-annotator, single-label dataset
for BCMS based on Twitter data (Rupnik
et al., 2023). They explicitly introduce multi-
label annotation based on labels produced by
multiple annotators from all target regions. A

re-evaluation of a previously proposed DSL
system (Rupnik et al., 2023) against the multi-
label annotation shows an improvement of the
accuracy assessment (+4.1 points), indicating
that some of the model predictions that were
considered as wrong in the single-label setting
are not necessarily errors. These results fur-
ther support the multi-label annotation for the
DSL task.

3.2 Data
The DSL-ML task is based on three data sources
from five different languages. The choice of lan-
guages was mainly motivated by the availability of
existing multi-label-annotated datasets. The five
datasets have rather distinct properties in terms of
size, instance lengths, genre, annotation and pre-
processing. Table 2 summarizes these differences
across the datasets (detailed statistics are provided
in Table 3 in the appendix). For this reason, we
provide distinct datasets for the five languages and
evaluate the participants’ submissions separately
on each of them.

English, Portuguese, Spanish. For these lan-
guages, we re-use the DSL-TL dataset with the
same split as in the VarDial 2023 task. We merely
transform the “neither/both” labels to a comma-
separated list of variant annotations. For example,
the generic label ES becomes ES-ES,ES-AR.

French. The French training and development
sets are obtained by combining the FreCDo (Gă-
man et al., 2023) and DSLCC v4 (Tan et al., 2014)
datasets, which comprise French (FR-FR), Swiss
(FR-CH), Belgian (FR-BE), and Canadian (FR-CA)
samples of text collected from the news domain.
The topics used to collect most of the training and
development data are available in the FreCDo pa-
per. For the test data, we choose a new set of
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Training Development Test

Language Label # Samples # Tokens # Samples # Tokens # Samples # Tokens

English

EN-GB 755 21,011 211 5,767 114 3068
EN-GB, EN-US 273 8,686 76 2,409 30 978
EN-US 1,069 49,761 312 12,380 156 6352

Total 2097 79,458 599 20,556 300 10,398
Multi-label 13.0% 12.7% 10.0%

Spanish

ES-AR 851 49,009 227 12,725 133 8,034
ES-AR, ES-ES 1,131 61,559 318 17,421 156 8,528
ES-ES 1,485 93,584 444 28,021 206 13,290

Total 3,467 204,152 989 58,167 495 29,852
Multi-label 32.6% 32.2% 31.5%

Portuguese

PT-BR 2,136 98,061 588 26,848 299 13,605
PT-BR, PT-PT 420 17,684 134 5,562 59 2,232
PT-PT 911 38,524 269 11,379 137 5,887

Total 3,467 154,269 991 43,789 495 21,724
Multi-label 12.1% 13.5% 11.9%

French

FR-BE 120,653 8,147,415 7,444 508,853 3,000 333,001
FR-BE, FR-CA 2 108
FR-BE, FR-CH 603 44,991 31 1,920
FR-BE, FR-CH, FR-FR 61 2,681
FR-BE, FR-FR 1,052 81,602 82 5,295
FR-CA 19,041 557,468 2,167 148,669 3,000 334,755
FR-CA, FR-FR 2 161
FR-CH 115,664 7,530,080 1,021 70,245 3,000 317,727
FR-CH, FR-FR 162 12,218 3 186
FR-FR 83,127 5,280,740 6,338 432,269 3,000 323,485

Total 339,537 21,657,195 17,090 1,167,706 12,000 1,308,959
Multi-label 0.6% 0.7% 0.0%

BCMS

BS 45 257,856 7 66,186 10 65,660
BS, HR 4 29,596 3 9,661
BS, HR, ME 1 1,634
BS, HR, ME, SR 1 7,294
BS, ME 5 24,791 4 42,262
BS, ME, SR 2 26,958
BS, SR 4 23,398 1 2,015
HR 53 385,385 16 128,760 16 131,821
HR, SR 6 25,496 2 10,247
ME 34 242,084 4 20,385 8 66,157
ME, SR 5 45,738 3 17,340
SR 236 1,489,997 70 434,136 73 479,606

Total 368 2,375,322 122 805,780 123 853,361
Multi-label 0.0% 13.0% 13.0%

Table 3: Distribution of samples and tokens in the DSL-ML datasets.

topics, namely “inflation” (En.: “inflation”), “jeux
olympiques” (En.: “olympic games”), and “reine
d’angleterre” (En.: “queen of england”). Each
topic was used to query two sources per coun-
try. We underline that the training and test top-
ics and sources are disjoint, which generates a
cross-domain evaluation setting. Multi-label anno-
tations are inferred using the approach of Bernier-
Colborne et al. (2023), which converts near du-
plicates into multi-label samples. After applying

this data cleaning procedure, the training set re-
mains with 340,363 samples, while the develop-
ment and test sets consist of 17,090 and 12,000
samples, respectively. The training and develop-
ment data are multi-label, meaning that samples
may belong to more than one class, while the test-
ing samples are single-label.7 In contrast to the
datasets of the other languages, named entities are

7Running the code of Bernier-Colborne et al. (2023) on
the test data did not result in finding near duplicates.
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replaced with the $NE$ tag to prevent systems from
learning named-entity-related shortcuts. The com-
plete dataset contains approximately 370K samples
and 33M tokens.

BCMS. The training set is the same as the
BENCHIC-langTwitter training set (Rupnik et al.,
2023) (except that retweets were removed from the
data for the shared task) and thus only contains
single-label annotations. The development and test
sets come from the same collection, but were man-
ually reannotated with multiple labels (Miletić and
Miletić, 2024). The instances in this dataset cover
the entire tweet production of a user and are thus
much longer than the single-sentence instances of
the other datasets.

Table 3 shows the number of samples and tokens
per label and split for all DSL-ML languages, as
well as the corresponding percentages of multi-
label samples.

3.3 Baseline

The baseline proposed by the shared task organizers
is based on an SVM classifier applied on a com-
bination of TF-IDF-weighted character and word
n-grams.8 The classifier follows a multi-class (but
not multi-label) setup where label combinations are
added as distinct atomic labels. For example, the
English task would have three distinct labels: the
two single-variety labels EN-GB and EN-US as well
as the multi-variety-label EN-GB,EN-US. This setup
is equivalent to the one used in DSL-TL, except
that the EN label is renamed to EN-GB,EN-US.

3.4 Participants

Brandeis. The Brandeis team (Sälevä and Palen-
Michel, 2024) submitted 3 runs for each of the five
languages. Their first run is based on a simple clas-
sifier applied to bag-of-n-gram features, where the
n-grams are considered at both word and character
levels. Aside from count n-gram-based statistics,
they also employ the TF-IDF scheme as an alter-
native representation. For the classification, they
alternatively consider logistic regression models,
linear-kernel SVMs and random forest models.

For their second run, Sälevä and Palen-Michel
(2024) employ a pre-trained multi-lingual BERT
(mBERT) (Devlin et al., 2019) and independently

8The code for the baseline system is available at https:
//github.com/yvesscherrer/DSL-ML-2024/tree/mai
n/baseline. The system described here corresponds to the
atomic option in the provided script.

fine-tune it on each subset of languages. To ad-
dress the multi-label classification task, the authors
attach a linear classification layer with a sigmoid
activation for each unit, and use a threshold of 0.5
for the label to be included in the set of predicted
labels. However, if there is no label surpassing the
initial threshold, they gradually lower the threshold
to 0.25 and 0.05, respectively.

The third run submitted by Brandeis is a vari-
ation of the second run, where the fine-tuning of
mBERT is jointly performed on all languages (from
all sub-tasks) at once.

Jelly. The Jelly team (Gillin, 2024) submitted
3 runs for English, Spanish and Portuguese and
1 run for French; they did not participate in the
BCMS subtask. All submitted runs except one
are based on one-shot prompting a large language
model (LLM). The authors choose the open-source
Mistral-7B model (Jiang et al., 2023). For each
test sample, the authors provide a prompt contain-
ing one training example per language variety and
expect the model to produce the multi-label predic-
tion for the given test sample. The different runs
differ in the postprocessing of the model output and
the back-off strategy chosen if the model output
did not contain any valid label.

For the English sub-task, run 2 refers to a vari-
ant of in-context learning where the prompt also
contains instructions for the labeling task, and run
3 is an ensemble of runs 1 and 2. This team also
submitted the raw outputs of Mistral-7B without
postprocessing and backoff for comparison - these
runs are marked as open.

VLP. The VLP team (Ngo et al., 2024) submitted
one or two runs for each language. Their first run
is based on a bidirectional long short-term memory
network (BiLSTM) (Graves et al., 2013). It com-
prises an embedding layer, several BiLSTM layers
and two dense layers, where the last one performs
the classification of samples via softmax.

The second run employs the same architecture,
but the input is based on ConceptNet embeddings
(Speer et al., 2017). More specifically, the authors
use ConceptNet Numberbatch semantic vectors,
which provide a representation of word meanings
extracted from ConceptNet. The ConceptNet em-
beddings are not available for BCMS, therefore
only run 1 is submitted for that subtask. The VLP
submissions consider all target labels as atomic, in
the same way as the baseline.
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English
Rank Team Run Macro-F1 Multi-label EM

1 Brandeis 3 0.855 0.267
2 Brandeis 2 0.853 0.267
3 Brandeis 1 0.806 0.267
4 VLP 2 0.770 0.167
5 VLP 1 0.759 0.267
6 Jelly 2 0.755 0.133
7 Jelly 2-open 0.752 0.367
8 Baseline 0.751 0.100
9 Jelly 1 0.751 0.300
10 Jelly 3 0.750 0.367
11 Jelly 1-open 0.717 0.233

Spanish
Rank Team Run Macro-F1 Multi-label EM

1 Brandeis 2 0.823 0.500
2 Brandeis 3 0.821 0.551
3 Baseline 0.770 0.391
4 VLP 1 0.754 0.455
5 Brandeis 1 0.746 0.455
6 VLP 2 0.741 0.423
7 Jelly 1 0.663 0.333
8 Jelly 2 0.655 0.289
9 Jelly 3 0.649 0.289

10 Jelly 1-open 0.601 0.199

Portuguese
Rank Team Run Macro-F1 Multi-label EM

1 Brandeis 3 0.752 0.424
2 Brandeis 1 0.724 0.220
3 Brandeis 2 0.714 0.136
4 Baseline 0.683 0.068
5 VLP 1 0.664 0.136
6 Jelly 1 0.629 0.356
7 Jelly 2 0.593 0.136
8 Jelly 3 0.586 0.136
9 VLP 2 0.566 0.000
10 Jelly 1-open 0.388 0.034

French
Rank Team Run Macro-F1

1 Brandeis 3 0.385
2 Baseline 0.372
3 Jelly 1 0.313
4 Brandeis 1 0.270
5 Brandeis 2 0.265
6 VLP 2 0.260
7 VLP 1 0.257

BCMS
Rank Team Run Macro-F1 Weighted F1 Multi-label EM

1 Brandeis 1 0.762 0.843 0.000
2 Brandeis 2 0.719 0.756 0.125
3 Baseline 0.606 0.737 0.000
4 VLP 1 0.272 0.370 0.000
5 Brandeis 3 0.199 0.453 0.000

Table 4: Results of the DSL-ML shared task. The official metric is macro F1 score. We do not report weighted
F1 score for English, Spanish, Portuguese and French since their test sets are (relatively) balanced and produce
the same ranking. For BCMS, we report both macro-averaged and weighted F1-scores. Multi-label exact match
(EM) refers to the proportion of correctly predicted instances with multiple labels. The French test set does not have
multiple labels.
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3.5 Results
We evaluate each subtask separately, using macro-
averaged F1-score as the main metric. We addi-
tionally report weighted-average F1-score for the
BCMS task since the class distribution in the test
set is much less balanced than in the other tasks.

Furthermore, we measure the models’ ability
to perform multi-label classification by measuring
multi-label exact match, i.e., the proportion of gold
instances containing two or more labels for which
the same set of labels was predicted. The results
are presented per language in Table 4.

In general, we see that Brandeis is the only team
that consistently beats the baseline on all subtasks.
While their traditional machine learning submis-
sion (run 1) obtained first rank for BCMS, the
BERT-based submissions (runs 2 and 3) are ranked
highest on the other subtasks. VLP beats the base-
line for English, is slightly below the baseline for
Spanish and Portuguese, and considerably lower
for French and BCMS. Their two runs perform
roughly on par. Finally, Jelly narrowly outperforms
the baseline for English, but remains several points
below it for the other subtasks.

It can also be seen that the baseline does a com-
paratively poor job in correctly predicting the multi-
labeled instances. While all three participating
teams outperform the baseline in terms of multi-
label exact match, team Brandeis again shows the
most consistent performance.

Multi-Label Classification of the DSL-TL Data.
Among all languages of this subtask, the overall
results are the most encouraging for English. Seven
out of ten submitted runs scored above the baseline
based on the macro-F1 score (all three runs from
Brandeis, runs 1 and 2 from VLP, and runs 2 and
2-open from Jelly), with the top-ranked system
achieving a 10% improvement over the baseline.
All systems also outperform the baseline on the
multi-label exact match score. However, the multi-
label exact match score remains relatively low, with
the best score at 36.67%, achieved by runs 2-open
and 3 submitted by Jelly, which are based on the
Mistral-7B model. These runs ranked 7th and 10th,
respectively.

For Spanish, only runs 2 and 3 by Brandeis
score above the baseline, with the best VLP system
scoring 3% below the baseline, and the Jelly runs
lagging by 10 or more points. On this language,
highly ranked systems also achieve solid results
on the multi-label exact match score compared to

other languages. In particular, run 3 from Brandeis
reaches 55.13%.

For Portuguese, the three runs from Brandeis
are the only systems that outperform the baseline
on the macro-F1 score. Overall, the results on the
multi-label exact match score are lower for this
dataset than for other languages except BCMS.
However, the top-ranked system does achieve
42.37%, and the second-best system on this metric
is run 1 from Jelly, with 35.59%. This is another
example of a system that lags behind the baseline
based on the macro-F1 score (in this case, by 6
points), but which has a solid performance com-
pared to other systems when it comes to labelling
multi-label instances.

Multi-Label French Dialect Identification. For
French, two models, one proposed by the Brandeis
team and the other by the organizers, stand out from
the rest. The top scoring model is based on jointly
fine-tuning the mBERT model on all languages.
Interestingly, this model is significantly better than
the mBERT version fine-tuned on French data (run
2 of Brandeis team), indicating a large benefit from
training on multiple languages.

The baseline is a shallow approach (linear SVM)
based on basic features, which generalizes fairly
well to the cross-domain setup of the French sub-
task. It is able to compete with the deep model
based on multi-lingual fine-tuning submitted by the
Brandeis team, being only 1.3% behind.

The third best model, submitted by the Jelly
team, uses the Mistral-7B LLM based on in-context
learning. Although in-context learning seems to
work fairly well, the approach is clearly below the
system based on multi-lingual fine-tuning proposed
by Brandeis. The Jelly team (Gillin, 2024) obtained
much better results on the English sub-task, likely
because Mistral-7B is mostly trained on English
text. Therefore, in the future, it would be interest-
ing to explore approaches that combine fine-tuning
and in-context learning.

The other models submitted by the participants
are barely able to surpass the random chance base-
line (with an F1 score of 0.25). The last three
models are based on deep architectures, and their
poor results are likely to be attributed to overfitting.
In summary, we conclude that the French sub-task
proposed for the 2024 edition of VarDial is very
challenging, particularly because of the domain-
shift between training and test data, as well as the
generally short text samples which may not always
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contain dialectal patterns.

Multi-Label BCMS Variety Identification.
Only Brandeis and VLP submitted runs on the
BCMS data. Runs 1 and 3 by the Brandeis team
score above the baseline, whereas the remaining
submissions score significantly lower on both re-
ported F1 scores. The top two systems achieve
solid F1 results, on par with the ones they achieve
on Portuguese, although lagging somewhat behind
the top scores on English and Spanish.

As noted above, the Brandeis run 1, based on
traditional machine learning approaches, achieves
the best overall scores on BCMS. However, it is
notable that only the Brandeis run 2, based on
mBERT, scores above zero on the Multi-label Exact
Match score. In other words, this is the only system
that manages to correctly label any multi-label in-
stances in the test set. Overall, the multi-label EM
is the lowest on BCMS out of all of the languages
of this subtask. These results indicate that, while
the general task of distinguishing between the va-
rieties of BCMS may be less difficult than it is for
French, correctly labelling multi-label instances
remains very challenging.

3.6 Conclusions

For the first time at VarDial, we proposed a lan-
guage and dialect identification task that accepts
multi-label scenarios with any number of classes. It
includes three two-country settings (with three pos-
sible labels, for English, Spanish and Portuguese)
as well as two four-country settings (with up to
fifteen possible labels, for French and BCMS).

Among the five languages, French turned out to
be the most challenging one in terms of obtained
macro F1-scores. There are several possible ex-
planations for this. The French data distinguishes
itself from the other datasets by a domain shift
between training and test data, by its reliance on
automatic labeling (both for the initial single-label
annotations and the inference of multi-label an-
notations), and by the masking of named entities.
The relative impact of these properties is hard to
quantify at the moment and will require additional
experiments.

The BCMS task has also been found difficult, es-
pecially in terms of multi-label exact match. Eleven
labels (country combinations) occur in the test set,
but only four of them were observed in the training
data, and nine of them in the development set. In
such scenarios, it is crucial to use specific multi-

label classifiers that can produce combinations of
labels unseen at training time.

In terms of methods, both traditional classifiers
and embedding-based models were proposed, but
none of the two approaches clearly outperforms
the other across languages. The Jelly submission
introduces few-shot prompting as a potentially ap-
pealing training-free approach, but the results are
not competitive yet with task-specific models. The
used large language model often fails to provide the
output labels in the correct format, and therefore
heavy post-processing is required.

The five datasets used in the DSL-ML task differ
widely in size and annotation procedures, and it
can be seen that the different submissions are sensi-
tive to different aspects of multi-label classification
of similar varieties. We hope to have paved the
way for further tasks that embrace the multi-label
scenario.

4 Conclusion

This paper presented an overview of the two shared
tasks organized as part of the VarDial Evaluation
Campaign 2024: Dialectal causal commonsense
reasoning (DIALECT-COPA) and Multi-label clas-
sification of similar languages (DSL-ML).

Among all the conclusions from the results on
the DIALECT-COPA shared task presented in Sec-
tion 2.5, the most interesting one is that in-context
learning on dialectal examples seems to be a highly
potent method of adapting an LLM to dialectal
tasks. The intuition we have developed through this
shared task is that it is all about managing expec-
tations of LLMs, and that letting the LLM simply
know about the modified language variant it will be
tested on improves its performance significantly.

When it comes to the DSL-ML task, the obser-
vations stemming from this iteration further jus-
tify the multi-label approach to this task. This is
supported both by the proportion of multi-label in-
stances found in the data and by the multi-label
exact match scores, which point to the difficulty of
the task. We also noted that there were no clear
winners in terms of methods between traditional
classifiers and embedding-based models. However,
as indicated above, the level of disparity between
the five datasets used in this year’s shared task
makes it challenging to identify the impact of dif-
ferent factors on model performance. One possible
way forward for this task would consist in creating
a homogeneous dataset, taking advantage of best
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practices from the existing datasets.
Both tasks were shown to be rather challeng-

ing, opening up opportunities for future evaluation
campaigns.
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Nikola Ljubešić, Nada Galant, Sonja Benčina, Jaka
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mann, Chris van der Lee, Stefan Grondelaers,
Nelleke Oostdijk, Dirk Speelman, Antal van den
Bosch, Ritesh Kumar, Bornini Lahiri, and Mayank
Jain. 2018. Language identification and morphosyn-
tactic tagging: The second VarDial evaluation cam-
paign. In Proceedings of the Fifth Workshop on NLP
for Similar Languages, Varieties and Dialects (Var-
Dial 2018), pages 1–17, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Marcos Zampieri, Shervin Malmasi, Yves Scherrer,
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Abstract

This study investigates the factors influenc-
ing the performance of multilingual large lan-
guage models (MLLMs) across diverse lan-
guages. We study 6 MLLMs, including
masked language models, autoregressive mod-
els, and instruction-tuned LLMs, on the SIB-
200 dataset, a topic classification dataset en-
compassing 204 languages. Our analysis con-
siders three scenarios: ALL languages, SEEN
languages (present in the model’s pretraining
data), and UNSEEN languages (not present
or documented in the model’s pretraining data
in any meaningful way). We examine the im-
pact of factors such as pretraining data size,
general resource availability, language family,
and script type on model performance. Deci-
sion tree analysis reveals that pretraining data
size is the most influential factor for SEEN lan-
guages. However, interestingly, script type and
language family are crucial for UNSEEN lan-
guages, highlighting the importance of cross-
lingual transfer learning. Notably, model size
and architecture do not significantly alter the
most important features identified. Our find-
ings provide valuable insights into the strengths
and limitations of current MLLMs and hope to
guide the development of more effective and
equitable multilingual NLP systems.1

1 Introduction

Multilingual large language models (MLLMs) have
revolutionized natural language processing by en-
abling applications like machine translation and
sentiment analysis across numerous languages
(Barbieri et al., 2022; Yang et al., 2023). Un-
derstanding how these models perform across lan-
guages with diverse linguistic properties is crucial
for further development (Devlin et al., 2019; Wu
and Dredze, 2020; Scao et al., 2022; Lai et al.,
2023; Ahuja et al., 2023). Despite significant

1https://github.com/PortNLP/MLLMs_performance

progress, linguistic disparities persist in NLP, high-
lighting the need for models that perform effec-
tively and safely across a wider range of languages
(Joshi et al., 2020; Ranathunga and de Silva, 2022;
Agrawal et al., 2023; Wang et al., 2023).

The factors contributing to the effectiveness of
MLLMs, however, remain unclear. While several
studies suggest the amount of language-specific
pretraining data as a key factor (Wu and Dredze,
2020; Scao et al., 2022; Shliazhko et al., 2022;
Ahuja et al., 2023), most investigations are limited
in scope, focusing on a small set of languages, spe-
cific tasks, or training paradigms like masked lan-
guage modeling (MLM) or autoregressive models.
Crucially, prior work often overlooks the distinc-
tion between languages encountered during pre-
training (SEEN), languages entirely new to the
model (UNSEEN), and the complete set of lan-
guages available in the evaluation dataset (ALL).
The question remains – what factors are important
in the case of unseen languages where language-
specific pretraining data is not one of the relevant
factors? This distinction is essential for under-
standing how MLLMs generalize to languages with
varying levels of familiarity.

Our work takes a deeper look at the various fac-
tors under several experimental settings. Our key
contributions are as follows:

• We conduct a comprehensive evaluation of 6
MLLMs, including MLM, autoregressive, and
instruction-tuned LLMs, on a text classification
task spanning a wide range of languages. This di-
verse set of models includes mBERT (Devlin et al.,
2019), XLM-R (Conneau et al., 2020), GPT-3.5
(Brown et al., 2020), Bloom (Scao et al., 2022) in
5 sizes, Bloomz (Muennighoff et al., 2023) in 5
sizes, and XGLM (Lin et al., 2022) in 4 sizes. Ad-
ditionally, we consider three training scenarios:
zero-shot, 2-shot, and fully supervised.

• We consider four key factors in our analysis: pre-
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Reference Factors Task Languages

Wu and Dredze (2020) Pretraining data size, Task-specific data
size, Vocabulary size

NER 99

Scao et al. (2022) Pretraining data size, Task-specific data
size, Language family, Language script

Probing 17

Shliazhko et al. (2022) Pretraining data size, Language script,
Model size

Perplexity 61

Ahuja et al. (2023) Pretraining data size, Tokenizer fertility Classification, QA, Se-
quence Labeling, NLG

2-48

Ours Pretraining data size, Language family,
Language script, General resource avail-
ability

Text classification 204

Table 1: Factors considered in related works and this work.

training data size, general resource availability
levels, language family, and script type. This
allows for a more nuanced understanding of the
factors influencing MLLM performance.

• We leverage the recently introduced SIB-200
dataset (Adelani et al., 2023), which includes
204 languages, enabling us to investigate MLLM
performance across a diverse and extensive lin-
guistic landscape. Between the languages per-
taining to the models and the dataset, we are
able to further distinguish them along the dimen-
sions of SEEN, UNSEEN, or ALL, depending on
whether the languages were seen during pretrain-
ing, or unseen during pretraining, or the set of
all languages available in the evaluation dataset,
respectively.

By analyzing these factors across different mod-
els and training setups, we aim to provide deeper
insights into the development of effective and eq-
uitable MLLMs for a truly multilingual NLP land-
scape.

2 Related Work

Multilingual NLP research has flourished in re-
cent years, with the development and evaluation
of numerous multilingual language models trained
on diverse and extensive language datasets. No-
table examples include mBERT (Devlin et al., 2019),
XLM-R (Conneau et al., 2020), mBART (Liu et al.,
2020), mT5 (Xue et al., 2021), BLOOM (Scao et al.,
2022), GPT-3 (Brown et al., 2020), GPT-4 (Ope-
nAI, 2023), LLaMA (Touvron et al., 2023), PaLM
(Chowdhery et al., 2022), and PaLM 2 (Anil et al.,
2023).

Researchers are increasingly interested in investi-
gating the factors influencing MLLM performance.

Wu and Dredze (2020) examined the impact of
pretraining data size, task-specific data size, and
vocabulary size on named entity recognition per-
formance. Scao et al. (2022) explored the correla-
tion between probing performance and factors like
language family, task-specific dataset size, and pre-
training dataset size for the BLOOM model. Shli-
azhko et al. (2022) assessed the impact of language
script, pretraining corpus size, and model size on
language modeling performance, while Ahuja et al.
(2023) investigated the influence of tokenizer fertil-
ity and pretraining data on MLLM performance.

While these studies provide valuable insights,
they often focus on a limited set of languages, pri-
marily due to the historical scarcity of annotated
multilingual datasets. Additionally, research by
Blasi et al. (2022) highlights the significant inequal-
ities in the development and performance of lan-
guage technologies across the world’s languages,
with a strong bias towards resource-rich languages
like English and other Western European languages.
Further exacerbating this issue is the lack of repre-
sentation for dialects, varieties, and closely-related
languages within existing datasets. As noted by
Faisal et al. (2024), this absence hinders the devel-
opment of NLP systems capable of effectively han-
dling the nuances of linguistic diversity. However,
the recent emergence of comprehensive multilin-
gual datasets like SIB-200 (Adelani et al., 2023),
and GLOT500 (ImaniGooghari et al., 2023) offers
exciting opportunities for more extensive and nu-
anced analyses. Table 1 summarizes the factors
considered in related works and our study. For
a more comprehensive overview of contributing
factors to cross-lingual transfer in multilingual lan-
guage models, readers are encouraged to refer to
the review by Philippy et al. (2023).
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3 Methodology

Several factors can influence the performance of
multilingual models. In this section, we briefly
describe the distinct factors related to typology and
data, the dataset of more than 200 languages used
for evaluation, and the models we consider in this
study.

3.1 Typology and Data Factors
We consider various factors to understand their
impact on model performance including:

• Pretraining Data Size: This refers to the per-
centage of language-specific data used during the
pretraining of each model2.

• General Resource Availability (Res Level): Be-
yond model-specific resources such as pretrain-
ing data size, we also consider a more general no-
tion of resource availability, as per the linguistic
diversity taxonomy which categorizes languages
into six resource levels (Joshi et al., 2020), where
level 0 corresponds to low-resource and level
5 corresponds to high-resource level languages.
This classification helps us understand the in-
fluence of more general resource availability on
model performance, and may serve as a proxy
when model-specific statistics may not be avail-
able (such as in the case of proprietary models).
Language resource levels generally correlate pos-
itively with models pretraining data sizes, with
varying degrees of alignment across different
models: mBERT (0.52) and XLM-R (0.48) ex-
hibit relatively stronger correlations, while GPT-
3 (0.18), BLOOM (0.37), and XGLM (0.31)
show comparatively weaker associations.

• Language Family (Lang Family): The lan-
guage families that the languages belong to cap-
ture some of their linguistic relationships. The
information was sourced from the Ethnologue3

(Ethnologue, 2022).

• Script: The script of a language refers to the
writing system it employs. This information was
sourced from ScriptSource4.

2We obtained the train dataset distribution val-
ues for mBERT from https://github.com/mayhewsw/
multilingual-data-stats and for GPT-3.5 we use proxy
statistics from https://github.com/openai/gpt-3/blob/
master/dataset_statistics/languages_by_word_
count.csv. Distribution of train dataset for XLM-R, BLOOM,
BLOOMZ and XGLM were obtained from their respective papers.

3https://www.ethnologue.com
4https://www.scriptsource.org

3.2 Data

We systematically study the multilingual models
under an important NLP task – text classification
(Chang and Bergen, 2023). The SIB-200 dataset
(Adelani et al., 2023) offers a valuable resource for
evaluating MLLM performance in a large-scale text
classification task, enabling simultaneous analysis
of approximately 200 languages, with text samples
categorized into one of seven classes. F1 score is
used as the metric for this task.

Exploratory analysis of the dataset reveals sev-
eral interesting insights:

• As shown in Figure 1, most languages in SIB-
200 are classified as resource level 1, indi-
cating a deliberate focus on low-resource lan-
guages. This allows us to assess how MLLMs
perform on languages with limited linguistic
resources available.

• Figure 4 in Appendix B illustrates the distribu-
tion of language families within the SIB-200
dataset. Notably, the dataset encompasses 23
different language families, providing a rich
linguistic landscape for our analysis. Indo-
European languages constitute a significant
portion (approximately 36%) of SIB-200, re-
flecting their status as the most widely spo-
ken language family globally (Ethnologue,
2022). However, Niger-Congo, Afro-Asiatic,
and Austronesian languages also have con-
siderable representation in the dataset. This
diverse language family distribution enables
us to analyze MLLM performance across dif-
ferent linguistic groups.

• The SIB-200 dataset encompasses text sam-
ples written in 29 different script types, offer-
ing a diverse range of writing systems for our
analysis. As shown in Figure 5 in Appendix B,
the Latin script, used by nearly 70% of the
global population (Vaughan, 2020), is the
most prevalent writing system in the dataset,
followed by Arabic and Cyrillic scripts. This
distribution allows us to investigate the impact
of script type on MLLM performance.

For all evaluations, we use the default train and
test splits recommended by the SIB-200 authors.
This ensures consistency and comparability across
different models and training settings.
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Figure 1: Distribution of resource levels in SIB-200.

3.3 Models
We study the following 6 multilingual language
models spanning various architectures and sizes:

• Masked Language Models (MLMs):

– mBERT (bert-base-multilingual-cased) (De-
vlin et al., 2019)

– XLM-R (xlm-roberta-base) (Conneau et al.,
2020)

• Autoregressive Language Models

– GPT-3.5 (text-davinci-003) (Brown et al.,
2020)

– Bloom (Scao et al., 2022) in 5 sizes (560m,
1.1b, 1.7b, 3b, and 7.1b parameters)

– XGLM (Lin et al., 2022) in 4 sizes (564m,
1.7b, 2.9b, and 7.5b parameters)

• Instruction-tuned LLMs:

– Bloomz (Muennighoff et al., 2023) in 5 sizes
(560m, 1.1b, 1.7b, 3b, and 7.1b parameters)

These models were chosen for several key rea-
sons:

1. These models provide broad language cov-
erage, allowing us to analyze performance
across a diverse set of languages and maxi-
mize the linguistic diversity in our study.

2. By including MLMs, autoregressive models,
and instruction-tuned LLMs, we can investi-
gate how different model architectures influ-
ence performance.

3. The inclusion of models with varying parame-
ter sizes allows us to investigate the interplay
between model scale and the factors influenc-
ing performance.

4. mBERT and XLM-R, despite being relatively
smaller models, have demonstrated compet-
itive performance even compared to larger
models like ChatGPT after fine-tuning (Lai
et al., 2023; Zhu et al., 2023).

5. The inclusion of both Bloom and XGLM, both
autoregressive models, allows us to investi-
gate the impact of pretraining data composi-
tion. Bloom focuses more on low-resource
languages during pretraining, whereas XGLM
emphasizes high-resource languages. This de-
liberate selection enables us to analyze how
the distribution of languages in the pretrain-
ing data affects performance across different
resource levels.

Note that we primarily focus on models that are
open-source or have made the list of pretraining
languages and data composition available.

Additionally, we consider the following training
and inference scenarios:

• Zero-shot: GPT-3.5, Bloom, Bloomz, and
XGLM were evaluated directly on the test set
without any specific fine-tuning. This assesses
the model’s ability to generalize to unseen
tasks and languages based on its pretrained
knowledge.

• Two-shot In-Context Learning (ICL): Bloom,
Bloomz, and XGLM were also evaluated in two-
shot ICL setting where the models were pro-
vided with two labeled examples for each
class from the train set. This allows us to
particularly investigate effective factors for
improving performance of unseen languages.
We opted for two demonstrations in ICL to
keep the input length shorter than the context
length of our models across all languages.

• Full-shot: mBERT and XLM-R were fine-tuned
on the SIB-200 training set and evaluated on
the test set.

For full-shot training of mBERT and XLM-R,
we adhered to the hyperparameters recommended
by the SIB-200 paper authors to ensure consistency
with the original dataset benchmarks. For Bloom,
Bloomz, and XGLM in both zero-shot and two-shot
ICL settings, as well as for GPT-3.5 in zero-shot
setting, we use prompts to frame the text classifica-
tion task, which are detailed in Appendix A.

4 Results and Analysis

Now we discuss the results of our comprehen-
sive experiments. We focus on analyzing the
performance of models across three distinct sce-
narios: ALL, SEEN, and UNSEEN. The ALL
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Figure 2: Decision tree for Bloom-560m (zero-shot, SEEN languages). “General resource level“ emerges as the
most important feature, with a significant performance difference between languages above and below the 2.5
threshold (p < 0.001 as per Mann-Whitney U test).

scenario considers all languages in the SIB-200
dataset for which resource level information is
available5. The SEEN scenario focuses on lan-
guages included in the pretraining data of the re-
spective MLLMs, while the UNSEEN scenario ex-
amines performance on languages not present in
the pretraining data.

In total, results are obtained from 93 distinct
experimental settings (models of different sizes,
training scenarios, and language categories of
seen/unseen/all).

To understand the complex interplay of multiple
factors influencing MLLM performance, we em-
ploy decision tree analysis for statistical inference.
This approach is well-suited for handling factors
of different types, including categorical, ordinal,
and numeric data. Decision trees are trained to
predict the F1 score of models based on language
features. By analyzing the resulting tree structure,
we can gain insights into the relative importance of
different features and their interactions.

As decision trees were trained on the entirety
of our data, traditional methods for testing their
performance were not applicable. Instead, we em-
ployed the Mann-Whitney U test (Mann and Whit-
ney, 1947), to ensure that the features appearing
at the root of the decision trees were indeed rele-
vant and contributed significantly to the differenti-
ation between the language splits. This approach
allowed us to validate the significance of the fea-
tures identified by the decision tree in delineating

5This information is available for 190 languages.

distinct language groups without relying solely on
the performance metrics of the decision tree models
themselves.

Figure 2 presents the decision tree analysis for
the Bloom-560m model on SEEN languages, reveal-
ing general resource level as the most influential
feature. Specifically, the tree distinguishes between
languages with resource levels below 2.5 (levels
0,1,2) and those above 2.5 (levels 3,4,5). Among
the 44 SEEN languages, the 29 languages with re-
source levels below 2.5 exhibit a mean F1 score
of 0.174, while the 15 languages with higher re-
source levels achieve a significantly higher mean
F1 score of 0.379. A Mann-Whitney U test con-
firms a statistically significant difference in perfor-
mance between these two groups (p < 0.001). This
suggests that for the Bloom-560m model on SEEN
languages, the general resource level of a language
plays a crucial role in determining its performance,
with higher resource levels leading to better perfor-
mance. By employing this combined approach of
decision tree analysis and statistical testing, we can
effectively disentangle the complex relationships
between various factors and their impact on MLLM
performance.

The summarized results6 of all 93 decision tree
analyses are presented in Table 2. We observe
distinct patterns in feature importance across the
three scenarios:

6Detailed decision trees for all models and setups are
available in our repository: https://github.com/PortNLP/
MLLMs_performance
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Zero-shot

Model ALL SEEN UNSEEN

Bloom-560m Pretrain data (<=0.125%) Resource level (<=2.5) Script (Latin or not)
Bloom-1b1 Pretrain data (<=0.125%) Resource level (<=2.5) Script (Devanagari or not)
Bloom-1b7 Pretrain data (<=0.175%) Resource level (<=2.5) Script (Latin or not)
Bloom-3b Pretrain data (<=0.175%) Resource level (<=2.5) Script (Latin or not)
Bloom-7b1 Pretrain data (<=0.125%) Resource level (<=2.5) Script (Devanagari or not)
Bloomz-560m Script (Latin or not) Pretrain data (<=0.03%) Script (Latin or not)
Bloomz-1b1 Pretrain data (<=0.008%) Pretrain data (<=0.03%) Script (Latin or not)
Bloomz-1b7 Pretrain data (<=0.008%) Pretrain data (<=0.03%) Script (Latin or not)
Bloomz-3b Pretrain data (<=0.002%) Pretrain data (<=0.013%) Script (Latin or not)
Bloomz-7b1 Pretrain data (<=0%) Pretrain data (<=0.9%) Script (Latin or not)
XGLM-564m Pretrain data (<=0.003%) Resource level (<=2) Lang. family (Austronesian or not)
XGLM-1.7b Pretrain data (<=0.006%) Pretrain data (<=1.487%) Script (Devanagari or not)
XGLM-2.9b Pretrain data (<=0.003%) Script (Latin or not) Script (Devanagari or not)
XGLM-7.5b Pretrain data (<=0%) Pretrain data (<=1.122%) Script (Devanagari or not)
GPT-3.5 Resource level (<= 2.5) Pretrain data (<=0.003%) Lang. family (Indo-European or not)

Two-shot ICL

Model ALL SEEN UNSEEN

Bloom-560m Pretrain data (<=0.045%) Pretrain data (<=0.045%) Lang. family (Indo-European or not)
Bloom-1b1 Pretrain data (<=0.095%) Pretrain data (<=0.095%) Script (Latin or not)
Bloom-1b7 Pretrain data (<=0.175%) Pretrain data (<=0.175%) Script (Latin or not)
Bloom-3b Pretrain data (<=0.008%) Pretrain data (<=0.008%) Script (Latin or not)
Bloom-7b1 Pretrain data (<=0.008%) Pretrain data (<=0.008%) Script (Latin or not)
Bloomz-560m Pretrain data (<=0.03%) Pretrain data (<0.03%) Script (Devanagari or not)
Bloomz-1b1 Pretrain data (<=0.008%) Pretrain data (<=0.013%) Script (Latin or not)
Bloomz-1b7 Pretrain data (<=0.005%) Pretrain data (<=0.013%) Script (Cyrillic or not)
Bloomz-3b Pretrain data (<=0%) Pretrain data (<=0.9%) Script (Latin or not)
Bloomz-7b1 Pretrain data (<=0%) Pretrain data (<=0.013%) Script (Latin or not)
XGLM-564m Pretrain data (<=0.003%) Pretrain data (<=0.095%) Lang. family (Niger-Congo or not)
XGLM-1.7b Pretrain data (<=0.003%) Resource level (<=2) Script (Devanagari or not)
XGLM-2.9b Pretrain data (<=0.003%) Script (Latin or not) Lang. family (Indo-European or not)
XGLM-7.5b Pretrain data (<=0.003%) Pretrain data (<=0.15%) Lang. family (Indo-European or not)

Full-shot

Model ALL SEEN UNSEEN

mBERT Pretrain data (<=0.032%) Pretrain data (<=0.073%) Lang. family (Indo-European or not)
XLM-R Pretrain data (<=0.005%) Pretrain data (<=0.031%) Lang. family (Indo-European or not)

Table 2: Top features identified by decision tree analysis for each model and scenario. For SEEN languages,
pretraining data size and resource level dominate (except for XGLM-2.9b, where script type is most influential).
For UNSEEN languages, linguistic characteristics (script type and language family) take precedence. All features
exhibit statistically significant differences in performance (p < 0.001).

ALL Languages:

• For the ALL languages scenario, decision trees
clearly reveal that pretraining data is the most
influential factor in 29 out of 31 cases. Because
ALL includes languages SEEN and UNSEEN,

notably, our deeper look at the decision tree anal-
yses indicates that this factor in most cases boils
down to whether the language was part of the
training set or not, rather than the amount of
language-specific data, as indicated by the values
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Figure 3: F1 Score vs. model-specific pretraining data (percentage) for GPT-3.5, mBERT and XLM-R models.

of the pretraining data percentages which range
from 0% to at most 0.175%. GPT-3.5 model
draws the distinction along general resource lev-
els whether a language is low resource (0, 1, or
2) or level 3 and higher.

SEEN Languages:

• For SEEN languages, model-specific pretrain-
ing data continues to remain the most influential
factor in 22 out of 31 model and scenario com-
binations. However, this time because there are
no unseen languages in the mix, the model per-
formance seems to be impacted by the amount
of pretraining data, as indicated by the slightly
higher percentage values as compared to the ALL
languages scenario.

• Interestingly, general resource availability based
on linguistic diversity taxonomy (Joshi et al.,
2020) appears to be the most important factor for
Bloom models in the zero-shot setup, as well as
for xglm-564m (zero-shot) and xglm-1.7b (two-
shot). For Bloom models, the distinction is along
resource levels 0/1/2 or higher, whereas for xglm
models, it is along 0/1 and higher. Additionally,
xglm-2.9b in both zero-shot and two-shot sce-
narios shows a stronger influence of script type
(Latin or not). These cases indicate that factors
beyond pretraining data size can also play a sig-
nificant role for specific models and settings.

• Furthermore, Figure 3 plots the performance of
mBERT, XLM-R, and GPT-3.5 models in relation
to model-specific pretraining data amounts. The
figure demonstrates a clear trend: as the model-
specific language data increases, so does the
model’s performance. This observation aligns
with the finding that pretraining data size is a
crucial factor for SEEN languages.

UNSEEN Languages:

• In contrast to SEEN languages, UNSEEN lan-
guages show quite a different pattern. Naturally,
because UNSEEN languages do not have pre-
training data as one of their relevant factors, it
is absent from this column. However, out of 31
models, 23 are most impacted by script type, and
8 are most influenced by language family. This
shift in importance towards linguistic features
suggests that when models encounter unfamiliar
languages, they rely more heavily on similari-
ties in writing systems to generalize from their
existing knowledge.

• Within the scripts and language families, there
are nuanced differences. For instance, while gen-
erally the models make the distinction along the
lines of whether the script is Latin or not, occas-
sionally Devanagari script also seems important,
particularly for XGLM models. Similarly, while
Indo-European is the most common influential
language family, we also observe an instance
each of Austronesian and Niger-Congo. Addi-
tionally, models of different sizes from the same
family may prefer not just a different script or
a different language family when moving from
zero-shot to two-shot setting, they may prefer
an entirely different factor (e.g., Bloom-560m in
zero-shot vs. two-shot settings), further compli-
cating the matters.

5 Discussion

Our comprehensive analysis of 6 multilingual mod-
els on the SIB-200 dataset reveals valuable in-
sights into the factors influencing their performance
across a diverse range of languages.

Our key findings can be summarized as follows:

• Pretraining data size consistently emerges as a
crucial factor, but the distinction is less along
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the quantity of data but rather whether the lan-
guages have been encountered during training
or not.

• For UNSEEN languages, script type and lan-
guage family are influential, suggesting that
MLLMs rely on cross-lingual transfer learn-
ing to generalize to unfamiliar languages.

• General resource availability plays a less
prominent role overall but appears to be impor-
tant for one specific model under one setting
(Bloom in zero-shot for seen languages).

• Interestingly, the performance of Bloomz, an
instruction-tuned model, is more influenced
by the distribution of languages in its pretrain-
ing corpus than the fine-tuned dataset used
for instruction tuning. This suggests that the
initial pretraining stage plays a crucial role in
shaping the model’s capabilities, even after
further fine-tuning for specific tasks.

• Finally, our analysis also indicates that while
model size and architecture may influence
overall performance, they do not significantly
alter the most important features identified
by the decision trees. The distribution of lan-
guages in the pretraining data and the linguis-
tic characteristics of the target languages con-
sistently emerge as the dominant factors re-
gardless of the specific model architecture or
scale.

Several future directions remain to be explored.
We observed that script type can be more influential
for specific models and settings. Further investi-
gation is needed to understand the reasons behind
these preferences and how they can be leveraged
to achieve more consistent performance across lan-
guages. It is also not clear why models lean towards
different factors under different settings (for in-
stance, resource level is important in Bloom-560m
zero-shot setting but pretraining data is important
in its two-shot ICL setting).

6 Conclusion

This study analyzed 6 multilingual language mod-
els on the SIB-200 dataset, revealing key insights
into their performance across around 200 lan-
guages. We found that the size of the pretraining
data significantly affects performance. For unseen
languages, script type and language family become

more crucial, highlighting the importance of cross-
lingual transfer learning. While general resource
availability plays a less prominent role overall, it
can be significant for specific models and settings.
Interestingly, model size and architecture do not
significantly change the most important features
identified in our analysis. Our work contributes
to a deeper understanding of MLLMs and hopes
to guide the development of more effective and
equitable multilingual NLP systems.

Limitations

This study provides insights into multilingual lan-
guage model performance, but it is important to
acknowledge certain limitations. The SIB-200
dataset, while extensive, may contain biases in lan-
guage representation and genre distribution, poten-
tially affecting the generalizability of our findings.
Additionally, our analysis focuses on the text clas-
sification task, and the findings may not directly
generalize to other NLP tasks. While we analyzed
a diverse set of models, our findings may not be
fully representative of the entire MLLM landscape.
Finally, our analysis is based on the current state
of MLLMs, and the relative importance of differ-
ent factors may change as these models continue to
evolve. Future research should address these limita-
tions by expanding to more diverse datasets, inves-
tigating different NLP tasks, evaluating a broader
range of models, and conducting longitudinal stud-
ies.
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A Appendix: Prompts

This appendix provides the specific prompts used
for evaluating Bloom, Bloomz, XGLM, and GPT-3.5
in the zero-shot and two-shot in-context learning
(ICL) settings on the SIB-200 text classification
task.

Zero-shot Prompt (Bloom, Bloomz, XGLM):
SENTENCE: “{input sentence}”
Is this SENTENCE science, travel, politics,
sports, health, entertainment, geography?
OPTIONS:
-science
-travel
-politics
-sports
-health
-entertainment
-geography
ANSWER:

Two-shot ICL Prompt (Bloom, Bloomz,
XGLM):
What category does SENTENCE belong to?

SENTENCE: “{sentence1}”
LABEL: {label1}
SENTENCE: “{sentence2}”
LABEL: {label2}
...
SENTENCE: “{sentence14}”
LABEL: {label14}
SENTENCE: “{input sentence}”
OPTIONS:
-science
-travel
-politics
-sports
-health
-entertainment
-geography

LABEL:

Zero-shot Prompt (GPT-3.5):
You will be provided with a text, and
your task is to classify its category
as science, travel, politics, sports,
health, entertainment, geography.
{input sentence}

Category:

B Appendix: Supplemental plots

26



Figure 4: Distribution of language family in SIB-200.

Figure 5: Distribution of scripts in SIB-200.
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Abstract

Whisper is a state-of-the-art automatic speech
recognition (ASR) model (Radford et al., 2022).
Although Swiss German dialects are allegedly
not part of Whisper’s training data, prelimi-
nary experiments showed that Whisper can tran-
scribe Swiss German quite well, with the out-
put being a speech translation into Standard
German. To gain a better understanding of
Whisper’s performance on Swiss German, we
systematically evaluate it using automatic, qual-
itative, and human evaluation. We test its per-
formance on three existing test sets: SwissDial
(Dogan-Schönberger et al., 2021), STT4SG-
350 (Plüss et al., 2023), and Swiss Parliaments
Corpus (Plüss et al., 2021). In addition, we cre-
ate a new test set for this work, based on short
mock clinical interviews.

For automatic evaluation, we used word error
rate (WER) and BLEU. In the qualitative anal-
ysis, we discuss Whisper’s strengths and weak-
nesses and analyze some output examples. For
the human evaluation, we conducted a survey
with 28 participants who were asked to evaluate
Whisper’s performance.

All of our evaluations suggest that Whisper is a
viable ASR system for Swiss German, so long
as the Standard German output is desired.

1 Introduction

Swiss German is the name of a group of Aleman-
nic (High German) dialects spoken in German-
speaking Switzerland by around 5.5 million peo-
ple.1 German-speaking Switzerland displays a
state of diglossia (Ferguson, 1959; Rash, 1998),
more specifically a medial diglossia: spoken con-
texts evoke Swiss German, written contexts evoke

1Bundesamt für Statistik: Hauptsprachen seit 1910, ac-
cessed on 23.04.2024

Standard German (Kolde, 1983; Haas, 2004). Ac-
cording to this principle, Swiss German is used as a
spoken language in almost all settings, with the ex-
ception of some restricted, specific formal settings
in which Standard German is spoken, e.g., on the
news or at school, as well as a lingua franca with
non Swiss German speakers (Hogg et al., 1984).

Swiss German has no spoken standard variety
and no written variety, and therefore no ortho-
graphic norms. In writing, Standard German is
used. Thus, whenever spoken language (Swiss Ger-
man) has to be written down, e.g., subtitles to a
TV program or minutes of a meeting, Standard
German is used. If Swiss German is written, it
happens in situations that are conceptually spoken
(“konzeptionell mündlich;” Koch and Oesterreicher,
1994) and which are situated on the immediacy-end
of Koch and Oesterreichs’s communication model
(Nähe-Distanz-Modell, cf. Koch and Oesterreicher,
1985), e.g., ads or chat messages, cf. Ueberwasser
and Stark (2017), which created a corpus of text
messages written in Swiss German.

To summarize, in German-speaking Switzerland
there is a state of medial diglossia: the spoken
language is Swiss German (a group of dialects
with no standard variety); the written language is
a Swiss vareity of Standard German. Swiss Ger-
man and Standard German are, although geneti-
cally and systematically very close, two different
languages, whereas only Standard German has a
codified written form (Berthele, 2004). The task of
putting down Swiss German speech to written form
is, therefore, not a transcription task, but rather a
translation task, translating Swiss German to Stan-
dard German. This spoken–written juxtaposition
of Swiss German and Standard German explains
why almost all the automatic speech recognition
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efforts for Swiss German until now have dealt with
Swiss German speech to Standard German text (see
Section 2).

Whisper is a state-of-the-art multilingual model
for automatic speech recognition (ASR) (Radford
et al., 2022). Although Swiss German is not offi-
cially part of Whisper’s training data2, in prelim-
inary trials, we observed that Whisper could rec-
ognize Swiss German quite well, with the output
produced being Standard German. According to
Ruder (2024) most large language models (LLMs)
have likely encountered some data for most lan-
guages available on the web, which is probably the
case here too.

We intentionally refrain from attempting to fine-
tune Whisper. Not only did Sicard et al. (2023)’s
fine-tuning attempts of Whisper on Swiss German
data worsen the model’s performance; we find
Whisper’s zero-shot performance on Swiss Ger-
man, at this stage, already impressive and appli-
cable. Before any costly GPU hours are spent in
an attempt to improve Whisper, we think it should
first be scrutinized and analyzed in its current state.

In this work, we evaluate Whisper’s performance
on Swiss German audio in different settings and
modes. We automatically evaluated Whisper on
three large corpora, namely SPC (Plüss et al., 2021),
STT4SG-350 (Plüss et al., 2023), and SwissDial
(Dogan-Schönberger et al., 2021), measuring word
error rate (WER) and BLEU.

To test Whisper on real-life spoken language, we
created a new test set for which we translated into
Standard German mock clinical interviews held in
Swiss German. The total length of the interviews is
approx. 30 minutes. To test Whisper’s performance
on this test set, we offer a qualitative analysis of
Whisper’s output and a human evaluation based on
a survey (n = 28).

2 Previous Work

ASR for Swiss German is an ambiguous term.
While the audio input to the system is always Swiss
German, the text output can be: (a) dialectal writ-
ing – loosely phonemic representation of Swiss
German; (b) normalized writing – transcriptions
resembling standard German that are relatively con-
sistent but distant from the acoustic signal (Nigmat-
ulina et al., 2020); (c) Standard German translation.

In recent years, Swiss German has enjoyed a

2https://github.com/openai/whisper, accessed on
23.04.2024

proper boom in the field of speech corpora, ASR
and speech generation. The first major corpus
with Swiss German audio was ArchiMob, which
includes dialectal as well as normalized writing
(Samardžić et al., 2016; Scherrer et al., 2019). Nig-
matulina et al. (2020) used the ArchiMob corpus to
compare systems producing dialectal and normal-
ized writing and concluded that performance is bet-
ter with standardized writing. Dogan-Schönberger
et al. (2021) created SwissDial, a large corpus con-
taining Standard German as well as Swiss German
transcriptions in eight dialects.

Some work concentrated on ASR with Standard
German speech translation and leveraged existing
Transformer and XLS-R ASR models, fine-tuning
them with Swiss German data. Plüss et al. (2021)
published the “Swiss Parliaments Corpus”, and ex-
perimented further with ASR models for Swiss
German with Standard German output. Plüss et al.
(2022) presented SDS-200, a corpus of Swiss Ger-
man dialectal speech with Standard German text
translations containing 200 hours of speech. They
also experimented with training Transformer mod-
els and fine-tuning Wav2Vec2 XLS-R models on
their data. Their best model (XLS-R) reached a
WER of 21.6 and a BLEU score of 64.0. Recently,
Plüss et al. (2023) presented the as-of-today largest
corpus of Swiss German dialectal speech with Stan-
dard German text, containing 343 hours of speech.
They fine-tuned a Wav2Vec2 XLS-R model on the
corpus and reached a WER of 14.0 and a BLEU
score of 74.7 on their test set.

Most recently, Sicard et al. (2023) turned to
Whisper and tested it in a zero-shot setting on select
Swiss German/Standard German test sets (Swiss-
Dial, SDS-200, SPC). Reportedly, their fine-tuning
experiments on Whisper (medium version) wors-
ened performance, leading the model to suffer from
catastrophic forgetting.

3 Test Sets

To evaluate Whisper’s performance on Swiss Ger-
man, we test it using WER and BLEU on three
test sets: SwissDial (Dogan-Schönberger et al.,
2021), Swiss Parliaments Corpus (Plüss et al.,
2021), STT4SG-350 (Plüss et al., 2023). We addi-
tionally created a new test set based on short Swiss
German mock clinical interviews, which we addi-
tionally evaluate using a qualitative analysis and a
human survey.
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3.1 Mock Clinical Interviews

This work serves as a preparation step towards a
large longitudinal study in the field of suicide pre-
vention.3 During this study, patients from a Zurich-
based psychiatric clinic will be interviewed several
times. We test how reliable and viable Whisper is
for transcribing/translating these interviews.

To this end, i.e., to test Whisper in a naturalistic
and applied setting containing spontaneous speech,
we used mock clinical interviews that were held in
Swiss German and recorded for instructional and
training purposes in a total length of approx. 30
minutes. The interviews were recorded with three
women interviewees using a lapel microphone4 and
simple convertible laptops. We, the authors of this
work, then translated these interviews into Stan-
dard German according to some basic translation
guidelines we created to maintain consistency. We
call this ad-hoc test set “Mock Clinical Interviews”.

This test set will be automatically evaluated us-
ing WER and BLEU as well as using a qualitative
analysis to discuss Whisper’s strengths and weak-
nesses in Swiss German, and a human evaluation,
for which we conducted a survey (n = 28).

3.2 SwissDial

For the creation of SwissDial, eight speakers,
speaking eight different dialects5 were asked to
translate Standard German prompts to their own di-
alects and then record the translations. The prompts
were made of sentences crawled from the internet,
encompassing different text genres: news stories,
Wikipedia articles, weather reports and short sto-
ries (Dogan-Schönberger et al., 2021). Because
the prompts were translated into Swiss German by
each of the speakers, sometimes greater departures
from the Standard German source occur. See Fig-
ure 1, containing the first three dialect entries from
the first entry in the corpus, for an example.

As can be seen in Figure 1, the German word
derzeit “currently” was translated by the different
dialect speakers as zur Ziit, momentan and derziit,
respectively. One cannot, however, expect that
Whisper translates all of these different Swiss Ger-
man words back to the Standard German origi-
nal, especially considering that the Swiss German
words each have a closer Standard German equiva-
lent (zur Zeit, momentan and derzeit, respectively).

To circumvent this problem and include prompts

3MULTICAST
4RØDE smartLav+

{
"id": 0,
"de": "Derzeit␣ist␣er␣in␣

↪→ \" Parasite\",␣dem␣
↪→ Siegerfilm␣von␣Cannes ,␣zu␣
↪→ sehen.",

"ch_sg": "Zur␣Ziit␣isch␣er␣in␣
↪→ \" Parasite\",␣en␣
↪→ Siegerfilm␣vo␣Cannes ,␣
↪→ zgseh.",

"ch_be": "Momentan␣ischer␣in␣
↪→ \" Parasite \"␣z␣gseh ,␣em␣
↪→ Siegerfium␣vo␣Cannes.",

"ch_gr": "Derziit␣isch␣er␣in␣
↪→ \" Parasite\",␣am␣
↪→ Siegerfilm␣vu␣Cannes ,␣z␣
↪→ gseh.",

...
}

Figure 1: The first three dialectal translations of the
first entry in the SwissDial corpus. The first word in the
Standard German source (“de”), derzeit, is translated
differently in each dialect: zur ziit, momentan, derziit.

that are less likely to contain major departures
from the source, which might unfairly fail Whis-
per when the produced output is compared to the
original prompt, we created an ad-hoc test set: We
calculated for each Standard German prompt and
its respective dialectal translations the chrF score
(Popović, 2015) using SacreBLEU’s implementa-
tion (Post, 2018). We then evaluated Whisper’s
performance on the 500 prompts with the best chrF
scores for each dialect.

3.3 Swiss Parliaments Corpus

The Swiss Parliament Corpus (SPC) is a dataset
containing sentences taken from speeches held at
the Grand Council (Grosser Rat) of the Canton of
Bern (Plüss et al., 2021).6 Almost all speakers hold
their speeches in Bernese German. For the creation
of the corpus, Plüss et al. (2021) split the audio into
segments, so-called sentences, whereas segments
shorter than one second and longer than 15 seconds
were discarded. The corpus creators also made sure
that the speech segments were unique within the set.
The speech segments were then force-aligned to the
Standard German minutes (i.e., translations), which
were created by the Canton of Bern. The result is
parliament speeches split into segments (sentences)
with their corresponding Standard German transla-

5The dialects of Zurich, Bern, Basel, Aargau, Grisons, St.
Gallen, Lucerne, and the Walser

6The name of the corpus is thus a misnomer – it is not a
corpus representing the whole diversity of Swiss German.
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tions from the minutes. We tested Whisper on the
test set part of the corpus7.

3.4 STT4SG-350
Like SPC, STT4SG-3508 is a corpus containing
single sentences of Swiss German speech with
Standard German translations (Plüss et al., 2023).
Unlike the former, STT4SG-350 includes an al-
most even split between seven different dialect re-
gions.9 The sentences produced by speakers were
taken from Swiss newspapers and proceedings of
two Swiss Parliaments. Participants, who were
recruited either via a crowdsourcing platform or
academic or personal channels as well as news ads,
self-reported their dialect region, age group, gender,
and where they grew up and/or went to school. The
whole corpus consists of 343 hours of speech. We
tested Whisper on the test set part which contains
34 hours of speech in approx. 25k sentences.

4 Evaluation

4.1 Automatic Evaluation
Usually, word error rate (WER) is used as a met-
ric to automatically evaluate ASR systems. How-
ever, the type of ASR for Swiss German that we
evaluate in this work is Swiss German audio in-
put with Standard German text output – a speech
translation task. This means, as is generally the
case in translation, that it is not uncommon for
a sentence to have several possible translations.
Standard German translations of Swiss German
are, in that sense, no different, although in many
cases, there are clear one-to-one correspondences
in vocabulary and grammatical structures between
Standard and Swiss German. But when correspon-
dences are ambiguous, the translator has to make a
conscious decision on how to translate vocabulary
or grammatical constructions. For example, Swiss
German only has one tense referring to past events –
the perfect. Standard German has, at least formally,
two past tenses – the perfect and the preterite. The
translator thus has to choose, according to context,
how to translate the Swiss German perfect.

This ambiguity in translation, a typical problem
in evaluating machine translation systems, makes
the usual metric used for ASR systems – word error
rate (WER) – not unproblematic. We thus addition-
ally use BLEU (Papineni et al., 2002), a typical

76 hours, 3332 segments
8Standing for “Speech-to-text for Swiss German”
9These seven regions are Basel, Bern, Grisons, Central

Switzerland, East Switzerland, Valais and Zurich.

Mode WER BLEU

Continuous recordings 0.33 52.03
Segmented clips 0.37 44.19

Table 1: Whisper’s performance on our Mock Clini-
cal Interviews test set, comparing continous recordings
vs. segmented clips. Best results in bold.

metric used to evaluate machine translation sys-
tems. This will also help compare the performance
of Whisper to previous Swiss German ASR models,
as previous work also reports WER and BLEU.

To compute WER, we used JiWER’s10 imple-
mentation. For BLEU we used SacreBLEU’s im-
plementation (Post, 2018).

4.2 Qualitative & Human Evaluation

In addition to testing Whisper’s performance on
several datasets and evaluating its performance au-
tomatically, we offer a qualitative and human eval-
uation of our Mock Clinical Interviews (see Sec-
tion 3.1). In the qualitative evaluation, we will
show examples of Whisper’s output, analyze errors,
and shed some light on the strengths and weak-
nesses of Whisper’s performance.

Our human evaluation, in which we recruited
28 people – university students, colleagues, and
acquaintances – via personal channels to evaluate
Whisper’s output, offers more informative feedback
about how humans perceive Whisper’s output.

5 Results: Automatic Evaluation

5.1 Mock Clinical Interviews

We tested Whisper’s large-v3 model on our test
set (“Mock Clinical Intverviews”, see Section 3.1).
We compared Whisper’s performance on continu-
ous recordings versus short clips containing single
speech segments. Given segmented clips, WER
and BLEU scores were 0.37 and 44.19, respec-
tively. With the continuous recordings, WER and
BLEU scores were 0.33 and 52.03, respectively,
see Table 1. We conclude that Whisper performs
better on longer, continuous recordings than on
short clips.

This comes, however, at a slight risk of halluci-
nations: Four out of sixteen transcriptions/transla-
tions generated by Whisper included one sentence

10https://github.com/jitsi/jiwer, accessed on
23.04.2024
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that was not uttered in the original audio, see Sec-
tion 6.3 for more details.

5.2 SPC, STT4SG & SwissDial

We further tested Whisper’s large-v3 model on the
three other test sets: SPC, STT4SG-350, and Swiss-
Dial (see Section 3). The results, compared to
results reported by other works, can be seen in Ta-
ble 2. We always picked the best result reported in
each of the other works.

Whisper’s latest large model, version 3, out-
performs Whisper’s previous model, as reported
by Sicard et al. (2023). However, fine-tuned
Wav2Vec2 models on the SPC and the STT4SG-
350 training sets outperform Whisper on the respec-
tive test sets, as reported by Plüss et al. (2023) and
Schraner et al. (2022). Whisper does come close
to the Conformer model pre-trained by Plüss et al.
(2021) with a difference of only 1.7 p.p. and 1.6
p.p. in WER and BLEU, respectively.

For SPC, STT4SG-350, and SwissDial, we also
computed WER and BLEU for each sentence sep-
arately and then computed the mean and standard
deviation (so-called micro average). As can be seen
in Table 3, the standard deviations for WER and
BLEU are quite big, ranging at 0.24–0.25 for WER
and 27.95–32.24 for BLEU. This shows that Whis-
per’s performance measured in WER and BLEU
fluctuates considerably. For some sentences in
STT4SG-350 for example, BLEU scores went up
to 100. See also Figures 2 and 3 in Appendix A.4.

It should be noted that the SPC corpus contains
some considerable deviations between audio and
reference translations, which were taken from the
parliament’s proceedings (see Section 3.3). For
instance, in one clip11, the heard audio is und das
isch schlächt. The reference translation is “Das ist
schlecht”, excluding the coordinating conjunction
und “and”. Whisper perfectly transcribed this as
“Und das ist schlecht”, but this is penalized with
a WER score of 0.33. It is not inconceivable, that
the models trained by Plüss et al. (2021) learned
these deviating translations, which might explain
their better performance on the SPC test set. As the
case may be, comparing WER and BLEU scores
for SPC between Whisper’s performance and Plüss
et al. (2021) may raise concerns, and its meaning-
fulness can and should be questioned. For more
examples of perfect output by Whisper penalized
by diverging reference translations, see Table 10 in

1182495971-6523-4f96-be13-753b8bb564cf.flac

Appendix A.

For SwissDial, we also evaluated Whisper’s per-
formance on the different dialects. As can be seen
in Table 4, the Grisons dialect has the best WER
and BLEU scores; the Walser dialect has the worst
scores.12 Why Whisper performs differently on
different dialects and which phonetic, phonological
or grammatical traits affect Whisper’s performance
should be more closely examined in future work.

To conclude, we consider Whisper’s results im-
pressive, especially considering that it operates in
a zero-shot setting. Its output is without doubt
meaningful and useful.

6 Qulatitative Analysis

6.1 General Impression

In general, we were genuinely impressed with
Whisper’s performance. The Standard German out-
put corresponds in meaning and style to the Swiss
German audio to almost the full extent. Whisper
generated entire error-free passages that are fluent,
consistent in style, retain the original word order
and correspond fully to the original (see Table 6 in
Appendix A.1 for examples).

However, some things are not always consistent.
For example, the Swiss German perfect tense is
translated sometimes as the Standard German per-
fect tense and sometimes as the preterite. The out-
put switches inconsistently between the two past
forms within the same passage. See Table 7 in
Appendix A.1 for examples.

We noticed that in certain cases, words are
changed when translated to Standard German, even
when the Swiss German word has an identical cor-
responding word in Standard German. One exam-
ple of this is the Swiss German word lässig which
is translated to Standard German toll, both mean-
ing “cool, nice”. In this case, this is desired since
in Standard German, lässig means rather “casual,
easy-going” – Swiss German lässig and Standard
German lässig are false friends. Another exam-
ple is the translation of Swiss German Sache to
Standard German Dinge, both meaning “things”,
however, Dinge is used mostly for tangible things
and in the given contexts Sachen would have been
a better translation.

12The Walser dialect is also considered in Switzerland the
most difficult to understand.
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Test Set Model Mode WER BLEU

Mock Interviews Whisper large-v3 zero-shot 0.372 44.3 This work

SPC Conformer pre-trained 0.278 58.6 Plüss et al. (2021)
Wav2Vec2 fine-tuned 0.237 60.7 Schraner et al. (2022)
Whisper large zero-shot 0.332 55.6 Sicard et al. (2023)
Whisper large-v3 zero-shot 0.295 57.0 This work

STT4SG-350 XLS-R fine-tuned 0.153 72.2 Schraner et al. (2022)
Wav2Vec2 fine-tuned 0.140 74.7 Plüss et al. (2023)
Whisper large-v3 zero-shot 0.230 63.1 This work

SwissDial Whisper large zero-shot 0.294 56.2 Sicard et al. (2023)
Whisper large-v3 zero-shot 0.230 61.0 This work

Table 2: WER (lower is better) and BLEU (higher is better) scores for our corpora, compared to results reported in
previous works.

Test Set WER BLEU

SPC 0.30 (0.24) 54.01 (27.95)
STT4SG-350 0.24 (0.25) 60.61 (32.24)
SwissDial 0.25 (0.24) 57.23 (31.51)

Table 3: Mean and standard deviation WER and BLEU
for the corpora when computed for each sentence sepa-
rately.

Dialect WER BLEU

Aargau 0.272 55.40
Bern 0.210 64.95
Basel 0.209 63.24
Grisons 0.169 69.99
Lucerne 0.276 55.06
St. Gallen 0.209 64.03
Walser 0.297 53.46
Zurich 0.229 60.67

Table 4: WER and BLEU scores for each dialect in the
SwissDial corpus.

6.2 Concise Style

We notice that Whisper’s translations are of a style
that is more concise than the original. This is espe-
cially noticeable in the removal of modal particles
and conjunctions: Modal particles with little se-
mantic content but with an information structural
function like halt or einfach might disappear from
the output. Conjunctions like dann “then” or und
“and” are not always included. In one case, how-
ever, conjunctions and particles were hallucinated
by Whisper. Whisper deals then inconsistently with
particles and conjunctions, mostly removing them
but rarely also adding them by hallucination.

It is a known phenomenon that during transla-
tion, the explicitness of cohesive markers, such as
the particles and conjunctions mentioned above,
can shift (Blum-Kulka, 1986). Leaving out such
markers, as evidenced in Whisper’s output, can be
seen as a case of implicitation, cf. Lapshinova-
Koltunski et al. (2022) (which refers to them as
“discourse connectives”). If we assume that the
target side of the training data was more concise
and less explicit than the spoken Swiss German,
then this would explain Whisper’s behavior.

It should, however, be noted that such modal par-
ticles usually serve an information structural func-
tion (Musan, 2010). Thus, they do not necessarily
affect the truth value of an utterance and, there-
fore, have little influence on the overall meaning
(Krifka, 2007). For examples of removed particles,
see Table 8 in Appendix A.1.

6.3 Hallucinations
Four out of sixteen transcriptions of whole conver-
sations contained hallucinations – a sentence that
was generated by Whisper without a corresponding
utterance in the source audio.

In one conversation, in which the interviewee
recounted the death of her mother, the following
sentence was hallucinated:

Sie blieb nicht mehr in unserem pegen... Meine
Frau, die ich so sehr liebte. (“She didn’t remain
in our GIBBERISH... My wife, whom I loved so
much.”)

In another conversation, a sentence was contin-
ued by a hallucination (marked in bold):

Ähm ... Ja, jetzt bin ich immer noch etwas groggy,
aber es geht etwas. Ich bin ganz müde. Äh ...
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Okay, ich kann ... Äh ... Zuerst schon., (“Ehm
... Yes, now I’m still somewhat groggy, but I’m
managing. I am really tired. Eh ... Okay, I can
... Eh ... Firstly.”)

In a different case, a sentence was preceded by a
hallucination (in bold):

Und ... äh ... Das hat mich sehr angestrengt. Äh
... Das hat mich sehr viel aufgewühlt. (“And ...
eh ... That really strained me. Eh ... That really
upset me.”)

At the end of one conversation, Untertitel von S
G13 (“Subtitles by...”) was added.14

We couldn’t identify a pattern as to when and
why hallucinations happen, but they seem to be a
generally known problem with Whisper and are
not specific to Swiss German audio.15 Therefore,
users should be aware that there is a possibility of
hallucinations being added and in doubt re-check
the audio.

7 Human Evaluation

7.1 Motivation

Performance of ASR systems is usually reported
in WER , cf. Radford et al. (2022); Baevski et al.
(2020). However, it is less meaningful for evalu-
ating ASR for Swiss German with Standard Ger-
man output since several outputs can be considered
correct (see also Sections 1 and 4.1). Therefore,
BLEU established itself as a second metric reported
in works on ASR for Swiss German (Plüss et al.,
2022, 2023; Schraner et al., 2022).

BLEU is meaningful mostly as a relative metric,
comparing several systems; as an absolute score,
it is less meaningful. It has been the object of
criticism since Callison-Burch et al. (2006). Even
its significance as a relative metric use has been
harshly criticized, with Kocmi et al. (2021) com-
plaining that “the sole use of BLEU impeded the
development of improved models leading to bad
deployment decisions.” If we acknowledge that
language technology is made for human beings,
then its most important evaluation should be what
humans think about it. We therefore conducted a
short survey to evaluate how human beings per-
ceive Whisper’s performance.

13Whisper’s output included a real person’s name, which
we anonymize here for privacy reasons.

14Obviously due to subtitles being part of the training data.
15A DuckDuckGo search for “openai whisper hallucination”

returns many web pages discussing the issue.

7.2 Survey

For the survey, we randomly picked three of the
conversations recorded as Mock Clinical Inter-
views (see Section 3.1) and extracted 119 sentence
pairs consisting of our reference translation (sen-
tence A) and Whisper’s output (sentence B).

In the evaluation task, participants were asked,
on a scale of 1 to 5, to rate:

1. To what extent is the meaning of sentence A
retained in sentence B?

2. To what extent is sentence B fluent and natu-
ral?

with 1 being the worst and 5 being the best
score. To assist the participants, each grade on
the scale was given a verbal description (see Ta-
ble 9 in Appendix A.2 for details). The participants
were instructed to rate the fluency of sentence B
(Whisper’s output) independently from sentence A
(reference) and to ignore punctuation marks.

Twenty-eight university students, colleagues,
and acquaintances, who were recruited via personal
channels, participated in the survey, all of them na-
tive speakers of German or Swiss German. The
mean scores for meaning and fluency among all
raters were 4.358 ± 0.046 (SD 0.239) and 4.39
± 0.074 (SD 0.387), respectively, out of a maxi-
mum of 5 points. These scores suggest a very high
human satisfaction with Whisper’s performance.

7.3 Worst Rated Sentences

In an attempt to uncover some of Whisper’s weak-
nesses, we picked the six sentences with the lowest
mean score across all raters, see Table 5.

In sentence 1, the output includes the word
Riesiges “huge” instead of the original Kleines
“small”, which is the exact opposite. In sentence 2,
the subject of the sentence changes from the origi-
nal ich “I” to sie “they”, and the verb changes from
genommen “took” to liess “let”, causing the output
to diverge greatly in meaning from the reference.
Also, the preposition changes from zur in the ref-
erence to an der in Whisper’s output. In sentence
3, the name of a train line in Zurich (Forchbahn)
is “misheard” as Furchtbahn “fright train”. Sen-
tence 4 diverges greatly from the reference, with
the use of the 3rd person accusative pronoun ihn
without first introducing its referent, resulting in a
genuine non sequitur. In sentence 5, the time men-
tioned in the original (viertel nach sechs “quarter
past six”) was changed to 4.15. Finally, in sentence
6, the word Schlummer-Taste “snooze button” was
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Reference Whisper Mean

1 also meistens etwas Kleines, weil ich am
Abend nicht so hunger habe

Also meistens etwas Riesiges, weil ich am
Abend nicht so Hunger habe.

2.31

2 und habe meine Sachen genommen und
dann bin ich auf den Bus gelaufen also
zur Bushaltestelle

Ich nahm meine Sachen und liess sie auf
den Bus. Also an der Bushaltestelle.

2.50

3 Auf das Tram gegangen, auf die Forch-
bahn und dann hierher gekommen.

Auf die Furchtbahn gingen. Dann kam
ich hierher.

2.54

4 und dann bin ich bis zum Stadelhofen
gefahren und habe ich noch die Tram
genommen und dann bin ich hierher
gekommen

Ich fuhr bis zum Stadelhof und nahm ihn
aus der Rampe. Dann kam ich hierher.

2.58

5 Ja also ich bin um viertel nach sechs
aufgestanden

Ich bin um 4.15 Uhr aufgestanden. 2.65

6 Da habe ich aber zuerst noch die
Schlummer-Taste gedrückt zweimal.

Ich habe zuerst die Schlamasseltasche
gedrückt, zweimal.

2.69

Table 5: The six sentences rated the worst in the human evaluation.

misheard as Schlmasseltasche, a gibberish word
meaning “bad luck bag”.

There is no recurring pattern in these sentences.
It seems, however, that the transcription of named
entities (Forchbahn, Stadelhofen, cf. sentences 3
and 4) and numbers (cf. sentence 5) might result in
errors.

8 Conclusion

We evaluated Whisper’s performance on Swiss Ger-
man audio using automatic evaluation (WER and
BLEU), a qualitative analysis and a human sur-
vey. All three evaluation types are evidential of
very high performance: WER and BLEU are on
par or slightly below other systems (cf. Table 2).
The qualitative analysis revealed very high qual-
ity, retaining almost always the original meaning
with only slight changes in style and some removal
of cohesion markers such as particles and connec-
tors. The human evaluation showed high human
satisfaction (mean: 4.36/5.00, n=28).

We are therefore convinced that Whisper can be
used, as is and out-of-the-box, without any further
adaptations, for transcribing Swiss German, provid-
ing that the desired output is Standard German and
that some loss of cohesion markers is acceptable.

However, as with any AI-based tool, Whisper
should be used with caution. The qualitative analy-
sis revealed some cases of changes in meaning, es-
pecially of numbers, as well as some hallucinations,
though these were rare (one sentence in four out

of sixteen 2-minute clips). In case of doubt, users
should always refer to the original audio. Neverthe-
less, for the task of transcribing large portions of
Swiss German audio or as a first step in a pipeline
with other tasks in mind, such as keyword extrac-
tion or sentiment analysis, we think Whisper is a
helpful, useful, and viable ASR tool.

Limitations

In this work, we evaluated Whisper’s perfor-
mance on Swiss German using automatic evalu-
ation (WER and BLEU). We restricted ourselves
to these metrics, since these are the metrics that
are reported in previous works on ASR for Swiss
German. Granted, other potentially better-suited
metrics also come to mind, e.g., chrF (Popović,
2015) and BERTScore (Zhang et al., 2020). How-
ever, since models from previous works are not
publicly available, we could not test them using dif-
ferent metrics besides WER and BLEU and had to
rely on the scores reported in the respective works.
Previous models not being publicly available also
explains why we could not test the performance of
previous models on our own test set (Mock Clinical
Interviews), which would have been desirable.
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A Appendix

A.1 Examples of Whisper’s Performance
Table 6 offers two excerpts from Whisper’s out-
put for our Mock Clinical Interviews test set (see

Section 3.1). The excerpts exemplify Whisper’s
consistent high-quality performance over a longer
passage of spontaneous and continuous speech.

Table 7 offers a speech excerpt from an interview
in which the interviewee describes a past narrative
(morning routine). It is an example of how Whisper
inconsistently translates the Swiss German perfect
sometimes as the Standard German preterite and
sometimes as the Standard German perfect, cf. Sec-
tion 6.

A.2 Human Evaluation Guidelines
Table 9 shows the rating guidelines for the raters in
the human evaluation survey, cf. Section 7.

A.3 SPC Examples
Table 10 shows some examples of diverging refer-
ence translations that unjustly penalize Whisper’s
performance, cf. Section 5.2.

A.4 Plots
Figures 2 and 3 contain boxplots of the distribution
of WER and BLEU scores of Whisper’s perfor-
mance on the three test sets: SPC, STT4SG and
SwissDial. They show that Whisper’s performance
measured in WER and BLEU fluctuates consid-
erably; for some sentences in STT4SG-350 for
example, BLEU scores went up to 100.
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Reference translation Whisper

und es ist einfach so mega heimelig irgendwie
also so

Es ist einfach so mega heimelig irgendwie.

es gibt mir so ein warmes Gefühl Es gibt mir so ein warmes Gefühl.
und mir gefällt auch wie sie sich anziehen dort
also,

Und mir gefällt auch, wie sie sich dort anziehen.

also ich finde es auch so schön es zu sehen, Ich finde es auch so schön, es zu sehen.
nicht nur weil es lustig ist und beruhigend son-
dern auch, weil es schön ist zum anschauen

Nicht nur, weil es lustig und beruhigend ist,
sondern auch, weil es schön ist, es anzuschauen.

also man hat Einzeltherapie zum Beispiel, oder
Gruppentherapie mit anderen zusammen

also man hat Einzeltherapie zum Beispiel oder
Gruppentherapie mit anderen zusammen

oder Musiktherapie, Maltherapie, oder auch so
Entspannungsgruppen

oder Musiktherapie, Maltherapie oder auch so
Entspannungsgruppen.

teilweise kann man auch selber Sport machen
wenn man das will, also nicht in der Gruppe
sondern alleine

Teilweise kann man auch selber Sport machen,
wenn man das will, also nicht in der Gruppe,
sondern alleine,

oder irgendwie so Walkinggruppen, oder so
Achtsamkeitsgruppen, wo man in die Natur
geht.

oder irgendwie so Walking-Gruppen oder so
Achtsamkeitsgruppen, wo man in die Natur
geht.

Table 6: Excerpts of Whisper’s performance on continuous speech from our “Mock Clinical Interviews” test set
(the segmentation into sentences is only for the sake of readability). These excerpts are evidential of Whisper
high-quality performance.

Swiss German Whisper

Denn bin i richtig ufgstandfe Dann bin ich richtig aufgestanden.
Dänn bin i go dusche ggange Ich ging duschen.
Dänn han i mi aazoge Dann zog ich mich an.
Dänn mine chatz no fuetter gää, will si di ganzi
ziit am maue gsi isch und unbedingt het welle
esse

Ich gab meinen Katzen Futter, weil sie die
ganze Zeit am Mauen waren und essen wollten.

Dänn bin i mit ire id stube abe ggange Dann ging ich mit ihr in den Wohnzimmer.
Dänn han ich öppis ggässe dänn het sii öppis
ggässe

Ich habe etwas gegessen, dann hat sie etwas
gegessen.

Und dänn bin i wider uffe go zäh putze Ich ging wieder hoch, um die Zähne zu putzen.

Table 7: Excerpt from a conversation in which the interviewee recounted what they did the same morning. It
exemplifies how Whisper switches between perfect and preterite in Standard German. The input is always in the
perfect tense. Perfect/preterites are marked in bold.
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Reference Hypothesis

“weil ich dann halt wieder auf mich gestellt
bin.”

“weil ich wieder auf mich gestellt bin.”

“und darum ist es ein bisschen beides.” “Darum ist es beides.”
“ja und ich find’s einfach nur spannend”" “Ich finde es spannend”
“Halt irgend so eine Einschlafmeditation von
einer Person...”

“Eine Einschlafmeditation von einer Person...”

“und er bekommt 50’000 Franken” “und dann bekommt man irgendwie noch
50’000 Franken”"

Table 8: Examples for the removal of particles and conjunctions in Whisper’s output. Words in bold are particles/-
conjunctions missing in the reference/hypothesis.

Sinn – Ist der originale Sinn beibehalten? Entspricht Satz B Satz A?
5 Entspricht sinngemäss voll und ganz dem Original
4 Etwas ist verloren gegangen, die Bedeutung ist aber im grossen und ganzen gleich
3 Stimmt teilweise, aber nicht in allen Teilen
2 Entspricht kaum noch dem originalen Sinn
1 Gar nicht

Flüssigkeit. Bezogen auf Satz B – ist das gutes Deutsch?
5 Ja, voll und ganz. Natürlich und einwandfrei.
4 Relativ flüssig
3 Nicht ganz flüssig, etwas merkwürdig
2 Kaum akzeptabel
1 Inakzeptabel

Table 9: Rating guidelines for the raters participating in the survey of human evaluation.

Swiss German Audio SPC Reference Whisper WER

...nachhinei muss me döt de iibürg-
erigswillige sägge, er het scho...

So muss den Einbürgerungswilligen
im Nachhinein gesagt werden:

Nachhinein muss man den Ein-
bürgerungswilligen sagen, er hat
schon

0.75

Dir wüssed scho vo de römerziite
her

Aus Römerzeiten wissen Sie schon: Ihr wisst schon von den
Römerzeiten her,

1.4

...und das isch schlächt Das ist schlecht. Und das ist schlecht. 0.33
Während acht jahr isch s in betriib
gsi

Während acht Jahren wurde es be-
trieben.

Während acht Jahren war es in Be-
trieb.

0.5

...u es het halt i Gotts name oo
mitem finanzielle z tüe...

Und es hat halt auch wirklich mit
dem finanziellen Aspekt zu tun.

Und es hat halt in Gottes Namen
auch mit dem Finanziellen zu tun.

0.42

Töu vo euch erinnere sech
müglicherwiis aa experiment ir
physik oder chemie

Manche von Ihnen erinnern sich
möglicherweise an missglückte Ex-
perimente in Physik oder Chemie.

Ein Teil von euch erinnert sich
möglicherweise an Experimente in
Physik oder Chemie.

0.38

Table 10: Examples for perfect performance of Whisper penalized by strongly divergent reference translations in
the SPC corpus.
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Figure 2: Distribution of WER scores for each corpus.

Figure 3: Distribution of BLEU scores for each corpus.
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Abstract

How well does naturally-occurring digital
text, such as tweets, represent sub-dialects of
Egyptian Arabic (EA)? This paper focuses on
two EA sub-dialects: Cairene Egyptian Ara-
bic (CEA) and Sa’idi Egyptian Arabic (SEA).
We use morphological markers from ground-
truth dialect surveys as a distance measure
across four geo-referenced datasets. Results
show that CEA markers are prevalent as ex-
pected in CEA geo-referenced tweets, while
SEA markers are limited across SEA geo-
referenced tweets. SEA tweets instead show a
prevalence of CEA markers and higher usage
of Modern Standard Arabic. We conclude that
corpora intended to represent sub-dialects of
EA do not accurately represent sub-dialects out-
side of the Cairene variety. This finding calls
into question the validity of relying on geo-
referenced tweets alone to represent dialectal
differences.

1 Egyptian Arabic Sub-Dialects

Existing work on Egyptian Arabic (EA) sub-
dialects primarily uses geo-referenced data to repre-
sent specific varieties. The question here is whether
existing EA corpora adequately represent the in-
tended sub-dialects: do existing written corpora of
EA equally represent both majority varieties (e.g.,
Cairene Egyptian Arabic: CEA) and minority vari-
eties (e.g., Sa’idi Egyptian Arabic: SEA)? This is
an important question for two reasons: first, repre-
sentation within the training data (upstream) influ-
ences representation within language technology
(downstream). This means that dialect adaptation
for less prestigious varieties like SEA depends on
these dialects being adequately represented in train-
ing corpora (Biber, 1993; Dunn, 2020). Second,
spoken and written register variation in Arabic can
impact dialect representation. For example, results
in this paper suggest that speakers of CEA freely
use their dialect in tweets but speakers of SEA
revert to Modern Standard Arabic (MSA). This

implies that the relationship between dialect and
register is not predictable across sub-dialects.

Current work on Dialectal Arabic (DA) re-
sources and applications does not take into account
DA variation beyond the country level (Abdul-
Mageed et al., 2020a, 2020b, 2021; Bouamor et al.,
2018; Tachicart et al., 2022). Further, this work has
not considered spoken and written register variation
across sub-dialects. Therefore, this paper addresses
two specific questions. First, which Egyptian Ara-
bic sub-dialects are represented within existing dig-
ital written corpora, specifically tweets? To find
out, we compare these corpora with ground-truth
dialect surveys (Behnstedt and Woidich, 1985; Kha-
lafallah, 1969). Second, is EA in a digital written
register, specifically tweets, equally representative
of spoken sub-dialects? To find out, we compare
the relative usage of DA vs. MSA features in tweets
across two sub-dialects of Egyptian Arabic.

If current datasets are representative of EA sub-
dialects, and if register variation across written and
spoken EA is limited, then NLP tasks like Arabic
micro-dialect identification, machine-translation,
and morphological parsing can be adapted for di-
alectal varieties using Tweet-based corpora. In
other words, this would mean that digital written
data, as a register, remains representative of EA
sub-dialects. However, if the current datasets are
not representative of EA sub-dialects, this means
that sub-dialects (beyond CEA) are low-resource
and that more data collection is needed to represent
all EA sub-dialects. Further, the possibility that
digital written registers are not equally valid for all
sub-dialects means that other sources of EA sub-
dialect data, such as speech, should be explored. In
other words, if speakers of less prestigious dialects
like SEA revert to standardized forms in written
registers then spoken data must also be used for
dialect adaptation.

The primary contribution of this paper is to mea-
sure how well written registers represent different
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Figure 1: Map of Egyptian Arabic Sub-
dialects (Woidich, 1996): CEA and other rural
dialects (left), SEA dialect (right)

sub-dialects of Egyptian Arabic as well as the va-
lidity of specific datasets designed to capture these
sub-dialects. We find that the more prestigious
CEA is well-represented but that resources intend-
ing to represent the less prestigious SEA fail to do
so.

The outline of this paper is as follows: Section 2
provides an overview of Egypt’s sub-dialects, ad-
dresses register variation in Arabic, and previous
work on sub-dialect data collection and dialect iden-
tification. In Section 3, we provide an overview
of specific features of two Egyptian sub-dialects:
Cairene Egyptian Arabic (CEA) and Sa’idi Egyp-
tian Arabic (SEA). These features are drawn from
ground-truth dialect surveys. Section 4 discusses a
baseline corpus, a large reference corpus to which
other datasets are compared, and three sub-dialect
corpora. The remaining sections present results
and discuss the significance of representation and
register variation across CEA and SEA.

2 Related Work

2.1 Egyptian Arabic Sub-dialects

Arabic is a diglossic language (Ferguson, 1959),
with Modern Standard Arabic (MSA) considered
the High-variety, and Dialectal Arabic (DA) the
Low-variety. While MSA is the official language
of Egypt, Egyptian Arabic (EA) is the dialec-
tal variety spoken among Egyptians. EA sub-
dialects are classified by geographical location,
and can be grouped into 4-5 sub-dialects with
variation across phonology, morphology, syntax,
semantics, and lexicon (Behnstedt and Woidich,
1985; Badawi, 1973). The most prestigious di-
alect is Cairene Egyptian Arabic (CEA), the sub-
dialect spoken by approximately 40% of Egyptians,
specifically middle class Egyptians in Cairo and
urban cities (Gadalla, 2000; Hanna, 1962; Har-
rell, 1957; Hospers, 1973; Norlin, 1987; Leddy-

Cecere and Schroepfer, 2019). On the other hand,
Sa’idi Egyptian Arabic (SEA) is the “the most
ridiculed, stigmatised and stereotyped” sub-dialect
of EA (Bassiouney, 2017), yet is also the second
most spoken EA sub-dialect by 40% of Egyptians.
Thus, these sub-dialects are equal in usage but un-
equal in prestige. EA is the most thoroughly re-
searched DA, yet work on sub-dialects other than
CEA is extremely limited. With the exception
of Behnstedt and Woidich (1985), and Khalafal-
lah (1969) there exists no recent dialectal surveys
on linguistic features of Sa’idi Egyptian Arabic.

2.2 Register Variation

The only standardized and codified writing sys-
tem of Arabic is MSA (Brustad, 2017; Håland,
2017; Høigilt and Mejdell, 2017). In the past cen-
tury, EA was “rarely written, and ha[d] little pres-
tige among the people” (Harrell, 1957, p.1). There-
fore, there remains no codified written system for
EA. It was not until the spread of Social Network-
ing Sites across the past three decades generated a
wealth of content written using EA, despite the lack
of EA codification (Kindt and Kebede, 2017). Writ-
ten EA output contains inconsistencies in ortho-
graphic representations due to a mixture between
using codified MSA as well as developing new or-
thographic representations for linguistic features
exclusive to EA. These features can be dialectal
markers; however, the defaulting to MSA in ortho-
graphic representation despite different dialectal
phonetic representations is exceedingly common.
This is a result of influences of standard language
ideology and emphasis on ‘correctness’ in language
use (Bassiouney, 2014).

An example is the phonetic representation of the
lexical item ‘camel’. It is orthographically repre-
sented as‘ÉÔg. ’[dZamal] in MSA, pronounced as
[damal] in SEA, and [gamal] in CEA. Speakers of
both dialects orthographically represent this word
using the codified MSA form, when SEA could rep-
resent it to be phonologically reflective of one vari-
ation in their sub-dialect‘ÉÓX’. Using the codified
MSA form is common, making it difficult to detect
dialectal markers across Arabic sub-dialects. To
our knowledge, there has been no empirical corpus
analysis of EA written orthographic patterns across
sub-dialects. However, there has been a large effort
to identify orthographic patterns in DA written data
for the purpose of facilitating and enhancing com-
putational parsing of DA inconsistent orthographic
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patterns (Altantawy et al., 2010; Habash et al.,
2005; Habash, 2007; Habash et al., 2012; Fashwan
and Alansary, 2021). The complexity of Arabic
orthography, lack of DA codification, prevalence of
MSA as the medium of writing, and lack of empiri-
cal research across DA written/spoken registers all
motivate the validation of collected DA written text
before using this data to represent EA sub-dialects.

2.3 Resources and Tasks

A survey of EA corpora from The Linguistic Data
Consortium (LDC), MASADER1, and InfoGuis-
tics2 show that existing Egyptian Arabic corpora
primarily feature CEA. MADAR (Bouamor et al.,
2018) is a multi-dialect corpus across 25 Arabic
cities, one of which is a SEA city. However,
MADAR is translated from English and French
and not a naturally-occurring corpus, and thus ex-
cluded for the purpose of this paper.

DA sub-dialects have been an Arabic NLP focus
mostly for dialect identification. A number of other
efforts to identify DA sub-dialects on the city level
include NADI2020 (Abdul-Mageed et al., 2020a)
and NADI2021 (Abdul-Mageed et al., 2021), two
series of dialect identification shared tasks. These
tasks target micro-dialect identification through
matching each Tweet to its corresponding city, with
approximately 56 Egyptian cities represented in
the datasets. Teams mainly used transformer-based
methods for this challenge.

The question is whether the corpora assumed
to represent sub-dialects actually do so. The
NADI2020 & 2021 sub-dialect shared task’s diffi-
culty is reflected in the low F1 scores achieved,
6.39% in NADI2020 and a slight improvement
to 8.6% in NADI2021. One reason could be that
not all cities have distinct sub-dialects, with some
spanning across many cities with minimal distinc-
tions (Behnstedt and Woidich, 1985). Therefore,
predicting a specific city is too specific a task when
the underlying dialectal features are specific to all
cities in the same area. It is also possible that the
geo-referenced tweets are not representative of the
intended sub-dialects because speakers avoid using
less prestigious varieties in certain settings, instead
reverting to MSA. This is further explored in this
paper.

Abdul-Mageed et al. (2020b) present another
contribution towards micro-dialect identification

1https://arbml.github.io/masader/
2aucegypt.edu/infoguistics/directory/Corpus-Linguistics

by fine-tuning BiGRU and mBERT models to dis-
tinguish sub-dialects in around 21 Arabic countries
and 319 cities. They report human annotation at the
city level was deemed nearly impossible, as they
employed annotators from various Arabic countries
to identify sub-dialects outside their native coun-
try and dialect. This task would likely be difficult
but feasible within a single country. For instance,
while a Moroccan might struggle to identify Egyp-
tian sub-dialects across Egyptian cities, an Egyp-
tian might have the linguistic experience necessary
to make such distinctions. Despite such annota-
tion efforts, including adjustments for diglossia
and code-switching within the data, the system’s
peak performance was an F1 score of 20.11% and
accuracy of 19.88%. The system performed better
when utilizing dialectal Arabic alone without inclu-
sion of MSA data. Performance was higher when
fewer cities were included.

3 Sub-Dialect Distance Measures

3.1 Dialectal Features

This paper relies on dialectal features from ground-
truth dialect surveys to measure the distance be-
tween sub-dialects of EA and their expected pat-
terns. Starting with morphological and grammat-
ical features of each sub-dialect, we focus on
demonstratives, interrogatives, prepositions, ad-
verbs, and negation particles, as reported for CEA
and SEA in existing dialectal surveys (Behnst-
edt and Woidich, 1985; Khalafallah, 1969; Leddy-
Cecere and Schroepfer, 2019). Our motivation is to
select features where there is a distinction between
SEA and CEA in orthography, yet are essential
to the syntax of SEA and CEA to maximize the
likelihood of their presence in the text. Based on
the ground-truth surveys, we the believe selected
features are sufficient to indicate how well a corpus
represents each sub-dialect, although discrepancies
in the orthographic representation of these features
can vary. For this reason, we rate each feature
for markedness; sample features are illustrated in
Table 1, and a full list of features in the appendix.

We exclude possible overlap corresponding to
MSA features when possible. We use regular ex-
pressions to further account for spelling mistakes,
such as usage of ‘ø ,ø
 ’ or ‘

�
@ , @ ,


@ , @’ inter-

changeably, and different orthographic represen-
tations ‘ é 	�QK.’ vs ‘ñ 	�QK.’ or ‘ðXQK.’, and allomorphs

of selected features ‘ AÓ’ vs ‘�Ó’. We tested features
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in isolation to ensure validity and reliability.
A quantitative analysis of feature validity con-

siders the likelihood of capturing false positives.
For example, Ad4 in Figure 2 (left) is able to cap-
ture different orthographic representations with
less than 5% false positive results. For features
with false positives higher than 5%, we analyse
them qualitatively. For example, in Figure 2 (right),
the SEA negation particle coded Neg4 occurs by
adding the suffix ‘ú
æ

��’ at the end of a verb. The

regex captures this representation, along with any
part of speech ending in ‘ú
æ

��’, resulting in a large

number of false positives, which are then checked
manually.

Feature MSA CEA SEA
Interrogative***

�
A 	��



@ é 	�QK. ½ 	�QK.

‘also’ ‘also’ ‘also’
Adverb*** 	à

�
B@ ú


�æ�̄ñËX ��ñËX
‘now’ ‘now’ ‘now’

Particle* ��
Ë ��Ó ��Ó
‘not’ ‘not’ ‘not’

Preposition* ú

	̄ ú


	̄ 	¬
‘in’ ‘in’ ‘in’

Demonstrative*** ½KBð@ ÈðX AÒê» @X
‘these’ ‘these’ ‘these’

Table 1: Sample grammatical features distinctions be-
tween MSA, CEA, and SEA. *** indicate most marked
features, and * the least marked.

We also elected to exclude features which do not
have a clear orthographic distinctions between SEA
and CEA from quantitative results. Some features
differ between SEA and CEA in phonetic, morpho-
logical, or semantic distinctions, however these dis-
tinctions are not indicated in the orthographic form.
For example, the free negation particle, Neg1, is
less likely to be followed by perfective or imperfec-
tive verbs in CEA, but this is common within SEA.
Accordingly, we elected to examine the data quali-
tatively with non-orthographically distinct features
in order to capture some dialectal features.

3.2 MSA and DA

We measure the usage of MSA in tweets across
sub-dialects in one dataset. The more MSA is used
in the dataset, the less DA is used and, therefore,
the less the sub-dialect is actually represented. To
determine usage of MSA, we identify MSA mor-

phological features and isolate tweets, then manu-
ally annotate for correctness. Two annotators, na-
tive speakers of EA, manually annotate the Micro-
Dialect dataset (Abdul-Mageed et al., 2020b) for
MSA, DA, and code-switching of both using anno-
tation guidelines for Arabic dialectness by Habash
et al. (2008). We group annotation guidelines of
1 & 2 as MSA, 3 as code-switching, and 4 & 5
as DA. Inter-annotator reliability across a sample
1000 tweets measured 86%.

4 Datasets

We use this section to first discuss the baseline
or reference corpus which is used to validate the
expected features, to determine whether our extrac-
tion method does in fact capture the variants which
we intend to use to explore sub-dialects of EA. We
then describe the corpora used to test whether geo-
referenced tweets from specific cities contain the
dialectal variants expected given the ground-truth
dialect surveys.

4.1 Cairo Baseline Corpus

For the baseline corpus, we use Cairo geo-
referenced tweets from Dunn (2020), shown in
Table 2. The purpose of this corpus is to ensure the
validity of our feature extraction method. There-
fore, this corpus is used to measure prevalence of
CEA features in Cairo tweets. Tweets include both
DA and MSA, and have been pre-processed to only
include the Arabic text in the Tweet. With excep-
tion of prepositions, CEA features do not overlap
with MSA features, therefore, the results should
reflect CEA usage in tweets. Due to the size of this
corpus, that it is extracted from Cairo, we expect
to find high representation of the selected CEA fea-
tures. Due to migration from SEA cities to Cairo,
we also expect to find some SEA features repre-
sented by SEA users who might have migrated to
Cairo, though much less than its CEA counterparts.
Therefore, this corpus is a baseline to ensure the
validity and reliability of the script in capturing
features by georgraphical location.

Dataset Tweets Tokens MSA/DA
Baseline 808,312 12,233,632 Both

Table 2: Baseline Corpus (Dunn, 2020) across Cairo.
Tokens by\ s.

44



Figure 2: Examples of distinct orthographic representations resulting in false positives (right) vs. alternating
orthographic representations of the same word with no false positives (left)

4.2 Sub-Dialect Datasets

We examine three datasets of tweets geo-tagged
by city from Arabic micro-dialect identification
shared tasks. Datasets include MicroDialect Iden-
tification (Abdul-Mageed et al., 2020b), NADI
2020 (Abdul-Mageed et al., 2020a), and NADI
2021 datasets (Abdul-Mageed et al., 2021) across
eleven cities. Tweets were collected in 2019 over
10 months, from users who exclusively tweeted
from the same location.

Dataset Tweets Tokens MSA/DA
MicroDialect 6,056 77,173 Both
NADI2020 1,021 13,288 Both
NADI2021 798 7,324 DA
Total 7,875 97,785

Table 3: CEA Datasets: Tweets span across Cairo, New
Cairo City, Suez, PortSaid and Ismailia (Abdul-Mageed
et al., 2020b; Abdul-Mageed et al., 2020a; Abdul-
Mageed et al., 2021). Tokens by\ s.

SEA and CEA cities were determined based on
reported dialectal surveys (Behnstedt and Woidich,
1985). Except for NADI2021 (Abdul-Mageed
et al., 2021), all tweets include both MSA and
DA. All datasets were pre-processed for punctua-
tion, replies, other embedded foreign tokens, hash-
tags, or indicators for cross-posting on other plat-
forms except for MicroDialect datasets. We elected
to not pre-process this corpus to further examine
the results on both pre-processed and unprocessed
datasets. Some of the original datasets included
10M tweets but cannot be obtained due to API lim-
itations at the time of this paper; therefore, we ex-
amine the limited data released within the training
and development datasets.

SEADataset Tweets Tokens MSA/DA
MicroDialect 3,076 39,292 Both
NADI2020 1,862 24,693 Both
NADI2021 1,863 16,507 DA
Total 6,801 80,492

Table 4: SEA Datasets: Tweets span across Qena, Asyut,
Aswan, Luxor, Sohag, and BeniSeuf (Abdul-Mageed
et al., 2020b; Abdul-Mageed et al., 2020a; Abdul-
Mageed et al., 2021). Tokens by\ s.

5 Results

5.1 Does the Baseline Cairo Corpus Contain
CEA Features?

To test the validity of sub-dialect morphological
CEA and SEA features reported in Behnstedt and
Woidich (1985), Khalafallah (1969), and Leddy-
Cecere and Schroepfer (2019), we measure the
distance between spoken CEA features reported
and their prevalence in the written Cairo Baseline
corpus. As illustrated in Figure 3, CEA features
are overwhelmingly prevalent in the Cairo corpus,
while SEA features are not. Each feature is an alter-
nation (i.e., the CEA vs SEA variant). This figure
shows the percentage of CEA features used in the
baseline Cairo corpus. Feature names correspond
to the feature list in the appendix.

This high usage of CEA variants and low usage
of SEA variants in the baseline corpus confirms
the validity of using these features to measure the
distance between dialects. Therefore, we conclude
that Cairo is representative of the sub-dialect re-
ported in the dialectal surveys: Cairene Egyptian
Arabic. In the next section, we measure the SEA
datasets for its representation of SEA sub-dialectal
features.

5.2 Do SEA Corpora Contain SEA Features?

The first question is whether we see a greater share
of expected SEA features in corpora used to rep-
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Figure 3: Share of Expected CEA (left) and SEA (right) Variants for each Alternation for Cairo Baseline Corpus.
MSA and DA Corpus. Features are complementary.

resent SEA. We take a feature-by-feature look in
Figure 4, here using the share of SEA variants for
each of the alternations discussed above from the
dialect survey. These are complementary features,
so that if the share of SEA usage is 25%, then the
share of CEA usage must be 75%. Each row is a
feature, corresponding with the feature descriptions
found in the appendix. The first column represents
the baseline corpus of Cairo tweets. The second
column represents the CEA cities from NADI2020,
NADI 2021, and MicroDialect Corpus and the third
column the SEA cities from the same datasets. We
would expect, then, that there would be a much
higher share of SEA usage in the final column.

First, many features remain unobserved (hence
a 0.00 value), even though the annotation methods
discussed above accurately identify these variants
and some are observed in the Cairo Baseline cor-
pus. This means that the features are simply not
observed in these relatively small corpora.

Second, we see that only a few of the overall
alternations show the pattern expected from the di-
alect surveys: Ad3, Dem1, Introg1, Introg4, Prep2,
and Pron1 are all markedly more common in SEA
as expected. The other features show either no dif-
ference at all or the opposite pattern as the dialect
surveys. However, what is significant across these
specific features is their distinction from their CEA
counterparts in either the shortening or elongation
of existing vowels or the loss of voiceless final
consonants. For example, SEA dialectal surveys

report the lack of [h] at the end of Introg4 in SEA
features written as ‘ú
Í’ [le:], while CEA surveys

report its presence in CEA features written as ‘ éJ
Ë’
[le:h]. This distinction is not as marked as the dis-
tinct realization of Dem6, where SEA features add
a stop /k/ at the end of the word written as ‘½ 	�QK.’
[bardQak], a phoneme more marked than /h/.

Other highly marked SEA features, such as nega-
tion particles, are not observed in SEA datasets yet
do occur in the Cairo Baseline corpus. For exam-
ple, Neg4, Neg3 (Table 5) SEA features are marked
with either dropping the CEA negative prefix ‘ AÓ’,
and adding a long vowel ‘ø
 ’ to the CEA nega-

tion suffix ‘ ��’. Qualitative analysis of Neg 3, 4
shows these features are not observed within any
SEA dataset, yet are observed in the Cairo Base-
line corpus across 50 instances such as ‘ú
æ

��ª 	® 	JK
’
meaning ‘not possible’, ‘ú
æ

�� 	̄ A ��’ meaning ‘did not

see’. This finding extends to other SEA features
observed only in the Cairo Baseline corpus, except
for Dem 2-6.

Third, overall there is little difference between
the CEA and SEA corpora in usage of SEA fea-
tures. One reason could be language change which
has taken place since the dialect surveys. Another
reason could be the impacts of internal migration
from rural to urban areas (Miller, 2005). If this
were the case, then we would expect that some
users in CEA cities would maintain clear SEA fea-
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Figure 4: Share of Expected SEA Features for each
Alternation across SEA cities and CEA cities in
NADI2020, NADI2021, and MicroDialect Corpus com-
pared with baseline Cairo corpus.

tures. This is the goal of the analysis in the next
section, where we look at individual cities within
each dialect area.

5.3 Are Cities Consistent Within Regions?

Figure 5: Prevalence of CEA and SEA features by city,
using frequency per 10k words. MicroDialect Corpus.

The next question is whether the features ex-
pected from the ground-truth dialect surveys appear
in the tweets representing different cities within
SEA and CEA. While the overall aggregated us-
age might be unexpected, perhaps some cities have
changed (i.e., from SEA to CEA), thus disguising
usage in the core SEA cities. This is shown for
the mixed MSA and DA Micro-Dialect corpus in
Figure 5 & 6, where each city is a bar. The purple
values on the left represent the overall frequency

Figure 6: Prevalence of CEA and SEA features by city,
using frequency per 10k words. NADI 2020 Corpus.

per 10k words of CEA features (the prestige di-
alect), and the pink values on the right represent the
same quantity for SEA features (the non-prestige
dialect).

What we see, first, is that CEA features are over-
all much more common than SEA features, across
both dialect areas. There is a high prevalence of
CEA features even in cities expected to represent
SEA, such as Asyut, although most SEA cities have
a lower rate of usage. Second, we see that there is a
relatively equal usage of SEA features across cities,
even central CEA locations like Cairo. Because
this data represents a small number of users, the
figure includes a baseline corpora of other tweets
from Cairo, a much larger corpus as described in
the Data section. We contrast this raw unprocessed

Figure 7: Prevalence of CEA and SEA features by city,
using frequency per 10k words. NADI 2021 Corpus.

corpus with the cleaned version in Figure 7, here
using the NADI 2021 shared-task corpus. Because
MSA samples have been removed here, the overall
rate is much higher. However, while the density of
dialectal features is higher, there is still no sharp dis-
tinction in the usage of CEA features in CEA and
SEA locations. On the other hand, SEA features
are slightly more frequent in SEA locations. Fur-
ther, qualitative analysis of Neg1 and Neg2 reflect
the results of the quantitative analysis. NADI2021
shows twice Neg1 SEA usage than its CEA counter
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part, observing instances of the particle followed
by imperfective verbs such as ‘ú


	æ�J��� ��Ó’ mean-

ing ‘do not wait’ and ‘ éJ
 	̄ ��Ó’ meaning ‘there is
none’. In CEA, both instances are negated using
the Neg2 feature, represented as ‘ ���
 	J�����Ó’ and

‘ ���
 	®Ó’, respectively. The same analysis for the
NADI 2020 corpus is shown in Figure 6. Again the
CEA variants dominate across all cities, although
to a lesser degree in SEA cities.

5.4 Are Users Consistently Writing in SEA?
The basic finding here is that the corpora represent-
ing SEA dialect areas do not contain a substantial
usage of the expected SEA features. Instead, CEA
features are found across all cities. Why? One
possibility is that language change has taken place
since the dialect survey was undertaken, although
this would be an unusually fast process of change.
Another possibility is that older or less connected
speakers retain the SEA features but are not rep-
resented on social media. A third possibility is
that SEA speakers do not produce SEA variants in
this digital written setting. We will consider these
possibilities further in the discussion.

For now, it is possible that individuals from SEA
and CEA cities have changed locations. Thus, we
might expect users to consistently use one or the
other sub-dialect but to be located in unexpected
cities. This is the purpose of the analysis in the
next section.

To find out if there are users of each dialect who
are out of place, perhaps because of internal mi-
gration within Egypt, we visualize the distances
between MicroDialect user-specific corpora in Fig-
ure 8. Here each point is a corpus representing
a single user; the style of each point refers to the
dialect area it is supposed to represent. Points are
then positioned within a two-dimensional space by
using PCA to reduce the usage of all dialectal fea-
tures into two main components. Taken together,
these two components explain 96% of the variance
across features; thus, we take this as a reliable vi-
sualization of the dialectal relations between user-
specific corpora.

First, it is clear that individuals taken to represent
both CEA (circles) and SEA (x’s) are inter-mingled.
This would indicate that the previous overlap in
feature usage across CEA and SEA is not because
some individuals retain expected usage and others
do not. Rather, the usage patterns of individuals are
not organized around the expected dialects. In other

words, the disconnect between SEA corpora and
expected SEA features is not a result of individual
differences across users.

Second, since each SEA user is closely patterned
with at least one CEA user, this indicates that the
core expected SEA speakers are not actually pro-
ducing that dialect. One possibility is that these
users are instead producing either more standard
dialectal features (CEA) or are simply reverting to
non-dialectal production (MSA). This is explored
in the final section.

5.5 Who is Reverting to MSA?

To explore whether SEA users are producing CEA
features or resorting to non-dialect production, we
annotated the largest SEA corpus, MicroDialect
corpus, for MSA, DA, and code-switching. As il-
lustrated in Figure 9, SEA users seem to be using
MSA approximately as much their usage of DA.
However, CEA users are using DA significantly
more than MSA. There were no significant differ-
ences in code-switching among both groups.

This tells us two things. First, SEA tweets in-
clude a high number of MSA tweets, therefore,
chances of SEA feature representation in SEA
dataset has lowered by 50% of the overall dataset.
Second, when using DA, SEA users do not use
highly marked SEA features, but rather resort to
either CEA features or SEA features which carry
closer resemblance to their CEA counterparts. Re-
gardless, SEA datasets are not representative of the
targeted sub-dialect SEA. It is worth noting that
the data released is across 11 SEA and 11 CEA
users, thereby, limiting any generalizations about
SEA data in general. However, insofar as these
corpora are taken to represent SEA production, this
results show that the non-prestige sub-dialect is in-
adequately represented compared to the prestige
sub-dialect.

6 Discussion

As highlighted by the results, geo-referenced SEA
datasets are not representative of SEA sub-dialects.
Results are consistent across DA datasets, MSA
and DA datasets, and processed and unprocessed
datasets. One possibility could be that language
change has taken place since the dialect survey was
undertaken. However, there is prevalent evidence
of SEA features in current SEA speech. Therefore,
this cannot be attributed to SEA drastic language
change. Another possibility is that older or less
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Figure 8: User-by-user plots of feature usage, visualized using PCA for dimension reduction. The original vectors
undergoing PCA are the relative frequency of each dialectal feature.

Figure 9: MSA vs. DA Tweet Frequencies in CEA and
SEA Datasets.

connected speakers retain the SEA features but are
not represented on social media. Kindt and Kebede
(2017) report Cairene Egyptians prefer using writ-
ten MSA vs. DA based on education, age, gender,
and platform. Egyptians between the ages of 13-34
use DA significantly more frequently than Egyp-
tians over 50, and women are more likely to write
in MSA than men. Given the limited user demo-
graphic information beyond consistently tweeting
from the same location for over 10 months, we
cannot conclude if some, or any, demographic vari-
ables contribute to the lack of SEA features or DA
use in SEA datasets. A third possibility is that
SEA speakers do not produce SEA variants in this
digital written setting. While there is a lack of re-
cent SEA dialectal surveys, there is evidence on
low attitudes and stigmatized perceptions of the
SEA dialect (Bassiouney, 2014; Bassiouney, 2017).
SEA users could be avoiding SEA markers in an

attempt to position themselves differently across
digital platforms. A larger geo-referenced written
digital corpus is needed to explore these possibili-
ties further. Regardless, the examined SEA datasets
are not representative of the SEA sub-dialect, and
register variation is significant across SEA spoken
and written registers.

7 Conclusion

This paper finds that EA sub-dialects (except CEA)
are low-resourced, and existing Tweet datasets are
not representative of EA sub-dialects. Further, reg-
ister variation between SEA speech and naturally-
occurring digital written tweets is significant, there-
fore, these results call into question the validity of
relying on geo-referenced tweets alone to represent
dialectal differences. This paper further highlights
the need for more representation across DA re-
sources to include DA sub-dialects (Tachicart et al.,
2022), and more empirical research on register vari-
ation across Dialectal Arabic written sub-dialects
and their orthographic patterns in digital spaces.

8 Limitations

Given the inconsistencies across Arabic written
DA orthography, the selected morphological mark-
ers’ orthographic representation is not the ground-
truth, but rather the most frequent patterns observed
by the authors in EA sub-dialects and DA digital
written contexts, in alignment with the dialectal
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surveys. This could explain the 0.00 consistent
results for some features, although we do account
for this through experimenting with all possible
orthographic representations. These features could
be restricted to speech, or have fallen out of use
among the demographic of SEA users online.

Another limitation includes our choice to restrict
dialectal markers in quantitative analysis to ones
captured with minimal false positives after sev-
eral iterations of analysis, limiting our quantitative
analysis to the most explicit features. We expect
some features might be underrepresented or over-
represented in the Cairene Baseline Corpus due its
large size, especially if they overlap with similar
MSA patterns. We also recognize that some SEA
and CEA features are observed in other rural and
urban sub-dialects, such as Alexandrian Egyptian
Arabic or Shara’wi Egyptian Arabic. However,
given the geo-referenced nature of the datasets, we
limit our analysis to cities that use CEA and SEA
only.

There could be more significant evidence of SEA
lexical markers in SEA datasets, however, we do
not examine lexical choices between SEA and CEA
tweets in this paper. Further, we recognize that
one of the most popular Egyptian TV and cinema
genres have focused on Sai’di settings (Bassiouney,
2017), and the datasets explored could possibly
include quotes or references from such works, and
accordingly impact SEA results.
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Feature Gloss Code SEA CEA MSA
Adverbs Now Ad1** �I�̄ñËX ú


�æ�̄ñËX 	à
�
B@

Adverbs Very Ad2* �ËA 	g ,É�@ð �ËA 	g
�
@Q�
�J»

Adverbs Outside Ad3** @QK. èQK. , �èQK. h. PA
	mÌ'@

Adverbs Also Ad4*** 	�QK. , ½ 	�QK. ñ 	�QK. , é 	�QK.
�
A 	��



@

Adverbs Very Ad5*** ø
 ñ
�̄ ø
 ð


@

�
@Yg.

Prepositions On Prep1* úÎ« ,¨ úÎ« ,¨ úÎ«
Prepositions In Prep2* ú


	̄ , 	¬ ú

	̄ ú


	̄

Interrogative Why Introg1** ú
Í éJ
Ë @ 	XAÖÏ
Interrogative Where Introg2*** 	áK
ð 	á�
 	̄ 	áK



@

Interrogative When Introg3*** ú �æJ
Ó A�JÓ@ , ú �æÓ@ ú �æÓ
Interrogative How Introg4** 	J
» ø
 @ 	P@

	J
»
Particles Negation - free Neg1* + ��Ó + ��Ó B ,��
Ë , AÓ
Particles Negation- bound Neg2* ��+ AÓ ��+ AÓ -

Particles Negation Neg3** ú
æ
��+ AÓ - -

Particles Negation Neg4*** +ú
æ
�� - -

Pronouns I (am) Pron1** ú

	G
�
@ A 	K


@ A 	K


@

Pronouns We (are) Pron2** A 	Jm� 	' A 	Jk@ 	ám� 	'
Demonstratives This (m.) Dem1* @X èX @ 	Yë
Demonstratives That (m.) Dem3** ¼@X @X ¼@ 	X , ½Ë 	X

This (f.) Dem5** ø
 X , ú
æê» @X éK
X ,ø
 X è 	Yë
Demonstratives That (f.) Dem6** ú
» @X éK
X ,ø
 X ½Ê�K
Demonstratives These Dem7** AÒê» @X ÈðX ZB ñë
Demonstratives Those Dem8** AÒêºK
X ÈðX ½KBð


@

Table 5: Sample grammatical features distinctions between SEA, CEA, and MSA. *** indicate most marked
features, and * the least marked.
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Figure 10: Share of SEA Variants for each Alternation. NADI2020 Corpus compared with Baseline Cairo corpus.
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Figure 11: Share of SEA Variants for each Alternation. MicroDialect Corpus compared with Baseline Cairo corpus.
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Figure 12: Share of SEA Variants for each Alternation. NADI2021 Corpus compared with Baseline Cairo corpus.
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Abstract
Spanish is an official language in 20 coun-
tries; in 19 of them, it arrived by means of
overseas colonisation. Its close contact with
several coexisting languages and the rich re-
gional and cultural diversity has produced va-
rieties that divert from each other. We study
these divergences with a data-based approach
and according to their qualitative and quanti-
tative effects in word embeddings. We gen-
erate embeddings for Spanish in 24 countries
and examine the topology of the spaces. Due
to the similarities between varieties —in con-
trast to what happens to different languages in
bilingual topological studies— we first scruti-
nise the behaviour of three isomorphism mea-
sures in (quasi-)isomorphic settings: relational
similarity, Eigenvalue similarity, and Gromov-
Hausdorff distance. We then use the most trust-
worthy measure to quantify the divergences
among varieties. Finally, we use the departures
from isomorphism to build relational trees for
the Spanish varieties by hierarchical clustering,
and observe that voseo is the phenomenon that
leaves the strongest imprint in the embeddings.

1 Introduction

Language is a reflection of the needs and be-
haviours of the community that uses and contin-
ually transforms it. One language spoken by di-
verse communities and/or in various regions can
exhibit different characteristics. Spanish is a pro-
totypical example: it lies only behind Chinese in
terms of number of native speakers (Eberhard et al.,
2023) and, different from it, it is a global overseas
language (Ammon, 2010) spoken across c. 11.7 M
km2 by people with diverse cultures and needs.

Originating in the Iberian peninsula as a dialect
of Latin, Spanish spread throughout America as
a consequence of colonisation. The contact with
the indigenous languages present in America in
the 16th century, subsequent immigration fluxes,
diverse language policies, and societal differences
have created a wide variety of Spanishes. Figure 1

shows the linguistic zones. Some of these factors
operate at the country level (e.g., language poli-
cies), but most of them operate at the regional level,
where a region may be part of a single country or
span across several countries. Consequently, politi-
cal borders do not uniquely define the varieties.

We study the Spanish varieties using data-based
approaches. Since large amounts of textual data for
Spanish are only available with, at best, country of
origin identifiers, one of our goals is to investigate
whether natural language processing (NLP) tech-
niques allow to derive relations among countries
and varieties from them. Although the varieties are
intrinsically different, divergences among them are
less prominent than divergences among languages
(e.g., Spanish from Mexico and Spanish from Spain
are more similar than Spanish and Portuguese). Be-
cause of this, methods in NLP that are adequate
and work well in multilingual settings might not
properly work for language varieties.

For the study, we create per-country word embed-
dings and examine the topology of the embedding
spaces and their relations using isomorphism met-
rics, which measure distances between embedding
spaces and, in our case, between language vari-
eties. We question whether these measures, used
mostly in bilingual scenarios, could be adequate in
monolingual settings. We widely explore their per-
formance in controlled quasi-isomorphic scenarios
(being our conclusions also relevant for bilingual
scenarios) and then use the most reliable configura-
tions to measure distances among our embedding
spaces and to derive relational trees. Finally, we
interpret the Spanish data-based tree in terms of
linguistic characteristics. The work aims at two in-
terrelated goals: (i) stressing and evaluating isomor-
phism measures when applied to language variation
and (ii) studying Spanish varieties in a new data-
based approach to gain linguistic insights. Data
and models are available on the project website.1

1https://cereal-es.github.io/CEREAL/
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Figure 1: Common geographic Spanish linguistic zones as described by the Real Academia Española. The mapping
between these linguistic zones and the Spanish varieties might not be one-to-one (Lipski, 2012).

2 The Origins of the Spanish Varieties

Spanish was first derived from Latin in contact with
pre-Roman languages in the Iberian peninsula. Dif-
ferent aspects caused proto-Spanish to move away
from other Romance languages to be (e.g., Cata-
lan, Portuguese). Two come from long-term rul-
ings during which no language imposition existed.
During the Visigothic ruling, multiple words of
Germanic origin were introduced, such as guerra
(war), riqueza (wealth) and yelmo (helmet). The
Arab–Berber control of (up to) two-thirds of the
Iberian peninsula, from the 8th until the 15th cen-
tury, imported novel knowledge and new artifacts,
resulting in the introduction of more than 4k Ara-
bisms to the lexicon (Alatorre, 1989, p. 74, 80).

The fall of the last remains of Arabic and
Mozarabic language varieties came from the 13th
until the end of the 15th century, a period dur-
ing which the kingdom of Castille influenced the
speech of neighbouring kingdoms, such as Leon
and Aragon (Penny, 2002, p. 19). Internally, two
Spanish norms contended: the one of Toledo (later
on Madrid) and the one of Seville.

The path of overseas Spanish expansion started
with the conquest of the Canary Islands, from
which Columbus departed to arrive in the
Caribbean in the late 15th century, unfolding
in the conquest of Hispaniola (current Domini-
can R./Haiti) and Cuba. It is from Cuba that the
conquest of both Mexico and Peru was launched,

as depicted in Figure 1. The norm exported to the
new territories was guided by the origin of the mi-
grant population (e.g., priests, soldiers, settlers).
Since almost 50% left from Andalusia and Ex-
tremadura (López Morales, 1998), these regions
hold Spanish varieties derived from the Seville
norm. As a result, they share phenomena such
as seseo,2 aspirate /h/, and an absence of for-
mal/informal differentiation for the second person
plural: only ustedes is used in America while
both ustedes (formal) and vosotros (informal)
are used in Spain (Penny, 2002, pp. 22–23).

It is assumed that the well-established connec-
tions across some regions kept the varieties of Span-
ish in Mexico and Peru closer to those from Spain.
A weaker influence on more remote or difficult to
reach regions (e.g., Argentina, Paraguay, Uruguay,
Central America) allowed for the organic develop-
ment of farther varieties. The most accepted the-
ory (Penny, 2002, p. 25) is that the influence was
driven by centres of power and strength of com-
munication. Consequently, most of Mexico, Peru,
Bolivia, and Andean Ecuador share the retention of
syllable-final /s/, influenced by central Peninsular
settlers, whereas other areas miss it, influenced by
Southern Peninsular and Canarian Spanish. The
pronoun tú (you), as used in Spain, is predomi-
nant in Mexico, the Caribbean, most of Bolivia and
Peru, and part of Venezuela, whereas vos competes
with tú in more remote areas (e.g., Chile, Ecuador,

2Phenomenon in which c and s share the phoneme /s/.
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Colombia) and is predominant in others (e.g., Ar-
gentina, Uruguay, Paraguay). The phenomenon is
called voseo and implies a change in the verbal
forms used after the pronoun (Benavides, 2003).

Another relevant factor in the development of
the varieties is the long-term influence of coexist-
ing languages. During the whole period of Spanish
rule, the native language of most of the population
in America was prehispanic, be it of American or of
African origin (López Morales, 1998, p. 3). As a re-
sult, Spanish in different regions incorporated large
vocabularies from other languages. Also, phonetics
was affected. One of the most distinctive features
of (South) Argentinian and Uruguayan speakers is
zheísmo (Staggs, 2019), the pronunciation of both
y and ll as [Z] due to the influence of the local
Amerindian languages. Nowadays, the sound has
drifted in some regions to [S] being called sheísmo.

Since independence, Spanish varieties in Amer-
ican countries have been significantly influenced
by imported languages. During the 19th and 20th
centuries, heavy immigration from Italy to Ar-
gentina (Cuadrado Rey, 2020) introduced lexical
borrowings from Italian (e.g., gamba to refer to leg),
Neapolitan and others (Bihan, 2011). Due to geo-
graphical vicinity and global influence, two foreign
languages were the most influential in this same
period: French in Spain and English elsewhere
(e.g., computadora from English is used in most
of Latin America vs ordenador, from the French
ordinateur, in Spain).

Due to these intricacies, there is no straight line
to draw on a map to separate the Spanish vari-
eties. The varieties might form a continuum and
scholars suggest different categorisations. The
closest to our purposes is based on the lexicon;
Henríquez Ureña (1921) distinguishes the varieties
according to the indigenous language substrate:
Nahuatl, Caribbean languages, Quechua, Mapudun-
gun/Araucanian, and Guarani. Lipski (2012) de-
fines 21 varieties (11 for Spain, 10 for America),
and Soler Montes (2015) defines 8 (3 for Spain,
5 for America). In the former, the classification
is based mainly upon phonetic, lexical, and mor-
phosyntactic features; in the latter on geolinguistics.
But these are only two examples. Sippola (2021)
summarises 4 classifications taking into account
geographical variations mostly including phonetic
features. Still, the geographical variations are not
aligned with geopolitical borders and this has an
impact on data-based approaches. Even though few
resources exist for the linguistically motivated vari-

eties with city of origin indications (Robelo, 1904;
Prieto and Roseano, 2013; Albelda Marco and Es-
tellés, sd), large textual corpora in Spanish are, at
best, tagged only with country of origin (Gonçalves
and Sánchez, 2014; Tellez et al., 2023; RAE, 2024;
España-Bonet and Barrón-Cedeño, 2024).

3 Isomorphism in NLP

Early empirical results using bilingual dictionaries
(Youn et al., 2016) and vector embeddings calcu-
lated on textual corpora (Mikolov et al., 2013) show
that concepts in natural language are structured in
a similar way across languages. Vector embed-
dings in different languages appear to be isomor-
phic —or at least geometrically similar (Marchisio,
2023). However, other studies show that isomor-
phism does not always hold, and the more distant
a pair of languages or the domain is, the weaker
the isomorphism (Søgaard et al., 2018; Patra et al.,
2019; Marchisio et al., 2020). But language and do-
main are not the only factors, differences in training
corpus size, training time or the algorithm used to
compute the embeddings have a significant effect
too (Vulić et al., 2020; Marchisio et al., 2020).

Isomorphism metrics have been introduced in
the context of bilingual lexical induction (BLI)
where most of the previous conclusions have been
drawn. In this context, metrics are used to quan-
tify the similarity (or distance) between embedding
spaces of different languages and to observe how
they correlate with BLI accuracy.

Several metrics deal with word embeddings from
different points of view. Isospectral metrics treat
embedding spaces as graphs in the context of
spectral graph theory: with respect to the spec-
tral characteristics (e.g., eigenvalues and eigenvec-
tors) of the matrix structures (e.g., adjacency and
Laplacian matrices) that represent an embedding
space. The Eigenvector similarity distance (Sø-
gaard et al., 2018), the effective condition num-
ber (Dubossarsky et al., 2020) and the Spectral
Graph-based Matching distance (Dutta Chowdhury
et al., 2021) are examples. Isometric measures
treat word embeddings as coordinates in a metric
space. Earth Mover’s distance is a measure of the
closeness between the distribution of two sets of
words (Zhang et al., 2017) and Relational Similar-
ity is the Pearson’s correlation between their co-
sine similarities (Vulić et al., 2020). The Gromov-
Hausdorff distance scores the largest distance be-
tween a word from one space and the nearest neigh-
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bours from the other space after an isometric trans-
formation between the spaces (Patra et al., 2019).

The mathematical definition of isomorphism, in
which two structures are either isomorphic or not,
is an approximation in NLP. In NLP, one deals with
degrees of isomorphism between representative sub-
structures instead. Due to the large vocabularies,
and the richness and nuances of natural language,
embedding spaces are usually represented by a sub-
graph/subset formed by up to 5–10 k words. The
number of words and which words are used is an
ad-hoc decision.

Going beyond the correlation between the iso-
morphism scores and BLI, the previous metrics
have been used to quantify the isomorphism be-
tween embedding spaces. When multiple metrics
are used, it becomes evident that they do not cor-
relate with each other (Dubossarsky et al., 2020;
Dutta Chowdhury et al., 2021; España-Bonet and
Barrón-Cedeño, 2022; Marchisio et al., 2022).

In this work, we analyse relations among 24 va-
rieties of Spanish using isomorphism metrics. We
expect differences across varieties of the same lan-
guage to be much smaller than across different
languages. Therefore, we first calibrate the iso-
morphism measures in isomorphic settings —same
language, same training data, same embedding al-
gorithm, and hyperparameters (Section 6). As these
metrics do not correlate, this allows us to deter-
mine the best metric and configuration (number
and selection of words) to perform the fine-grained
analysis among varieties (Section 7).

4 Isomorphism Measures

We select three measures that capture the iso-
morphic/isometric degree between two embed-
ding spaces E1 and E2 represented by nearest-
neighbour graphs G1 and G2 and sets of points
S1 and S2. We assume that the embeddings E1 and
E2 are mean-centred and length-normalised.

Relational similarity (RS) (Vulić et al., 2020).
One can presume that the similarity between words
is distributed similarly in different spaces and, so,
the cosine similarity of aligned words should be
similar in both spaces. RS uses a list with k words
from E1 aligned to k words from E2 (a dictionary)
and calculates the cosine similarities between all
the pairs of words in E1 and E2 independently:

simE1(S
p, Sr) ∀Sp, Sr, p ̸= r ∈ list(E1)

simE2(S
p, Sr) ∀Sp, Sr, p ̸= r ∈ list(E2) (1)

RS is the Pearson correlation ρ between the sorted
lists of similarities resulting from the spaces:

RS = ρ
(
simsorted

E1
, simsorted

E2

)
. (2)

Eigenvector similarity (EV) distance (Søgaard
et al., 2018). A total of k words in Ei are used to
construct n-nearest neighbour unweighted graphs
Gi. The nearest neighbours are extracted by com-
puting the cosine similarity between the k words in
Ei and all the words in Ej . Given Gi, EV estimates
the degree of isomorphism from the eigenvalues of
the Laplacian of G1 and G2. Let the Laplacian be

Li = Di −Ai(Gi), (3)

where Ai is the adjacency matrix of Gi, and Di is
the diagonal matrix of degrees. After computing
the Laplacian eigenvalues, following Søgaard et al.
(2018), one finds the smallest m such that the sum
of the m largest Laplacian eigenvalues is <90% of
the total. Using the smallest m of E1 and E2, EV
is defined as

EV =

m∑

j=1

(λ1j − λ2j)
2 , (4)

where λij are the top j eigenvalues of Li.

Gromov-Hausdorff (GH) and Bottleneck dis-
tances (Patra et al., 2019). GH is an isometric
measure that treats word embeddings as coordi-
nates in a metric space. It gives the worst-case dis-
tance (E1 vs E2) of nearest neighbours in a shared
embedding space after an optimal isometric trans-
formation.

For each word x in Si, one finds its nearest neigh-
bour y in Sj (NNj). The Hausdorff distance H is
the largest of the two distances:

H = max (dist(x1,NN2),dist(x2,NN1)) . (5)

The Gromov-Hausdorff distance is the infimum of
the Hausdorff distances under all possible orthogo-
nal transformations. Since computing GH is an NP-
hard problem, the Bottleneck distance B, bounded
by GH, is used as an approximation (Chazal et al.,
2009). B is the shortest distance for which there
exists a perfect matching between the points p and
r of the persistent diagrams3 built from S1 and S2:

B = inf
matches

max
(p,r)

||p− r||∞. (6)

3A persistent diagram is a set of points in R2 in the half-
plane above the diagonal.
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CEREAL Twitter

Country & Code Segments Words Vocab. Vocab.

Andorra ad 13,023 543,047 2,671 –
Argentina ar 20,950,705 986,413,066 284,191 673,424
Bolivia bo 975,429 49,518,821 53,799 47,012
Chile cl 12,079,476 548,257,312 199,493 282,737
Colombia co 8,323,794 375,326,751 163,212 324,635
Costa Rica cr 825,513 37,760,657 45,893 103,086
Cuba cu 1,919,998 93,368,177 82,275 18,682
Dominican R. do 1,183,336 48,726,587 52,409 108,655
Ecuador ec 1,624,269 66,662,454 64,312 147,560
Spain es 20,950,705 880,495,659 596,842 571,196
Eq. Guinea gq 4,050 329,469 1,698 1,167
Guatemala gt 561,714 23,421,191 35,860 95,252
Honduras hn 656,212 24,971,660 35,707 60,580
Mexico mx 20,875,244 912,645,564 250,313 438,136
Nicaragua ni 405,935 18,921,537 31,345 68,605
Panama pa 448,974 18,431,387 31,268 111,635
Peru pe 5,066,369 213,937,404 122,884 178,113
Philippines ph 1,382 75,761 405 –
Puerto Rico pr 128,103 5,619,179 15,062 23,062
Paraguay py 775,101 33,771,401 46,513 124,162
El Salvador sv 401,348 17,068,212 29,433 73,833
USA us 376,839 21,335,770 34,368 292,465
Uruguay uy 1,804,329 85,809,183 75,491 200,032
Venezuela ve 1,201,624 55,514,289 59,334 271,924

Table 1: Number of segments and words used to com-
pute the variety-specific word embeddings.

Data Points (Word) Selection In all the mea-
sures above, we characterise each embedding space
by k words (k ∈ {100, 500, 1000, 2500, 5000})
following 5 criteria:

• Most frequent words (Frequent, MFW). We
use the top-k words in an embedding space ranked
by frequency. This is the standard choice for EV
and GH in previous work.

• Random words (Random). We randomly select
k words within the top half of the frequency-ranked
embeddings.

• Aligned random words (Random BiDict). As
in Random, but only words that appear simulta-
neously in the two spaces are considered. This is
equivalent to using a bilingual lexicon in the gen-
eral case, which is the standard choice for RS.

• Numbers. Random k numbers appearing simul-
taneously in the two spaces.

• Named Entities (NEs). Random k NEs appear-
ing simultaneously in the two spaces. The list of
NEs contains 3,416 single words extracted from the
CoNLL-2002 shared task (Tjong Kim Sang, 2002).

We adapt the implementation for RS, EV, and
GH in Vulić et al. (2020)4 to consider our lists.

4https://github.com/cambridgeltl/iso-study

5 Variety-Specific Embedding Spaces

We use the CEREAL corpus (España-Bonet and
Barrón-Cedeño, 2024) to obtain embedding spaces
for 24 varieties of Spanish. CEREAL contains doc-
uments in Spanish extracted from OSCAR (Open
Super-large Crawled Aggregated coRpus version
22.01 (Ortiz Suárez et al., 2019; Abadji et al., 2021)
and annotated with the country of origin. We use
the documents in CEREAL where the country of
publication is codified in the URL and discard
documents whose country was inferred automat-
ically (CEREALex). To compute the embeddings,
we eliminate sentences having only punctuation
and numbers, as well as those with at least one
Arabic, Chinese, Cyrillic or Greek character. We
then normalise and tokenise the texts using Moses’
scripts (Koehn et al., 2007) and lowercase. Table 1
shows the statistics of the final dataset together
with the code we use to identify each variety. We
estimate fastText (Bojanowski et al., 2017) embed-
dings using the default skip-gram configuration to
train 300-dimensional embeddings for tokens ap-
pearing at least 20 times.

The amount of text in Spanish from Spain in
CEREAL is significantly larger than for the other va-
rieties (70.5 M segments for es vs 20.9 M for ar,
the second largest). For comparability reasons, we
use a subset of 20 M segments to train es embed-
dings. With this, ar, es, and mx have a similar
amount of training data, whereas ad, gq, ph, pr,
sv and us have less than 0.5 M segments and are
discarded for our high-resourced experiments.

Our calibration experiments (Section 6) are done
with Spanish from Spain embeddings. We create
10 models from CEREAL: 5 models using 5 seeds
for fastText on a fixed subset of 20 M segments
(model perturbation) and 5 models using 5 ran-
dom extractions of 20 M segments over the whole
70.5 M segments (data perturbation).

Our exploration experiments (Section 7) con-
sider embeddings for the 24 varieties. We gener-
ate 3 embedding models per variety with different
seeds and show the mean in our results. In this case,
we also use existing Twitter embeddings (currently
X) for 22 varieties (Tellez et al., 2023).5 Since the
training corpus is not available, we use their pre-
trained embeddings with a single run. Otherwise,
our setting with CEREAL is comparable to theirs ex-
cept for the minimum frequency of in-vocabulary

5https://ingeotec.github.io/
regional-spanish-models
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tokens (the default being 5 in their case) and the
fact that they remove diacritics from the data.

6 Isomorphism Measures Calibration

If isomorphism metrics are a good measure to ac-
count for distances among languages, they should
drop to zero when computing the distance between
embeddings of a single language —or approach
1 when they imply correlations. As described in
Section 3, differences in size and domain of the
training data and in the algorithm used to train the
embeddings affect their performance. In this sec-
tion, we isolate all these factors and evaluate the
metrics in an isomorphic setting: same variety (es),
same corpus (CEREAL) and same algorithm (skip-
gram). We perturb the basic setting by (i) applying
several initialisations for training the embeddings
while keeping skip-gram and all its parameters con-
stant (model perturbation) and (ii) subsampling the
training data from a larger dataset (data perturba-
tion). With these variations, we aim to study the
robustness of the metrics to minor changes and at
determining the best configuration for each of them.
This study provides insights on the feasibility of
using one or more isomorphism metrics to explore
relations between language varieties in Section 7.

Model Perturbation We use 5 embedding mod-
els for es trained with different seeds on the same
data (i.e. the vocabulary is the same for all 5). We
calculate RS, EV and GH for 10 combinations of
embeddings with the 25 possible configurations of
Section 4. Detailed results for the pairwise combi-
nations are in Appendix A and the mean over the
10 combinations is in Table 2.

For all three metrics, there are definite trends
when the mean is considered, but the trends are
less evident when looking at individual embedding
pairs. The variations, due only to different runs,
are significant. Frequent and Random BiDict per-
form the best; i.e. distances EV and GH are the
smallest and correlation RS the highest. In this set-
ting, the most frequent words in both es spaces are
the same and therefore behave similarly to a dic-
tionary —this does not need to happen in the data
perturbation setting and even less in the general
multilingual setting. As expected, random words
unrelated across spaces perform the worst. Also,
numbers and NEs do not perform well (except for
RS with numbers). This might be related to the fact
that they cluster in a specific region of the space
and cannot represent the topology of the whole. In

Model Perturbation Data Perturbation

RS↑ EV↓ GH↓ RS↑ EV↓ GH↓
Frequent
100 0.989±0.000 2±1 0.02±0.00 0.860±0.056 2±1 0.03±0.01
500 0.982±0.001 2±1 0.02±0.00 0.314±0.032 3±1 0.02±0.00
1000 0.979±0.002 3±1 0.02±0.00 0.131±0.014 2±1 0.02±0.00
2500 0.976±0.002 3±1 0.01±0.00 0.038±0.000 4±1 0.01±0.00
5000 0.974±0.003 5±2 0.01±0.00 0.015±0.001 5±4 0.01±0.00

Random
100 0.000±0.008 3±1 0.17±0.12 0.002±0.015 5±1 0.15±0.06
500 0.000±0.002 5±3 0.15±0.06 0.000±0.001 5±2 0.19±0.10
1000 0.000±0.000 6±2 0.16±0.07 0.000±0.000 5±1 0.13±0.05
2500 0.000±0.000 10±3 0.11±0.03 0.000±0.000 7±1 0.13±0.03
5000 0.000±0.000 14±7 0.07±0.01 0.000±0.000 14±5 0.12±0.04

Random BiDict
100 0.959±0.002 1±1 0.03±0.01 0.884±0.008 3±2 0.05±0.02
500 0.959±0.002 3±1 0.02±0.00 0.882±0.004 4±1 0.03±0.01
1000 0.959±0.002 4±1 0.02±0.00 0.883±0.002 6±4 0.03±0.01
2500 0.960±0.002 7±3 0.02±0.00 0.883±0.001 7±2 0.03±0.01
5000 0.960±0.002 5±2 0.01±0.00 0.883±0.000 8±4 0.02±0.00

Numbers
100 0.997±0.000 3±1 0.05±0.05 0.604±0.087 3±1 0.06±0.04
500 0.994±0.000 4±1 0.02±0.00 0.116±0.012 5±2 0.05±0.00
1000 0.993±0.001 5±2 0.02±0.00 0.061±0.008 9±6 0.02±0.00
2500 0.988±0.001 9±5 0.02±0.00 0.037±0.007 12±4 0.02±0.00
5000 0.985±0.001 7±1 0.02±0.00 0.022±0.003 11±3 0.05±0.01

NEs
100 -0.003±0.013 3±1 0.10±0.03 -0.001±0.018 2±1 0.08±0.02
500 0.002±0.007 7±3 0.07±0.03 -0.003±0.007 3±1 0.07±0.03
1000 0.002±0.006 6±3 0.09±0.03 -0.002±0.004 7±2 0.07±0.02
2500 0.000±0.003 7±3 0.03±0.00 -0.002±0.002 7±2 0.05±0.02
5000 – – – – – –

Table 2: Mean and standard deviation (µ ± σ) score
for the three isomorphism metrics used in this study.
Perfect isomorphism implies RS 1, and EV and GH 0.

terms of the number of datapoints, EV performs
best with few, GH with a large set and RS in this
setting does not seem to be sensitive to the volume.

Data Perturbation We use 5 embedding models
for es trained with different random subsets of the
same corpus (i.e. the vocabulary of the models is
different). As before, we calculate RS, EV, and
GH for a total of the 10 combinations of embed-
dings, and use 5 different types and a number of
datapoints.

Contrary to what one could expect, the perturba-
tion of the dataset —within the same corpus— does
not bring more variability on the results of the met-
rics than the perturbation of the model as measured
by the standard deviations (Table 2). The trends
with respect to the number and types of points are
also similar to the previous case; the global scores
are slightly worse but compatible within the 1σ CIs
for GH and EV; differences are larger for RS. Ide-
ally, a good metric would score a distance of 0 (EV
and GH) and correlation 1 (RS); EV achieves this at
2σ level, especially when using the most frequent
words. We consider this configuration, EV (MFW
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Corn is choclo in Chile, mazorca
in Spain, and elote in Mexico.

→

You is vos in countries with
voseo, as in Argentina, and tú in
countries without, as in Spain. ↓

(a) cl: choclo (b) es: mazorca (c) mx: elote

(d) es: tú (e) es: vos (f) ar: tú (g) ar: vos

Figure 2: t-SNE projections (van der Maaten and Hinton, 2008) of the neighbourhood for the Spanish words
equivalent to corn (top plots) and you (bottom plots).

100), the best metric to measure isomorphism.
This setting is close to our case of study: lan-

guage varieties. We extract the data for training
the embeddings from the same corpus and use skip-
gram with the same configuration. Larger/smaller
scores and standard deviations for the isomorphism
metrics than the ones we see here should be at-
tributed to language differences and to the quality
of the embeddings given by the amount of training
data per variety.

7 Spanish Varieties Relations

Qualitative Behaviour Different lexicons and
cultural-dependent (near) synonyms change the
topology of the embedding spaces. Corn in
English translates into elote (from the Náhu-
atl elotitutl) in most of Mesoamerica, choclo
(from the Quechua chuqllu) in South America,
mazorca (from the Arabic masúrqa) in Colombia,
Cuba and Spain and jojoto in Venezuela. The im-
portance of this cereal in Spain is irrelevant in com-
parison to Mesoamerica, where it is so essential
that it goes beyond staple food, and that changes
the usage of the word.

This is reflected in Figure 2 (top plots), which
shows the 10-nearest neighbours for choclo in cl,
mazorca in es, and elote in mx. For cl and mx,
choclo and elote are surrounded by other food-
related words, but the intersection is almost null.

For es, mazorca is surrounded mostly by words
related to another sense of the word (a kind of light
bulb). Appendix B, shows the same three words as
located in all three embedding spaces —the three
synonyms never appear in the same region of the
space and elote does not even appear in cl. The
surrounding words also vary from being local food
when the word is shown in its native embedding
space to foreign food when the word is in the em-
bedding space corresponding to another country.
Similarly, there are differences across varieties in
the verbal forms usage and other grammatical is-
sues, such as voseo, which also distort the embed-
ding spaces. As Figure 2 (bottom plots) shows, for
countries without voseo, such as Spain, the word
vos is surrounded mostly by non-Spanish words
(since it is a nearly-deprecated pronoun for this va-
riety). In Argentina, we observe verbal voseo, that
is, the usage of the modified 5th inflexion and the
7th verbal inflection instead of the 2nd inflection
(e.g., sabés or decís rather than sabes or dices).

Isomorphism Following the results of Section 6,
we select EV (MFW 100) for the main analysis
and include the top-2 performing configurations
per metric in the Appendix C as they give more
insights on the behaviour of the metrics.

Figure 3 shows the results for EV. The heatmap
combines the results with our CEREAL embeddings
(top–right triangle) and the publicly available Twit-
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Figure 3: EV with 100 most frequent words for the 24 Spanish varieties. Top–right triangles (orange) correspond to
the mean results with the CEREAL corpus and bottom–left triangle (green) to the Twitter corpus.

ter embeddings (bottom–left triangle). With our
in-house embeddings, we calculate mean and stan-
dard deviation over 9 combinations per language
pair, as we have three runs per variety. This is not
possible with Twitter, so we expect more robust
results with CEREAL.

Comparing the heatmap of EV with those of RS
and GH, one sees that both but especially GH are
sensitive to the size of the training data. The fact
that GH needs to use more datapoints (5,000 MFW
in contrast to the 100 for EV/RS) might make the
effect of the data size stronger on GH. Varieties ad,
gq and ph for CEREAL and gq for Twitter include
less than 15 k training sentences. Pairs involving
these varieties have statistically significant higher
GH and lower RS values (and to a lesser extent
also higher EV values) systematically for all the
pairs. Vulić et al. (2020) showed in their correla-
tion analysis between the isomorphism metrics and
BLI accuracy that one needs at least 500 k training
sentences to convergence in BLI accuracy. There-
fore isomorphism scores with embeddings trained
with less data might be suboptimal.

The results with CEREAL and Twitter are signif-
icantly different both in the absolute magnitude of
the scores for pairs of varieties and in the relations
between the varieties. This could be a consequence
of the different volumes of training data but also
of the differences in the register used in both gen-
res. As Lipski (2012) notes, social factors are also
relevant in the variation and both genres might be
representative of different population profiles. The

standard deviations in Figure 3 are of the same or-
der of magnitude as in our calibration experiments
(Section 6) and do not depend on the quality of the
embeddings as measured by the data size. There-
fore, differences in the scores across language pairs,
that is, different departures from isomorphism, are
representative of the distances (relations) among
varieties. Next, we use hierarchical clustering to
have a clearer overview of these relations.

Phylogenetic (Relational) Trees Clustering
these results over varieties allows for building a
Spanish phylogenetic tree. Notice that, strictly
speaking, we do not construct a phylogenetic tree
but a relational tree. Spanish was acquired in most
American countries almost simultaneously, and va-
rieties have been evolving in parallel since then.
Also, word embeddings are static (in time) and
they do not provide evolutionary relationships but
an average snapshot of the language relationships.
Following Dutta Chowdhury et al. (2020), we use
agglomerative clustering with variance minimisa-
tion (Ward Jr, 1963) for this purpose.

We show the results for all the varieties and the
best configuration option for RS and GH in Figure 4
as the comparison among metrics is especially rel-
evant. Appendix D includes the remaining config-
urations. This representation makes more evident
the fact that GH groups the varieties according to
the amount of training data —and therefore the
quality of the embeddings. On the left-hand side
of the GH dendrogram are the least resourced va-
rieties: ph, ad and gq. On the right-hand side are

63



(a) RS (BiDict 100)

(b) GH (MFW 5,000)

Figure 4: Relational trees derived from the CEREAL em-
beddings. The distribution of data is shown on top of
the dendrograms as an illustration.

the highest resourced ones: cl, es, ar, mx, cu, co
and pe. RS also clearly clusters ad, gq and ph and
puts all the other varieties at a similar level. The
Spearman rank correlation between the number of
segments used to train the embeddings and the flat-
tened version of the hierarchical clustering output
is 0.8 for GH, 0.2 for RS and -0.1 for EV. The
limitations with GH and RS are in agreement with
the observations of the previous sections.

In Figure 5, we analyse in detail EV for CEREAL
and Twitter for the highest resourced varieties. A
visual representation on a map is in Appendix D.
None of these trees groups the varieties according
to their geographical position or the linguistic zones
described by RAE (cf. Figure 1). It is worth point-
ing out that phonetic differences are in principle
not observable with word embeddings on textual
data but might leave traces on Twitter embeddings
as a result of misspellings. This translates into Ar-
gentina (ar) and Uruguay (uy) —countries where
zheísmo is present— lying apart in the CEREAL den-
drogram, but not in the Twitter one.6 Trends re-
lated to grammar are more evident. The right-hand
side of the plots group together varieties without
voseo: in the case of CEREAL, the exceptions are
Uruguay (uy) and Dominican Republic (do) which
should be swapped according to this characteristic;
in the case of Twitter, Spain (es) sneaks in the
region with voseo.

Different substrates are in general not observed.
Contrary to voseo and the grammatical differences
it implies, different substrates or neologisms are

6Both countries also share an Italian substrate.

(a) CEREAL

(b) Twitter

Figure 5: Relational trees for the subset of the highest
resourced varieties with EV (MFW 100).

not global: Quechuan languages were/are spoken
in what is today Argentina, Bolivia, Chile, Colom-
bia, Ecuador and Peru; but in Bolivia there are 36
other languages such as Quechua but also Aimara,
Chiquitano, etc.

8 Conclusions

Spanish is not a monolithic language. Five cen-
turies of distinct but related evolution across terri-
tories have created a rich set of varieties. We study
these varieties from a data-based perspective, build-
ing specific embeddings with textual data for 24
countries. We then relate the similarities and differ-
ences among embedding spaces to the divergences
among varieties.

Divergences are subtle in comparison to diver-
gences among languages. Because of this, we ex-
plore three common isomorphism metrics in quasi-
isomorphic settings. Our results show that EV is
the best performing metric in the controlled sce-
nario (data perturbation). GH does not perform
far, but subsequent experiments with the variety of
embeddings show that it is the metric that depends
the most on the amount of training data. RS rapidly
degrades when we depart from the controlled ex-
periments and it is less sensitive to the variations.

Lots of characteristics of the language coexist
in written documents. The indigenous language
substrate and other borrowings, grammatical char-
acteristics such as voseo, and verbal tense changes
are manifested in word embeddings. Voseo showed
to be the strongest feature and its imprint is clearly
seen in the relational trees we build from the depar-
tures from isomorphism obtained with EV. Infor-
mal (and sometimes incorrect) text used to create
Twitter embeddings also reflects distinctive pho-
netic traits such as zheísmo.
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Limitations

We have done an exhaustive exploration of the be-
haviour of the isomorphism metrics when the same
language (Spanish from Spain) is used. The ef-
fect of the training domain and data size has been
explored before in bilingual settings (Vulić et al.,
2020). In this work, we do not systematically quan-
tify the effect that the different sizes in the training
data per variety imply, further than removing the
varieties with less data according to the conclusions
in Vulić et al. (2020). Differences in the amount
of data can also imply differences in the domain
(especially when few data are available) and these
variations have to be taken into account when draw-
ing conclusions.
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A Calibration of the Isomorphism Metrics

Tables 3 to 8 show the detailed results for the experiments in Section 6. In all cases, tables report the
results for a given isomorphism metric (either RS, EV or GH) using the 5 types of data points and 5
different number of points defined in Section 4. Metrics are evaluated on pairs of embeddings spaces
{Ei, Ej} all of them belonging to Spanish from Spain under the two training conditions of Section 6:
model perturbation (Tables 3, 4 and 5) and data perturbation (Tables 6, 7 and 8).

µ± σ E1 E2 E1 E3 E1 E4 E1 E5 E2 E3 E2 E4 E2 E5 E3 E4 E3 E5 E4 E5

Frequent 100 0.989± 0.000 0.989 0.988 0.988 0.989 0.990 0.989 0.990 0.989 0.990 0.989
500 0.982± 0.001 0.981 0.981 0.981 0.981 0.984 0.981 0.985 0.981 0.984 0.981
1000 0.979± 0.002 0.978 0.977 0.978 0.978 0.982 0.978 0.983 0.978 0.982 0.977
2500 0.976± 0.002 0.974 0.974 0.975 0.974 0.979 0.974 0.981 0.975 0.980 0.974
5000 0.974± 0.003 0.973 0.972 0.974 0.972 0.979 0.973 0.981 0.973 0.980 0.972

Random 100 0.000± 0.008 0.014 -0.005 0.002 0.000 0.009 0.016 0.002 0.000 0.001 -0.013
500 0.000± 0.002 0.000 -0.004 0.002 -0.004 0.002 0.003 0.000 -0.001 0.000 0.001
1000 0.000± 0.000 -0.001 -0.001 0.000 -0.001 0.000 0.001 0.000 -0.001 0.000 0.000
2500 0.000± 0.000 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
5000 0.000± 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Random 100 0.959± 0.002 0.960 0.957 0.955 0.957 0.963 0.958 0.964 0.957 0.963 0.958
BiDict 500 0.959± 0.002 0.959 0.958 0.956 0.958 0.963 0.959 0.965 0.959 0.963 0.958

1000 0.959± 0.002 0.959 0.958 0.956 0.958 0.963 0.959 0.965 0.958 0.963 0.958
2500 0.960± 0.002 0.960 0.958 0.957 0.959 0.963 0.959 0.965 0.958 0.963 0.958
5000 0.960± 0.002 0.960 0.959 0.957 0.959 0.964 0.959 0.965 0.959 0.964 0.959

Numbers 100 0.997± 0.000 0.997 0.997 0.998 0.997 0.998 0.997 0.998 0.997 0.998 0.997
500 0.994± 0.000 0.995 0.994 0.994 0.995 0.996 0.994 0.996 0.996 0.994 0.994
1000 0.993± 0.001 0.993 0.993 0.992 0.993 0.994 0.992 0.995 0.993 0.995 0.993
2500 0.988± 0.001 0.988 0.988 0.987 0.988 0.990 0.988 0.990 0.988 0.990 0.988
5000 0.985± 0.001 0.986 0.985 0.984 0.985 0.987 0.985 0.987 0.985 0.987 0.985

NEs 100 −0.003± 0.013 -0.018 0.013 0.000 0.001 0.013 0.006 -0.011 -0.017 0.007 -0.027
500 0.002± 0.007 0.002 0.002 -0.003 -0.010 0.011 0.015 0.007 0.006 0.007 -0.008
1000 0.002± 0.006 0.000 0.004 -0.005 -0.010 0.002 0.015 -0.002 0.007 0.005 0.004
2500 0.000± 0.003 0.001 0.000 -0.003 0.000 -0.001 0.004 -0.005 0.007 0.000 -0.002
5000 – – – – – – – – – – –

Table 3: Complete results for the RS metric with combinations of 5 embedding spaces build from the same partition
of the corpus but trained using different seeds.
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µ± σ E1 E2 E1 E3 E1 E4 E1 E5 E2 E3 E2 E4 E2 E5 E3 E4 E3E5 E4E5

Frequent 100 2± 1 2.3 2.8 2.6 3.3 1.8 2.2 1.6 0.9 1.0 1.5
500 2± 1 4.5 2.8 4.3 3.8 2.4 1.5 1.7 1.6 1.5 2.0
1000 3± 1 3.7 2.8 3.6 5.8 3.5 3.5 2.5 2.0 5.9 4.4
2500 3± 1 3.0 3.6 3.2 4.9 2.3 2.6 2.6 2.5 3.3 5.9
5000 5± 2 6.8 7.9 7.8 9.4 6.7 1.7 1.6 8.6 1.7 6.9

Random 100 3± 1 3.5 3.1 4.9 3.2 2.3 5.1 4.3 2.5 1.7 2.2
500 5± 3 3.4 3.5 4.8 5.7 1.9 3.1 8.7 3.9 10.0 11.4
1000 6± 2 10.1 4.7 3.4 4.6 11.4 5.3 9.6 5.2 3.9 3.8
2500 10± 3 10.5 8.1 8.5 5.8 6.4 18.1 10.6 11.0 9.0 16.7
5000 14± 7 6.6 7.4 23.0 9.6 13.7 22.8 4.8 27.6 15.1 17.4

Random 100 1± 1 2.6 1.4 0.9 1.1 2.4 2.1 1.7 1.6 1.1 0.7
BiDict 500 3± 1 3.7 3.0 1.5 5.7 3.5 4.0 4.1 4.0 4.3 4.4

1000 4± 1 3.1 3.8 6.3 5.2 4.5 3.5 4.1 8.1 6.3 3.9
2500 7± 3 9.8 8.1 4.3 9.8 2.6 10.9 2.6 8.6 4.0 11.1
5000 5± 2 5.6 10.5 5.5 7.8 5.2 5.1 4.4 6.5 5.6 2.3

Numbers 100 3± 1 5.2 1.4 1.9 5.7 5.7 3.6 2.6 2.0 5.7 3.0
500 4± 1 3.4 1.3 3.1 4.6 4.0 7.7 3.6 2.3 3.9 6.9
1000 5± 2 9.6 4.3 9.1 6.2 5.2 4.7 3.9 5.7 3.0 2.7
2500 9± 5 11.8 13.4 13.4 20.9 1.9 4.6 7.2 6.2 8.4 8.3
5000 7± 1 6.4 4.3 8.6 8.5 8.9 9.3 8.4 6.9 8.3 3.2

NEs 100 3± 1 2.1 4.3 3.7 2.1 3.9 4.3 2.7 8.0 4.9 3.0
500 7± 3 7.5 10.8 11.3 8.9 7.7 9.7 6.9 3.7 2.4 2.5
1000 6± 3 2.0 6.5 5.7 7.3 8.2 6.4 6.4 10.3 13.5 2.7
2500 7± 3 12.7 7.3 4.9 5.5 14.8 7.4 7.8 6.3 6.8 2.7
5000 – – – – – – – – – – –

Table 4: Complete results for the EV metric with combinations of 5 embedding spaces build from the same partition
of the corpus but trained using different seeds.

µ± σ E1 E2 E1 E3 E1 E4 E1 E5 E2 E3 E2 E4 E2 E5 E3 E4 E3 E5 E4 E5

Frequent 100 0.02± 0.00 0.027 0.031 0.038 0.033 0.025 0.037 0.025 0.020 0.017 0.036
500 0.02± 0.00 0.025 0.021 0.021 0.017 0.025 0.023 0.030 0.020 0.022 0.018
1000 0.02± 0.00 0.025 0.026 0.020 0.018 0.025 0.018 0.026 0.017 0.022 0.015
2500 0.01± 0.00 0.018 0.020 0.016 0.015 0.021 0.024 0.023 0.019 0.018 0.013
5000 0.01± 0.00 0.017 0.019 0.014 0.015 0.021 0.018 0.010 0.015 0.012 0.013

Random 100 0.17± 0.12 0.086 0.073 0.244 0.127 0.072 0.317 0.054 0.318 0.053 0.371
500 0.15± 0.06 0.100 0.256 0.160 0.273 0.171 0.128 0.189 0.107 0.029 0.118
1000 0.16± 0.07 0.084 0.245 0.080 0.270 0.160 0.100 0.185 0.202 0.052 0.226
2500 0.11± 0.03 0.123 0.136 0.125 0.068 0.079 0.075 0.125 0.127 0.205 0.077
5000 0.07± 0.01 0.044 0.076 0.046 0.095 0.052 0.064 0.089 0.086 0.086 0.077

Random 100 0.03± 0.01 0.018 0.021 0.039 0.021 0.030 0.042 0.029 0.061 0.026 0.035
BiDict 500 0.02± 0.00 0.021 0.032 0.017 0.022 0.016 0.019 0.020 0.029 0.034 0.035

1000 0.02± 0.00 0.031 0.032 0.029 0.027 0.020 0.036 0.017 0.039 0.030 0.038
2500 0.02± 0.00 0.022 0.017 0.016 0.027 0.020 0.021 0.019 0.014 0.022 0.031
5000 0.01± 0.00 0.028 0.026 0.018 0.018 0.013 0.019 0.015 0.015 0.012 0.014

Numbers 100 0.05± 0.05 0.030 0.043 0.055 0.038 0.015 0.025 0.027 0.039 0.208 0.035
500 0.02± 0.00 0.023 0.027 0.025 0.027 0.031 0.032 0.021 0.025 0.019 0.022
1000 0.02± 0.00 0.020 0.025 0.028 0.019 0.014 0.026 0.019 0.040 0.024 0.020
2500 0.02± 0.00 0.031 0.025 0.019 0.019 0.022 0.028 0.023 0.025 0.020 0.028
5000 0.02± 0.00 0.019 0.022 0.024 0.024 0.020 0.017 0.021 0.032 0.032 0.026

NEs 100 0.10± 0.03 0.151 0.080 0.093 0.062 0.125 0.170 0.135 0.121 0.105 0.041
500 0.07± 0.03 0.049 0.073 0.072 0.080 0.061 0.032 0.107 0.079 0.154 0.076
1000 0.09± 0.03 0.120 0.053 0.068 0.134 0.094 0.132 0.031 0.063 0.102 0.146
2500 0.03± 0.00 0.029 0.045 0.033 0.029 0.039 0.027 0.017 0.040 0.035 0.025
5000 – – – – – – – – – – –

Table 5: Complete results for the GH metric with combinations of 5 embedding spaces build from the same partition
of the corpus but trained using different seeds.
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µ± σ E1 E2 E1 E3 E1 E4 E1 E5 E2 E3 E2 E4 E2 E5 E3 E4 E3 E5 E4 E5

Frequent 100 0.860± 0.056 0.839 0.837 0.768 0.882 0.901 0.871 0.943 0.787 0.945 0.828
500 0.314± 0.032 0.333 0.312 0.264 0.331 0.329 0.329 0.347 0.277 0.357 0.263
1000 0.131± 0.014 0.151 0.123 0.119 0.147 0.132 0.129 0.138 0.109 0.152 0.114
2500 0.038± 0.000 0.040 0.039 0.033 0.045 0.042 0.037 0.041 0.030 0.043 0.031
5000 0.015± 0.001 0.017 0.015 0.014 0.017 0.016 0.013 0.015 0.013 0.018 0.014

Random 100 0.002± 0.015 0.014 -0.010 0.009 0.026 0.004 -0.007 0.003 -0.033 0.013 0.008
500 0.000± 0.001 -0.001 0.000 -0.002 -0.004 0.001 0.000 0.001 0.000 -0.003 0.003
1000 0.000± 0.000 0.000 0.000 0.000 0.000 0.001 -0.001 0.000 0.000 0.000 0.000
2500 0.000± 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5000 0.000± 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Random 100 0.884± 0.008 0.870 0.894 0.894 0.882 0.889 0.892 0.879 0.889 0.883 0.869
BiDict 500 0.882± 0.004 0.880 0.881 0.878 0.886 0.881 0.885 0.878 0.891 0.889 0.879

1000 0.883± 0.002 0.885 0.885 0.883 0.883 0.883 0.883 0.878 0.887 0.886 0.881
2500 0.883± 0.001 0.884 0.883 0.882 0.886 0.884 0.883 0.880 0.885 0.885 0.881
5000 0.883± 0.000 0.882 0.884 0.885 0.885 0.883 0.884 0.883 0.885 0.884 0.884

Numbers 100 0.604± 0.087 0.809 0.687 0.631 0.533 0.639 0.516 0.539 0.549 0.534 0.604
500 0.116± 0.012 0.133 0.119 0.134 0.104 0.131 0.098 0.112 0.113 0.100 0.120
1000 0.061± 0.008 0.049 0.068 0.073 0.071 0.067 0.057 0.058 0.049 0.060 0.067
2500 0.037± 0.007 0.042 0.045 0.036 0.055 0.036 0.040 0.034 0.028 0.037 0.026
5000 0.022± 0.003 0.021 0.028 0.022 0.026 0.021 0.029 0.017 0.019 0.021 0.021

NEs 100 −0.001± 0.018 0.029 0.008 -0.005 -0.007 -0.005 0.003 -0.029 -0.011 -0.027 0.030
500 −0.003± 0.007 -0.002 0.006 0.008 -0.008 -0.015 -0.008 -0.008 -0.002 -0.011 0.002
1000 −0.002± 0.004 -0.008 0.004 0.0 -0.008 -0.006 -0.005 0.000 -0.003 -0.005 0.003
2500 −0.002± 0.002 0.000 0.003 -0.004 -0.004 0.000 -0.003 0.001 -0.002 -0.006 -0.005
5000 – – – – – – – – – – –

Table 6: Complete results for the RS metric with combinations of 5 embedding spaces build from 5 different random
partitions of the CEREAL corpus.

µ± σ E1 E2 E1 E3 E1 E4 E1 E5 E2 E3 E2 E4 E2 E5 E3 E4 E3 E5 E4 E5

Frequent 100 2± 1 2.7 3.0 3.4 2.9 0.9 1.2 1.9 0.7 1.5 2.0
500 3± 1 6.7 4.0 5.5 1.8 2.8 4.4 4.6 3.0 2.2 3.7
1000 2± 1 3.6 3.5 3.8 5.8 1.8 1.6 2.6 2.2 2.6 1.6
2500 4± 1 3.8 4.4 1.5 5.3 1.6 5.1 7.6 5.9 6.1 6.6
5000 5± 4 1.1 3.3 2.8 11.8 2.1 2.3 10.9 3.8 11.1 9.0

Random 100 5± 1 6.1 3.5 5.6 2.8 9.7 5.9 5.0 5.6 3.9 6.8
500 5± 2 8.0 5.4 4.7 4.8 3.9 10.3 3.1 4.6 1.5 5.6
1000 5± 1 3.7 6.4 3.8 5.4 5.4 4.2 5.5 6.4 8.8 5.1
2500 7± 1 3.3 6.4 8.1 6.4 6.9 7.4 6.6 11.2 9.6 6.6
5000 14± 5 19.1 13.1 6.6 8.6 10.3 16.1 25.3 6.9 21.1 14.1

Random 100 3± 2 2.9 2.2 8.0 2.8 7.6 1.7 2.8 1.3 1.7 5.5
BiDict 500 4± 1 2.0 5.6 4.1 3.3 6.6 2.6 3.3 2.2 4.7 6.1

1000 6± 4 10.9 15.0 7.5 1.6 1.8 9.6 3.9 4.0 5.1 10.3
2500 7± 2 5.2 7.5 13.3 9.5 9.1 6.8 8.3 9.1 4.6 5.0
5000 8± 4 6.0 9.1 4.5 4.9 5.1 21.1 6.2 9.5 10.4 6.0

Numbers 100 3± 1 3.2 7.1 3.5 1.6 2.6 2.0 3.1 2.0 7.4 4.3
500 5± 2 1.8 4.6 8.7 5.0 5.3 8.6 5.7 8.8 3.0 5.3
1000 9± 6 3.6 3.2 20.1 8.0 2.8 15.3 4.6 17.0 6.9 16.3
2500 12± 4 12.3 17.3 15.2 19.0 14.2 14.1 6.6 5.1 11.6 14.4
5000 11± 3 16.2 6.8 9.3 15.8 12.6 10.1 6.1 13.7 11.3 15.3

NEs 100 2± 1 4.2 1.1 1.8 1.1 3.9 5.5 3.5 1.7 2.0 3.3
500 3± 1 3.5 4.0 3.1 2.8 7.3 5.3 5.6 3.4 1.9 1.9
1000 7± 2 4.0 11.1 5.9 11.0 8.0 7.9 6.8 5.7 4.9 8.5
2500 7± 2 8.5 10.1 14.6 7.4 4.8 9.6 5.3 5.3 4.5 7.2
5000 – – – – – – – – – – –

Table 7: Complete results for the EV metric with combinations of 5 embedding spaces build from 5 different random
partitions of the CEREAL corpus.
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µ± σ E1 E2 E1 E3 E1 E4 E1 E5 E2 E3 E2 E4 E2 E5 E3 E4 E3 E5 E4 E5

Frequent 100 0.03± 0.01 0.026 0.058 0.023 0.024 0.038 0.028 0.034 0.035 0.062 0.027
500 0.02± 0.00 0.029 0.022 0.028 0.020 0.022 0.025 0.023 0.021 0.026 0.022
1000 0.02± 0.00 0.019 0.015 0.028 0.020 0.018 0.021 0.022 0.020 0.026 0.022
2500 0.01± 0.00 0.013 0.015 0.019 0.020 0.015 0.015 0.020 0.021 0.021 0.021
5000 0.01± 0.00 0.018 0.018 0.014 0.020 0.016 0.016 0.017 0.018 0.021 0.014

Random 100 0.15± 0.06 0.037 0.072 0.209 0.134 0.086 0.215 0.133 0.228 0.206 0.198
500 0.19± 0.10 0.373 0.299 0.188 0.332 0.107 0.184 0.075 0.133 0.074 0.155
1000 0.13± 0.05 0.065 0.153 0.176 0.073 0.129 0.123 0.070 0.253 0.146 0.132
2500 0.13± 0.03 0.143 0.091 0.188 0.160 0.129 0.116 0.067 0.186 0.146 0.103
5000 0.12± 0.04 0.090 0.068 0.163 0.116 0.085 0.160 0.096 0.166 0.102 0.195

Random 100 0.05± 0.02 0.036 0.031 0.045 0.106 0.033 0.088 0.029 0.040 0.051 0.057
BiDict 500 0.03± 0.01 0.044 0.039 0.028 0.030 0.027 0.080 0.031 0.052 0.025 0.028

1000 0.03± 0.01 0.069 0.023 0.034 0.036 0.031 0.025 0.031 0.037 0.035 0.036
2500 0.03± 0.01 0.036 0.032 0.043 0.022 0.019 0.065 0.031 0.024 0.023 0.037
5000 0.02± 0.00 0.016 0.019 0.024 0.028 0.025 0.027 0.030 0.023 0.022 0.024

Numbers 100 0.06± 0.04 0.031 0.040 0.125 0.030 0.028 0.124 0.022 0.120 0.028 0.114
500 0.05± 0.00 0.050 0.040 0.054 0.043 0.060 0.043 0.047 0.052 0.055 0.071
1000 0.02± 0.00 0.024 0.030 0.031 0.033 0.033 0.033 0.020 0.026 0.038 0.023
2500 0.02± 0.00 0.024 0.026 0.022 0.034 0.027 0.033 0.030 0.023 0.031 0.036
5000 0.05± 0.01 0.044 0.021 0.070 0.073 0.040 0.067 0.069 0.065 0.059 0.041

NEs 100 0.08± 0.02 0.063 0.123 0.053 0.057 0.129 0.055 0.121 0.098 0.101 0.066
500 0.07± 0.03 0.106 0.113 0.081 0.045 0.023 0.069 0.107 0.075 0.114 0.052
1000 0.07± 0.02 0.102 0.058 0.123 0.066 0.046 0.077 0.058 0.096 0.040 0.076
2500 0.05± 0.02 0.067 0.027 0.030 0.043 0.084 0.064 0.052 0.041 0.054 0.041
5000 – – – – – – – – – – –

Table 8: Complete results for the GH metric with combinations of 5 embedding spaces build from 5 different
random partitions of the CEREAL corpus.
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B Qualitative Behaviour of the Embedding Spaces

Figure 6 shows the 10-top nearest neighbours for three different varieties of Spanish words that would
translate into corn: elote, choclo, and mazorca (cf. Section 7). The results with respect to three
embedding spaces —cl, es and mx— show the differences associated to the three concepts. For instance,
elote goes from inexistence in cl to all the way into a neighbourhood of regional ingredients and dishes
in mx, passing through a concept more associated to foreign cuisine in es.

(a) cl: elote (b) cl: choclo (c) cl: mazorca

(d) es: elote (e) es: choclo (f) es: mazorca

(g) mx: elote (h) mx: choclo (i) mx: mazorca

Figure 6: t-SNE projections (van der Maaten and Hinton, 2008) for the neighbouring spaces for the word corn,
used as choclo in Chile (cl), mazorca in Spain (es) and elote in Mexico (mx).
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C Extended Isomorphism Results on the Variety-Specific Spanish Embeddings

Figures 7, 8 and 9 show the extended results for the experiments in Section 7. Here, in addition to
MFW 100 for EV (best configuration reported in the main text), we show the results for the top-2 best
configurations for the three isomorphism metrics, RS, EV and GH: RS on MFW 100 and random BiDict
100, EV on BiDict 100, and GH on the MFW 5,000 and random BiDict 5,000 (in cases where 5,000 points
are not available we use the maximum number of available points). In all cases, figures represent the
scores for a given isomorphism metric using the embeddings computed on CEREAL and on Twitter data.

EV (BiDict 100)

Figure 7: EV with random BiDict 100 words for the 24 Spanish varieties. Top–right triangles (orange) correspond
to the results with the CEREAL corpus and bottom–left triangle (green) to the Twitter corpus.
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(a) RS (MFW 100)

(b) RS (BiDict 100)

Figure 8: RS with (a) 100 most frequent words (MFW) and (b) BiDict entries multiplied by 100 for better readability.
Top–right triangles (orange) correspond to the mean results with the CEREAL corpus and bottom–left triangle (green)
to the Twitter corpus.
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(a) GH (MFW 5,000)

(b) GH (BiDict 5,000)

Figure 9: (GH with (a) 5,000 most frequent words (MFW) and (b) GH with 5,000 random BiDict words for the 24
Spanish varieties. Results are multiplied by 100 for better readability. Top–right triangles (orange) correspond to
the mean results with the CEREAL corpus and bottom–left triangle (green) to the Twitter corpus.
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D Extended Analysis on Phylogenetics

D.1 Visual Representation

Figure 10 focuses on EV and represents the regions that can be drawn on the basis of the resulting
clusters. A comparison against the Spanish linguistic zones as defined by RAE (see Figure 1) reveals some
divergences. Among them, Central America not necessarily being tied to Mexico as well as Colombia and
Venezuela, which here appear differentiated.

(a) CEREAL (b) Twitter

Figure 10: Geographical representation of the Spanish varieties clustered according the EV (MFW 100) score; es is
omitted from the plot for visibility reasons, but it is included in the legend together with the family it groups with.
Plots are done with MapChart (https://www.mapchart.net).

D.2 Extended Results on the Hierarchical Clustering Experiments

As in the previous sections, we show, for completeness, results for the top-2 best configurations for the
3 isomorphism metrics: RS, EV and GH. Figure 11 depicts the phylogenetic (relational) trees obtained
from scores on the embeddings built with CEREAL for the 2nd best performing configurations (1st one is
in the main text): RS on random BiDict 100, EV on BiDict 100, and GH on random BiDict 5,000. We
compare the trees for 24 varieties and the subset of the 17 highest resourced varieties. Figure 12 shows
the top-2 configurations for the scores derived from the embeddings computed on Twitter data.
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(a) RS (BiDict 100), all varieties

(b) RS (BiDict 100), high-resourced varieties

(c) EV (BiDict 100), all varieties

(d) EV (BiDict 100), high-resourced varieties

(e) GH (BiDict 5,000), all varieties

(f) GH (BiDict 5,000), high-resourced varieties

Figure 11: Hierarchical clustering on the outputs of the isomorphism measures obtained in Section 7 for the
embeddings computed using the CEREAL corpus.

76



(a) RS (MFW 100)

(b) RS (BiDict 100)

(c) EV (MFW 100)

(d) EV (BiDict 100)

(e) GH (MFW 5,000)

(f) GH (BiDict 5,000)

Figure 12: Hierarchical clustering on the outputs of the isomorphism measures obtained in Section 7 with Twitter
embeddings.
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Abstract

Effectively normalizing textual data poses a
considerable challenge, especially for low-
resource languages lacking standardized writ-
ing systems. In this study, we fine-tuned a mul-
tilingual model with data from several Occitan
dialects and conducted a series of experiments
to assess the model’s representations of these
dialects. For evaluation purposes, we compiled
a parallel lexicon encompassing four Occitan
dialects. Intrinsic evaluations of the model’s
embeddings revealed that surface similarity be-
tween the dialects strengthened representations.
When the model was further fine-tuned for part-
of-speech tagging and Universal Dependency
parsing, its performance was robust to dialec-
tical variation, even when trained solely on
part-of-speech data from a single dialect. Our
findings suggest that large multilingual models
minimize the need for spelling normalization
during pre-processing.

1 Introduction

Traditionally, natural language processing pipelines
have been designed to reduce noise in the data dur-
ing pre-processing, either by removing it entirely
(i.e., as one may do with URLs) or by normal-
izing noisy forms. Normalization can either im-
prove users’ understanding of a text or serve as
a system-internal process that is meant to reduce
noise, allowing a model to better learn from the vo-
cabulary presented during training (Costa Bertaglia
and Volpe Nunes, 2016).

However, with many of the recent successes in
text normalization coming from neural networks,
such as sequence-to-sequence (seq2seq) models
that map orthographic variants to canonical forms,
normalization can become computationally costly
(Lusetti et al., 2018). Furthermore, such supervised
methods are generally impractical for low-resource
languages, as these languages often lack labeled
datasets with standardized word forms. In the case

Figure 1: Dialect map of Occitan. The four dialects
included in this study are highlighted, along with exam-
ples of lexical (i.e.,“mança” and “senèstra”) and spelling
(i.e., “bèu” and “beu”) variation between the dialects.

of non-standardized languages, there is also the
issue of not having canonical forms to standardize
to. Consequently, recent research has shifted its
focus to determining the necessity of orthographic
normalization and identifying how noisy data might
prove advantageous (Srivastava and Chiang, 2023;
Aepli and Sennrich, 2022; Al Sharou et al., 2021).

In the present study, we fine-tune a multilingual,
large language model using data from various di-
alects of Occitan, a Western Romance language
(see Figure 1). We perform experiments to assess
the model’s ability to accurately represent the low-
resource test language even without reducing the
dialectal variation in the fine-tuning data, which
manifests as both lexical and orthographic varia-
tion between dialects. Specifically, we carry out
experiments on analogy computation and lexicon
induction to test the fine-tuned model’s intrinsic
representations of Occitan’s dialects, as well as Uni-
versal Dependency parsing and part-of-speech tag-
ging experiments to study the usefulness of these
fine-tuned representations in down-stream tasks. In
doing so, we investigate the extent to which low-
resource NLP systems that rely on transfer learning
are robust to dialectal variation in fine-tuning data.
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This enables us to avoid costly and infeasible nor-
malization during pre-processing.

2 Linguistic Context

Occitan is a Western Romance language spoken
in southern France, the Val d’Aran in Spain, and
Italy’s Piedmont region. Occitan coexists in a
diglossic relationship with French, Spanish, Cata-
lan, and Italian and lacks official status outside
of the Val d’Aran. The six dialects that are typi-
cally delineated are Auvernhàs, Gascon, Lemosin,
Lengadocian, Provençau, and Vivaroaupenc (Bec,
1995). Occitan is not standardized, and indeed,
there is a great deal of geographical variation from
many perspectives, including speakers’ phonetic
and lexical inventories, orthography, and syntax
(Miletic et al., 2020b). At the level of phonetics,
for example, Gascon stands out from other Occitan
dialects and Western Romance languages with its
use of the phone [h] (Corral et al., 2020). Occitan
dialects also differ in their realization of /v/, with
Lengadocian and Gascon speakers tending toward
the phone [b] and Lemosin and Provençau speakers
typically pronouncing [v] (Arbousset et al., 2003).

As a whole, Occitan dialects share some morpho-
logical and syntactic features with each other, many
of which are more similar to Catalan and Spanish
than French. For example, unlike French, Occitan
is a pro-drop language (i.e., subject pronouns are
not necessary) and continues the use of the past
preterit and imperfect subjunctive inflections out-
side of writing (Bernhard et al., 2021). Patterns
of verbal inflection vary across the dialects, as do
the augmentative and diminutive suffixes (Miletic
et al., 2020a; Arbousset et al., 2003). At the syntac-
tic level, Gascon stands out with the use of enuncia-
tive particles to mark clauses’ types (Morin, 2008;
Vergez-Couret and Urieli, 2014).

A classical orthography inherited from medieval
literature dominates Occitan writing in most di-
alects, though in Provençau, the “Mistralian norm”
is more commonly used (Blanchet, 2004). Some
local writing systems have been standardized for
purposes such as teaching (Bernhard et al., 2021).
However, individuals vary in their conventions, of-
ten in ways heavily influenced by French orthog-
raphy. Figure 1 highlights some of the variations
in Occitan dialects’ lexicons and spelling conven-
tions. Besides the lack of a single orthographic con-
vention, phonetic differences between the dialects
lead to different spellings for words with the same

meaning. For instance, in Provençau the word for
“bedroom” tends to be written as “cambra,” and
the initial /c/ is pronounced as velar [k] (Arbous-
set et al., 2003). However, there is generally a
palatalization of the consonant [k] among Occi-
tan’s Northern dialects such as Lemosin (Buckley,
2009). This is often reflected in written forms, such
as the Lemosin word for “bedroom,” “chambra.”

Beyond just differences in spelling, dialects of
Occitan vary at the lexical level. For instance,

“achaptar” (“to buy”) is used in Lemosin while
“crompar” or “comprar” are used in dialects to the
south. Or, while speakers of Provençau tend to use
the phrase “aver fam” (“to be hungry”), speakers
in other dialects might say “aver talent.”

These lexical and spelling variations between
dialects of Occitan, along with a relative lack of
data, pose challenges for NLP research. Nonethe-
less, there is a body of work on Occitan language
technology, such as text-to-speech systems, part-of-
speech taggers, universal dependency parsers, and
lemmatizers (Corral et al., 2020; Vergez-Couret
and Urieli, 2014; Miletic et al., 2020a; Miletić and
Siewert, 2023). There is also a body of theoretical
work about Occitan, such as experiments with con-
tinuous numerical representations of Occitan via
cross-lingual word embeddings with related lan-
guages (Woller et al., 2021). Most NLP research
focusing on Occitan has been with four out of the
six dialects that are generally delineated: Lengado-
cian, Lemosin, Provençau, and Gascon.

3 Related Work

At its simplest, normalization using rule-based
word edits can collapse variants into standard forms
(Reffle, 2011). However, this requires language
knowledge and becomes infeasible in cases of am-
biguity. Thus, more context-sensitive approaches
to text normalization, such as statistical string trans-
duction and seq2seq neural networks, have been
developed (Rios and Castro Mamani, 2014; Lusetti
et al., 2018). Bawden et al. (2022) note that in
both their statistical and neural machine trans-
lation approaches to normalizing Early Modern
French, adding a rule-based post-processing step
that constrains output to words in a contemporary
French lexicon is particularly helpful. Moreover,
Lusetti et al. (2018) improved downstream machine
translation scores for Swiss German following or-
thographic normalization with a character-level
encoder-decoder model accompanied by a word-
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level language model. Recent work in normalizing
both user-generated and multi-dialect data seems to
confirm the effectiveness of working at the charac-
ter and byte-level during normalization (Kuparinen
et al., 2023; van der Goot et al., 2021a). However,
framing normalization as a machine translation task
requires large amounts of supervised data and is
therefore not feasible in the case of many other
low-resource languages, such as Occitan.

Faced with an inability to remove orthographic
noise to improve performance on downstream tasks,
some have attempted to learn from the charac-
ter level rather than the word or subword level.
For instance, machine translation with character-
level encoding can outperform subword-level en-
codings for morphologically rich languages, but
requires deeper architectures, longer sequences,
and—in models with no word or subword rep-
resentations—becomes more difficult to interpret
(Tang et al., 2020). Despite these hurdles, another
study has found that character representations re-
sult in better downstream machine translation per-
formance than rule-based normalization of Swiss
German training data (Honnet et al., 2018). Thus,
character-level modeling seems to have potential
as a substitute for spelling normalization during
pre-processing.

When modeling subword tokens, one way to
better encode data with orthographic variation
is by adding dropout to the byte-pair encoding
(BPE) subwords (Sennrich et al., 2016) during sub-
tokenization. BPE-dropout (Provilkov et al., 2020)
randomly removes a certain percentage of merges
while applying BPE models to subtokenize a cor-
pus. Provilkov et al. (2020) found that applying
BPE with dropout led to better machine transla-
tion of text with artificial misspellings. While ex-
ploring their models’ embeddings, they find that
subtokens in models trained with dropout tend to
be similarly represented when they share sequences
of characters. Thus, for training data with a non-
standardized orthography, BPE dropout allows for
more robust representations of spelling variants.

Cross-lingual transfer learning is another poten-
tial means of alleviating the sparsity of data induced
by orthographic variation. Recent work has shown
that for Occitan, the quality of word embeddings
can indeed be improved upon if jointly trained with
more data from related languages, such as Cata-
lan and Spanish (Woller et al., 2021). Other work
has sought to find normalization strategies for low-
resource languages by pre-training classifiers with

source languages different than the intended target
language (van der Goot, 2021). This resulted in
improvements over the baseline used, though in-
terestingly, language pairs that performed the best
were not always related languages. In recent work
by Aepli and Sennrich (2022), the authors show
that besides the relatedness of two languages, their
surface similarity is also a critical factor for effec-
tive transfer learning. They find that by augment-
ing encoders’ pre-training languages with random
character noise, the models become more robust to
spelling variation, and transfer learning is more ef-
fective based on performance on downstream tasks
in the fine-tuning languages. The importance of sur-
face similarity for transfer learning has also been
highlighted in machine translation, where roman-
ization of non-Latin scripts has been shown to im-
prove the effectiveness of transfer learning when
the pre-training and fine-tuning languages are re-
lated (Amrhein and Sennrich, 2020).

4 Method

4.1 Creating a Dataset

In order to conduct a controlled evaluation of our
model after fine-tuning with multi-dialect Occi-
tan data, we compile a parallel dataset comprising
words from four Occitan dialects. This dataset
allows us to explicitly compare the model’s per-
formance on the same content for each of the di-
alects. For the compilation of this dataset, we
took inspiration from vocabulary themes in the
book Òc-ben! Première année d’Occitan—Livre
d’éleve (Arbousset et al., 2003). We included vari-
ous functional and lexical words, alongside short
multi-word expressions and conjugations of both
regular and irregular verbs in several tenses. In
cases where a dialect was found to have variant
spellings of the same word, we created multiple
entries for that word rather than arbitrarily choos-
ing between spellings. That being said, given that
there is not a standardized writing system for Oc-
citan, the dataset by no means captures the full
breadth of possibilities for spelling variations, nor
does it include information about which variants
are preferred or more frequently used by Occitan
speakers. Our final parallel lexicon contains more
than 2,200 entries in the Lengadocian, Lemosin,
Provençau, and Gascon dialects. The dataset will
be made available for use in academic research.
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Figure 2: Proportion of vocabulary items in each evalua-
tion corpus that did not appear in the fine-tuning dataset.
Red: Lengadocian; Blue: Gascon; Green: Lemosin;
Purple: Provençau.

4.2 Fine-Tuning mBERT
We incorporate Occitan dialects into a language
model by fine-tuning the multilingual BERT
(mBERT1; Devlin et al. (2019)). mBERT has been
pre-trained with both a masked language model-
ing objective and a sentence prediction objective
on Wikipedia data from 104 languages. Our fine-
tuning data comprises data from two sources: the
OcWikiDisc corpus (Miletic and Scherrer, 2022),
which is compiled from Wikipedia discussion fo-
rums written in Occitan, and the WikiMatrix cor-
pus (Schwenk et al., 2021), a corpus of parallel-
sentence data mined from Wikipedia pages in 96
different languages. Annotation of a 100-sentence
sample by the original authors of the OcWikiDisc
corpus revealed that it contained several dialects
of Occitan, though most of the sample came from
the Lengadocian dialect. We specifically used the
balanced OcWikiDisc corpus, which filtered the
original dataset in a way designed to maximize
the F1-score for language identification. From the
WikiMatrix, we extracted the data from all lan-
guage pairs containing Occitan and removed the
parallel language data. Before combining with the
OcWikiDisc data, we removed any duplicate lines
from the dataset.

The final combined fine-tuning corpus contained
386,552 lines (10,941,124 tokens) of data in Oc-
citan. Ten percent of the training data was used
as validation dataset during the fine-tuning process
of three epochs. The ocwikidisc_balanced corpus
amounted to 756,922 (6.92%) of the total tokens in

1https://huggingface.co/
bert-base-multilingual-cased

the corpus. For details on the proportion of each
test corpora’s out-of vocabulary items with respect
to the fine-tuning corpus, see Figure 2.

5 Experiments

5.1 Analogy Representation

Background We conduct an intrinsic evaluation
of the model’s embedding space by assessing its
representation of analogies. Using the parallel lex-
icon, we first created a dataset of analogies with
approximately 35 data points per dialect. The data
points were chosen to test linguistic relations sim-
ilar to those presented by Mikolov et al. (2013b).
Specifically, most of the relations were syntactic
in nature, such as the relationship between infini-
tive verbs and conjugated forms, normal forms and
diminutives or augmentatives, single and plural
forms, and masculine and feminine forms. Ten of
the data points for each dialect captured semantic
relations, like antonym pairs and the relationship
between capital city names and regions.

To test the model’s representation of the analo-
gies, we use two approaches described in Levy and
Goldberg (2014). In the first approach, we use
analogies in the form a : b :: x : y and seek the
word y. Specifically, we search for the word y in
the given dialect’s vocabulary whose embedding
maximizes the following:

cos(y, b)− cos(y, a) + cos(y, x) (1)

Similar to Levy and Goldberg (2014), we refer
to Equation 1 as “3CosADD”.

As a second means of evaluating the analogies,
we implement the “3CosMUL” metric from the
same work by Levy and Goldberg (2014). The
authors found that this multiplicative approach to
combining the query vectors’ meanings outper-
formed the additive approaches above. In this ap-
proach, we search for the word y in a given dialect’s
vocabulary whose embedding maximizes the fol-
lowing:

cos(y, b)cos(y, x)

cos(y, a) + ϵ
(2)

We set ϵ to 0.001—as in the original work—to
avoid division by zero.

Results When solving the analogies as set for-
ward in Equation 1, the accuracies of both the base
mBERT model and our fine-tuned model are poor
across all four dialects (see Table 1). There is an
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3Cos-ADD 3Cos-MUL

Gascon 0.000 (-0.033) 0.133 (+0.066)
Lengadocian 0.097 (+0.065) 0.125 (+0.028)

Lemosin 0.069 (+0.035) 0.103 (+0.034)
Provençau 0.103 (+0.034) 0.138 (+0.035)

Table 1: Fine-tuned model’s accuracy in analogy compu-
tation, measured with two criteria. Values in parentheses
represent the change in score from the baseline.

Semantic Fam : Minjar Hunger: Eat
Set : Beure Thirst : Drink

Syntactic Far : Fach Want (INF) : Want (PP)
Voler : Volgut Want (INF) : Want (PP)

Figure 3: Examples of semantic and syntactic analogies
from the Lemosin dataset with English translations in
italics. INF: infinitive, PP: past participle.

overall increase in accuracy when using the 3Cos-
MUL described in Equation 2. The largest such
improvement occurs for Gascon.

Error Analysis As a means of better understand-
ing the results on our analogy dataset, we calculate
the accuracy separately for the syntactic and se-
mantic relations in our analogy dataset. See Figure
3 for examples of each analogy type. The score on
semantic analogies is 0.0 for all dialects, regardless
of whether Equation 1 or Equation 2 was used to
solve the analogies. In Table 2, we present the anal-
ogy scores for each dialect when only taking the
syntactic relations into account.

This disparity in performance for semantic and
syntactic relations may be attributable to our evalu-
ation approach. Indeed, Levy and Goldberg (2014)
note that there is an alternative formulation to
the 3CosAdd approach called the “PairDirection”
method. In their work on analyzing word embed-
ding quality with analogy computations, Mikolov
et al. (2013b) used this PairDirection method for
evaluating their semantic analogies while using
a method that was algebraically equivalent to
3CosADD for syntactic relations.

Beyond the method that we use to calculate the
analogies, it would be interesting to experiment fur-
ther with the specific pre-training tasks and archi-
tecture of our base model. For instance, the multi-
network approach taken for pre-training sentence-
BERT may offer a promising solution to the rel-
atively poor representation of semantic relations
in our fine-tuned model (Reimers and Gurevych,
2019).

3CosADD 3CosMUL

Gascon 0.0000 0.2000
Lengadocian 0.1429 0.1818

Lemosin 0.1053 0.1579
Provençau 0.1579 0.2105

Table 2: Fine-tuned model’s accuracy in analogy compu-
tation when only taking syntactic relations into account.

Accuracy

Gascon 0.322 (+0.067)
Lemosin 0.291 (+0.051)

Provençau 0.409 (+0.109)

Table 3: Fine-tuned model’s accuracy in choosing a
word’s corresponding Lengadocian form (“Lengadocian
Lexicon Induction”). Values in parentheses represent
the change in score from the baseline.

5.2 Lengadocian Lexicon Induction

Background As another means of evaluating the
fine-tuned model’s representations of Occitan’s di-
alects, we conduct a lexicon induction task that
assesses the similarity of parallel words across the
dialects. Bilingual lexicon induction is a common
use case for multilingual embeddings (Woller et al.,
2021; Mikolov et al., 2013a). Here, we aim to in-
duce the Lengadocian lexicon using the other three
dialects in our dataset.2 For each word in Gascon,
Provençau, and Lemosin, we find the Lengadocian
word with the most similar embedding, again using
cosine similarity. If the most similar word is an
equivalent Lengadocian term for the other dialect’s
word, we score this as correct.

Results Accuracy scores for the fine-tuned
model’s performance on the Lengadocian lexicon
induction task can be found in Table 3. Fine-
tuning mBERT with multi-dialect Occitan data led
to increases in performance on this task for all
dialects. Interestingly, there is more disparity be-
tween dialects in this task compared to the 3Cos-
MUL scoring of the analogy task. Whereas the
fine-tuned model correctly selects the Lengadocian
form of Provençau words in 40.9% of the cases,
performance for selecting the Lengadocian forms
of Lemosin words is correct in just 29.1% of cases.

Error Analysis To study the impact of dialecti-
cal variants’ surface similarity on their representa-
tion, we stratify the results of the Lengadocian lexi-

2We choose to induce the Lengadocian lexicon because it
is likely the best-represented dialect in our training data, but
the procedure could be repeated to induce any of the other
dialects’ lexicons.
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Low Med High

Gascon 0.4982 0.2444 0.0917
Lemosin 0.4172 0.2744 0.0756

Provençau 0.5671 0.3766 0.1154

Table 4: Fine-tuned model’s accuracy in choosing a
word’s corresponding Lengadocian form (“Lengadocian
Lexicon Induction”), stratified by orthographic distance
between target Lengadocian word and corresponding
dialect word; low: LevDist=1; Med: LevDist in range
[2,3], High: LevDist > 3.

con induction by the Levenshtein distance between
the word in a given dialect and its counterpart in
Lengadocian (see Table 4). These results indicate
that the further apart two word forms are, the less
similarly our model represents them, even though
they are semantically similar.

This trend indicates that for cases where spelling
differences are minimal, our fine-tuned model
seems to model word pairs similarly. However,
word pairs with low surface similarity are not rep-
resented well by the model. Thus, while our fine-
tuned model may have learned to represent ortho-
graphical variation in Occitan well (i.e., variation
of a few characters), it still struggles with dialec-
tical variation at the level of whole lexical items.
To some extent, Lemosin’s relatively high propor-
tion of OOV items with respect to the fine-tuning
corpus (Figure 2) may explain the model’s weaker
performance in inducing the Lengadocian lexicon
from Lemosin representations.

Table 5 contains examples of mistakes for
the induction of the Lengadocian Lexicon from
Provençau. Some mistakes are seemingly ran-
dom, such as the Provençau word for “January”
being closer to “Give” than the Lengadocian equiv-
alent for January. However, an error such as the
Provençau embedding for “Neighborhood” being
most similar to the Lengadocian word “Social”
shows some evidence of semantic consistency in
our embeddings. Though this is just a single exam-
ple, it shows that this method of evaluation for our
embeddings is relatively strict. As emphasized by
Glavas et al. (2019), if not done consistently and
in the context of a more comprehensive analysis,
bilingual lexicon induction is not necessarily an
ideal evaluation of cross-lingual word embeddings.

5.3 Extrinsic Evaluation

Background Using the Tolosa Treebank, a multi-
dialect dataset (Miletić et al., 2020), we train task
heads for part-of-speech tagging and Universal

Dependency3 parsing. The Tolosa Treebank con-
tains texts from the Occitan dialects Lengadocian,
Lemosin, Provençau, and Gascon. We experiment
with two training setups: In the first, we use data
from all four dialects in the train, validation,4 and
test sets. In the second setup, we attempt to mirror a
more realistic scenario for low-resource languages
where less annotated data is typically available. To
do this, we train the task heads with only Lengado-
cian data. Lengadocian was chosen because the
authors of the OcWikiDisc corpus believed this di-
alect to be the best represented in the corpus, and it
has the most data in the Tolosa Treebank. We then
test the PoS-tagging and dependency parsing abili-
ties of the model on all four dialects with test sets
from the Tolosa Treebank. As with the intrinsic
evaluations, we report results for both the baseline
mBERT model and our fine-tuned mBERT model.
We use the MaChAmp framework (van der Goot
et al., 2021b) for the multitask fine-tuning.

Results Scores for the PoS taggers and depen-
dency parsers are in Tables 6 and 7. In PoS tagging,
accuracy is relatively high in both training scenar-
ios. For Gascon, Lengadocian, and Provençau the
fine-tuned model showed small improvements rel-
ative to the baseline mBERT, while the fine-tuned
model performed slightly worse than the baseline
for Lemosin. On the full test set with data from all
four dialects, the model trained with PoS data from
all four dialects reaches an accuracy of 94.1%, out-
performing the model trained on only Lengadocian
data. PoS-tagging performance is best for Lengado-
cian data in both training setups, although only by
a small margin.

As for UD parsing, Gascon had the highest la-
beled attachment scores in both training condi-
tions, while performance was again the worst for
Provençau. Similar to PoS tagging, scores for
Lemosin dependency parsing decreased with fine-
tuning. Across the dialects, there was a wider range
of UD parsing scores compared to scores for PoS
tagging, but performance was best on average in the
condition where all four dialects were used during
training.

Error Analysis Despite observing similar results,
we explore potential differences in the quality of the
two part-of-speech taggers we trained. To do this,
we visualize confusion matrices to illustrate how

3https://universaldependencies.org/
4Provençau and Lemosin are not included in the validation

set due to the relatively small amount of data in these dialects.
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True Lengadocian Term Provençau-Target
Provençau (EN) Lengadocian Selected in Evaluation (EN) Levenshtein Distance

Quartier (Neighbourhood) Quartièr Social (Social) 1
Fieu (String) Fial Lòc (Place) 2

Janvier (January) Genièr Dar (Give (V.)) 4

Table 5: Example errors from the Provençau–Lengadocian lexicon induction task. Column 2 contains the correct
Lengadocian equivalent to the Provençau term; the incorrect Lengadocian term with the most similar embedding to
the Provençau term is in column 3; English translations in parentheses.

Figure 4: Confusion matrix for PoS taggers when trained on data from all dialects (left) and only Lengadocian
(right).

All Dialects Lengadocian

Gascon 0.941 (+0.005) 0.922 (+0.019)
Lengadocian 0.946 (+0.008) 0.943 (+0.008)

Lemosin 0.934 (-0.002) 0.927 (-0.005)
Provençau 0.927 (+ 0.000) 0.932 (+ 0.012)

Full Test Set 0.941 (+0.005) 0.936 (+0.007)

Table 6: PoS-tagging accuracy for the fine-tuned model;
“All Dialect” PoS tagger used train and development data
from all dialects. The “Lengadocian” PoS tagger was
trained on only Lengadocian data. Values in parentheses
represent the change in score from the baseline.

All Dialects Lengadocian

Gascon 0.791 (+0.007) 0.755 (+0.035)
Lengadocian 0.761 (+0.003) 0.742 (+0.008)

Lemosin 0.691 (-0.007) 0.679 (-0.012)
Provençau 0.603 (- 0.005) 0.579 (+0.003)

Full Test Set 0.735 (+0.001) 0.714 (+0.008)

Table 7: Labeled attachment scores for Universal Depen-
dency parsing with the fine-tuned model. “All Dialect”
parser used train and development data from all dialects.
The “Lengadocian” parser was trained on only Lengado-
cian data. Values in parentheses represent the change in
score from the baseline.

each tagger performed on the full test set, which
included data from all four studied dialects (see
Figure 4). The results highlight one key failure of
our “low-resource” method where we use a PoS tag-
ger that was trained only on Lengadocian data for
inference on all dialects. Specifically, it indicates
that the Lengadocian-trained tagger never correctly
classifies particles in the evaluation set. This is an
expected limit of zero-shot attempts to do PoS tag-
ging with Gascon, as Gascon is the only dialect of
Occitan that carries enunciative particles that mark
clause type. This problem was also encountered in
previous work on Occitan PoS tagging, where the
authors proposed explicit rules for tagging the parti-
cles as a solution (Vergez-Couret and Urieli, 2014).
In the original dependency parsing experiments
published with the Tolosa Treebank, the authors
improve performance on Gascon evaluation data by
including training data from Gascon in their model,
an approach that also led to our highest-performing
PoS tagger (Miletic et al., 2020a).

In the same paper on the Tolosa Treebank,
Miletić et al. (2020) note that performance for
dependency parsing was consistently worst for
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Provençau. We obtained similar results for our de-
pendency parsing experiments. As for our PoS tag-
gers, when trained on all four dialects, performance
was also worst on Provençau. Yet, the Provençau
portion of the Tolosa Treebank has the lowest pro-
portion of OOV items relative to the fine-tuning
corpus, meaning we would generally expect its
contents to be among the best represented of the di-
alects (Figure 2). To the contrary, performance on
Provençau consistently outranks the other dialects
for our intrinsic evaluations. We encourage further
research on the specific morphosyntactic proper-
ties and orthographic tendencies of Provençau to
clarify why—despite its relatively strong internal
representation—it stands out as more difficult to
tag in these tasks.

6 Discussion

Overall, our experiments on using non-
standardized text data to fine-tune mBERT
yielded mixed results. Fine-tuning mBERT with
orthographically non-standard Occitan data led
to little improvement in terms of performance
on computing analogies, POS tagging, and
dependency parsing. However, fine-tuning with
the multi-dialect data consistently improved results
in using one dialect’s lexicon to induce the parallel
lexicon of another dialect, Lengadocian.

Taken together, these results provide support for
the idea that including data with dialectical lexi-
cal variation and non-standardized orthography in
fine-tuning data is not necessarily harmful to model
performance. I.e., the fine-tuning we carried out
with multiple dialects of Occitan did not deprecate
mBERT’s baseline performance on downstream
tasks like part-of-speech tagging. As normalizing
data during preprocessing can pose a substantial
burden for low-resource NLP, our results are en-
couraging in that they suggest that in some contexts,
including orthographically inconsistent data from
multiple dialects will not harm the model.

Previous work on fine-tuning language models
has led to various conclusions about the effect of
different types of “noise” in the fine-tuning data.
For instance, it has been shown that fine-tuning
on English data with synthetic spelling errors can
reduce BERT’s performance on downstream sen-
timent analysis (Kumar et al., 2020). While our
results do not seem to indicate a negative effect of
including non-standardized data in the fine-tuning
data, simply including small amounts of data from

multiple dialects of Occitan was not enough to in-
crease mBERT’s performance on downstream tasks
(PoS tagging and UD parsing) with the dialects.
Furthermore, as shown in the Lengadocian lexicon
induction, the model failed to capture the similar-
ity of parallel lexical items that have low surface
similarities (i.e., high Levenshtein distance).

Some research has shown that high surface sim-
ilarity between pre-training and fine-tuning data
can result in better performance on downstream
tasks such as PoS tagging and machine translation
(Aepli and Sennrich, 2022; Amrhein and Sennrich,
2020). Bearing that in mind, our future efforts will
look at whether increasing the surface similarity
between the pre-training and Occitan fine-tuning
data of our models will allow the model to better
learn from the non-standardized data. Indeed, re-
sults from our Lengadocian induction task provide
some further evidence that this may help, as the
model represented parallel words from different di-
alects more similarly when their spelling was more
similar. Increasing the surface similarity of the
pre-training and fine-tuning data may involve us-
ing a model pre-trained only on languages that are
more closely related to Occitan, such as Catalan,
Spanish, and French. In the same vein as Aepli and
Sennrich (2022), we may also explore injecting the
pre-training data with noise in the form of charac-
ters or even replacing whole words with Occitan
variants. Furthermore, Kumar et al. (2020) attribute
BERT’s detriment in performance when fine-tuned
on noisy data to the model’s tokenizer. Though out
of the scope of the present work, we intend to focus
future efforts on the overlap between the Occitan
dialects’ subtokens. Work on this matter may be
particularly beneficial in understanding the results
of our lexicon induction task.

7 Conclusion

In this work, we experimented with the capacity
of a pre-trained encoder to represent dialect vari-
ation—both lexical and orthographic—in a low-
resource language. In doing so, we aimed to test the
extent to which cross-lingual transfer learning al-
lows for effectively representing Occitan’s dialects.
While the experiments yielded no clear evidence
that dialect representation was improved after fine-
tuning, we can still interpret our findings as an
indicator that orthographic normalization may not
be necessary when fine-tuning large, multilingual
models.
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Limitations

A potential limitation of this study is that we only
worked with one base model, mBERT. It is possible
that experimenting with other language models,
i.e., models only on languages closely related to
Occitan, would have yielded different results, while
also telling us more about the relative usefulness
of massively multilingual models for low-resource
languages.

Another limitation is our inability to better char-
acterize the pre-training and fine-tuning data in
the experiment. Indeed, while the authors of the
OcWikiDisc corpus performed manual evaluations
to determine the dialect make-up of a small sam-
ple of their corpus, the total number of data points
in each dialect in the OcWikiDisc is not known
(Miletic and Scherrer, 2022). Even less is known
about the writing standard and dialect make-up of
the WikiMatrix data which we also used for fine-
tuning, meaning that overall, we cannot be sure
that any variation between the dialects’ results was
not simply driven by a difference in the amount of
data in each.

Further, our experimental setup is limited in that
our UD parsers perform worse than the highest per-
forming UD parsers trained on the Tolosa Treebank
in Miletić et al. (2020). The authors note that their
worst LAS scores come from a model that was also
trained on UD data from languages closely related
to Occitan. Along the same lines, it may be that
our use of a large, multilingual language model
to carry out the UD parsing is limiting the utility
of the relatively small amounts of dialect-specific
Occitan UD data.
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2023. Dialect-to-standard normalization: A large-
scale multilingual evaluation. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2023, pages 13814–13828, Singapore. Association
for Computational Linguistics.

Omer Levy and Yoav Goldberg. 2014. Linguistic regu-
larities in sparse and explicit word representations. In
Proceedings of the Eighteenth Conference on Compu-
tational Natural Language Learning, pages 171–180,
Ann Arbor, Michigan. Association for Computational
Linguistics.

Massimo Lusetti, Tatyana Ruzsics, Anne Göhring, Tanja
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Aleksandra Miletić, Myriam Bras, Marianne Vergez-
Couret, Louise Esher, Clamença Poujade, and Jean
Sibille. 2020. A four-dialect treebank for occitan:
Building process and parsing experiments. In Pro-
ceedings of the 7th Workshop on NLP for Similar
Languages, Varieties and Dialects, pages 140–149.

Aleksandra Miletic and Yves Scherrer. 2022.
OcWikiDisc: a corpus of Wikipedia talk pages in
Occitan. In Proceedings of the Ninth Workshop
on NLP for Similar Languages, Varieties and
Dialects, pages 70–79, Gyeongju, Republic of Korea.
Association for Computational Linguistics.
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Jaka Čibej
University of Ljubljana

jaka.cibej@ff.uni-lj.si

Stefan Milosavljević
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Abstract

The paper presents new causal commonsense
reasoning datasets for South Slavic dialects,
based on the Choice of Plausible Alternatives
(COPA) dataset. The dialectal datasets are built
by translating by native dialect speakers from
the English original and the corresponding stan-
dard translation. Three dialects are covered –
the Cerkno dialect of Slovenian, the Chakavian
dialect of Croatian and the Torlak dialect of
Serbian. The datasets are the first resource for
evaluation of large language models on South
Slavic dialects, as well as among the first com-
monsense reasoning datasets on dialects over-
all. The paper describes specific challenges
met during the translation process. A compar-
ison of the dialectal datasets with their stan-
dard language counterparts shows a varying
level of character-level, word-level and lexicon-
level deviation of dialectal text from the stan-
dard datasets. The observed differences are
well reproduced in initial zero-shot and 10-shot
experiments, where the Slovenian Cerkno di-
alect and the Croatian Chakavian dialect show
significantly lower results than the Torlak di-
alect. These results show also for the dialectal
datasets to be significantly more challenging
than the standard datasets. Finally, in-context
learning on just 10 examples shows to improve
the results dramatically, especially for the di-
alects with the lowest results.

1 Introduction

Causal commonsense reasoning task has been
shown to be highly useful for evaluation of the
natural language understanding (NLU) capabili-
ties of large language models (LLM) (Wang et al.,

2019). It provides an insight into whether the mod-
els are able to acquire common world knowledge
and, moreover, whether they are able to general-
ize to other languages. Among others, the Choice
Of Plausible Alternatives (COPA) dataset (Roem-
mele et al., 2011) has been extensively used for
these purposes. At the time of development of the
COPA dataset, a successful application of common-
sense inference to text understanding was consid-
ered to be “one of the grand challenges of natural
language processing“ (Gordon et al., 2012), with
the most successful systems barely achieving ac-
curacy above the random baseline. Recently, we
have witnessed development of incredibly powerful
language models and innovations in this field hap-
pening at an unprecedented pace. Twelve years
after the introduction of the COPA dataset, the
state-of-the-art pretrained language models are able
to achieve accuracy higher than 99% (Chowdhery
et al., 2023; Zhong et al., 2022). However, the
COPA dataset was initially available only for En-
glish. When first efforts were made to develop
COPA datasets also for other, less-resourced lan-
guages, the evaluations of large language models
on these datasets showed that there is a large gap
in their natural language understanding capabilities
when applied to different languages (Ponti et al.,
2020; Žagar and Robnik-Šikonja, 2022).

In this paper, we present new COPA datasets
for three South Slavic dialects – the COPA dataset
for Slovenian Cerkno dialect, Croatian Chakavian
dialect and the Torlak dialect of Serbian.1 We re-

1The Torlak dialect is a Balkan Sprachbund variety that
shares features with both standard Serbian and other Balkan
languages, among which most notably Macedonian and Bul-
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lease these dialectal datasets as extensions of the
already existing COPA datasets in standard lan-
guages, namely Slovenian, Croatian, Serbian and
Macedonian. All the datasets were translated from
the English COPA dataset (Roemmele et al., 2011)
following the XCOPA methodology (Ponti et al.,
2020), with the difference that dialectal translations
were supported both by the English original and
the closest standard translation.

Recent instruction-tuned generative language
models were shown to do incredibly well in this
commonsense reasoning task, even in South Slavic
languages, both in Latin and Cyrillic, achieving ac-
curacy between 94% and 97%.2 This motivated us
to further evaluate the models’ capabilities, by ana-
lyzing their performance on South Slavic dialects,
for which there is much less texts available on the
web than for standard South Slavic languages. This
means that these dialects are barely present in the
training data of the language models, or are not
present at all. The performance of large language
models on dialectal texts is a highly relevant re-
search direction because it measures the capacity
of a language model to generalize the linguistic
knowledge beyond the standard languages the mod-
els have primarily been pretrained on.

The selection of dialects followed three main cri-
teria: (1) that they are rather different from the stan-
dard, (2) that they are diverse between each other,
and (3) that we can identify reliable translators into
that dialect. Starting with Slovenian, several vi-
able options are available in addition to the Cerkno
region dialect (such as the Prekmurje dialect or
dialects spoken by Slovenian national minorities
in Italy, Austria, and Hungary), but ultimately, the
decision to select the Cerkno dialect was based on
the availability of a translator. For the Croatian lan-
guage, given that the Slovenian standard language
is rather close to the Kajkavian dialect of Croa-
tia (Kapović, 2017), and that the Shtokavian dialect
is very close to the standard language (Vidović,
2007), we chose the Chakavian dialect, again, se-
lecting the micro-dialect of Žminj due to availabil-
ity of a reliable translator. Finally, aiming at a
dialect from Serbia, Macedonia, or Bulgaria, we
chose the Torlak dialect which has been well re-
searched as a distinct dialect of the Balkan Sprach-

garian. In this specific instance, the speech of the Region
of Jablanica near the town of Lebane was used, which is
more similar to standard Serbian compared to the most typical
Balkan Sprachbund varieties.

2https://github.com/clarinsi/benchich/tree/
main/copa

bund, having relationships to Serbian, Macedonian
and Bulgarian (Mišeska Tomić, 2006; Milosavlje-
vić, 2018; Živojinović, 2021; Vuković et al., 2022).
Additionally, Torlak is officially listed as a vulner-
able language by the UNESCO (Moseley, 2010).
To go with the micro-dialect of the region near the
town of Lebane (Žugić, 2005; Milosavljević, 2018),
again, was based on the availability of a translator.

The reasons why we are following upon trans-
lating an existing English benchmark, rather than
compiling a new one, are the following: (1) it is
much cheaper, but also safer to translate an ex-
isting benchmark, proven to measure reasonably
well the phenomenon of interest, especially in light
of a similar culture, rather than to compile a new
benchmark that would need to go through quite
many tests before being reasonably safe for usage,
(2) the results obtained on a translated benchmark
are much more comparable to the results on the
original benchmark than the results on less depen-
dent benchmarks, which allows us to measure the
comparative performance of a model in multiple
languages and dialects, (3) the original and trans-
lated benchmarks can be considered also a machine
translation benchmark, both between the dialect
and the standard counterpart, as well as between
the dialect and another language, and, finally, (4) if
the benchmark was to be read to generate a spoken
language understanding benchmark, aside from the
new modality itself, we would also obtain bench-
marks in speech to speech, but also text to speech
and speech to text translation in quite many direc-
tions, the biggest novelty, again, being the dialectal
feature of the benchmark.

The paper is structured as follows: firstly, in
Section 2, we present the previous work on En-
glish COPA and its translations to other languages.
Secondly, in Section 3, we present the developed
datasets for South Slavic standard languages and
dialects. We first introduce the COPA datasets for
standard Slovenian, Croatian, Serbian and Macedo-
nian languages in Subsection 3.1. Then we present
the development of dialect datasets in Subsection
3.2, and mention the challenges we encountered
in Subsection 3.3. We conclude this section with
Subsection 3.4 where we provide an insight into
the level of differences between the datasets in the
standard and dialectal languages. Next, in Section
4, we apply instruction fine-tuned large language
models to the South Slavic COPA standard and
dialectal datasets to obtain initial insights on their
capabilities on our target languages and dialects.
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Finally, we wrap up the paper with conclusions and
suggestions for further work in Section 5.

2 Related Work

English COPA The Choice Of Plausible Alterna-
tives (COPA) dataset (Roemmele et al., 2011) was
first created in English to evaluate machine learning
approaches to automated commonsense reasoning.
The dataset consists of instances that contain three
sentences: a premise and two possible hypothe-
ses (alternatives), either stated as a cause or effect
of the premise. Each instance has the manually-
annotated label with the answer to the task of de-
termining which of the two alternatives is more
plausible than the other. The dataset was designed
in such way that it necessitates the model to solve
the task based on the acquired linguistic and world
knowledge that is not explicitly present in the text.
The dataset consists of 1000 instances of common-
sense causality, split into 500 instances in training
and development split (400:100) and 500 instances
in the test split. The COPA dataset was first pre-
sented as an evaluation dataset in the shared task of
the 6th International Workshop on Semantic Evalu-
ation (SemEval 2012) (Gordon et al., 2012). A few
years later, the usefulness of the COPA dataset was
also recognized by the authors of the well-known
benchmark for general-purpose natural language
understanding SuperGLUE3 (Wang et al., 2019)
where COPA was selected as one of 8 included
datasets. In addition to causal reasoning, supported
by the COPA dataset, SuperGLUE includes ques-
tion answering, textual entailment, co-reference
resolution, and word sense disambiguation.

COPA in Other Languages The first efforts to
use the COPA dataset for evaluation in other lan-
guages appeared almost 10 years after the devel-
opment of the English dataset. Ponti et al. (2020)
introduced the Cross-lingual Choice of Plausible
Alternatives (XCOPA) dataset which includes trans-
lation of the development and test splits of the
COPA dataset to 11 more languages that come
from 11 distinct language families and 5 macro-
areas: Estonian, Haitian Creole, Indonesian, Ital-
ian, Eastern Apurímac Quechua, Kiswahili, Tamil,
Thai, Turkish, Vietnamese and Mandarin Chinese.
Translation of the COPA dataset was also fueled
by its introduction to the SuperGLUE benchmark
(Wang et al., 2019). The benchmark and the COPA

3https://super.gluebenchmark.com/

dataset inside it were inter alia translated to Russian
(Shavrina et al., 2020) and to Slovenian4 (Žagar
and Robnik-Šikonja, 2022). Recently, the COPA
dataset was also translated to 18 Indic languages as
part of the development of the natural language un-
derstanding (NLU) benchmark for Indic languages
IndicXTREME (Doddapaneni et al., 2023), and to
Estonian (Kuulmets et al., 2022), where low-cost
alternatives to the XCOPA methodology were in-
vestigated. Namely, researchers machine-translated
the dataset and then manually edited the automatic
translation. In contrast, recent work by Wibowo
et al. (2023) suggests a more detailed approach.
Instead of translating the COPA dataset, they de-
veloped their own variant of the dataset with new
instances that incorporate Indonesian local and cul-
tural nuances, and thus provide a more natural por-
trayal of causal reasoning within the Indonesian
culture. Interestingly, similarly to our approach,
they prepare the COPA dataset both in Indonesian
standard language as well as in its dialect – Jakar-
tan Indonesian, which is a colloquial variety that is
used in day-to-day conversations.

COPA Modelling At the first shared task that
used the COPA dataset, commonsense reasoning
was shown to be a very hard task for machine learn-
ing approaches (which were non-neural at the time)
with the best methods achieving accuracy scores
of 65.4%, only 15% higher than the random base-
line (with accuracy of 50%) (Gordon et al., 2012).
With the recent introduction of Transformer-based
BERT-like pretrained language models, the task
in English has shown to be much simpler for the
models to grasp and on the SuperGLUE leader-
board, the state-of-the-art pretrained language mod-
els achieve an incredible accuracy higher than
99% (Chowdhery et al., 2023; Zhong et al., 2022).
However, the introduction of the COPA datasets
in other languages showed a large gap in natural
language understanding capabilities between En-
glish and other languages. For Slovenian, Croatian,
Indic languages and Indonesian, the best models
among state-of-the-art multilingual and monolin-
gual BERT-like pretrained language models only
reach up to the accuracy between 61.8% and 65.8%
(Ulčar and Robnik-Šikonja, 2021; Ljubešić and
Lauc, 2021; Wibowo et al., 2023). While the BERT-
like models seem not to be up to this challenging
task, recently introduced instruction-tuned GPT-

4The Slovenian SuperGLUE dataset is available at http:
//hdl.handle.net/11356/1380
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Figure 1: Example of a premise and a hypothesis from the COPA datasets in English, Slovenian, Cerkno dialect,
Croatian, Chakavian dialect, Serbian, Torlak dialect, and Macedonian.

like models showed impressive capabilities also on
non-English COPA datasets. Wibowo et al. (2023)
evaluated the GPT-4 model (OpenAI, 2023), used
with a 5-shot prompting strategy. Their model was
reported to achieve incredible accuracy of 89.09%
on standard Indonesian and 89.62% on Jakartan
Indonesian.

3 South Slavic Standard and Dialect
COPA

The newly presented COPA datasets have exactly
the same content as the English COPA dataset
(Roemmele et al., 2011), only the language is differ-
ent. They consist of 400 training instances, 100 de-
velopmental instances and 500 test instances. Each
instance consists of a premise (The movie tickets
sold out.), a question (either What was the cause?
or What happened as the result?) and two alter-
natives (It was opening day for the movie. and
The movie received poor reviews.), where one is
manually labelled to be more plausible than the
other.

We first present the datasets of standard lan-
guages, namely Slovenian (Žagar et al., 2020),
Croatian (Ljubešić, 2021), Serbian (Ljubešić et al.,
2022b) and Macedonian (Ljubešić et al., 2022a),
followed by the newly developed dialectal datasets,
namely those for the Cerkno dialect, the Chaka-
vian dialect, and the Torlak dialect (Ljubešić et al.,
2024).

3.1 COPA in Standard South Slavic
Languages

Motivated by astounding performance achieved
by the large language models (LLMs) on other
languages, the COPA datasets were translated for
benchmarking the performance of LLMs on four
standard South Slavic languages: Slovenian, Croa-
tian, Serbian and Macedonian, resulting in the
Slovenian COPA dataset as part of the Super-
GLUE translation (Žagar et al., 2020), COPA-
HR (Ljubešić, 2021), COPA-SR (Ljubešić et al.,
2022b), and COPA-MK (Ljubešić et al., 2022a)
datasets. While the Slovenian and Croatian datasets
use the Latin script, Serbian and Macedonian use
the Cyrillic script. Important to note here is that
Serbian is a digraphic language, using the Cyrillic
and the Latin script interchangeably, while Macedo-
nian uses the Cyrillic script, but still has a translit-
eration technique into the Latin script that is occa-
sionally used, especially in online communication.
While translating the COPA-HR, the COPA-SR
and the COPA-MK datasets, the methodology and
guidelines laid out by the XCOPA authors were
followed (Ponti et al., 2020), while the Slovenian
version of the dataset was translated with less strin-
gent rules. For the Croatian, Serbian and Mace-
donian dataset, each dataset was translated by one
native speaker. Prior to the translation, the trans-
lators labelled the instances by choosing the most
probable alternative for each premise. This step
was not performed during the translation of the
Slovenian dataset. The observed agreement of the
English annotator and the Croatian translator was
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perfect on the training and the validation dataset,
with one different label (agreement of 99.8%) on
the test dataset. In other cases – COPA-MK and
COPA-SR – the translator had perfect agreement
with the English gold labels. In contrast to the
XCOPA, where only the test and development split
were translated, the four South Slavic languages
have the training split translated as well. While this
necessitates more translation effort, it extends the
usability of the datasets and enables research also
on fine-tuning language models on the South Slavic
languages, not only evaluation of their zero-shot
capabilities.

3.2 COPA in South Slavic Dialects
In this work we extend the efforts of translating
COPA to South Slavic languages by providing the
first datasets that allow evaluation of the natural lan-
guage understanding capabilities of large language
models on South Slavic dialects. More precisely,
we focus on the following dialects: the Cerkno
dialect of Slovenian, spoken in the Slovenian Lit-
toral region, specifically from the town of Idrija;
the Chakavian dialect of Croatian from northern
Adriatic, specifically from the town of Žminj; and
the Torlak dialect from southeastern Serbia, specif-
ically from the town of Lebane. As with the stan-
dard languages, we follow the same methodol-
ogy and translation guidelines as proposed by the
XCOPA dataset authors (Ponti et al., 2020). Each
dialect was translated by one carefully selected
translator who is a native speaker of the dialect. A
novelty in this approach is that both English and
standard South Slavic language were at disposal to
the translator during the translation process. The
training and development splits of the resulting
datasets in Cerkno (COPA-SL-CER), Chakavian
(COPA-HR-CKM) and Torlak (COPA-SR-TOR) di-
alects are made freely available,5 while the test data
are shared only upon request to prevent the contam-
ination of large language models and the resulting
invalidity of the benchmark measurements due to
a possibility that the future large language models
would use these data during pretraining. In Figure
1, we show an example of a premise and a hy-
pothesis from the newly developed dialectal COPA
datasets, as well as the standard language and the
original English COPA (Roemmele et al., 2011)
datasets. The Serbian, Torlak and Macedonian ex-
amples are, for readability purposes, represented

5The datasets can be downloaded from the CLARIN.SI
repository: http://hdl.handle.net/11356/1766

both in the Latin and the Cyrillic script. While the
Serbian (Ljubešić et al., 2022b) and Macedonian
COPA datasets (Ljubešić et al., 2022a) have been
published in the Cyrillic script, all three DIALECT-
COPA datasets are published in the Latin script.

3.3 Challenges with Adapting COPA to
Dialects

Spelling When extending the COPA datasets to
South Slavic dialects, we entered an uncharted ter-
ritory regarding the development of benchmarks
for these dialects, as they do not have a canonical
spelling. Even within the dialect, some spelling
variants depend on the speaker’s preference (e.g.,
Slovenian standard word voda (“water”) can be
written in Cerkno Slovenian: voda, uoda or woda).
Our main instruction to the translators was to trans-
late in the manner they would consider communi-
cating in writing with other speakers of that dialect.

Grammar One should note that sentence-level
word order frequently differs between written stan-
dard South Slavic languages and the written dialec-
tal text. While written language tends to follow
topic-comment sequence (organizing information
from known to new and emphasizing the sentence-
final element), dialectal written language relies on
an order closer to the spoken form, and has there-
fore a looser order. While translators strove to pro-
vide authentic translations in their native dialect,
they mentioned that this was difficult to achieve at
times, as they found many sentences in the COPA
dataset to sound somewhat inauthentic and artifi-
cial and become even more so when translated to a
non-standard language.

Difference between English and South Slavic
grammar Compared to the English original,
Slavic languages express grammatical gender (fem-
inine, masculine, neuter) and number (singular, plu-
ral; and dual in the case of Slovenian). The transla-
tors strove to provide a balanced representation of
all grammatical genders and numbers in examples
when no such information can be gleaned from the
English original.

3.4 Quantitative Analysis of Datasets
A first insight in the level of difference between
the standard language and corresponding dialec-
tal dataset is obtained by performing a series of
character- and word-level comparisons, presented
in Table 1. We first measure the average character
and word similarity between each dialectal dataset
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standard dialect char word top
Slovenian Cerkno 0.647 0.293 24
Croatian Chakavian 0.613 0.297 28
Serbian Torlak 0.698 0.376 39

Table 1: Similarity between the standard and dialectal
datasets calculated as average Levenshtein ratio of sen-
tence pairs on level of characters (char) and the level of
words (word), as well as the size of the intersection of
the 100 most frequent words in the standard and dialec-
tal dataset (top).

and its closest standard dataset via the Levenshtein
ratio metric. Based on these two measurements one
can see that the Torlak dialect is much more similar
to Serbian, its corresponding standard language,
than the Cerkno and Chakavian dialects to Slove-
nian and Croatian, respectively. If we compare the
latter two dialects based on the level of similarity
to their corresponding standard language, we see
that while the Cerkno dialect is more similar to
the Slovenian on the character level, the Chakavian
dialect is more similar to the Croatian on the word
level.

We perform a final measurement of similarity
that focuses on the most frequent words, which
includes most function words. We calculate the
size of the intersection of sets of 100 most fre-
quent words in the standard dataset and the dialec-
tal dataset. The results of this measurement show
again for the Torlak dialect to be the closest to
its standard counterpart, but this time the Cerkno
dialect being less similar to the standard than the
Chakavian dialect.

The goal of these measurements is to inform the
dataset users of the varying distance between the
three dialectal datasets when comparing to their
standard variant. We expect the research commu-
nity to use these datasets in more in-depth analyses
of the dialects and their corresponding standard
varieties.

4 Baselines

In this section we present baseline results of cur-
rently best-performing open and closed instruction-
tuned GPT-like large language models. For the
open model (downloadable weights) we select the
Mixtral-8x7B-Instruct-v0.16 model (Jiang
et al., 2024), while among the closed (API access
only) models we opt for the gpt-4-0125-preview

6https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1

model (OpenAI, 2023). The selection of models is
based on best results obtained during preliminary
experimentation across models available at the time
of the writing. We use instruction-tuned models so
that we can follow a uniform extraction of answers
from each model via a unified prompt. The prompts
used are presented in Appendix A. They were se-
lected during preliminary experiments, showing
comparable and consistent results across all mod-
els and datasets.

We perform experiments in a zero-shot and 10-
shot fashion on the training portions of datasets
of both the standard languages (including English)
and the dialects. In both cases we use the models
“off-the-shelf”, without any additional fine-tuning.
In the zero-shot scenario, the prompt only includes
the definition of the task and the instance for which
we require a label, while in the 10-shot scenario,
we also provide the first ten instances from the de-
velopment split with the correct answers. We opt
to use the training data as our evaluation data in
the baseline experiments due to the closed nature
of our dialectal test data. Using test data in these
experiments would significantly reduce the replica-
bility of our results, as test data are only available
upon request.

The baseline experiments showed the following.
There is a significant gap between performance of
models on standard languages and dialects. The
Cerkno dialect proves to be by far the most chal-
lenging one, followed by the Chakavian dialect,
while the Torlak dialect performs most similarly
to its standardized variety. The differences in per-
formance on dialects roughly follow the character
and word similarities between the standard and the
dialectal dataset, presented in Section 3.4.

The comparison of the performance of the two
models shows that the closed GPT-4 model (Ope-
nAI, 2023) is significantly more potent than the
open Mixtral model (Jiang et al., 2024). Interest-
ingly, few-shot learning significantly improves the
results, especially with the hardest cases of Chaka-
vian and Cerkno dialects and the most potent GPT-
4 model, where Chakavian achieves improvement
of 9 points, while Cerkno dialect achieves improve-
ment of 14 points.

For the improvements obtained with 10-shot
prompting, the main question arises whether the
improvement is due to the model learning about
the task itself or about the language/dialect that the
model is being tested on. Additional research will
be required to disentangle these two likely effects.
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model n-shot EN SL SL-CER HR HR-CKM SR SR-TOR MK

Mixtral 0 0.875 0.683 0.405 0.705 0.580 0.713 0.638 0.665
Mixtral 10 0.933 0.803 0.500 0.818 0.603 0.795 0.748 0.703
GPT-4 0 0.988 0.960 0.595 0.963 0.778 0.968 0.925 0.945
GPT-4 10 0.995 0.980 0.738 0.988 0.870 0.990 0.968 0.978

Table 2: Accuracy achieved on the training split of COPA for different models, prompting fashions (zero-shot vs
10-shot scenario), and languages and dialects. The languages and dialects presented are: English (en), Slovenian
(sl), Cerkno Slovenian (sl-cer), Croatian (hr), Chakavian Croatian (hr-ckm), Serbian (sr), Serbian Torlak (sr-tor) and
Macedonian (mk).

At a recent shared task based on this
dataset (Chifu et al., 2024) the power of adapta-
tion of large language models to dialects via in-
context learning has been demonstrated by multiple
teams, while one team has shed some light on the
impact of the task semantics and the dialect seman-
tics (Ljubešić et al., 2024), showing that both are
useful, but that most improvement is coming from
the side of dialect semantics.

5 Conclusions

This paper introduced DIALECT-COPA – a dataset
for commonsense reasoning covering three South
Slavic dialects, an extension of the already avail-
able translations into their respective standard vari-
eties. The commonsense reasoning benchmark is
based on the popular Choice of Plausible Alterna-
tives (COPA) English dataset. The datasets of both
dialects and standard languages were translated by
native dialect speakers from the original English
COPA dataset (Roemmele et al., 2011). During the
translation process into each dialect, the translator
also had access to the translation into the closest
standard variety so that the dialectal translations
exhibit a minimum of translation artifacts when
compared to the standard translation.

The dialects covered are the Cerkno dialect of
the Slovenian language, the Chakavian dialect of
the Croatian language, and the Torlak dialect of
the Serbian language. Together with the dataset,
we also perform experiments on the translations
of the COPA dataset into all standard South Slavic
languages that are related to the evaluated dialects
except Bulgarian. Such data setup enables precise
measurements of the differences in performance
between standard languages and dialects, but also
potential transfer learning opportunities between
the standard and dialect varieties.

A quantitative comparison of the dialectal
datasets with their standard language counterparts
shows a varying level of character-level, word-level

and lexicon-level deviation of dialectal text from
the standard datasets, with the observed differences
rather well reproduced in baseline zero-shot and 10-
shot experiments. Namely, the Slovenian Cerkno
dialect and the Croatian Chakavian dialect show
significantly lower results than the Torlak dialect.
This suggests that the idiolect of the translator into
the Torlak dialect is closer to standard Serbian,
which makes the dataset simply less challenging.

Besides the difference in performance gaps be-
tween dialects, the baseline results also show, very
much expectedly, that performance on standard lan-
guages is significantly better than that on dialects.
The open models show also to be, similar to com-
parable results on other benchmarks (Gao et al.,
2023; OpenAI, 2023), less capable than the closed
models available only through an API.

Rather good news for large language model adap-
tation to dialectal texts is that in-context 10-shot
learning drastically improves the performance on
the worst-performing dialects, with a 14-point per-
formance improvement on the Cerkno dialect and
a 9-point improvement on the Chakavian dialect.
Part of the improvement in performance can be fol-
lowed back to the model in-context learning about
the task itself. Further analyses are required to
obtain a more detailed insight to which level this
impacts the results.

There are many additional future directions we
plan to follow upon. One is measuring the hu-
man performance on the presented dialects given
their linguistic background. Namely, some of the
presented dialects are not easy to understand by
most speakers of the related standard language. An-
other research direction is adding a speech compo-
nent to these datasets, which opens up the dataset
for spoken dialectal language understanding mea-
surements, but also dialectal speech-to-speech and
speech-to-text translation and generation.

Finally, we hope that this dataset will spark inter-
est in constructing datasets of many more dialects
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of well-resourced languages. While we can con-
sider the standard of these languages to be well-
resourced, there is a wealth of linguistic diversity
that has still not been well covered.
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6 Limitations

It is important to note that the regional language
variants in the dialect COPA datasets should be
interpreted only as one of the possible projections
of dialects into written form, not as a single canon-
ical version. Furthermore, while we refer to these
datasets as dialect translations for simplicity, we
are aware that this is not in line with the view of
dialectologists where dialects are purely spoken
variants. It should be thus put forward that our
dialect translations are just an attempt at project-
ing dialectal speech into a semi-canonical written
form. To bridge these limitations, we are planning
on creating a speech audio dataset where the native
speakers would read out the COPA instances. This
would provide a truer representation of dialects and
also open a new front of evaluation of language
models on speech COPA datasets.
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skupa mladih filologa Srbije / Knjiga 1, pages 41–52.
FILUM, Kragujevac.
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A Appendix

Zero-shot prompt An example from the Slove-
nian Cerkno dataset.

You will be given a task. The task definition is in
English, but the task itself is in another language.
Here is the task!

Given the premise "Muoje telu je metalu sinca
na traua.", and that we are looking for the cause of
this premise, which hypothesis is more plausible?

Hypothesis 1: "Sunce je šlu guor.".
Hypothesis 2: "Traua je bla pakuošena.".
Answer only with "1" or "2".
Answer:

Ten-shot prompt An example from the Croatian
Chakavian dataset.

You will be given a task. The task definition is in
English, but the task itself is in another language.
You are to choose the more likely hypothesis given
a premise. Take into account that we are either
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looking for a cause or an effect of the premise. An-
swer only with "1" or "2". Here are some examples
of the task:

Example 1:
Premise: "Muški je otpra špino."
Question: "effect"
Hypothesis 1: "Školjka ot zahoda se je napunila

z oduon."
Hypothesis 2: "Oda je počela teć z mlaznici."
Answer: "2"
Example 2:
Premise: "Mlada je našla neko blago va žitar-

icah."
Question: "effect"
Hypothesis 1: "Nalila je mlieko va škudelico."
Hypothesis 2: "Je zgubila tiek."
Answer: "2"
Example 3:
...
Example 10:
Premise: "Šlovek je čuda popi na fešte."
Question: "effect"
Hypothesis 1: "Ta drugi dan ga je bolela glava."
Hypothesis 2: "Ta drugi dan mu je kapa nuos."
Answer: "1"
Now to your task!
Premise: "Moje tielo je hitalo hlat na travo."
Question: "cause"
Hypothesis 1: "Sunce je hodilo van."
Hypothesis 2: "Trava je bila pokošena."
Answer:
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Abstract

This paper aims to assess the role of multi-word
compound adverbs in distinguishing Brazilian
Portuguese (PT-BR) from European Portuguese
(PT-PT). For this study, a large lexicon of Por-
tuguese multi-word adverbs (3,665) was anno-
tated with diatopic information regarding lan-
guage variety, which has not been available so
far. The paper then investigates the distribu-
tion of this category in the DSL (Dialect and
Similar Language) corpus of journalistic texts,
representing Brazilian (PT-BR) and European
Portuguese (PT-PT). Results indicate a substan-
tial similarity between the two varieties, with
a considerable overlap in the lexicon of multi-
word adverbs. Additionally, specific adverbs
unique to each language variety were identified.
Lexical entries recognized in the corpus repre-
sent 18.2% (PT-BR) to 19.5% (PT-PT) of the
lexicon, and approximately 5,700 matches in
each partition. While many of the matches are
spurious due to ambiguity with otherwise non-
idiomatic, free strings, occurrences of adverbs
marked as exclusive to one variety in texts from
the other variety are rare.

1 Introduction

This study seeks to identify and contrast multi-
word (compound) adverbs between the Brazilian
(PT-BR) and European (PT-PT) varieties of Por-
tuguese. Two key factors underpin this focus:
Firstly, multi-word expressions often prove to be
less ambiguous than single words, even when their
meaning is idiomatic (non-compositional). Sec-
ondly, despite constituting a significant portion of
lexicons in many languages, adverbs are frequently
overlooked in Natural Language Processing, pos-
sibly due to their heterogeneous nature and lexical
range. Furthermore, to the best of our knowledge,
no assessment has been made until now, of the lex-
ical distribution of language variety-specific multi-
word adverbs in Portuguese. And even if such a
distribution were skewed, no study seems to be

available on the distribution in corpora of such lan-
guage variety-specific multi-word adverbs. The
goal of this paper is to provide a clear answer to
both these issues.

While language variety identification can be a
crucial task for dialect-sensitive NLP tasks, the
main idea underlying this paper is not to evaluate
the identification of the linguistic variety between
PT-BR and PT-PT per se using multi-word adverbs,
but to determine the impact of the adverbial expres-
sions and the extent to which they are asymmetrical
across both varieties. The aim is to achieve this
through an analysis conducted on two comparable
corpora of journalistic texts, one in PT-BR and the
other in PT-PT, that have been used in previous
DSL shared tasks (Tan et al., 2014).

This paper begins with an overview of the pri-
mary goals and the resources utilized. In Section 2,
we look deeper into the notion of multi-word (com-
pound) adverbs and discuss the ongoing research
focused on developing a lexicon of multi-word ad-
verbs in Brazilian Portuguese. Section 3 outlines
the methodology used in this experiment, specifi-
cally addressing the asymmetry of adverbial con-
structions identified in both varieties of Portuguese.
Section 4 presents the findings and their analysis.
Lastly, Section 5 concludes the paper with final
observations.

2 The Lexicon of Portuguese Multi-word
Adverbs

Multi-word adverbs, also referred to as compound
adverbs, are expressions composed of two or more
words forming a single lexical unit with specific
word combinations. While they generally adhere
to syntactic rules for phrase formation, their struc-
ture is often “frozen”, meaning their components
cannot be rearranged, inserted, or reduced (through
ellipsis), and they typically exhibit idiosyncratic
constraints on morphosyntactic variation (Gross,
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1982, 1986b; Guimier, 1996). One key characteris-
tic of multi-word adverbs is their lack of semantic
compositionality, wherein the meaning of the ex-
pression cannot be deduced from the individual
meanings of its elements, resulting in an idiomatic
overall meaning, e.g.:

(1) Aprendi isso a duras penas.1 ‘I learned that
the hard way.’

The example above demonstrates that the expres-
sion a duras penas ‘the hard way’ is a compound,
multi-word adverb, as it adheres to the mentioned
constraints regarding:2 (a) word order: ?/ºa penas
duras; (b) reduction: *a penas; (c) idiosyncratic
restrictions on morphosyntactic variation: ºa dura
pena; and, finally, (d) limited insertions may be
acceptable: a muito duras penas. In the PtTenTen-
Corpus2020 (12.5 billion words) (Kilgarriff et al.,
2014), (a) only 3 instances were found of the id-
iomatic string a penas duras, with the adjective in
a post-nominal position; 7 other uses of this word
order are all literal (‘harsh penalties’), as indicated
by ‘º’; these 10 instances are marginal, compared to
6,205 occurrences of a duras penas, with reversed
order, all of which are idiomatic; (b) the reduced
form (over 5.5 thousand occurrences) is never inter-
preted as an idiomatic expression, and it is usually
a sub-string of a distributionally free phrase; (c) the
singular form (21 instances) is always literal; and,
finally, (d) only 2 instances were found with the
adverb quantifier muito in the prenominal position,
both idiomatic; and none after the noun.

Multi-word adverbial expressions have received
a great deal of interest in the field of linguistic
studies and have been the object of previous studies
in various languages (Gross, 1996a; Di Gioia, 2001;
Català, 2003; Laporte et al., 2008; Palma, 2009;
Shudo et al., 2011; Català et al., 2020; Müller et al.,
2022, 2023).

The lexicon of multi-word adverbs in Brazilian
Portuguese is part of an ongoing study that focuses
on identifying, classifying, and describing the lex-
ical, syntactical, and semantic features of multi-
word adverbs. The goal is to expand the list of
European Portuguese multi-word adverbs (Palma,
2009) by incorporating Brazilian Portuguese ad-
verbial compounds. This will result in a compre-
hensive lexicon, covering expressions specific to

1O Estadão, from PtTenTenCorpus, id=11740543771
2In the examples, ‘*’ indicates the string is unaccept-

able, ‘?’ dubiously acceptable, or ‘º’ acceptable but with
literal/compositional meaning.

each Portuguese variety, as well as those common
to both.

We adopt the theoretical-methodological frame-
work of Lexicon-Grammar (Gross, 1975, 1981,
1996b), based on Harris (1991) Operator Trans-
formational Grammar, along with the formal classi-
fication of compound adverbs as proposed by Gross
(1986a). This classification system categorizes ad-
verbs based on the internal sequence of their gram-
matical categories. Table 1 presents the current dis-
tribution of multi-word adverbs by formal classes
and language variety. Currently, 68.3% of the lex-
icon incorporates multi-word adverbs shared be-
tween PT-PT and PT-BR. At the same time, 26.3%
includes expressions exclusively found in PT-BR,
and 5.5% is exclusive to PT-PT adverbial expres-
sions.

Additionally, we apply the criteria proposed
by Molinier and Levrier (2000) to classify sin-
gle adverbs ending in -ment in French, according
to their syntactic-semantic features. We believe
these criteria are applicable to the description of
-mente adverbs in Portuguese, as shown in Fernan-
des (2011), as well as multi-word adverbs in Por-
tuguese (Palma, 2009; Català et al., 2020).

Molinier and Levrier (2000)’s framework out-
lines two primary categories of adverbs: those that
modify the constituents of the sentence, and thus
are considered internal modifiers (type M), and
those that modify the entire sentence, known as
external modifiers (type P). The authors further
propose a nuanced sub-classification based on the
adverbs’ function and the relations they establish
within a sentence, delineating various syntactic-
semantic adverbial classes.

External modifiers are subdivided into three cat-
egories: (i) conjunctive adverbs (PC), (ii) disjunc-
tive adverbs of style (PS), and (iii) disjunctive ad-
verbs of attitude (PA). The latter category is fur-
ther subdivided into four subclasses: (a) adverbs
of habit (PAh), (b) evaluative adverbs (PAe), (c)
modal adverbs (PAm), and (d) subject-oriented ad-
verbs (PAs).

Adverbs that modify an internal constituent of
the sentence are classified into six subclasses: (iv)
manner adverbs (MV), (v) subject-oriented man-
ner adverbs (MS), (vi) adverbs of time (MT), (vii)
point-of-view adverbs (MP), (viii) quantity adverbs
(MQ), and (ix) focusing adverbs (MF).

We adopted this general framework to classify
and describe Portuguese adverbs. Furthermore,
we introduce a new category, (x) locative adverbs

100



Class Internal Structure Examples PT-PT % PT-BR % PT % Total %
PC Prep C em vão ‘in vain’ 28 0.14 243 0.25 667 0.27 938 0.256
PDETC Prep Det C pelo menos ‘at least’ 57 0.29 218 0.23 522 0.21 797 0.218
PAC Prep Adj C de má vontade ‘unwillingly’ 11 0.06 46 0.05 231 0.09 288 0.079
PCA Prep C Adj por maioria absoluta ‘by absolute majority’ 22 0.11 70 0.07 268 0.11 360 0.098
PCDC Prep C1 de C2 por conta da casa ‘on the house’ 21 0.11 83 0.09 207 0.08 311 0.085
PCPC Prep C1 Prep C2 da cabeça aos pés ‘head to toes’ 46 0.23 105 0.11 265 0.11 416 0.114
PCONJ Prep C1 Conj C2 em verso e prosa ‘in verse and prose’ 9 0.05 74 0.08 168 0.07 251 0.068
PF frozen sub-clause dito isso ‘this said’ 2 0.01 41 0.04 88 0.04 131 0.036
PV Prep V W até dizer chega lit.:‘until say enough’, ‘a lot’ 2 0.01 2 0.002 25 0.01 29 0.008
PJC Conj C e por aí vai ‘and so on’ 2 0.01 47 0.05 31 0.01 80 0.022
PACO <Adj>como C <surdo>como uma porta ‘deaf as a door’ 7 0.01 3 0.001 10 0.003
PVCO <V>como C <trabalhar>como uma mula ‘word like a mule’ 26 0.03 25 0.01 51 0.014

Total 200 0.055 962 0.262 2,500 0.683 3,662

Table 1: Formal classification of Portuguese multi-word adverbs. Codes for classes are conventional. Internal
structure: adjective Adj, C1 and C2 lexical constants, conjunction Conj, Determiner Det, Preposition Prep, Verb V,
undefined sequence of elements W. Distribution per variety: European Portuguese PT-PT, Brazilian Portuguese
PT-BR, Common Portuguese PT. Zero values were removed.

(ML), which was not included in this framework
before, even though it is not new to the study of
adverbs. You can find more details about each
category in (Müller et al., 2022, 2023).

Table 2 displays the distribution of the lexi-
con based on this syntactic-semantic classification
across different language varieties. To the best of
our knowledge, this lexicon represents the most ex-
tensive collection of multi-word adverbs available
in Portuguese.

The predominant categories are manner ad-
verbs (MV: 59.9%) and time adverbs (MT: 14.8%).
Within the latter category, 76% are corresponded to
date adverbs, indicating temporal locatives. Addi-
tionally, the recently introduced locative class (ML)
from (Müller et al., 2023) accounts for 5.5%. Con-
junctive adverbs (PC: 7%) and quantifying adverbs
(MQ: 5.1%) are also noteworthy.

The assignment of language variety to the multi-
word adverbs in the lexicon is based mostly on
their distribution in the corpora, particularly (i) for
PT-PT, the CETEMPúblico corpus (Rocha and San-
tos, 2000)3 (ii) for PT-BR, the Corpus Brasileiro4,
with approximately 1 billion words; both (i) and
(ii) are available through Linguateca5; and, (iii) for
both variants, the Portuguese Web 2020 (ptTenTen-
Corpus20) (Wagner Filho et al., 2018; Kilgarriff
et al., 2004), with 12,5 billion words (PT-PT: 893.2
million words, PT-BR: 8 billion words).

3 Methods

In order to assess the influence of multi-word ad-
verbs on the two Portuguese varieties, we employed

3www.linguateca.pt/cetempublico
4http://corpusbrasileiro.pucsp.br/
5www.linguateca.pt/

the European (PT-PT) and Brazilian (PT-BR) parti-
tions of the Discrimination of Similar Languages
(DSL) Corpus Collection (DSLCC, v.04) (Tan et al.,
2014)6. These partitions were originally curated
for the DSL task and served as the primary dataset
for the shared tasks conducted as part of the NLP
for Similar languages, Varieties and Dialects (Var-
Dial) workshop (Zampieri et al., 2017). The PT-PT
texts comprise 18,000 sentences with a total of
735,503 words, while the PT-BR texts also encom-
pass 18,000 sentences and a slightly larger word
count of 791,872. Table 3 shows the breakdown
of the number of sentences, words and different
words in each partition.

To process the corpora, we utilized the linguis-
tic development platform Unitex (v.3.3)(Paumier
et al., 2021).7 The texts underwent pre-processing
using the linguistic resources provided by the sys-
tem, specifically the text segmentation tool and the
simple-word dictionary. The lexicon of multi-word
adverbs was also formatted into the DELA format
compatible with Unitex and then applied to the
corpora. For instance, consider the entry for the
manner adverb a duras penas ‘the hard way’:

a duras penas.ADV+PAC+MV+PT+BR

In this format, each adverb entry consists of a
string with a part-of-speech designation and a set
of features, including its formal class, syntactic-
semantic class, and the language varieties it per-
tains to (+PT and/or +BR). Adverbs not specific to
a language variety are explicitly labeled with the
features +NotPT (e.g., [responder] de bate pronto
‘(to reply) right away’) or +NotBR (e.g., [cair] de
ratatulha ‘(to fall) headlong’).

6http://ttg.uni-saarland.de/resources/DSLCC/
7https://unitexgramlab.org/
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Class Examples PT-PT % PT-BR % PT % Total %
PC (conjunctive) afinal de contas ’after all’ 3 0.015 42 0.043 213 0.085 258 0.070
PS (disjunctive of style) com toda a franqueza ’in all honesty’ 1 0.005 10 0.010 54 0.022 65 0.018
PA (disjunctive of attitude)

PAa (evaluative) por pura sorte ‘by sheer luck’ 21 0.008 21 0.006
PAm (modal) com certeza ‘certainly’ 1 0.005 10 0.010 25 0.010 36 0.010

PAs (subject-oriented) pelo meu lado ‘for my part’ 4 0.004 4 0.001
PAh (habit) de costume ‘usually’ 4 0.004 12 0.005 16 0.004

MV (manner) por amor à pátria ’for love of country’ 157 0.781 615 0.637 1,423 0.570 2,195 0.599
MS (subject-oriented mode) de boa fé ’in good faith’ 2 0.010 22 0.023 93 0.037 117 0.032
MT (time)

MTd (date) a horas mortas ‘at dead of night’ 24 0.119 80 0.083 307 0.123 411 0.112
MTf (frequency) dia sim dia não ‘every other day’ 5 0.025 25 0.026 53 0.021 83 0.023

MTu (duration) anos a fio ‘for years on end’ 12 0.012 35 0.014 47 0.013
MP (point of view) na prática ’in practice’ 4 0.002 4 0.001
MQ (quantifier) aos montes ’in abundance’ 5 0.025 60 0.063 119 0.048 185 0.051
MF (focalizer) em especial ’especially’ 3 0.003 17 0.007 20 0.005
ML (locative) nos confins do mundo ’at the ends of the earth’ 3 0.015 78 0.081 120 0.048 201 0.055

Total 201 0.055 966 0.264 2,496 0.681 3,662

Table 2: Syntactic-semantic classification of Portuguese multi-word adverbs. Codes for classes are conventional.
Sub-classes of PA and MT are presented. Distribution per variety: European Portuguese PT-PT, Brazilian Portuguese
PT-BR, Common Portuguese PT. Zero values were removed.

de bate pronto.ADV+PCA+MV+NotPT+BR
de ratatulha.ADV+PAC+MV+PT+NotBR

For the classification of adverbs according to
the language variety, two linguists, native speak-
ers of each variety, manually, separately and sys-
tematically annotated the lexicon entries, deciding
whether they belonged to each other variety. Ad-
ditionally, we also relied on corpus consultation
PtTenTen20 partitions of each language variety and
controlled web search using domains .pt and .br to
verify the occurrence of the adverbs in each variety.
In a second moment, aspects of lexical variation
(prepositions, determiners) were checked. Fore-
most, in the case of adverbs signaled to be common
to both varieties, false-friends were detected by the
authors, by elicitation of the meaning of those ex-
pressions. To this end, we also resource to these
adverbs’ use in real examples drawn from corpora,
when the meaning was not clear or was apparently
different from the expected meaning in one of the
varieties – e.g. toda vida ‘all life’ as a locative
(ML) adverb in PT-BR and not as a durative time
adverb (MTd); or todo (o) dia ‘all day’ as a du-
rative MTd in PT-PT instead of a frequency MTf
adverb in PT-BR. As seen in these examples, it is
often only at the syntactic-semantic classification
that such differences arise.

(2) É só chegar no hotel e seguir reto toda a
vida ‘Just get to the hotel and go straight on
ahead/’til the end(lit:. all [your] life) ’

This approach allowed us to extract all instances
of matched adverbs, particularly those with the

+NotBR feature from the PT-BR partition of the cor-
pus, and conversely, all adverbs marked as +NotPT
from the PT-PT partition. In the following section,
we present and discuss our findings.

4 Results

DSLCC corpus
PT-PT PT-BR

Sentences 18,000 18,000
Words 735,503 791,872
Different words 42,190 47,914
Adv lexical entries 715 668
PT-BR entries 629 (87.9%) 620 (92.8%)
NotPT entries 74 (10.3%) 46 (6.9%)
NotBR entries 12 ( 1.7%) 2 (0.3%)
Adv matches 5,695 5,700
NotPT/BR matches 517 2

Table 3: DLSCC Corpus: European (PT-PT) and Brazil-
ian Portuguese (PT-BR) partitions. Results from lexical
analysis.

From applying the lexicon of multi-word ad-
verbs to each partition of the DSLCC corpus, the
following results emerged, as depicted in Table 3.
Although the word count in the PT-BR partition is
marginally higher (+7.66%), the number of distinct
lexical entries is slightly smaller (-7.04%).

Considering the Brazilian Portuguese (PT-BR)
partition, the number of lexical entries found in the
corpus (668) represents 18.23% of entries of the
multi-word adverbs lexicon. These can be divided
into exclusively Brazilian entries (46; 6.9%), exclu-
sively European (2; 0.3%) and entries common to
both varieties (620; 92.1%).

Moving now to the European Portuguese par-
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tition, the number of lexical entries found in the
corpus comprises 715 adverbial entries, compara-
ble to the size of the PT-BR corpus. Among these
entries, 629 (87.9%) are common to both Brazilian
and European Portuguese, while 74 (10.3%) are
exclusive to European Portuguese, and 12 (1.7%)
are not found in Brazilian Portuguese.

This breakdown illustrates the substantial lexical
overlap between the multi-word adverbs of the two
varieties. European Portuguese contains a slightly
higher proportion of unique adverbs than Brazilian
Portuguese. This overlap tends to make the use of
adverbs a less-than-optimal linguistic device for the
DSL task. In fact, as it will be seen from the obser-
vations made below, this overlap is even greater, as
some entries, marked as exclusive from one variant
(+NotPT), do occur in the PT-PT partition.

ptTenTen2020 Corpus partition
adverb PT-PT PT-BR

ao domicílio
254 4

284 377 41*10−6 4 478 384*10−6

a domicílio
7 2,597

873 842*10−6 324 195 295*10−6

n = 893 179 245 n = 8 010 603 604

Table 4: Distribution of the multi-word adverbs ao
domicílio/a domicílio ‘to the domicile’ in combination
with the verbs entregar and distribuir ‘deliver’ in the
ptTenTen2020 corpus; number of occurrences and ratio
per million words; n is the number of tokens per each
partition of the corpus.

The search in the BR corpus for entries with the
+NotBR tag resulted in only 2 cases, which are illus-
trative of the phenomena found. Table 4 shows the
distribution of the locative adverb ao domicílio / a
domicílio ‘to (the) domicile’ in each partition of
the ptTenTen2020 corpus in combination with the
most frequently co-occurring verbs entregar and
distribuir ‘deliver’, allowing for a 0 to 5-word win-
dow, in the ptTenTen2020 corpus.

From the data in this table, the expression a_o
domicílio ‘to_the domicile’ (with the article o
‘the’) is deemed as predominantly used in PT-PT.
In fact, in PT-BR, the corresponding expression is
a domicílio ‘to domicile’, which lacks the article
o ‘the’. The single, spurious occurrence of this
adverb constitutes a case of ambiguity:

(3) Em relação à filiação partidária e ao
domicílio eleitoral, a comissão manteve a
legislação atual. ‘Regarding party affiliation
and electoral domicile, the commission main-

tained the current legislation.´

The second case was de facto, ‘in fact’, which is
the PT-PT orthographic form, while in PT-BR the
correct spelling is de fato. The distribution of the
two spellings in the same corpus, when the string
is followed by a comma (usually a non-ambiguous
context of the multi-word adverb), is shown in Ta-
ble 5. This single occurrence suggests a spelling
error. However, its analysis reveals another level of
ambiguity:

(4) [. . .] O governo de facto, [. . .] rechaça a volta
do líder deposto ao poder. ‘The de facto gov-
ernment, [. . .], rejects the ousted leader’s re-
turn to power.’

In this case, the de facto/de fato adverb is being
used here as an adjectival modifier of governo ‘gov-
ernment’, and its meaning ‘de facto’, as shown in
the translation, is that of a manner-like modifier.
This is a clear contrast with the modal (PAm) value
‘in fact’, typically associated with the adverb.

ptTenTen2020 Corpus partition
adverb PT-PT PT-BR

de facto
50,270 3,644

56 282 095 99*10−6 454 897 056*10−6

de fato
1,878 252,109

2 102 601 477*10−6 31 471 910 54*10−6

n = 893 179 245 n = 8 010 603 604

Table 5: Distribution of the multi-word adverbs de
facto / de fato ‘in fact’.

Besides, the distribution of the spellings shows
that the distinction between the two varieties is of-
ten not a clear-cut divide. In this particular case, the
adaptation to the orthographic reform8 may have
raised some level of uncertainty among language
users.

The number of instances of +NotPT adverbs
found in the PT-PT partition of the DSLCC cor-
pus is significantly higher (517). For lack of space,
only a few different cases will be mentioned here,
to illustrate the general phenomena found.

Some cases correspond to real distinct expres-
sions in each variety. For example, the adverb
(pagar) às prestações [PT-PT]/ à prestação [PT-
BR]/ ‘in installments’ is used with the plural form
in PT-PT and in the singular PT-BR. All 4 matches

8http://www.portaldalinguaportuguesa.org/
acordo.php
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of the Brazilian adverb à prestação are spurious,
and correspond to free prepositional phrases:

(5) [. . .] aplicado à prestação de contas [. . .]; O
acesso à prestação exige a assinatura prévia
[. . .]; [. . .] quanto à prestação dos cuida-
dos assistenciais [. . .]; [. . .] estar atento à
prestação dos jogadores [. . .]
‘[. . .] applied to the rendering of accounts [. . .]; Access
to the service requires a prior subscription [. . .]; [. . .]
regarding the provision of assistance care [. . .]; [. . .]
pay attention to the performance of the players [. . .]’

Another problem results from many compound
adverbs being very short strings, and therefore
highly ambiguous with other word combinations,
including other multi-word expressions. Exam-
ples of such ambiguous, +NotPT strings are à toda
‘full speed’, às avançadas ‘to the advanced’, de
primeira ‘firstly’, na maior ‘confortably’, por cima
‘above’, por detrás ‘from behind’. Finally, several
expressions have been marked as +NotPT but are,
in fact, common to both varieties, e.g. de há muito
[tempo] ‘a long [time] ago’.

After a manual inspection, it was ascertained
that out of 517 matches, (i) 112 (21.6%) were
true-positives, that is, the multi-word adverbs were
found in the PT-PT corpus though marked as
+NotPT, hence the assignment of those expressions
to a single variety needs careful revision; (ii) 405
matches (78.3%) were false-positives, that is, the
matched string did not correspond to the multi-
word adverb in the lexicon applied to the corpus.
From these, however, 110 instances (21.5%) made
part of longer multi-word expressions:

(6) O IVA “super-reduzido”, dos bens de
primeira necessidade, irá permanecer em 4%.
‘The “super-reduced” VAT on basic necessities will re-
main at 4%.’

In these case, the compound noun bens de primeira
necessidade ‘basic necessities’ overlaps the com-
pound adverb de primeira [PT-BR] ‘to start with’.
recognizing the longer multi-word expression
would have prevented these false-positive cases.

It should also be mentioned that many instances
identified in both partitions of the corpus and sig-
naled as belonging to the common Portuguese
(+PT+BR) are, in fact, also spurious (false-positive)
cases, for the same reasons as explained above.
That is, the system identifies a sequence of words
that resembles a dictionary-listed expression, but
that does not align with the intended compound
adverb. This discrepancy highlights the potential

for ambiguity inherent in NLP processing, and re-
quires deeper linguistic analysis of the ambiguous
strings’ context to improve precision.

Both partitions of the corpus are currently being
annotated to delimit the targeted multi-word adver-
bial forms and tag them with their POS, formal
and semantic class, as well as the language variety
assignment. The goal is to build a reference corpus
annotated for this category, aiming at improving
parsing accuracy9.

5 Conclusion

This paper introduces a lexicon of multi-word (MW,
or compound) adverbs in Portuguese, examining
their lexical distribution across Brazilian (PT-BR)
and European (PT-PT) varieties. From a strictly lex-
ical perspective, the majority of the lexicon pertains
to Common Portuguese (68.1%), with exclusively
Brazilian compound adverbs (26.4%) outnumber-
ing those exclusive to the European variety (5.5%).
However, these preliminary figures may require re-
vision following the experiments conducted in this
study.

This lexicon was utilized to annotate the Euro-
pean (PT-PT) and Brazilian (PT-BR) segments of
a comparable corpus sourced from the Discrimina-
tion of Similar Languages (DSL) Corpus Collec-
tion (DSLCC, v.04) (Tan et al., 2014). The count
of distinct adverb entries discovered in the corpus
(PT-PT: 715 / PT-BR: 668), as well as the number
of matches (PT-PT: 5,695 / PT-BR: 5,700), exhibits
remarkable similarity.

The proportion of lexical entries attributed to
Common Portuguese is notably high and compa-
rable across both corpus partitions (PT-PT: 629
(87.9%) / PT-BR: 620 (92.8%)), although slightly
larger in PT-BR. Conversely, the count of lexi-
cal entries exclusively associated with each vari-
ety in their respective partitions is relatively small
(PT-PT: 74 (10.3%) / PT-BR: 46 (6.9%)), with a
slightly higher proportion observed for European
Portuguese entries.

On the contrary, the number of MW adverbs la-
belled as not belonging to either variety (+NotPT
and +NotBR) and found within their respective parti-
tions is arguably negligible (PT-PT: 12 (1.7%) / PT-
BR: 2 (0.3%)), albeit marginally higher in PT-PT.

9The corpus of annotated sentences, and the list of matched
MW adverbs’ can be found in the link below, under a Cre-
ative Commons license: https://string.hlt.inesc-id.
pt/wiki/Compound_Adverbs
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Nevertheless, the frequency of such occurrences in
each partition exhibits significant asymmetry.

In Brazilian texts, only two instances of +NotBR
MW adverbs were identified. One of them (e.g., ao
domicílio / a domicílio ‘to (the) domicile’) presents
a case of ambiguity, as the phrase forming the MW
adverb can also exist as a free sequence of words.
The other instance is a misspelled word (facto / fato
’fact’), likely resulting from some uncertainty in
applying the orthographic reform of the Portuguese
language. By consulting the extensive corpus of
PtTenTen2020 (Wagner Filho et al., 2018; Kilgar-
riff et al., 2004), it was possible to determine: (i)
the asymmetric distribution of each variant form
and their true association with the PT-PT or PT-
BR partition; and (ii) the clear-cut distribution of
orthographic variants, alongside some ambiguity
due to the imperfect application of the Portuguese
orthographic reform.

Regarding the +NotPT adverbs found in the Por-
tuguese partition of the corpus, surprisingly, a con-
siderable portion (21.6%) were confirmed as true-
positive instances of adverbs inaccurately marked
as exclusive to the Brazilian variety, necessitating
reassignment to European Portuguese. However,
the majority of remaining instances (78.3%) were
false positives, stemming from the ambiguity of the
strings forming the multi-word adverb with other
word combinations. Among these, 21.5% were
even part of another multi-word expression (such
as compound nouns or verbal idioms). Hence, there
remains ample room for improvement in accurately
identifying multi-word adverbs, particularly con-
cerning their potential overlap with other, longer
multi-word expressions, either previously identi-
fied or concurrently present.

In conclusion, multi-word adverbs in Common
Portuguese constitute a significant portion of this
lexical class (68%), representing the majority of
all adverb entries discovered in comparable cor-
pora (ranging from 87.9% to 92.8%). However,
their sparse distribution in the corpus renders this
segment of the language lexicon sub-optimal for
the task of distinguishing dialects and similar lan-
guages.

In the near future, we aim to provide the two
corpus partitions annotated with the newly identi-
fied multi-word adverbs. We believe that such a
resource could then be utilized to enhance other
dialect-sensitive natural language processing tasks.

References
Dolors Català. 2003. Les adverbs composés: approches

contrastives en linguistique appliquée. Ph.D. the-
sis, Universitat Autònoma de Barcelona, Barcelona,
Spain.

Dolors Català, Jorge Baptista, and Cristina Palma. 2020.
Problèmes formels concernant la traduction des ad-
verbes composés (espagnol/portugais). Langue(s) &
Parole, 5:67–82.

M. Di Gioia. 2001. Avverbi idiomatici dell’italiano.
Analisi lessico-grammaticale. l’Harmattan Italia,
Torino.

Gaia Fernandes. 2011. Automatic Disambiguation of
-mente ending Adverbs in Brazilian Portuguese. Mas-
ter’s thesis, Universidade do Algarve and Universitat
Autònoma de Barcelona, Faculdade de Ciências Hu-
manas e Sociais, Faro, Portugal.

Gaston Gross. 1996a. Les expressions figées en français:
noms composés et autres locutions. Editions Ophrys.

Maurice Gross. 1975. Méthodes en syntaxe. Hermann,
Paris.

Maurice Gross. 1981. Les bases empiriques de la notion
de prédicat sémantique. Languages, 1(63):7–52.

Maurice Gross. 1982. Une classification des phrases
figées du français. Revue québécoise de linguistique,
11(2):151–185.

Maurice Gross. 1986a. Grammaire transformationnelle
du français: 3 - Syntaxe de l’adverbe. ASSTRIL,
Paris.

Maurice Gross. 1986b. Lexicon-grammar. The represen-
tation of compound words. In COLING 1986 Volume
1: The 11th International Conference on Computa-
tional Linguistics.

Maurice Gross. 1996b. Lexicon-grammar. In Keith
Brown and Jim Miller, editors, Concise Encyclope-
dia of Syntactic Theories, pages 244–259. Pergamon,
Cambridge.

Claude Guimier. 1996. French adverbs: the case of en
-ment adverbs. Editions Ophrys.

Zellig Sabbettai Harris. 1991. Theory of Language and
Information: a Mathematical Approach. Clarendon
Press, Oxford.

Adam Kilgarriff, Miloš Jakubíček, Jan Pomikálek,
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Abstract

This paper presents a new textual resource
for Norwegian and its dialects. The NoMu-
sic corpus contains Norwegian translations of
the xSID dataset, an evaluation dataset for spo-
ken language understanding (slot and intent
detection). The translations cover Norwegian
Bokmål, as well as eight dialects from three
of the four major Norwegian dialect areas. To
our knowledge, this is the first multi-parallel
resource for written Norwegian dialects, and
the first evaluation dataset for slot and intent
detection focusing on non-standard Norwegian
varieties. In this paper, we describe the annota-
tion process and provide some analyses on the
types of linguistic variation that can be found
in the dataset.

1 Introduction

Over the last decades, various textual resources
covering Norwegian dialects have been produced.
This paper reports on the creation of yet another
Norwegian dialect dataset which has some unique
properties that set it apart from previous work.

As a starting point, we use the xSID corpus
(van der Goot et al., 2021), which consists of nat-
ural prompts asked to digital assistants (e.g., Is it
going to rain today?, Change tomorrow morning’s
alarm to 6 am.). A digital assistant will have to
(a) recognize the intent of the prompt and (b) de-
tect and classify the main arguments, also called
slots, of the prompt. Solving these two tasks is
commonly referred to as spoken language under-
standing (SLU) or slot and intent detection (SID).

The xSID corpus is already available in sev-
eral low-resource and non-standard varieties (Aepli
et al., 2023; Winkler et al., 2024) and consists of
a text genre for which dialectal productions are
natural. We have translated the English sentences
of xSID into standard Norwegian Bokmål and into
the dialects of eight native speakers of Norwegian
who regularly write in these dialects. The slot and

intent annotations were then semi-automatically
transferred to the Norwegian translations.

The resulting dataset, which we call NoMusic
(NOrwegian MUlti-dialectal Slot and Intent detec-
tion Corpus), has the following particularities com-
pared to existing Norwegian dialect resources:

• It is a multi-parallel corpus, i.e., all transla-
tions have the same number of sentences with
the same meanings.

• It is a natively written resource and does not
consist of transcribed speech.

• It is openly available, as all the translations
are created on purpose within the project.1

The corpus can be used for various purposes,
both in dialectology and natural language process-
ing, e.g.:

• to evaluate the robustness and cross-lingual
and cross-lectal transfer capabilities of SLU
systems, thanks to the slot and intent labels,

• to identify dialect-specific expressions,
• to investigate digital writing practices,
• to enable machine translation between differ-

ent varieties of Norwegian.

In the following sections, we describe the data
and the annotation process, and provide analyses
of the observed linguistic variation.

2 Related Work

2.1 Dialect Corpora for Norwegian

The Norwegian language has two officially estab-
lished written standards: Norwegian Bokmål and
Norwegian Nynorsk. Bokmål is the more utilized
of the two in terms of speakers, and is historically
based on written Danish.

1The NoMusic dataset is integrated into the xSID reposi-
tory https://github.com/mainlp/xsid, but it is also avail-
able on https://github.com/ltgoslo/NoMusic.
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While there are cases of earlier dialectal writing,
general acceptance of dialects in increasingly for-
mal settings began in the 1970s (Bull et al., 2018,
235-238). Dialects are thus less stigmatized, even
in writing, for example in social media.

Norwegian dialects have been researched both
from dialectological and computational angles, and
several textual resources have been created in re-
cent years. Traditional dialectological corpora such
as the Nordic Dialect Corpus (NDC, Johannessen
et al., 2009)2 or the LIA Norwegian Corpus (Hagen
and Vangsnes, 2023)3 typically consist of transcrip-
tions of interviews conducted with a large number
of informants. This setup does not lead to directly
comparable texts because the different interviews
will be of different lengths, cover different topics
and contain different linguistic structures. Also,
these transcriptions are typically made by trained
annotators according to relatively strict guidelines;
the resulting written representations are often quite
different from “real-world” dialect writing, as they
are meant to faithfully represent the spoken lan-
guage, rather than the way users would write their
own dialect in everyday communication. For exam-
ple, NDC contains Bokmål glosses and phonemic
spellings, but these do not necessarily match how
the users of a particular dialect spell.

On the other hand, recent data collection efforts
such as NorDial (Barnes et al., 2021, 2023) focused
on identifying and annotating written dialect posts
in social media. This does not address the problem
of comparability, but even introduces other chal-
lenges: it is difficult to obtain a dense coverage
of the different dialects used in Norway, and the
resulting dataset may not be made publicly avail-
able due to copyright restrictions. It remains to
be seen to what extent projects such as the Nordic
Tweet Stream (NTS, Laitinen et al., 2018) provide
a viable workaround to copyright and licensing
questions.

2.2 Multi-Dialectal Corpora

A relatively common alternative strategy to create
multi-dialectal corpora consists in asking dialect
speakers to translate texts into their variety, either
from the standard variety or from a third language
like English.

The MADAR Corpus of Arabic Dialects
(Bouamor et al., 2018) illustrates this approach:

2https://tekstlab.uio.no/scandiasyn/
3https://tekstlab.uio.no/LIA/norsk/

the authors use a fixed set of English sentences and
have them translated by native Arabic dialect speak-
ers into their variety. They use the Basic Travel
Expressions Corpus (BTEC, Takezawa et al., 2007)
as a starting point and obtain translations of 2000
sentences into 25 Arabic dialects.

The SwissDial corpus (Dogan-Schönberger
et al., 2021) follows a similar strategy, resulting
in 2500 sentences in 8 Swiss German dialects. The
corpus contains both audio recordings and tran-
scripts, making it suitable for speech processing
applications. Moreover, the data is annotated on
sentence level with topic and code-switching infor-
mation.

In a related effort, the xSID corpus4 (van der
Goot et al., 2021; Aepli et al., 2023; Winkler et al.,
2024) has been created to support the develop-
ment of multilingual dialog systems. It consists
of prompts to digital assistants and is annotated
with intents and slots. The 800 prompts in xSID
are originally in English and have been translated
to 12 major languages and 4 low-resource varieties
or dialects (as of version 0.5, with the latter being
Bavarian German, South Tyrolean German, Swiss
German, and Neapolitan). In contrast to the BTEC
corpus used for MADAR, the xSID source data is
freely available and provides additional sentence-
level (intents) and chunk-level (slots) annotations
for the SID task.

The DIALECT-COPA shared task held at Var-
Dial 2024 (Chifu et al., 2024)5 is based on a sim-
ilar approach: it contains translations of the En-
glish causal commonsense reasoning corpus COPA
(Roemmele et al., 2011; Ponti et al., 2020) into
various South Slavic languages and dialects.

Most of the resources cited above are created by
translation from (American) English. This can be
problematic because the translators may not be suf-
ficiently familiar with the North-American cultural
references (music styles, holiday destinations, etc.)
and/or linguistic expressions (e.g. date and time
formats, imperial measurements) used in the origi-
nal data. Furthermore, non-professional translators
are prone to producing translationese, which can
be perceived as unnatural and not representative of
spontaneous dialect writing. We are aware of these
limitations, but nevertheless find it the most practi-
cal and effective approach to create multi-dialectal
annotated resources.

4https://github.com/mainlp/xsid
5https://sites.google.com/view/vardial-2024/

shared-tasks/dialect-copa
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English Set a reminder to go to the grocery store later

Danish Sæt en påmindelse om at gå i supermarkedet senere

Bokmål Sett på en påminnelse om å gå i butikken etterpå

A1 Minn mæ på at æ skal dra på butikken seinere.
A2 Sett enn påminnelse om å fære tel butikken seinar.
A3 Sett en alarm for å da te matbutikken seinere
A4 Sett en påminnelse om å gå te matbutikken seinar
A5 Sett en påminnelse for å gå t butikken seinar
A6 Sett en påminnelse om å stikke på butikken seinere.
A7 Sett på en påminnelse om å gå t butikken seinare
A8 Lag ein påminnelse om å gå på butikken seinere

Table 1: Examples of translations. The Danish translation is already part of xSID. The Norwegian dialect annotators
are numbered A1 to A8 from North to South.

2.3 Spoken Language Understanding Datasets

The xSID corpus represents one of the few efforts
to provide non-English datasets for the SLU/SID
task. However, it only provides manually created
validation and test sets. Training sets for non-
English languages are available, but created au-
tomatically by machine translation. The only cur-
rently available SLU dataset that covers Norwegian
is MASSIVE (FitzGerald et al., 2022). It provides
training, validation and test sets for 51 languages,
among which standard Norwegian Bokmål. The
slot and intent label sets differ between xSID and
MASSIVE, and we leave it to future work to inves-
tigate to what extent the two annotation standards
can be harmonized meaningfully.

The NoMusic corpus is, to our knowledge, the
first SID dataset that provides multiple alternative
formulations of the same queries.6 The alternatives
show dialectal variation, but also different lexical
and syntactic choices (see Section 4). This variety
opens up new avenues for making both the training
and the evaluation of SLU systems more robust.

3 Data and Annotation

The xSID corpus provides a development set of
300 sentences and a test set of 500 sentences. The
NoMusic dataset consists of annotated translations
of these sentences. It is produced in three phases:

1. Translate the English xSID sentences to stan-
dard Norwegian Bokmål and to the Norwe-

6The ITALIC dataset (Koudounas et al., 2023) provides
audio files and transcripts of SLU prompts in various regional
varieties of Italian, but it is only annotated with intents, not
slots.

gian dialects.
2. Annotate the Bokmål sentences with slots, us-

ing the English sentences as guides.
3. Annotate the dialectal sentences with slots,

using the Bokmål sentences as guides.

The following sections describe these phases in
detail.

3.1 Translation
We used the English xSID dataset as a starting
point and produced translations to standard Nor-
wegian Bokmål and to eight Norwegian dialects.7

The dialect translations were made by university
students who declared that they regularly write in
their dialect.

The Bokmål translation was produced by one
of the authors of the paper. While some dialects
speakers normally use Nynorsk, the other written
Norwegian norm, the choice of Bokmål is purely
practical, and it is used as a means for more easily
transferring the slot and intent labels, as well as
functioning as a meta-language to which to com-
pare the dialectal forms.

The translations were produced by editing .tsv
files in a shared GitHub repository. The annota-
tors had access to GitHub issues where they could
discuss potential problems. An example sentence
with all available translations is shown in Table 1.

3.2 Translation Guidelines
The translators were given simple instructions on
how to translate, but were otherwise not controlled.

7Two additional dialect translations are in progress at the
time of writing and will be added to the dataset when com-
pleted.
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These guidelines mostly followed the ones from
the xSID project, but deviated in some respects
discussed here.

Time The xSID guidelines note that some lan-
guages that do not have pm/am equivalents might
need to translate cases such as 7 pm to 7 in the
evening. Our annotators were not given specific
notes on these translations, but were generally
asked to translate into natural written dialect. This
has resulted in some variation. The 24-hour clock is
widely used in Norway, but in the spoken language,
the 12-hour clock is also used if the times are un-
ambiguous. We see that three different strategies
have been used by our annotators in these cases:
1) adding a temporal adverb (om morran ‘in the
morning’, ettermiddag ‘afternoon’), 2) leaving the
time ambiguous, which often means directly trans-
lating the English time without pm or am. or 3)
converting the time to the 24-hour clock (4 pm →
klokka 16 ‘16 o’clock’). At least 6 of the annota-
tors convert to the 24 hour clock to some degree.
There are also instances of confusion between am
and pm in the translations, for example in one case
5pm was interpreted as 05:00 by one annotator.

Named Entities In the xSID guidelines it is
noted that named entities are not to be translated,
except for place names. While this has been the
general tendency in our dataset, annotators were
asked to translate the names of movies when an es-
tablished Norwegian title exists, but otherwise not.
There is also some confusion for certain named
entities that contain translatable content, such as
whether the Theatres part of Cobb Theatres should
be translated or not. Some annotators have trans-
lated certain titles even in cases where there is no
established Norwegian name.

Grammatical Mistakes Grammatical mistakes
should be kept in the translations if possible, ac-
cording to the xSID guidelines. We believe that
this would have been difficult, as it is not obvi-
ous to decide how a certain mistake might map
from one language to another. Our annotators were
not specifically asked to keep mistakes from the
English sentences. However, as discussed below,
the informal nature of the writing has led to some
spelling mistakes that are not reflections of the orig-
inal English. It is difficult to distinguish between
cases when deviations from normative writing are
conscious representations of dialect, and when they
are simply unintentional.

Capitalization and Punctuation Annotators
were not asked to correct capitalization or punc-
tuation, but were also not explicitly asked to ignore
it; rather, they were asked to follow their usual di-
alect writing habits. As a result, we see different
tendencies among annotators. Some diligently add
it where needed, while some allow for variation
in their translations. Table 1 is an example of this
variation.

Abbreviations While there are generally few ab-
breviations, there are some spelling conventions
that in the written language are similar to abbre-
viations, but that would not be detectable in the
spoken language. The xSID guidelines discourage
abbreviations that are not ‘common in fluent dis-
course.’ We see examples of abbreviations such
as min ‘minute’, which might also be read in its
abbreviatiated form, and we also commonly note
the usage of shortened spelling conventions like
writing d for Bokmål det ‘it’, or t for Bokmål til
‘to’, similar to the usage of u for you in English.

Avoiding Direct Translations The xSID guide-
lines point out that it is not necessary to directly
translate certain things, exemplified by the ditran-
sitive usage of play. We believe that this has been
covered by asking the annotators to translate into
natural-sounding dialectal Norwegian. Another ex-
ample is the translation of the English polite marker
please, which has been translated into a variety of
ways in the data.

Possessive Determiners The xSID guidelines
note that possessive determiners should be pre-
served and translated whenever possible, but the
annotators were not explicitly asked to do this. Nor-
wegian generally uses fewer possessive determin-
ers than English. For example, four dialect and
the Bokmål translations use a variation of where I
am now or here to translate ‘my current position’:
her e e, her, der ej e no, her eg e nå, der jeg er nå,
perhaps due to a direct translation sounding a bit
stilted.

3.3 Translator Demographics

Figure 1 shows the origin of the dialect transla-
tors (marked with A1 to A8) in relation with the
four major Norwegian dialect areas. It can be
seen that three of the four main dialectal areas are
represented in NoMusic, but that we lack transla-
tions from dialects representing Eastern Norwegian.
This absence can be explained by there being less

110



Figure 1: Map of Norway, with the four major dialect
areas and the origins of the eight dialect annotators (A1
to A8).

perceived difference between the spoken language
and the written language in Eastern Norway, as
Bokmål is often associated with Standard Østnorsk
‘Standard Eastern Norwegian’, a commonly taught
spoken variety.8 Slåen (2022) describes written di-
alectal usage in the Northern reaches of the Eastern
Norwegian dialectal area, but the tendency may be
lower in and around Oslo.

As can be seen on the map, 2 translators speak
Northern dialects, 3 central (Trøndersk), and 3
Western dialects. We had 6 female and 2 male
translators. 6 translators were in the age range
20-24 and 2 in the range 25-29; all of them were
university students on Bachelor’s or Master’s level.

3.4 Slot and Intent Annotations

Once the sentences are translated, they need to be
labeled with slots and intents. Each sentence has
a single intent, and the intent is not supposed to
change across languages. Therefore, we automati-
cally transfer the intent labels from English.

The slot labels are annotated manually in two

8https://www.sprakradet.no/svardatabase/
sporsmal-og-svar/oslodialekten/

Figure 2: INCEpTION annotation interface showing the
English-to-Norwegian annotation transfer. The upper
part shows the initial state with pre-annotated English
and unannotated Norwegian, the lower part shows the
completed Norwegian annotations. Note the different
number of labels.

steps, using the same procedure as for the original
xSID corpus. In the first step we annotate the Bok-
mål version, using the annotated English sentence
as a guide for each sentence. In the second step, the
dialectal versions are annotated, using the already
annotated Bokmål version as a guide.

We use the INCEpTION (Klie et al., 2018) plat-
form for transferring the slot annotations. For the
English-to-Bokmål step, we interleave annotated
English sentences with their unannotated Bokmål
translations. The annotation process is illustrated in
Figure 2.9 We note how the Norwegian syntax can
lead to differences in the number of slot labels. In
this case, the xSID guidelines state that consecutive
reference labels specifically should be annotated as
a single chunk, but as there are no discontinuous
spans in the English data, we annotate them as two

9In order to upload the pre-annotated English sentences
along with Bokmål, we merged the two and uploaded
the resulting .txt file using the plain text (one sentence
per line) setting. We then downloaded the UIMA CAS
XMI file, which is INCEpTION’s native format. Us-
ing the dkpro-cassis library (https://pypi.org/project/
dkpro-cassis-tools/#description), we then added the
English slot spans from the existing .conll files, and uploaded
the resulting .XMI file. Annotations were added in a single
token level layer.
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Figure 3: Annotation of the dialect translations. Note
how differences in spelling of i dag ‘today’ causes slight
differences in labeling.

separate labels.
A similar process is used for the Bokmål-to-

dialect annotation transfer step: the annotated Bok-
mål sentence is presented on top as a guide, with
all dialectal translations following. See Figure 3
for an example.

4 Analysis

The dialectal translations differ in various respects
from each other and from the standard version. In
this section, we discuss different types of variation
and their prevalence in the dataset, before briefly
looking at how some of these features present them-
selves in the Nordic Dialect Corpus (NDC).

4.1 Variation in Translation

Unsurprisingly, the translations are largely similar
in terms of word lengths and type-token ration, as
reported in Table 2. We see that some annotators
(A2, A6) have slightly longer sentences. The most
striking difference is perhaps the lower number of
types in English, but this could easily be attributed
to the slightly higher morphological variation in
Norwegian.

Annotator Tokens Types Sent. length

A1 6200 1337 7.74
A2 6526 1360 8.15
A3 6282 1365 7.84
A4 6054 1346 7.56
A5 5955 1310 7.43
A6 6546 1350 8.17
A7 6004 1379 7.5
A8 6086 1366 7.6
Bokmål 6310 1392 7.88
English 6177 1245 7.71

Table 2: Tokens, types and average sentence lengths for
the annotators, the Bokmål translations, and the original
English.

4.2 Linguistic Variation

While there are many clear dialectal differences be-
tween the translators, that is not to say that all these
differences are due to dialectal variation. For many
sentences there are several possible translations,
and there are also lexical or syntactic choices that
do not necessarily have to be dialect-specific. For
example, in Table 1, the verb ‘to go’ is expressed
by å gå, å dra, å fære or å stikke, and ‘grocery
store’ is translated by butikken or matbutikken. Be-
fore looking at dialectal features in the dataset, we
discuss some more general features.

Spelling Annotators were asked to translate to
their own dialect in a natural way. This has led to
varying degrees of written expressions. In dialectal
writing, the written forms naturally deviate from
the established written norms, namely Bokmål or
Nynorsk, but we would typically not expect de-
viations that cannot be explained by the dialectal
features of the writer. We do see what we consider
non-dialectal spelling deviations, or what would
be spelling mistakes in a prescriptive setting. The
frequency of these vary from annotator to anno-
tator. In practice, this means that the corpus has
some features of user-generated language that are
not unique to dialectal writing.

Pronunciation Spelling One crucial difference
between spoken dialect and written dialect is that
not all words show indications of being associated
with a dialect, and many words are left in their
Bokmål or Nynorsk spelling, despite being pro-
nounced differently from how most speakers would
pronounce the normed spellings. In the NorDial
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A1 A2 A3 A4 A5 A6 A7 A8 NB

A1 568
A2 239 612
A3 319 235 573
A4 317 224 313 609
A5 310 233 294 334 589
A6 312 228 273 276 265 570
A7 280 194 258 291 281 277 582
A8 255 192 223 264 246 270 315 632
NB 313 217 271 292 316 301 304 287 675

Table 3: Lexical overlap between the dialect translations
and the Bokmål (NB) translation. Words contained
in the English dataset (mostly titles and names) are
removed from the comparisons.

corpus, the authors find that some sentences only
contain a few words indicating dialect, although in
spoken language all words would (Barnes et al.,
2021). While most function words are written
according to the pronunciation of a given dialect,
many content words are not, despite obviously not
following pronunciation rules. However, this varies
from annotator to annotator in our dataset. An ex-
ample is the word ‘restaurant’, whose spelling is
kept in some cases by at least 6 annotators, while
some use the spelling resturant or resturang. In the
NDC, the spellings are r[e/æ]s(s)t[u/o]ran(n)g(g).

Avoidance of Direct Translations As mentioned
earlier, another source of variation is avoidance
of direct translations, which can lead to syntactic
and lexical variation. For example, when talking
about weather predictions, it is quite common to
use the auxiliary verb skulle, which indicates a
planned action or a prediction, but it is in some
cases also natural to use a more neutral feature
with the composite auxiliary komme til ‘will’. Both
options are available in several dialects, and even
the same user might alternative between these.

4.3 Lexical Overlap and Dialectal Features

We now examine the translations in terms of dialec-
tal features and lexical overlap. Table 3 presents an
overview of the lexical overlap between the trans-
lations. The diagonal shows the total number of
types, reported in Table 2. We would expect an-
notators who come from dialectal areas in close
proximity to exhibit higher overlap.

Table 4 shows the Pearson correlation coeffi-
cients between the lexical overlap (Table 3) and
the geographical distances between the translators’
origins. Correlations are computed for each annota-
tor separately. The correlation coefficients indicate

Pearson’s r p-value

A1 −0.5329 0.1738
A2 −0.6885 0.0590
A3 −0.5516 0.1563
A4 −0.5792 0.1324
A5 −0.4962 0.2111
A6 −0.4454 0.2688
A7 −0.6159 0.1040
A8 −0.6069 0.1106

Table 4: Pearson correlation coefficients between lexical
overlap and geographical distance.

moderate to strong correlations,10 but the p-values
are too high to draw meaningful conclusions.

The clearest dialectal differences are observed
in morphology. We will have a brief look at ver-
bal, nominal and adjectival morphology, while ac-
knowledging that this is only part of what con-
stitutes dialectal variation in the dataset. Where
attestations can be found, we look up correspond-
ing forms in the NDC interface to inspect their
distributions. Queries are done in Bokmål, and the
reported phonological forms are compared to our
dialectal writing.

Verbal Morphology One thing to observe in
terms of verbal morphology is the infinitive. This is
an oft-used dialectal feature, based on whether the
dialect has infinitives (for consonant stem verbs)
in -a, -e, -Ø (apocope) or a mix of these. For our
annotators, we observe 5 patterns: infinitives end-
ing in -e only (A1, A2 and A6), in -a only (A8),
no ending (-Ø) (A5, A4), mixed -e and no ending
(A3) and mixed -a and no ending (A7). Notably
for A7 it seems like the apocope is only found in
the verb å vær, but it is both consistent and fre-
quent. According to the presentation of infinitives
in Mæhlum and Røyneland (2023, p. 180), A1, A2
and A6 are all from typical e-infinitive areas, and
A8 is from a typical a-infinitive area. A4 and A5
are theoretically both further south than the area
typically associated with pure apocope. A3 is in the
area for mixed infinitive, but A7’s position in the
South-West does not explain the form å vær. How-
ever, in the NDC, vær as an infinitive form is not
infrequently observed in South and West Norway.

Nominal Morphology While there are not
enough nouns to create a full overview of the writ-

10The correlations are negative because lexical similarity is
compared with geographic distance.
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ers’ morphological systems, there is enough to give
us indications. First of all, we get an impression
of the gender system. Normally, both written Nor-
wegian norms, Bokmål and Nynorsk, allow for a
three-gender nominal inflection system, but to vary-
ing degrees. A three-gender system is obligatory in
Nynorsk, while in Bokmål it is possible to conflate
the masculine and feminine classes to a common
gender (nor. felleskjønn). We see that all dialects
mark feminine nouns to some extent, as all dialects
use the feminine-specific singular definite marker
-a (or -å) at least in some words (boka ‘the book’,
låta ‘the tune’, bogå ‘the book’), but not in all (ver-
meldingen, vermeldinga ‘the weather forecast’).
The use of the indefinite singular article ei ‘a, an’ is
less frequent, as is also the case in Bokmål. While
the masculine singular is invariably the same as in
Bokmål, another difference between feminine and
masculine nouns appears in the plural. Where some
writers in our corpus have the same forms as in
Bokmål for both genders (filmer, stjerner ‘movies,
stars’), we see that some writers have variant forms,
which are still the same (filma, stjerna), while some
make a distinction (filma, stjerne; filmar, stjerner).
Some dialects have apocope in the plural definite
(filman). Some annotators have the same forms for
masculine and neuter nouns (filma, minutta), while
others have the typical zero-ending that we also see
in Nynorsk (filma, minutt).

Adjectival Morphology One notable feature for
adjectives, is whether the neuter suffix -t is added to
adjectives in -ig. This is done by the translator from
Stavanger (A8), as in tidligt ‘early’. This is con-
firmed to be a regional feature by the NDC, where
corresponding forms are found in the area around
Stavanger but not elsewhere in the country. We
also see variation in the comparative forms, where
three forms are found: -ere (kaldere) ‘colder’, -are
(kaldare) and an apocopized version, -ar (kaldar,
kjørligar) . While there are not many attestations
of kaldere, we see that all attestations with the -ere
ending are in Eastern Norway.

Lexicon While many words show clear dialectal
influence, there are few cases where the annota-
tors’ lexical choices are markedly different from
the standard language. One such example is the
use of bli å lit. ‘become to’ as a future auxiliary.

Function Words Much of the variation seen be-
tween the translated material is in terms of function
words: prepositions, pronouns, and determiners.

I ME HOW SOME TO

A1 æ mæ kordan nokka til
A2 æ mæ kordan nåkka tel
A3 æ mæ koss nokka te
A4 æ mæ koss nåkka te
A5 e me koss nokka til
A6 ej mej kordan nokke til
A7 eg meg koss noe t(e)
A8 eg meg kordan någe te

Table 5: Selected pronouns and function words used by
the different annotators.

In Table 5, we see five selected words that illus-
trate some of the variation between the translators.
Looking at the pronominal variation, we get an
idea of how distinctive some of these features are.
The form ej (A6) ‘I’, is associated with an area be-
tween Ålesund and Bergen in the NDC, indicating
that this is a quite distinguishing feature of A6’s
dialect. Otherwise it is only attested once close
to Mo i Rana. Among the other words for I, both
æ (A1-A4) and e (A5), are quite widespread in
spoken Norwegian as reported in the NDC. The
form eg (A7, A8) is more associated with the West,
and is not found along the border to Sweden in the
East. For the oblique forms, mæ (A1-A4) is quite
widespread, except in the West and upper central
areas, and mej (A6) is only registered in two loca-
tions: one on the Trøndersk/Vestnorsk border, and
one in the Trøndersk area. The interrogative Kor-
dan ‘how’ is mostly associated with Western and
Northern Norwegian, while koss, also ‘how’, is as-
sociated with Southern, Central and upper Western
Norway. The determiner någe ‘some’ is heavily
associated with the Stavanger area, and is not found
outside it except one attestation in Tromsø. Noe
‘id.’ is quite widespread, but not in the upper West.
Nokka is associated with Trøndersk and Northern
Norwegian, and a small cluster in the south in the
NDC, while finally nokke is associated with the
west.

4.4 Phonological Features

As the translators all report that they use dialectal
writing in their daily lives, we see the translations
as representative of at least some part of the written
dialect of the area the translator represents, but this
does not tell us to what degree the written language
represents the spoken dialect of that area. However,
some of these features can be inspected using NDC.
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For example, a commonly used dialectal feature is
the voicing of the ungeminated plosives /p/, /t/ and
/k/ to /b/, /d/ and /g/. We see examples of this in
our dataset in forms such as søga (Bokmål søke)
‘search’ and bogå (Bokmål boka) ‘the book’. In
NDC, forms of søke with voicing are only found
in an area surrounding Kristiansand, while voiced
forms of boka are found between Haugesund and
Kristiansand.

5 Conclusion

We present a dataset of written dialectal Norwe-
gian, which reflects various dialectal phenomena
and is also annotated with slots and intents. The
utterances are translations of the English validation
and test sets of the xSID corpus (van der Goot et al.,
2021).

Limitations

As discussed in Section 3.3, the geographical cov-
erage of the translators is uneven, with Eastern
dialects not represented at all in the corpus. This is
due to linguistic factors, as discussed, and also to
contingent factors related to the sample of qualified
and interested students available during the project
duration. We will consider extending the corpus
if annotators from not yet covered areas become
available.

Furthermore, as discussed in Section 2.2, the an-
notation workers are not professional translators
and may find it difficult to produce natural and cor-
rect dialect writing in a translation setup. Moreover,
certain cultural references and named entities may
not be known well enough by our translators.

Finally, slot and intent detection models are typ-
ically applied to speech data in conjunction with
an automatic speech recognition system. It could
thus be useful to pair the dialectal transcripts with
recorded speech. We currently do not offer speech
recordings because our main goal was to create a
resource for written dialectal Norwegian, but we
may consider extending the dataset towards speech
in the future.

Ethical Considerations

The translators were hired as student assistants and
paid for the effective hours spent on the translation
task (typically between 15 and 20 hours, not includ-
ing slot annotation), according to the official salary
schemes in use at the University of Oslo. The par-
ticipation in the translation task was voluntary, and

all translators agreed in writing that their produc-
tions may be publicly shared under the CC-BY-SA
4.0 licence.11

The English data used as source material is cu-
rated and does not contain any harmful content, to
our knowledge.
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Abstract
Text summarization models have typically fo-
cused on optimizing aspects of quality such as
fluency, relevance, and coherence, particularly
in the context of news articles. However, sum-
marization models are increasingly being used
to summarize diverse sources of text, such as
social media data, that encompass a wide de-
mographic user base. It is thus crucial to assess
not only the quality of the generated summaries,
but also the extent to which they can fairly rep-
resent the opinions of diverse social groups.
Position bias, a long-known issue in news sum-
marization, has received limited attention in the
context of social multi-document summariza-
tion. We deeply investigate this phenomenon
by analyzing the effect of group ordering in in-
put documents when summarizing tweets from
three distinct linguistic communities: African-
American English, Hispanic-aligned Language,
and White-aligned Language. Our empirical
analysis shows that although the textual quality
of the summaries remains consistent regardless
of the input document order, in terms of fair-
ness, the results vary significantly depending on
how the dialect groups are presented in the in-
put data. Our results suggest that position bias
manifests differently in social multi-document
summarization, severely impacting the fairness
of summarization models.

1 Introduction

As the use of natural language processing models
gets more prevalent in various industries, academic
and social settings, it is imperative that we assess
not only the quality of these models but also their
fairness when exposed to data originating from
diverse social groups (Czarnowska et al., 2021).
Text summarization models, in particular, facilitate
the processing of large collections of a wide vari-
ety of text data by distilling documents into short,
concise, and informative summaries while preserv-
ing the most relevant points from the source docu-
ment (Nallapati et al., 2017; Zhang et al., 2018; Liu

and Lapata, 2019). Multi-document summarization
(MDS) is the task of generating a coherent sum-
mary from a set of input documents, usually cen-
tered around a topic, as opposed to single document
summarization (SDS) which takes one document as
input. The input in MDS consists of multiple docu-
ments, that may have been written by distinct users,
varying in linguistic diversity, styles, or dialects.

MDS can be of type extractive, where the models
extract the salient points directly from the source
document to form the summary, or of type ab-
stractive where the models generate summaries
by rewriting salient information using novel words
or phrases. In both cases, the resulting summary
should be of good quality in terms of informa-
tiveness, coherence and relevance to the source
document. At the same time, a good summary
should be unbiased and should reflect the diversity
of thoughts and perspectives present in the source
documents.

The notion of fairness describes equal or fair
treatment without favoritism or discrimination.
However, plenty of evidence suggests intrinsic so-
cietal biases in language models (Bolukbasi et al.,
2016; Bommasani et al., 2021; Deas et al., 2023).
More specific to the task of summarization, fairness
is measured by the ability of algorithms to capture
the peculiarity in all represented groups (Shandilya
et al., 2018; Dash et al., 2019; Keswani and Celis,
2021; Olabisi et al., 2022; Ladhak et al., 2023).

Conventionally, the documents in MDS are sim-
ply concatenated into one large collection of text
as the input for the model. Prior research sup-
ports the existence of position bias, or lead bias,
where the models rely excessively on the position
of the sentences in the input rather than their se-
mantic information (Lin and Hovy, 1997; Hong
and Nenkova, 2014; Wang et al., 2019). This is
a particularly common phenomenon in news sum-
marization, where early parts of an article often
contain the most salient information. While many
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Figure 1: Illustration showing shuffled vs. ordered
input for multi-document summarization consisting of
documents from three diverse groups (Da, Dh, Dw)
as indicated by the three colors. The ordered input is
denoted as Oa when Da documents appear first in the
input.

algorithms exploit this fact in summary generation,
it can have a detrimental effect when important
information is spread throughout the input.

In non-news domains, weak or no position bias
has been observed (Kedzie et al., 2018; Kim et al.,
2019). Regardless of whether position bias is noted
or not, previous investigations have quantified the
effects of position bias mostly in terms of standard
summarization metrics (e.g., ROUGE) which fo-
cus on the textual quality of the summary (Sotudeh
et al., 2022; Scirè et al., 2023). In this work, we in-
vestigate the effects of position bias on the fairness
of the generated summaries.

Specifically, we ask two questions: (i) Do the
system summaries show any position bias when we
vary the order of the input documents? (ii) What
is the impact of position bias on the fairness of the
system summaries?

For our experiments we use DivSumm, a sum-
marization dataset of linguistically diverse com-
munities representing three dialect groups (Olabisi
et al., 2022). We explore the effects of position bias
in the outputs of seven abstractive summarization
models (and three extractive models) and under
two investigation setups: shuffled (when the data
is presented as randomly shuffled) and ordered
(when the input documents are grouped according
to their dialects). Figure 1 presents a schematic
overview. The generated summaries are evaluated
in terms of fairness, as well as metrics related to
the textual quality.

The contributions of our work are as follows:

• We comprehensively investigate the phe-
nomenon of position bias in the context of
social multi-document summarization;

• We explore ten different summarization mod-
els, both abstractive and extractive;

• We contextualize and quantify the impact of
position bias in terms of fairness and textual
quality of generated summaries.

2 Related Work

In this section we present some notable prior re-
search in two relevant areas. First, we discuss po-
sition bias in summarization, followed by works
studying fairness in summarization.

Position Bias in Summarization Position bias
can manifest in MDS scenarios just as it does in
SDS scenarios because in MDS, the documents
are typically concatenated into one long input and
treated very much like a ‘single’ document. Sev-
eral works have studied the substantial position
bias (also known as lead bias), especially in the
context of news summarization where the datasets
and models prioritize selecting sentences from the
beginning of an article (Lin and Hovy, 1997; Hong
and Nenkova, 2014; Wang et al., 2019). Often the
lead bias is so strong that the simple lead-k baseline
or using the first k sentences of a news article to
generate the summary can score higher than many
other models (See et al., 2017). While some have
suggested approaches for mitigating or countering
lead bias (Grenander et al., 2019; Xing et al., 2021;
Gong et al., 2022; Zhang et al., 2022), others have
leveraged lead bias (Yang et al., 2020; Zhu et al.,
2020; Padmakumar and He, 2021).

Interestingly, although position bias dominates
the learning signal for news summarization or sim-
ilar domains, it is less apparent in other domains
where most non-news datasets show weak or no
position bias (Kedzie et al., 2018; Jung et al., 2019;
Kim et al., 2019; Sharma et al., 2019; Sotudeh
et al., 2022; Scirè et al., 2023). Notably, none
of these studies consider datasets where data origi-
nates from diverse social groups, which is the focus
of our work.

Moreover, prior research studying the effect of
position bias has quantified its impact exclusively
in terms of textual quality, typically measured in
terms of summarization metrics such as ROUGE,
and others. To our knowledge, ours is the first
work quantifying the impact of position bias in
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multidocument summarization in terms of fairness
where data originates from diverse social groups.

Fairness in Summarization A significant
amount of work has been done toward improving
the textual quality of summaries but not so much
in terms of enhancing the fairness of summaries,
particularly in the context of diverse groups. Prior
text summarization work has proposed fairness-
preserving algorithms (Shandilya et al., 2018; Dash
et al., 2019), bias mitigation models (Keswani and
Celis, 2021) and fairness interventions for extrac-
tive and abstractive summarization (Olabisi et al.,
2022). Furthermore, Ladhak et al. (2023) observed
that name-nationality stereotypes propagate from
pretraining data to downstream summarization sys-
tems and manifest as hallucinated facts.

3 Experimental Setup

Considering the extensive literature on fairness in
natural language processing, which highlights sig-
nificant disparities in the processing of data from
different social groups, whether along the dimen-
sions of gender or race or others, we are compelled
to ask two questions:

1. What happens when the input data to be sum-
marized is deliberately grouped according to
the social groups, such as dialect groups in
our case? (in Section 4) and,

2. How do the effects of position bias affect the
fairness of generated summaries (Section 5).

Before exploring these questions, we first de-
scribe our experimental setup in this section.

3.1 Task Formulation

Considering a multi-document set of n topically-
related documents D = {dg11 , ..., dgrn }, where each
document belongs to one of several diverse social
groups G = {g1, ..., gr}, the objective is to produce
a summary S(D) that ideally exhibits both high tex-
tual quality and fairness. In this work, because of
the original dataset design where the number of
documents from each group is equal in the input,
our investigation is concerned with the notion of
equal representation. As such, a summary is consid-
ered to be fair when all groups g1, ..., gr are equally
represented in the output.

3.2 Dataset
For our experiments, we use the DivSumm dataset1,
an MDS dataset consisting of English tweets of
three diverse dialects (African-American English,
Hispanic-aligned Language, and White-aligned
Language) (Olabisi et al., 2022), which was de-
veloped using a large corpus of tweets originally
collected by Blodgett et al. (2016). The dataset
includes 25 topically-related sets of documents
(tweets) as input and corresponding human-written
extractive and abstractive summaries. Each set D
consists of 90 documents evenly distributed among
the three dialects (i.e., 30 documents per dialect). A
selection of dialect diverse tweets from DivSumm
is presented in Table 3.

3.3 Shuffled and Ordered

To study the phenomenon of position bias in social
multi-document summarization where documents
originate from different social groups, we devise
two distinct scenarios: shuffled and ordered, as
depicted in Figure 1.

In the shuffled setting, documents appear ran-
domly present in the input in no specific order. In
fact, to ensure consistency, we retain the original
order as presented in the DivSumm dataset which
the annotators used to craft the summaries.

In the ordered setting, we perturb the input data
by grouping documents from each social group
together. When the subset of White-aligned Lan-
guage tweets (Dw) appears first, the input set is
denoted as orderedwhite or, simply, Ow. Simi-
larly, when the subset of African-American English
tweets (Da) come first, we denote that set as Oa,
and when the subset of Hispanic-aligned Language
documents (Dh) appears first, we denote that set as
Oh. Specifically, the input documents are ordered
as follows:

Ow = {Dw,Da,Dh}
Oa = {Da,Dh,Dw}
Oh = {Dh,Dw,Da}

These documents are summarized using several
models described in the next section, allowing
us to subsequently investigate the different sum-
maries we generate – S(Ow), S(Oa), S(Oh), and
S(shuffled) – which are obtained from four dis-
tinct sets of input documents – Ow, Oa, Oh, and
shuffled, respectively.

1https://github.com/PortNLP/DivSumm
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Figure 2: Average token overlap between human-written
reference summaries and each document di using the
DivSumm dataset. Text position on the x-axis has been
normalized between 0 and 1.

3.4 Summarization Models
We study a total of seven abstractive models in our
experiments. We also study three extractive models,
the details and results of which are discussed in
A. Following the setup of DivSumm, we generate
summaries of 5 sentences per topic

The seven abstractive models included in our
experiments are as follows:

• BART2 (Lewis et al., 2019),

• T5 (Raffel et al., 2019),

• LED (Longformer Encoder-Decoder) (Belt-
agy et al., 2020),

• PEGASUS (Zhang et al., 2020),

• GPT-3.5,

• PRIMERA (Xiao et al., 2021), and

• CLAUDE (Claude 3 Opus).

GPT-3.5 and Claude were prompted with the fol-
lowing prompt – “Please summarize the following
texts in only five sentences”.

4 Position Bias in Social MDS

This section discusses position bias within three
types of summaries: human-authored reference
summaries of the DivSumm dataset, system sum-
maries generated using the shuffled input, and
system summaries generated using ordered inputs.

2Model checkpoints for BART, T5, LED, Pegasus, and
Primera were accessed from https://huggingface.co/
models.

Figure 3: Average token overlap between ordered
system-generated summaries by each abstractive sum-
marization model and each document di in the input set
D of DivSumm. Text position on the x-axis has been
normalized between 0 and 1.

Following prior work on position bias, we calculate
the overlap between the summaries and the input
documents by computing the number of tokens
shared between the summary and each document
of the MDS topic set. That is, given the 90 docu-
ments in each topically-related input set, we get the
overlap score for each document (d1, d2, ..., d90)
with respect to a summary, and report the average
score over the entire dataset. A higher overlap
score implies more semantic relationship between
the summary and source document.

4.1 Position Bias in Human-Written
Reference Summaries

To examine position bias in the summaries created
by humans, we analyze both abstractive and ex-
tractive reference summaries of DivSumm dataset.
Because the dataset contains two reference sum-
maries per input, we report the average score. The
results are presented in Figure 2 where no notice-
able position bias is observed, and it is encouraging
to note that the annotators were not influenced by
the position of the documents in the input when
producing their summaries.

4.2 Position Bias in System Summaries
(Shuffled)

The results of position bias within model-generated
summaries using shuffled inputs are presented in
Figure 3. Similar to the human-written reference
summaries, we observe no notable position bias
suggesting that when summarizing randomly shuf-
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(a) BART (b) T5 (c) LED

(d) Pegasus (e) GPT-3.5 (f) Primera

(g) Claude

Figure 4: Average token overlap between ordered system-generated summaries by each of the seven abstractive
summarization models and each document di in the input set D of the DivSumm dataset. Text position on the x-axis
has been normalized between 0 and 1.

fled data from various social groups, the models
also do not exhibit any particular lead bias. This ob-
servation on DivSumm, a dataset of tweets, is con-
sistent with trends observed in other social datasets
(Reddit posts (Kim et al., 2019) and social user
posts (Sotudeh et al., 2022)).

4.3 Position Bias in System Summaries
(Ordered)

Now we discuss the results of position bias in sys-
tem summaries that were generated using various
ordered inputs: Ow, Oa, Oh. Model-specific re-
sults are presented in Figure 4, where, interestingly,
we now observe a strong position bias in three out
of seven abstractive models, (BART, LED, and
Primera), with up to 3 times higher token overlap
in the beginning of the input document, as shown
by the distribution. Three other models show weak
position bias (T5, Pegasus, and GPT-3.5). This phe-
nomenon diverges from traditional position bias,

where models tend to favor earlier bits of text. In-
stead, we notice that models favor earlier pieces
of text only when the text exhibits some socially
linguistic similarity. These observations highlight
the importance of more nuanced analysis when
exploring position bias in summarization systems,
especially when processing diverse social data.

5 Fairness and Textual Quality Amidst
Position Bias

Having observed an instance of position bias, es-
pecially when input data is grouped according to
dialect groups, the next natural question to ask is
how does this position bias quantitatively impact
the fairness and textual quality of the generated
summaries. We briefly describe the evaluation met-
rics before discussing the main results.
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Model Ow Oa Oh shuffled

Dw Da Dh ∆Fair (↓) Dw Da Dh ∆Fair (↓) Dw Da Dh ∆Fair (↓) Dw Da Dh ∆Fair (↓)

BART 0.64 0.41 0.45 0.23 0.41 0.55 0.40 0.15 0.44 0.42 0.59 0.17 0.41 0.41 0.40 0.01
LED 0.47 0.30 0.33 0.17 0.31 0.43 0.31 0.12 0.26 0.24 0.36 0.12 0.30 0.29 0.35 0.06
T5 0.52 0.39 0.48 0.13 0.39 0.46 0.43 0.07 0.40 0.41 0.49 0.09 0.37 0.41 0.40 0.04
PEGASUS 0.34 0.28 0.29 0.06 0.22 0.25 0.21 0.04 0.26 0.24 0.32 0.08 0.32 0.33 0.32 0.01
GPT-3.5 0.47 0.35 0.38 0.12 0.38 0.38 0.36 0.02 0.38 0.34 0.41 0.07 0.40 0.35 0.37 0.05
PRIMERA 0.62 0.41 0.45 0.21 0.42 0.60 0.44 0.18 0.45 0.44 0.62 0.18 0.49 0.48 0.50 0.02
CLAUDE 0.39 0.33 0.36 0.06 0.37 0.32 0.34 0.05 0.36 0.31 0.34 0.05 0.37 0.32 0.35 0.05

AVG 0.49 0.35 0.39 0.14 0.36 0.43 0.36 0.09 0.36 0.35 0.45 0.11 0.38 0.37 0.39 0.04

Table 1: Fairness. Similarity scores of summaries generated by ordered inputs (Ow,Oa,Oh) and shuffled inputs
compared to each group of documents (Dw, Da, Dh) across seven abstractive summarization models using the
DivSumm dataset. The highest similarity scores are shown in bold.

5.1 Evaluation Metrics

Fairness (Gap): One way of measuring fairness
is by estimating the amount of representation from
each dialect group in the final summary by com-
paring the summary S to the set of documents
from each group. Given that an unbiased sum-
mary should capture the perspectives across all
groups, we evaluate summary fairness for both
extractive and abstractive models using seman-
tic similarity of the summary to each represented
group. As an example, for input Ow, we com-
pare the final summary S(Ow) to the document
set of each dialect group: Dw, Dw, and Dh. In
other words, we compute sim(i, j) where i =
{S(Ow),S(Oa),S(Oh)} and j = {Dw,Da,Dh}.
Similarity can be estimated by many possible meth-
ods of obtaining semantic similarity. We use cosine
similarity.

From these similarity scores, we can derive the
Fairness Gap (∆Fair) by calculating the differ-
ence between the maximum and the minimum
scores attributed to any of the groups (Olabisi
et al., 2022). Intuitively, a summary that produces
relatively similar representation scores across all
groups can be considered as fair because it likely
contains comparable representation from all groups
such that no one group is significantly underrepre-
sented.

Textual Quality: Four established metrics are
used for assessing the quality of the summaries:
ROUGE, BARTScore, BERTScore, and UniEval.
ROUGE (Lin, 2004) calculates the lexical overlap
between the model-generated summary and the ref-
erence summaries. For our experiments, we report
the F1 scores of ROUGE-L which is the longest
common subsequence between the two summaries.

BARTScore (Yuan et al., 2021) leverages BART’s
average log-likelihood of generating the evalu-
ated summary conditional on the source document.
Since it uses the average log-likelihood for target to-
kens, the calculated scores are smaller than 0 (neg-
ative). We use the facebook/bart-large-cnn
checkpoint. BERTScore (Zhang* et al., 2020) re-
lies on BERT embeddings and matches words in
system-generated summaries and reference sum-
maries to compute token similarity. We use the
microsoft/deberta-xlarge-mnli model and re-
port the F1 scores. UniEval (Zhong et al., 2022) is
a unified multi-dimensional evaluator that employs
boolean question answering format to evaluate text
generation tasks. We make use of unieval-sum
which evaluates system-generated summaries in
terms of four dimensions: coherence, consistency,
relevance and fluency. Except for fluency, the rest
are reference-free metrics. We report the overall
score.

5.2 Results

Evaluating fairness. The results in Table 1 re-
port the fairness scores for all seven models. We
clearly observe that ordering the input doc-
uments based on groups certainly favors the
group that appears first. This phenomenon is
consistently observed in all three types of ordered
sets, regardless of which particular dialect group’s
data is presented first. However, when the docu-
ments are presented as shuffled, no single group
is over-represented and the summaries appear more
balanced (∆Fair = 0.04).

The density plots in Figure 5 also show that the
shuffled input set is the most balanced across all
groups, unlike the ordered sets which are signif-
icantly skewed. Furthermore, amongst ordered
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(a) Ow (b) Oa (c) Oh (d) shuffled

Figure 5: Density distribution of similarity scores between system-generated summaries and each group, across
all summarization models for Ow, Oa, Oh and shuffled input sets. The outputs of shuffled inputs show very
different and balanced distributions compared to the ordered inputs.

Model ROUGE-L BARTSCORE BERTSCORE UNIEVAL

Ow Oa Oh Sh. Ow Oa Oh Sh. Ow Oa Oh Sh. Ow Oa Oh Sh.

BART 0.15 0.14 0.14 0.15 -3.73 -3.74 -3.72 -3.69 0.51 0.50 0.51 0.50 0.46 0.46 0.48 0.44
T5 0.15 0.13 0.13 0.14 -3.76 -3.75 -3.74 -3.72 0.50 0.48 0.49 0.51 0.45 0.45 0.47 0.44
LED 0.12 0.11 0.10 0.12 -3.75 -3.79 -3.79 -3.73 0.44 0.40 0.39 0.47 0.44 0.44 0.46 0.43
PEGASUS 0.14 0.11 0.13 0.14 -3.73 -3.75 -3.76 -3.73 0.47 0.44 0.46 0.46 0.45 0.45 0.47 0.43
GPT-3.5 0.20 0.20 0.21 0.21 -3.64 -3.68 -3.62 -3.65 0.57 0.58 0.59 0.59 0.46 0.45 0.48 0.44
PRIMERA 0.14 0.12 0.13 0.13 -3.67 -3.68 -3.63 -3.64 0.51 0.49 0.50 0.49 0.45 0.46 0.48 0.44
CLAUDE 0.18 0.18 0.19 0.18 -3.64 -3.64 -3.64 -3.65 0.56 0.56 0.57 0.56 0.44 0.44 0.46 0.43

AVG 0.15 0.14 0.15 0.15 -3.70 -3.72 -3.70 -3.69 0.51 0.49 0.50 0.51 0.45 0.45 0.47 0.44

Table 2: Quality. Results of ordered (Ow, Oa, Oh) and shuffled (Sh.) approaches across seven abstractive
summarization models showing ROUGE-L, BARTScore, BERTScore, and UniEval scores on the DivSumm dataset.
The best scores are shown in bold, whereas the highest scores per metric are shown as underlined.

documents, the fairness gap is the largest when
documents of White-aligned language are passed
first (∆Fair = 0.14), and the smallest when doc-
uments of African-American English appear first
(∆Fair = 0.09).

Evaluating textual quality. Table 2 presents
the summary quality scores across all seven sum-
marization models for the four sets of input. We
clearly see that the scores of the shuffled ap-
proach are superior or comparable to the scores
from the three input sets in the ordered approach,
except in the case of UniEval. This shows that
with respect to quality, there is no significant
difference whether documents are presented as
ordered or shuffled.

5.3 Discussion
Some samples of system summaries are presented
in Table 3. The key findings of our study can be
summarized as follows:

• We find no evidence of position bias in human-
annotated reference summaries of DivSumm,
a social MDS dataset of diverse groups. Same
observation is made for the abstractive system-
generated summaries obtained when the input

documents are passed in randomly or shuffled.

• However, when the input is ordered based
on dialect groups, we observe a significant
position bias in the system summaries, with
the summaries having higher overlap with the
group that appears first in the input document.

• Ordered documents involving different di-
alects result in summaries that are signifi-
cantly skewed in terms of fairness, with the
group whose data appears first is clearly fa-
vored by the models. In contrast, shuffled
documents show the least amount of fairness
gap.

• In terms of quality, we observe that for all
models and metrics, the scores for ordered
and shuffled remain comparable, suggest-
ing that ordering based on diverse groups has
no noticeable effect on the quality of system-
generated summaries.

Taken together, the findings of our study indicate
that both the ordered and shuffled approaches
yield comparable results in terms of textual qual-
ity, but highly disparate results in terms of fair-
ness. This phenomenon is consistently observed in
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Input Documents Set

d1: Hispanic : The Grammys should have come out on Saturday so I won’t stay up late today lol
d2: AA : Wasn’t it during the Grammys the last time Chris Brown slid Rhianna?
d3: White : Feel free to join my lonesome self swimminngg at Grammys!!
d4: AA : I’ve given up #DowntonAbbey for J.T.? This is serious #Grammys
d5: Hispanic : oh lol thanks thought you were talking about the Grammys lol sorry lol
d6: Hispanic : I don’t even know if I am watching the right latin Grammys lol
d7: White : "If I’m a hipster about anything, it’s Kings of Leon. I listened to them before they won Grammys."
d8: White : isn’t performing at the Grammys? What’s the point of even having the Grammys now?
d9: AA : Imma get some ideas for Easter from these here Grammys . ____
d10: Hispanic : Wow every celeb in the crowd is singing Bruno’s lyrics. Awesome. #Grammys
...
...
...
d88: AA : These Grammys need some life in it cause I’m so bored
d89: AA : Got my easter outfit nd dress for the Grammys.. im set :)
d90: White : "great, now she can have practice for whe she doesn’t win at next year’s Grammys"

Model Summary

BART I’ve given up DowntonAbbey for J.T.? This is serious Grammys. The Grammys lasted an extra 30 mins
just for us to all get hazed by LL smh. Im not even watching the Grammys im too lazy to change the
channel but isn’t Justin doing a livestream or something at the same time. I’m gonna say yes.

GPT-3.5 Tina Campbell won’t be attending the Grammys, and J Cole is being tipped for success. The Black
Keys won five awards at the Grammys, and Eminem is expected to win Best Male Singer and Rapper.
Rihanna and Chris Brown were together at the Grammys, and there is a lot of Twitter beef happening
due to the event. An ad agency has the Grammys as their client, and a speech teacher asked someone to
dress for the Grammys for a show. People are discussing the Grammys and celebrities attending.

Table 3: Example of a shuffled input set from the DivSumm dataset showing input documents with their respective
dialects, and system summaries generated by the model with the lowest fairness gap (BART) and highest textual
quality (GPT-3.5). Note that the dialect labels shown here are only for clearer presentation and are not part of the
input to the model.

all abstractive models, suggesting that the models
are not robust to fairly straightforward group-level
data perturbations. These findings are important be-
cause they highlight a potential source of nuanced
bias in the summarization models. The observa-
tion that ordering the input documents based on
groups favors the group that appears first indicates
a systematic bias in the models’ behavior. The
fact that the shuffled input set leads to more bal-
anced summaries across all groups implies that the
bias observed in the ordered sets can be mitigated
by introducing randomness in the presentation of
input data. This insight is crucial for understand-
ing and addressing bias in summarization systems,
especially in scenarios where fairness and equity
are important considerations, such as in social data
analysis or decision-making processes. Overall,
this result sheds light on an important aspect of
model behavior and informs strategies for improv-
ing the fairness and effectiveness of summarization
models.

6 Conclusion

In this work, we investigate how position bias
manifests in social multi-document summarization,
specifically in scenarios where the input data is de-

rived from three linguistically diverse communities.
When presented with randomly shuffled input data,
summaries generated by ten distinct summarization
models exhibited no signs of position bias. How-
ever, a significant shift occurred when the input
data was simply reordered based on social groups.
In such instances, the models produced biased sum-
maries, primarily favoring the social group that
appeared earlier in the input sequence. In terms of
the quality of generated summaries, however, there
was no notable difference due to the order in which
source documents were presented, whether shuf-
fled or ordered. Our results suggest that position
bias manifests differently in the context of social
multi-document summarization. Furthermore, they
highlight the need to incorporate randomized shuf-
fling in multi-document summarization datasets
particularly when summarizing documents from di-
verse groups to ensure that the resultant summaries
are not only of high quality but also faithfully rep-
resentative of the diversity present in the input data.

Ethical Considerations

Our findings and conclusions in this paper are
based on an existing social media summarization
dataset composed of tweets in English, primarily
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due to the lack of appropriate resources available
to undertake such studies. Given the nature of nat-
urally occurring data, it is possible that the data
contains some offensive language. Hence, it is pos-
sible for the models to also generate summaries
with offensive words. In addition to this, due to the
constraint on tweet length, users are known to use
acronyms and slangs that may have various mean-
ings across different groups – this phenomenon is
not accounted for in this study. Also, the existing
dataset that we use in this work was originally col-
lected from a corpus using geolocation and census
data. This dialectal information used in catego-
rizing users’ languages should not be used as a
representation of users’ racial information. In this
work, we evaluate summary fairness using proxy
metrics such as semantic similarity to each repre-
sented group. The definition of fairness may vary
for humans, and as such this should not be used as
the gold standard.
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A Fairness in Extractive Models

We repeat the same experiments and analysis for ex-
tractive models to observe if they exhibit behavior
similar to that observed in the abstractive models.

A.1 Summarization Systems

We study three summarization models in our exper-
iments to generate summaries of 5 sentences per
topic (multi-document set):

TEXTRANK3 (Mihalcea and Tarau, 2004), an
unsupervised graph-based ranking method, deter-
mines the most important sentences in a document
based on information extracted from the document
itself.

BERT-EXT4 (Miller, 2019), an extractive sum-
marization model built on top of BERT (Devlin
et al., 2018), uses k-means clustering to select sen-
tences closest to the centroid as the summaries.

LONGFORMER5 (Beltagy et al., 2020) is a mod-
ification of the transformer architecture, using a
self-attention operation that scales linearly with the
sequence length.

A.2 Evaluation Metrics

In evaluating textual quality, We use the same four
metrics used for the abstractive models. To esti-
mate fairness (gap), in addition to semantic simi-
larity used in evaluating the fairness of abstractive
models, we consider coverage as well which mea-
sures the extent to which a summary is a derivative
of the input text. Following previous literature
(Dash et al., 2019; Keswani and Celis, 2021), we
estimate group fairness via disparity in extractive
fragment coverage (Grusky et al., 2018), which in-
dicates the degree of surface-level text overlap by
computing the percentage of words in the summary
from each dialect group’s collection of documents.

A.3 Results

While shuffled extractive models show no notice-
able position bias in Figure 6, we observe a strong
position bias using ordered inputs in two out of
three extractive models (BERT and LongFormer),
as shown in Figure 7 further highlighting the impor-
tance of exploring position bias in summarization
of diverse social data.

3https://radimrehurek.com/gensim_3.8.3/
summarization/summariser.html

4https://pypi.org/project/
bert-extractive-summarizer/

5Model checkpoint for Longformer was accessed from
https://huggingface.co/models
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Figure 6: Average token overlap between shuffled
system-generated summaries by each of the three ex-
tractive summarization models and each document di
in the input set D of DivSumm. Text position on the
x-axis has been normalized between 0 and 1.

Tables 4 and 5 show the fairness scores in terms
of coverage and similarity, respectively, of extrac-
tive summaries. For all three models, we observe
that the summaries generated using the ordered
sets distinctly favor the group that appeared first in
the input set of documents, while this phenomenon
is absent from the shuffled set, where the results
are much more evenly distributed across the three
groups for all three models. Table 6 presents the
quality scores along four metrics where, similar
to abstractive models, little difference is noted be-
tween ordered and shuffled approaches.
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(a) TextRank (b) BERT (c) LongFormer

Figure 7: Average token overlap between ordered system-generated summaries by each of the extractive sum-
marization models and each document di in the input set D of DivSumm. Text position on the x-axis has been
normalized between 0 and 1.

Model Ow Oa Oh shuffled

Dw Da Dh ∆Fair Dw Da Dh ∆Fair Dw Da Dh ∆Fair Dw Da Dh ∆Fair

TEXTRANK 0.80 0.72 0.76 0.08 0.70 0.81 0.74 0.11 0.72 0.73 0.82 0.10 0.74 0.76 0.78 0.04
BERT 0.78 0.69 0.77 0.09 0.75 0.74 0.73 0.02 0.78 0.69 0.80 0.11 0.77 0.74 0.76 0.03
LONGFORMER 0.77 0.72 0.73 0.05 0.70 0.80 0.71 0.10 0.73 0.72 0.79 0.07 0.72 0.78 0.77 0.06

AVG 0.78 0.71 0.75 0.07 0.72 0.78 0.73 0.07 0.74 0.71 0.80 0.09 0.74 0.76 0.77 0.05

Table 4: Fairness. Coverage scores of ordered and shuffled approaches compared to each group of documents
(Dw, Da, Dh) for three extractive summarization models on DivSumm dataset. The highest scores are shown in
bold.

Model Ow Oa Oh shuffled

Dw Da Dh ∆Fair Dw Da Dh ∆Fair Dw Da Dh ∆Fair Dw Da Dh ∆Fair

TEXTRANK 0.57 0.55 0.52 0.05 0.51 0.54 0.49 0.05 0.55 0.54 0.50 0.04 0.45 0.46 0.42 0.05
BERT 0.61 0.54 0.53 0.07 0.51 0.59 0.61 0.10 0.62 0.63 0.55 0.08 0.48 0.50 0.52 0.03
LONGFORMER 0.58 0.54 0.50 0.08 0.55 0.56 0.55 0.02 0.54 0.54 0.52 0.02 0.45 0.44 0.47 0.03

AVG 0.59 0.54 0.52 0.07 0.52 0.56 0.55 0.04 0.57 0.57 0.52 0.05 0.46 0.47 0.47 0.03

Table 5: Fairness. Semantic similarity scores of ordered and shuffled approaches compared to each group of
documents (Dw, Da, Dh) across extractive summarization models on DivSumm dataset. The highest scores are
shown in bold.

Model ROUGE-L BARTSCORE BERTSCORE UNIEVAL

Ow Oa Oh Sh. Ow Oa Oh Sh. Ow Oa Oh Sh. Ow Oa Oh Sh.

TEXTRANK 0.23 0.21 0.22 0.23 -4.42 -4.42 -4.44 -4.29 0.55 0.54 0.55 0.56 0.46 0.46 0.48 0.44
BERT 0.24 0.24 0.23 0.21 -4.28 -4.33 -4.39 -4.71 0.56 0.56 0.56 0.55 0.47 0.46 0.49 0.45
LONGFORMER 0.22 0.21 0.22 0.20 -4.38 -4.44 -4.41 -4.35 0.56 0.55 0.56 0.56 0.46 0.46 0.48 0.45

AVG 0.23 0.22 0.22 0.22 -4.36 -4.40 -4.41 -4.45 0.56 0.55 0.55 0.56 0.46 0.46 0.48 0.45

Table 6: Quality. Results of ordered and shuffled approaches across extractive summarization models showing
ROUGE-L, BARTScore, BERTScore and UniEval scores on DivSumm dataset. The best scores are shown in bold,
whereas the highest scores per metric are shown as underlined.
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Abstract
While Large Language Models (LLMs) have
demonstrated considerable potential in advanc-
ing natural language processing in dialect-
specific contexts, their effectiveness in these
settings has yet to be thoroughly assessed. This
study introduces a case study on Šariš, a di-
alect of Slovak, which is itself a language with
fewer resources, focusing on Machine Transla-
tion and Common Sense Reasoning tasks. We
employ LLMs in a zero-shot configuration and
for data augmentation to refine Slovak-Šariš
and Šariš-Slovak translation models. The ac-
curacy of these models is then manually ver-
ified by native speakers. Additionally, we in-
troduce ŠarišCOPA, a new dataset for causal
common sense reasoning, which, alongside Slo-
vakCOPA, serves to evaluate LLM’s perfor-
mance in a zero-shot framework. Our findings
highlight LLM’s capabilities in processing low-
resource dialects and suggest a viable approach
for initiating dialect-specific translation models
in such contexts.

1 Introduction

The recent explosion of development in the field
of Large Language Models (LLMs) has offered an
unprecedented set of capabilities in understanding,
generating, translating and transforming text across
a large number of contexts (Min et al., 2023). How-
ever, despite their wide-ranging applications, the
effectiveness of LLMs in dialect-specific scenarios,
particularly in languages with limited resources,
remains a relatively unexplored domain. This gap
in research presents a critical challenge, as dialects
incorporate distinct linguistic traits and cultural
subtleties, yet comprehensive large-scale datasets
like newswire texts are not available for them.

This study aims to address this gap by focus-
ing on Šariš, a Slovak dialect, with pronounced
linguistic variety as shown in Table 1. As Slovak
is a less-resourced language itself, it presents an
interesting case for examining how large language

English I left the potatoes in the fridge.
Slovak Nechal som zemiaky v chladničke.

Šariš
Ochabil som grul’e v chladňičke.
Zochabil som bandurki v l’adňičke.

Table 1: An example of expressing a singular statement
through various linguistic constructions in the Šariš di-
alect. Note that both of the listed examples were deemed
valid and reasonable by a native speaker.

models (LLMs) perform in specific dialect con-
texts where data is scarce. We focus on two key
natural language processing (NLP) tasks: Machine
Translation (MT) and Common Sense Reasoning
(CSR), which we view as representative for assess-
ing the model’s ability to handle the complexities
of real-world language.

In terms of MT, we investigate how LLMs can
aid in translating between Slovak and the Šaris
dialect. Here the LLMs are first used in zero-shot
setting, meaning that we assume that (to the best of
our knowledge) the models are not directly trained
with Šariš-specific data but are instead expected
to apply their knowledge of Slovak to understand
and translate Šariš. We use this approach both to
evaluate the performance of LLMs on the Slovak
→ Šariš and Šariš → Slovak translation task as
well as for data augmentation, which results in
about 3,500 automatically translated Slovak-Šariš
sentence pairs. These are then used to finetune
a specific Slovak-Šariš translation model, whose
performance is evaluated on a manually labelled
test set.

Additionally, we further introduce a new dataset
called ŠarišCOPA, designed to evaluate the model’s
performance in CSR tasks specifically in the Šariš
dialect. This dataset is intended to complement an
existing dataset for Slovak, SlovakCOPA, to com-
pare how the models perform in understanding both
the standard language and its dialect. In this case
the LLM is first prompted to only output the CSR
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classification directly while additional experiments
with a prompt-specific ”translate-test” approach are
also evaluated.

Our contributions can thus be summarized as
follows:

• We introduce the first Slovak-Šariš translation
dataset and use it to finetune a Šariš specific
Machine Translation model

• We manually evaluate the quality of the trans-
lations produced by the finetuned model, as
well as leading LLMs

• We introduce the ŠarišCOPA dataset and use
it to evaluate the common sense reasoning
performance of LLMs in Šariš

• We experiment with various LLM prompting
approaches for ŠarišCOPA, including transla-
tion to English and Slovak

We release the code and data associated with
our experiments in the hopes of fostering possible
future research in this area at https://github.
com/NaiveNeuron/saris.

2 Slovak and its Dialects

Despite being a relatively small language in terms
of the number of native speakers (roughly 5 million
native speakers), Slovak has multiple dialects. In
this work, we focus on the eastern part of Slovakia,
where the majority of population speak in a multi-
ple dialects from the Šariš, Spiš, Zemplín regions.
Even though we categorize these dialects to dis-
tinct groups, their historical, phonetic and lexical
features are intertwined. A substantial overlap ex-
ists in lexical terms between dialects, with minimal
variance observed (Pavlíková, 2016). Additionally,
instances occur where native speakers interchange
words from different dialects within the same dis-
course. Given these linguistic dynamics, in pursuit
of maximizing corpus size, we considered amalga-
mation of all 3 of the dialects eligible for extraction.

The Šariš dialect holds notable significance
within the family circle of the Prešov region, where
a substantial portion of the population consistently
employs it in their daily interactions. Specifically,
statistics published in (Vodičková, 2009) reveal that
approximately 22.5% of the population, amount-
ing to roughly 180 thousand speakers, within the
Prešov region utilize the Šariš dialect as their pri-
mary mode of communication. From the broader

perspective Šariš, as an Eastern Slovak dialect, is
classified as ”Vulnerable” by the UNESCO Atlas of
the World’s Languages in Danger (Moseley, 2010).

2.1 Šariš-Specific Challenges

The dialect lacks a formal codification, leading to
an absence of definitive linguistic rules governing
their usage in speech and writing. Consequently,
dialectal variations manifest across different areas
which can be as small as villages, resulting in mul-
tiple potential translations for a single word within
the same dialect. An example of this phenomenon
can be seen in Table 1.

Conversely, Eastern Slovakian dialects exhibit
distinct features. Unlike standard Slovak, these di-
alects lack long vowels. The Slovak ”d’” ([dj] in
IPA) and ”t’” ([tj] in IPA) are replaced by ”c” ([ts]
in IPA) and ”dz” ([dz] in IPA), respectively. Most
importantly, however, a majority of Eastern Slo-
vakian dialects, including those of the Šariš region,
do not include the vowel ”y”.

Another challenge arises from the fact that cer-
tain highly specific terms either cannot be ade-
quately translated into Slovak or risk losing their in-
tended meaning. Additionally, the Šariš dialect in-
corporates numerous archaic expressions that have
fallen out of common usage, making them poten-
tially incomprehensible to some speakers.

3 The Translation Task

Our aim with the translation task is to validate to
what extent are the findings of (Gu et al., 2018) still
relevant, which found that less than 13k sentence
pairs are not enough to train a neural machine trans-
lation model to reasonable quality. To this end, we
introduce the ŠarišSet corpora with the help of a
LLM.

3.1 ŠarišSet

Creating a corpus for a new language presents sub-
stantial challenges. The ŠarišSet dataset, contain-
ing over 4,000 sentences in the Šariš dialect from
Eastern Slovakia, was compiled from various on-
line sources. To ensure a solid benchmark, a subset
of 500 sentences received manual translation by
three native speakers1. The bulk of the dataset
was translated through a hybrid method combining
prompt engineering with manual review of outputs

1Here, ”native speaker” refers to someone fluent in the
Šariš dialect with extensive exposure from childhood.
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Šariš Slovak

vocabulary size 3560 3647
Q1 11 11
Median 16 17
Q3 23 23
Mean 18.98 19.23
SD 11.46 11.77

Table 2: The table shows the quantitative statistics of
the ŠarišSet dataset as vocabulary size for the source
and target languages, as well as the Q1, Q2, Median and
Mean of the number of words per sentence. In addition,
the standard deviation is displayed in the SD row.

from GPT-3.5-Turbo and GPT-4 (Achiam et al.,
2023).

The Table 2 shows the aggregated statistics re-
lated to the dataset, such as its vocabulary size and
quantitative statistics for the introduced dataset.

Extraction In order to gather data for a dialect
of a low-resource language spoken by only a few
tens of thousands of individuals, the conventional
automated methodology proved unfeasible. With
scarce online resources beyond traditional folk
songs, the absence of suitable web pages for scrap-
ing presented a challenge. Šariš texts are predom-
inantly confined to a handful of niche blogs and
sporadic Facebook posts. To avoid the complex-
ities of the Facebook interface, our focus was di-
rected solely towards the identified blogs outlined
in Appendix A, discovered through extensive on-
line searches (mainly by searching a very specific
word in the dialect), alongside the aforementioned
folk songs which could be systematically scraped
using the scrapy library in Python2.

Throughout the scraping process, filtering crite-
ria were implemented. The native speaker visually
inspected the texts, reviewing the initial and final
two sentences. If the sentences appeared plausi-
ble, with words in their proper positions and the
structure intact, the text was kept and saved. The
acquired data subsequently underwent a cleaning
process via a script designed to remove duplicates,
highly offensive language, extraneous characters,
and segment the text into coherent sentences.

The final sentences originate from 133 various
longer texts obtained from multiple blogs, together
with more than 170 folk songs.

2https://scrapy.org/

Automatic Translation Given the laborious na-
ture of manual translation, we opted to employ
the GPT-3.5-Turbo and GPT-4 models for translat-
ing the remaining sentences, comparing their per-
formance using various prompt engineering tech-
niques.

Initially, we focused on the GPT-3.5-Turbo
model, experimenting with three distinct prompts.
The first prompt, applied to both models, was
straightforward as we can see in Figure 1.

translate to Slovak

Figure 1: The first simplest prompt used for trans-
lation.

We further tested a more nuanced prompt, en-
couraging the model by stating that even an inaccu-
rate translation would be beneficial (see Figure 2).

Please, try to translate this into
Slovak, even an inaccurate version
would help a ton

Figure 2: The second prompt used for translation.

Finally, we utilized a persona-based approach,
directing the model to take on the role of a bilin-
gual eastern Slovak youth proficient in translating
dialects into Slovak. The prompt, visible in Fig-
ure 3, presented a scenario where the model was a
native Šariš dialect speaker conversing with some-
one unfamiliar with it.

You’re an eastern Slovak young man who
has lived in one village his entire
life. Though you are proficient
in Slovak due to schooling, at
home with your family, you speak
in the eastern Slovak dialect known
as Šariština. You’ve introduced a
girl from central Slovakia, fluent in
Slovak but unfamiliar with Šariština,
to your family and need to provide
the most accurate translation of this
sentence into Slovak

Figure 3: The third prompt used for translation
that employed the persona-based approach.

A selection of model responses is illustrated in
Table 8.

We manually evaluated these results across 50
sentences, selecting the most suitable translation
from the three generated ones. Surprisingly, the
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translations from Prompt 2 proved to be highly
comparable to those from Prompt 3, despite the
added narrative context. Ultimately, we chose the
second prompt due to fewer instances of extraneous
words in the final outputs.

When it finally came to the translating the re-
minder of ”ŠarišSet”, it was necessary to decide
between using GPT-3.5-Turbo and GPT-4. Utiliz-
ing a similar approach as above, we evaluate the
results of each on 50 sentences and concluded that
GPT-4 is a better fit for this sort of a translation
task and was used to translate the remaining 3,500
sentences using the Prompt 2 chosen before. The
same prompt was then used for translation of the
test set as well. Additional details on how these
models were accessed can be found in Section B.

3.2 NLLB-Based Model

In the very first iteration we experimented with
the mBART model (Tang et al., 2020), specifically
the mBART-50 version that was created by mul-
tilingual fine-tuning. Perhaps owing to the fact
that Slovak was not included in the languages it
was pretrained on, the model tended to collapse to
outputting a single word and not being useful at all.

As an alternative to the mBART model, we also
experimented with the NLLB-200 model which
was created as part of the No Language Left Behind
project (Costa-jussà et al., 2022). The aim of this
project is to provide open-source models ”capable
of delivering evaluated, high-quality translations
directly between 200+ languages – including low-
resource languages”3. The list of 204 languages
does not include Šariš but as opposed to mBART,
it does include Slovak (which (Costa-jussà et al.,
2022) even lists as being high resourced on page
15 in Table 1) and hence we opted to experiment
with using it as the basis for the Šariš → Slovak
and Slovak → Šariš translation models. We did so
by adding a new ”pseudo language” tag sar_Latn
to the model and finetuning it on the dataset intro-
duced in Section 3.1. We finetuned the model,
specifically its nllb-200-distilled-600M ver-
sion4, with the batch size of 16, 500 warm up steps
and 20 000 training steps. Additionally, the maxi-
mum output length was set to 128.

3https://ai.meta.com/research/
no-language-left-behind/

4https://huggingface.co/facebook/
nllb-200-distilled-600M

Š → S S → Š
F A F A

GPT-3.5-Turbo 2.96 3.15 1.02 1.23
GPT-4 3.45 3.51 1.17 1.57
NLLB 3.09 3.00 3.16 3.80

Table 3: The average fluency (F) and adequacy (A)
obtained during evaluation of various models and trans-
lation directions. Š represents Šariš and S represents
Slovak. The best result per each metric and language
pair is boldfaced.

3.3 Evaluation

In our experimental framework, we utilize ade-
quacy and fluency metrics (Chatzikoumi, 2020)
to manually evaluate the outputs generated by the
machine translation models. Each output, corre-
sponding to a given source text, underwent assess-
ment by an annotator on a graded scale ranging
from 1 to 5, where the higher numbers represent
better adequacy and fluency.

In terms of adequacy, we are primarily con-
cerned with whether the output effectively conveys
the same meaning as the input sentence. We evalu-
ate whether any part of the original message is lost,
added, or distorted during the translation process.
Therefore, the rating of 5 signifies preservation of
all semantic aspects from the source text, whereas
a score of 1 indicates complete loss of meaning.

Regarding fluency, our focus lies in assessing
whether the output exhibits fluent expression in
the target language. This entails considerations of
grammatical correctness and the use of idiomatic
word choices to ensure that the translated text reads
naturally and smoothly. Likewise, a fluency score
of 5 indicates seamless language coherence in align-
ment with the intended target output, whereas a
score of 1 suggests incomprehensibility.

During evaluation, we conducted comparisons
between the translated sentences. If a text con-
tained 1-2 errors (untranslated words, mismatched
case ending and so on), it would receive a score of
4. Conversely, if the translated sentence exhibited
only 1-2 accurately translated words and rest was
implausible, it would be awarded a score of 1, and
so forth.

The evaluation, conducted by a native speaker
and detailed in Table 3, indicates that GPT-4 ex-
celled in translating from Šariš to Slovak, while the
NLLB model reported the best performance in the
opposite direction. Notably, both GPT-3.5-Turbo
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PREMISE CHOICE 1 CHOICE 2

sk Vonku sa zotmelo.
R

Z oblohy začali padat’ snehové vločky. Na oblohe sa objavil mesiac.
en It got dark outside. Snowflakes began to fall from the sky. The moon became visible in the sky.

šr Šl’isknul som še na žemi.
C

Kachl’ička bula prasknuta. Kachl’ička bula morka.
en I slipped on the floor. The tile was cracked. The tile was wet.

Table 4: Examples of forward (Result [R]) and backward reasoning (Cause [C]) in the COPA, SlovakCOPA and
ŠarišCOPA validation sets. Note that Šariš is denoted as šr in the list of languages.

and GPT-4 showed poor performance in translat-
ing from Slovak to Šariš, indicating a challenge
in producing coherent Šariš output. Conversely,
GPT-4’s superior performance in translating to Slo-
vak, surpassing even the fine-tuned NLLB model,
underscores the importance of language-specific
proficiency in LLM-based translation.

4 The Common Sense Reasoning Task

To gauge the effectiveness of natural language pro-
cessing (NLP) systems in understanding different
languages, it is crucial to employ various testing
methods. Common sense reasoning evaluation is
particularly significant, as it is a fundamental as-
pect of these systems, underscored by previous
research (Davis and Marcus, 2015). The Choice Of
Plausible Alternatives (COPA) serves as a notable
benchmark, testing systems’ ability to decipher
cause-and-effect relationships in English sentence
pairs (Roemmele et al., 2011). Due to its acclaim,
COPA has been expanded into multiple languages
through the XCOPA benchmark (Ponti et al., 2020)
and adapted for Slavic languages such as Slovenian
(Ljubešić et al., 2022a), Serbian (Ljubešić et al.,
2022b), and Croatian (Ljubešić, 2021). Our study
introduces the ŠarišCOPA dataset, focusing on the
Šariš dialect.

4.1 ŠarišCOPA

The COPA framework is generally implemented
as a binary classification challenge. Models must
choose the more plausible scenario from two op-
tions, based on a given premise and question. This
assessment distinguishes between cause and effect
in scenarios: ”cause” questions ask for the reason
behind an event while ”effect” questions seek the
consequence of an event.

The ŠarišCOPA dataset, designed to test LLMs’
common sense reasoning in Šariš, consists of 500
test and 100 validation triplets, each with a premise
and two choices. It adapts the original English
COPA, following XCOPA’s translation methodol-

ogy (Ponti et al., 2020), with the translation work
carried out by native speakers from the ŠarišSet
project. Additionally, we compare results with
the SlovakCOPA dataset, created by a professional
translator using a similar method. The format and
examples of these datasets are displayed in Table 4.

4.2 Evaluation

Our evaluation of the SlovakCOPA and ŠarišCOPA
datasets began with comparing native speaker la-
bels to those from the original COPA dataset, re-
vealing a 100% match in both cases.

Subsequently, we tested GPT-3.5-Turbo and
GPT-4 on these datasets using specific prompts
for the ”cause” as well as the ”efect” scenario.
These prompts were inspired by the prompts used
by ”BENCHić - the benchmark for Bosnian, Croa-
tian, Montenegrin, Serbian (and friends)”5. They
were designed to minimize the amount of noise in
the responses of LLMs and their full text can be
seen below:

COPA Prompt: Cause

Given the premise ”premise”, and that we
are looking for the cause of this premise,
which hypothesis seems more plausible?
Hypothesis 1: ”hypothesis1”.
Hypothesis 2: ”hypothesis2”.
Please answer only with ”1” or ”2”.

COPA Prompt: Effect

Given the premise ”premise”, and that we
are wondering what happened as a result of
this premise, which hypothesis seems more
plausible?
Hypothesis 1: ”hypothesis1”.
Hypothesis 2: ”hypothesis2”.
Please answer only with ”1” or ”2”.

5This benchmark can be found at https://github.com/
clarinsi/benchich/tree/main/copa

134



As Table 5 shows, GPT-3.5-Turbo performed
well on SlovakCOPA (76.6% accuracy) but strug-
gled with ŠarišCOPA (55.4% accuracy, near ran-
dom chance). GPT-4 showed remarkable perfor-
mance on SlovakCOPA (96.6% accuracy) and sig-
nificantly outperformed GPT-3.5-Turbo on Šariš-
COPA (79.8% accuracy), albeit with a 4.8% rate of
unparseable responses, such as ”As an AI language
model, I’m unable to understand the premise and
hypotheses because they are not in a recognizable
language or a standard linguistic structure. There-
fore, I can’t determine which hypothesis is more
plausible.”.

We also tested a method where the model first
translates the input into a more resource-rich lan-
guage before making a prediction. This approach,
inspired by the performance of GPT-4 in Šariš to
Slovak translation and recent research on multilin-
guality in LLMs (Liu et al., 2024) and cross-lingual
transfer (Ebing and Glavas, 2023), involved slightly
modified prompts for translation into English and
Slovak, which can be found below.

COPA Prompt: Cause with translation

Given the premise ”premise”, and that we
are looking for the cause of this premise,
which hypothesis seems more plausible?
Hypothesis 1: ”hypothesis1”.
Hypothesis 2: ”hypothesis2”.

First translate the premise and the hypothe-
ses to English, then answer only with ”Pre-
diction: 1” or ”Prediction: 2”.

COPA Prompt: Effect with translation

Given the premise ”premise”, and that we
are wondering what happened as a result of
this premise, which hypothesis seems more
plausible?
Hypothesis 1: ”hypothesis1”.
Hypothesis 2: ”hypothesis2”.

First translate the premise and the hypothe-
ses to English, then answer only with ”Pre-
diction: 1” or ”Prediction: 2”.

The results, labeled ”+ translate en” and ”+ trans-
late sk” in Table 5, showed that translating to En-
glish improved GPT-3.5-Turbo’s performance on
SlovakCOPA (from 76.6 to 88.0) and ŠarišCOPA

Model SlovakCOPA ŠarišCOPA

GPT-3.5-Turbo 76.6 (0.0) 55.4 (0.0)
+ translate en 88.0 (0.2) 71.0 (0.4)
+ translate sk 70.0 (0.4)

GPT-4 96.6 (0.0) 79.8 (4.8)
+ translate en 96.6 (0.0) 82.0 (8.6)
+ translate sk 81.6 (8.8)

Table 5: The accuracy of GPT 3.5 Turbo and GPT 4 on
the SlovakCOPA and ŠarišCOPA datasets. The number
in parentheses denotes the number of responses that
we were unable to parse. The best performing model
in a specific model family on a particular dataset is
boldfaced.

(from 55.4 to 71.0), with a slight increase for GPT-
4 on ŠarišCOPA (from 79.8 to 82.0). Translating
to Slovak yielded less pronounced improvements.
Interestingly, the number of unparseable responses
increased, including ”The text provided is not in
a recognizable language, therefore it cannot be
translated or used to make a prediction.” in En-
glish and ”The premise and hypotheses are already
in Slovak, but they are written in a dialect or with
many spelling mistakes, making them difficult to
understand. Therefore, it is impossible to make a
prediction.” in Slovak, hinting at GPT-4’s ability
to recognize Šariš as a Slovak dialect.

5 Discussion

This study aimed to assess the proficiency of large
language models (LLMs) in processing the Šariš
dialect, a low-resource variant of Slovak. Our
investigation, detailed in Section 3, showcased
GPT-4’s ability to translate between Slovak and
Šariš, albeit with varying success, particularly in
Šariš-targeted translations. Enhancing the NLLB
model with GPT-4’s Šariš translations significantly
improved its performance, outstripping GPT-3.5-
Turbo in Slovak to Šariš translation accuracy and
surpassing both GPT iterations in the opposite di-
rection. This indicates that leveraging LLMs for
initial translations can create a solid foundation for
building effective translation tools for underrepre-
sented dialects, as demonstrated by our results with
just 3,500 sentences.

Furthermore, as detailed in Section 4, translation
plays a crucial role in the Common Sense Reason-
ing Task. Having models translate inputs to English
or Slovak before making inferences improved the

135



outcomes for both GPT-3.5-Turbo and GPT-4, with
English translations being marginally more effec-
tive. Intriguingly, GPT-4 occasionally declined to
make predictions, identifying inputs as specific Slo-
vak dialects or variants, indicating its potential in
dialect recognition, despite limitations in dialect
generation.

In summary, our experiments illustrate that
LLMs have the potential to be instrumental in han-
dling dialects with scarce resources. By integrating
strategic prompting with LLMs, we cannot only en-
hance model performance but also empower subse-
quent models trained on the data produced, setting
a promising direction for future research in NLP
for low-resource dialects.

6 Related Work

Machine translation for low-resource languages
and dialects has been an active area, often leverag-
ing transfer learning from high-resource languages
(Tars et al., 2021; Maimaiti et al., 2019). Dialect
translation has been studied for Arabic (Harrat
et al., 2019), German (Honnet et al., 2018), Por-
tuguese (Costa-jussà et al., 2018) and French, Croa-
tian, Serbian and Malay (Lakew et al., 2018) di-
alects, finding substantial data in the dialect lan-
guage is beneficial.

The Choice of Plausible Alternatives (COPA)
dataset (Roemmele et al., 2011) has been widely
used to evaluate commonsense causal reasoning
in English, and has further been translated into
11 languages, including resource-poor languages
like Haitian Creole as part of XCOPA (Ponti et al.,
2020) and separately into Slavic languages as well
(Ljubešić, 2021; Ljubešić et al., 2022a,b). Analy-
sis has found translate-test approaches can boost
performance over zero-shot cross-lingual transfer
(Artetxe et al., 2023), aligning with our findings.
Our ŠarišCOPA dataset provides a new test for
reasoning in a low-resource dialect context.

While Slovak is considered a lower-resource lan-
guage compared to major world languages, there
has been some prior work on developing NLP tools
and resources. This includes machine translation
systems focused on European languages (Popel,
2018), pre-trained language models like Slovak-
BERT (Pikuliak et al., 2022) and annotated datasets
for tasks like named entity recognition (Suba et al.,
2023) and question answering (Hládek et al., 2023).
However, work specifically targeting Slovak di-
alects like Šariš has been very limited. Perhaps the

closest work to ours would be (Darjaa et al., 2018)
in which the authors conduct a preliminary analy-
sis on the distinguishability of Slovak dialects in
spoken language and introduce the Sound Archive
of Slovak Dialects – roughly 150 hours of record-
ings which include all basic Slovak dialects. To
the best of our knowledge, our work is the first to
investigate the use of Natural Language Processing
specifically on texts in Slovak dialects.

7 Conclusion

This study assesses LLMs’ abilities in translat-
ing and understanding the Šariš dialect through
machine translation and common sense reasoning
tasks, introducing the ŠarišCOPA dataset. While
LLMs show proficiency in translating from Šariš to
Slovak, reverse translations pose challenges. The
inclusion of translation as a preprocessing step im-
proved common sense reasoning performance, par-
ticularly notable when comparing results on Šariš-
COPA with SlovakCOPA. These findings highlight
the potential and limitations of LLMs in process-
ing and reasoning in low-resource dialects. The
code and data associated with our experiments can
be found at https://github.com/NaiveNeuron/
saris.

Limitations

Data Scarcity Despite our efforts, the amount
of Šariš data we could obtain remains very lim-
ited compared to standard benchmarks for high-
resource languages. The ŠarišSet corpus contains
only around 4,000 sentences, and ŠarišCOPA has
just 600 examples. This scarcity makes it diffi-
cult to fully assess LLM capabilities and prevents
training extremely high-performing dialect-specific
models from scratch. Obtaining more in-domain
data would strengthen future analyses.

Human Evaluation Our human evaluations of
translation quality and the ŠarišCOPA dataset drew
upon a limited number of native Šariš speakers.
While we took care to involve highly proficient
speakers, from multiple parts of the Šariš region,
inherent subjectivity in such evaluations means the
ratings may not fully generalize. A larger eval-
uation involving more speakers would increase
confidence. Additionally, no standard evaluation
datasets exist for Šariš, preventing benchmarking
against prior work.
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Model Limitations The prominent LLMs like
GPT-3, GPT-4, and NLLB that we evaluated
are large models trained primarily on text from
high-resource languages. While their pretraining
data likely contained little-to-no examples of low-
resource dialects like Šariš, it is difficult to claim
that with certainty – particularly for models that
are not publicly released, which further hinders the
reproducibility of our experiments.

Reasoning About Dialect While our ŠarišCOPA
probe provides a window into LLM’s common-
sense reasoning abilities for the dialect, the exam-
ples come from a single constructed dataset. Draw-
ing broader conclusions about general language
understanding of Šariš from this limited test would
be an overreach. More comprehensive benchmarks
probing other core language skills are needed.
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A Data Sources

The list below outlines the domains which were
ultimately used for extraction of the ŠarisSet. The
majority of the sentences were obtained from
various local newspapers, blogs and folk tales
found on the following internet pages:

• https://www.obeckrivany.sk/

• https://bandzone.cz/

• https://www.ilonas.net/valal/

• https://prerag.sk/

• https://blog.pravda.sk/

Similarly, for obtaining the texts of various Šariš
folk songs, the following domains were scraped:

• https://narecie.sk/

• https://www.videorohal.com/

B Details on Accessing GPT-3.5-Turbo
and GPT-4

All models were accessed via the AzureOpenAI
endpoints6, with the API version being set to
2023-07-01-preview and the temperature=0 to
aid reproducibility.

C GPT-4 Translations

The examples of good and bad translations from
Šariš to Slovak obtained from the GPT-4 model
oaired with the Prompt 2 can be seen in Table 6
and Table 7, respectively.

D Translation Prompts

In Table 8 we can see the original sentence in Šariš
and its Slovak manual translation; together with the
translations obtained from GPT-3.5-Turbo model
using Prompts 1, 2 and 3.

6https://learn.microsoft.com/en-us/azure/
ai-services/openai/reference
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Šariš dialect Slovak
”Ta ňeznam,” - hvarim ja jej, ”ja ňemam kedi, hibal’
na večar?”

”Ja neviem,” hovorím jej, ”ja nemám kedy, možno
večer?”

Dok sme bul’i malki, naša mama nam vel’o času
pošvecovala.

Ked’ sme boli malí, naša mama nám venovala vel’a
času.

Počali sme medži sobu bešedovac. Začali sme medzi sebou rozhovor.
Dovidzeňa i ščešl’ivo - skričal som jej. ”Dovidenia a št’astlivo,” zakričal som na ňu.
Šofer po nas vriskal, naj śe sciśime, bo ho to ruši. Vodič na nás kričal, aby sme prestali vrieskat’, pre-

tože ho to rušilo.

Table 6: Examples of a bad translation from Šariš dialect to Slovak obtained from the GPT-4 model.

Šariš dialect Slovak
Ona vichovala parobkom frajirku. Ona obdaruvala chlapca drahým darčekom.
Taže me ňemal’i aňi dze śedzec, aňi dze spac. Teda ma nemajú ani na sed’at’, ani na spat’.
Jak me prišl’i na chižu, ta me muśel’i stolok pod-
kladac.

Ked’ ma priviezli na pohotovost’, museli mi pod-
kladat’ stôl.

Table 7: Examples of a good translation from Šariš dialect to Slovak obtained from the GPT-4 model.

Translations
Šaris Heslo jej babi bulo: ”ked na dakoho ňemožeš patric zos očmi, popatri na ňho zos šercom”
Slovak Heslo jej babky bolo: ”Ked’ na niekoho nemôžeš pozriet’ s očami, pozri naňho so srdcom”.
Prompt 1 Heslo jej babičky bolo: ”Ked’ na niekoho nemôžeš hl’adiet’ očami, pozri naňho srdcom.”
Prompt 2 Heslo jej babičky bolo: ”Ked’ na niekoho nemôžeš pozerat’ očami, pozri naňho srdcom.”
Prompt 3 Heslo jej babičky bolo: ”Ked’ na niekoho nemôžeš pozerat z očí, popozri na neho z srdcom”.
Šariš Poneže še M. l’ubel chval’ic, i ponosovac, zos vel’ima stvarami, vše ked prichodzel.
Slovak Pretože sa M. rád chválil aj povyšoval s vel’kými svárami všade kde prišiel.
Prompt 1 Áno, napríklad, oni sa hnevali na M., ked’ im niečo prekladal, lebo, áno, všetko rozumeli.
Prompt 2 Pretože sa M. l’úbil chválit’ a pýšit’ sa mnohými vecami, ked’že prichádzal.
Prompt 3 Tak, napríklad, oni sa hnevali na M., ked’ im niečo prekladal, pretože, áno, všetko rozumeli.
Šariš ”Ta ňeznam,”- hvarim ja jej, ”ja ňemam kedi, hibal’ na večar?”
Slovak ”Tak neviem” - hovorím jej ja, ”ja nemám kedy, možno večer?”
Prompt 1 ”Ta neviem,”- pýtam sa jej, ”ja nemám plán, ideš večerat’?”
Prompt 2 ”Ta neviem,” - hvarím jej, ”ja nemám mačku, alebo íst’ večer?”
Prompt 3 ”Neznamená to,” hovorím jej, ”ja nemám práve teraz čas, ideme večerat’?”

Table 8: Comparison of Šariš sentences with Slovak translations and translations from Prompts 1, 2, and 3 obtained
from GPT-3.5-Turbo.
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Abstract

Linguistic variation is a complicating factor for
digital language technologies. This is partic-
ularly true for languages that lack an official
“standard” variety, including many regional and
minoritized languages. In this paper, we de-
scribe a set of experiments focused on multi-
variant natural language processing for Nahuatl,
an indigenous Mexican language with a high
degree of linguistic variation and no single rec-
ognized standard variant. Using small (10k
tokens), recently-published annotated datasets
for two Nahuatl variants, we compare the per-
formance of single-variant, cross-variant, and
joint training, and explore how different mod-
els perform on a third Nahuatl variant, unseen
in training. These results and the subsequent
discussion contribute to efforts of developing
low-resource NLP that is robust to diatopic vari-
ation. We share all code used to process the
data and run the experiments.1

1 Introduction

Linguistic variation, though a ubiquitous feature of
human language, is a complicating factor for digital
language technologies. While natural language
processing (NLP) has made significant advances
in recent years, the “dialect gap,” which refers to
the drop in performance of NLP systems on non-
standard linguistic varieties, remains (Kantharuban
et al., 2023). In many cases, non-standard, low-
resource variants are similar or related to a more
uniform, standard variety with a greater number
of linguistic resources. One popular approach to
remedy this problem is to leverage a high-resource
standard variant in concert with data augmentation
methods to train models on a similar non-standard
variant (Zampieri et al., 2020).

However, the case of a related, high-resource
standard variant is not the only linguistic situa-

1https://github.com/Lguyogiro/
multidialectal-nlp-nahuatl

Figure 1: A map approximating the location of many
of the Nahuatl variants spoken in Mexico. The colors
correspond to the division defined in Kaufman (2001),
blue for the Eastern branch, Turquoise for the Central
branch, and Orange for the Western branch. We label
the two variants for which we have training data in
the form of UD treebanks. Importantly, this map is an
approximation, and does not claim to represent every
Nahuatl variant.

tion that speakers and writers of non-standard vari-
ants find themselves in. On the contrary, there
are numerous distinct dialect situations across the
world. In a treatment of such scenarios in Europe,
Auer (2011) identifies a useful typology for think-
ing about the diversity of language situations with
respect to standard languages and dialectal varia-
tion. Relevant to the present paper, this typology
includes exoglossic diglossia or “Type 0”, which
describes a situation of multiple non-standard vari-
ants without any endoglossic standard. In these
cases, if a standard variety does exist it is viewed
as imported or significantly different from the ver-
nacular dialects.

In the absence of a spoken or written standard
variety (“Type 0”), in particular when there is lit-
tle available annotated linguistic data for the non-
standard varieties, developing digital language tech-
nologies robust to diatopic language variation is a
particularly important and valuable objective.
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Nahuatl, a group of approximately 30 language
varieties spoken in Mexico and Central America
(Described in further detail in Section 2), fits the
“Type 0” characterization quite well, given that
there are a large number of recognized varieties
and no single standard2. There also exists a vast
body of literature in the language written primarily
in historic Nahuatl varieties from the early colo-
nial era, known as “Classical Nahuatl” (Gingerich;
León-Portilla, 1985), to which speakers of contem-
porary Nahuatl varieties have little exposure.3

While these aspects of the Nahuatl language sit-
uation make it an interesting candidate for NLP
research, they are not unique to Nahuatl. In fact,
numerous indigenous language in Latin America
fit the characterization of having many diatopically-
diverse variants, no single contemporary standard,
and a colonial-era written canon. Other exam-
ples include the Zapotec (Foreman and Lillehau-
gen, 2017; Flores-Marcial et al.; Hilts, 2003) and
Quechuan (Luykx et al., 2016; Durston, 2008; Es-
cobar, 2011) languages.

The present work evaluates a number of ap-
proaches to multi-variant NLP for Nahuatl. We
leverage recently-published, relatively small Uni-
versal Dependencies corpora in two Nahuatl vari-
ants and compare monolingual model performance
with that of cross-lingual and jointly-trained mod-
els, as well as the impact of leveraging multi-
variant, unlabeled data by adding an auxiliary task
during training.

Our goal in this effort is two-fold: (1) to set
the stage for high-quality NLP models that support
speakers of any variety of Nahuatl, leveraging their
similarities, and (2) to inform similar efforts involv-
ing other languages in a similar dialect situation.

2 The Nahuatl Language Complex

Nahuatl is a polysynthetic, agglutinating Uto-
Aztecan language spoken throughout Mexico and
Mesoamerica. The Mexican Government’s Insti-
tuto Nacional de Lenguas Indı́genas (INALI) recog-
nises 30 distinct Nahuatl varieties (INALI, 2009),
with highly-variable levels of linguistic similarity
and mutual intelligibility. Furthermore, linguistic

2Alternatively, the label of “Pluricentric” (Clyne, 2012)
may also be considered appropriate, though this typically
refers to multiple standard, national languages, which is not
the case of Nahuatl

3Interestingly, Sullivan (2011) describes a course with
Nahuatl-speaking students focused on reading classical Nahu-
atl manuscripts, and notes that the students could read and
understand it with little difficulty.

Figure 2: An abbreviated diagram of the sub-
classification of Nahuatl variants, offering a glimpse
at the taxonomic relationship between the variants we
investigate here. The classification largely follows Kauf-
man (2001) using the same color-coding scheme in Fig-
ure 1. The variants used in this paper are bolded, and
the two for which we have annotated training data are
marked with an asterisk. The classification of the Cen-
tral Guerrero variant follows (Lastra, 1986).

similarity and mutual intelligibility is not always
correlated with geographic distance, a fact that is
due in part to multiple waves of migration of Nahu-
atl speakers leading speakers of different varieties
to end up in close proximity to one another (Canger,
1988; Kaufman, 2001; Beekman and Christensen,
2003).

Dialectological research on Nahuatl dates back
to at least (Lehmann, 1920). More recently, re-
searchers largely converge around the dialect sub-
classifications presented in (Lastra, 1986), (Canger,
1988), and (Kaufman, 2001) which, while not
identical, agree on a number of important points,
namely on the existence of Eastern Nahuatl vari-
eties, which are thought to correspond to one wave
of early migration, Central Nahuatl varieties, cor-
responding to the Nahuatl spoken in the valley of
Mexico and in what is now Mexico City, and West-
ern varieties, including Nayarit/Durango Nahuatl.

There is no unanimous consensus about the
classification of Nahuatl variants, but for a num-
ber of cases there is widespread agreement (e.g.
Pipil/Nawat of El Salvador and Sierra Puebla, or
Highland Puebla, Nahuatl belonging to the Eastern
group). Pharao Hansen (2014) provides some addi-
tional recommendations for the sub-classification
between Eastern and Central/Western groups based
on a survey of linguistic evidence. Nahuatl variants
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can differ at essentially every level of linguistic
structure: Lexicon (e.g. totoltetl vs. teksistli “egg”),
phonology (e.g. e vs. i (Canger and Dakin, 1985),
t–tl–l, word-initial e- vs. ye-), morphology (e.g.
the presence or absence of the “antecessive” o- for
verbs in the past, the presence or absence of the per-
fective -ki suffix), and syntax (e.g. relative clauses
(Pharao Hansen, 2015), and the order of certain
adverbs with respect to verbs).

Additionally, since the invasion of Mexico in
the 16th Century by the Spanish, Nahuatl has had
close contact with Spanish, resulting in both in ex-
tensive “material borrowing” (Matras and Sakel,
2007) such as loanwords and new phonemes, but
also a non-trivial amount of morphosyntactic “pat-
tern borrowing” like syntactic calque, such as a
development of the periphrastic future, and the de-
velopment of adpositions from relational nouns
(Farfán, 2008; Olko et al., 2018).

3 Related Work

Research on linguistic variation in NLP has re-
cently become an important topic in the field, with
now ten iterations of the Workshop on NLP for Sim-
ilar Languages, Varieties and Dialects (VarDial)
(Scherrer et al., 2023), which has over the years in-
cluded a number of important and relevant shared
tasks, such as similar language detection (Aepli
et al., 2022) and cross-lingual parsing (Zampieri
et al., 2017). Scherrer and Rambow (2010) ex-
plores approaches to NLP for the Swiss German
dialect area that leverage geographic information,
weighting rules using knowledge about the dis-
tribution of variant features in different regions.
Also working on the Swiss German dialect con-
tinuum, Aepli (2018) evaluates syntactic parsing
approaches including annotation projection, for
which a parallel corpus with standard German was
compiled, and delexicalized parsing.

These two approaches, annotation projection
(Hwa et al., 2005; Agić et al., 2016) and delex-
icalized parsing (Zeman and Resnik, 2008), are
common methods for cross-lingual parsing of re-
lated languages. More recently, the use of multilin-
gual embedding representations used with neural
network architectures has been shown to be quite
effective for multilingual parsing (Ammar et al.,
2016), particularly with pretrained transformer lan-
guage models such as multilingual BERT (Devlin
et al., 2019), as demonstrated in, e.g. in Kondratyuk
and Straka (2019). Abdul-Mageed et al. (2021)

build a language-specific transformer (with a large
volume of data), reporting improved performance
on multiple NLP tasks for a number of Arabic di-
alects.

One straightforward approach to multi-variant
parsing is cross-lingual model transfer, wherein
a model is trained on one variety (typically the
higher-resource, standardized variety), and used on
a different, related variety (Zampieri et al., 2020).
Alternatively, work on two Norweigian standard
languages, Bokmål and Nynorsk, found that simply
combining the training data for closely-similar lan-
guages produces better results than straightforward
model-transfer (Velldal et al., 2017).

While Nahuatl dialectology has a rich tradition
in the field of linguistics (see Section 2), computa-
tional work addressing linguistic variation in Nahu-
atl is harder to come by. Efforts in this area include
Farfan (2019)’s detailed analysis of the similarities
of contemporary Nahuatl writing (from multiple
variants) with Classical Nahuatl using a finite-state
morphological analyzer built for the latter language,
and Pugh and Tyers (2021), which found that sim-
ple, character-based language models, when evalu-
ated across variants, track well with variant group-
ings and mutual intelligibility.

4 Data

We use recently published, linguistically-annotated
datasets for two Nahuatl varieties: Highland Puebla
Nahuatl (alternatively Sierra Puebla Nahuat, ISO-
639: azz) (Pugh and Tyers, 2024) and West-
ern Sierra Puebla Nahuatl (alternatively Zacatlán-
Ahuacatlán-Tepetzintla Nahuatl, ISO-639: nhi)
(Pugh et al., 2022), both spoken in the Sierra Norte
region of the state of Puebla. Each of these datasets
contains approximately 10,000 tokens, annotated
using the Universal Dependencies (UD) (Nivre
et al., 2020) framework for multiple levels of anal-
ysis: lemmatization, part-of-speech tagging, mor-
phological analysis, and syntactic parsing.4

With respect to dialectal classification, Highland
Puebla Nahuatl is clearly identifiable as an East-
ern Nahuatl variety, and its place within the Nahu-
atl sub-classification is generally agreed-upon in
the literature. Western Sierra Nahuatl’s place is
a bit trickier, in that it has a number of Central
isoglosses, but also shares some features with the
Eastern varieties (e.g. having /i/ where central vari-

4A quantitative comparison of the two treebanks can be
found in Pugh and Tyers (2024).
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Use Source Variant Annotation Tokens Sents

train/eval azz treebank azz UD 10,088 1,260
train/eval nhi treebank nhi UD 10,132 909
train only Axolotl azz, nci, nhm, nhn, nhw unlabeled 182,174 13,519
eval only Casanova stories ncx UD 2,355 200

Table 1: A breakdown of the datasets used in the paper and their total sizes. For the treebanks, which make up the
data for the bulk of the experiments, we divided up the dataset 10 times into 90/10 splits in order to perform 10-fold
cross validation. The variant labels listed with the Axolotl corpus are approximations based on an analysis of the 30
text sources that the sentences come from. The “Casanova stories” is a sample of texts from a larger collection,
generously provided Joe Campbell.

eties have /e/). (Sasaki, 2015) provides a detailed
comparison of Nahuatl variants spoken in Puebla’s
Northern Sierra, including Highland Puebla and
Western Sierra Nahuatl. Table 2 provides an exam-
ple of the differences between the variants.

It is worth noting that, though they are relatively
distinct genealogically, these two variants are spo-
ken in some adjacent communities and are in con-
tact in areas such as Tetela de Ocampo, an azz-
speaking municipality where some nhi-speakers
go for commerce and school. It is therefore pos-
sible that these two varieties have more common
features than any random selection of two variants.
That being said, the two variants are distinguished
by multiple isoglosses, e.g. the /t/-/tl/ distinction
and use of the antecessive /o-/ in the past tense.

The nhi corpus consists of a combination of
short stories, personal narratives, and grammar ex-
amples, and contains samples representing some
linguistic diversity within the variant group (see
Pugh et al. (2022) for specifics). The azz corpus,
on the other hand, is more homogeneous, with the
majority of the data coming from a single town and
being largely of a single genre, namely descriptions
of plants and their medicinal/culinary use.

For one experiment, we supplement the UD tree
data with unlabeled Nahuatl text from the Axolotl
corpus (Gutierrez-Vasques et al., 2016), a Nahuatl-
Spanish parallel corpus with over 10k sentences.

Finally, we collect and annotate a small sample
(about 2k tokens) of texts from the Central Puebla
Nahuatl (ISO-639: ncx), a Central Nahuatl variety.
The sample (“Casanova stories”) is taken from a
collection of short stories from Gonzalez-Casanova
and prepared by Joe Campbell. We annotate the
sample with the UD schema, but ignore morpho-
logical analyses due to the time-intensive nature
of such annotation. This small dataset is used to
evaluate our models’ performances on a Nahuatl

variety not seen during training.

4.1 Orthography

Numerous orthographic standards have been pro-
posed over the years for written Nahuatl (using
the Latin alphabet), but there is no real consensus.
Often, written Nahuatl may be in a one-off orthog-
raphy, and not necessarily consistent within a given
text. Our data represents a variety of orthographies,
and we normalize it using a finite-state transducer
from the Py-Elotl Python package5. As the target
orthography, we use one of the norms proposed
by the Summer Institute of Linguistics (SIL) for
Nahuatl, which uses ‘s’ for /s/, ‘c/qu’ for /k/, ‘tz’
for /ts/, and ‘u’ for /w/. This decision is largely
arbitrary. our motivation for choosing this instead
of, for example, the INALI standard orthography
(INALI, 2018), is the former’s greater similarity to
Spanish spellings (e.g. the graphemes “w” and “k”
in Spanish are seen primarily only in loanwords).
Since Nahuatl texts typically contain many Span-
ish words, and given the fact that the multilingual
BERT model we use in our experiments was trained
on a large amount of Spanish data, we chose to use
an orthography that reflects Spanish spellings in
order to better leverage the representations in the
BERT model6. We use the normalized forms in all
of the experiments in order to remove orthographic
variation as a variable.

5https://github.com/ElotlMX/py-elotl
6Another option that would achieve the same goal would

have been the ACK orthography, the only difference being the
latter’s lack of “s”, which is relatively common in contempo-
rary Spanish orthography. The quantification of orthographic
similarity, and the extent to which orthography plays a role
in Nahuatl parser performance using multilingual pretrained
language models is a topic that we leave for future work.
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azz nhi en

Tepos teyin tepaleuia mah ica
se quita teyin amo ueli se quita
ica se ixtololo.

Tipostl tlen tepaleuia ica mo se-
quita tlen amo uili sequita ica
se ixtololo.

“Instrument that helps people
see what cannot be seen with
an eye.”

Ocsepa tiquiyolitijkej. Ocsipa oticyolitihkeh. “We started it up again.”

Table 2: Example of two parallel sentences in azz and nhi. The azz text was taken from the corresponding treebank,
and was translated by a speaker of nhi. Some specific differences are bolded, and include the raising of short /e/ in
azz to /i/ in nhi, the tl-t isogloss, the absence of the antecessive o- on past tense verbs in azz, and a word-order
difference with respect to the relational noun ica “with (instrumental)”. The differences described here are by no
means exhaustive.

Train Eval OOV%

nhi
nhi 38%± 3
azz 81%± 1
ncx 80%

azz
nhi 83%± 1
azz 31%± 3
ncx 87%

nhi + azz
nhi 37%± 3
azz 30%± 2
ncx 76%

Table 3: The percentage of out-of-vocabulary (OOV)
tokens for the experiment configurations. When the Eval
variant is nhi or azz, the experiments involve 10-fold
cross-validation, so we average the OOV percentages
over the folds and include the standard deviation. When
calculating OOV percentage for the ncx data, we use the
first fold of the training data. These numbers help give
an initial impression of the difficulty of the different
parsing tasks. Specifically, we see that, unsurprisingly,
other-variant Eval datasets have substantially higher
OOV percentages than same-variant Eval data.

5 Experiments

For all of the experiments described in this sec-
tion, we use the MaChAmp toolkit (van der Goot
et al., 2021) to fine-tune contextual subword em-
beddings from the pretrained multilingual BERT
(mBERT) model7 on each UD task. The model
leverages multi-task learning, such that all of the
tasks share encoder parameters, but each has its
own unique decoder: a transformation-rule classi-
fier (Straka, 2018) for lemmatization, a softmax
layer on the contextual embeddings for part-of-
speech tagging and morphological analysis, and a
deep biaffine parser for dependency parsing (Gard-

7We use the bert-base-multilingual-cased model.

ner et al., 2018). During training, the best model is
selected by summing the accuracy metrics of these
tasks.

Due to the relatively low total volume of labeled
data, we report results of 10-fold cross-validation.

5.1 Monolingual

We first evaluate the monolingual (“Mono” in Ta-
ble 4), i.e. single variant, performance of the two
Nahuatl variants, which serves as a benchmark for
comparison with subsequent models. Intuitively,
we expect these models to perform best on their
respective variants, but be less robust when faced
with multi-variant data.

5.2 Cross-Variant

Secondly, in order to get a sense of how challenging
multi-variant NLP actually is for Nahuatl, we test
zero-shot, cross-variant model transfer (“Cross” in
Table 4, i.e. training on one variant and evaluating
on the other. The motivation behind this experi-
ment is the recognition that, it could be the case
that many Nahuatl variants are similar enough to
one another that there is no real need for special ef-
forts targeted at multi-variant NLP for the language.
If this were the case, we would expect zero-shot,
cross-variant performance to be comparable with
that of a monolingual model.

Recognizing that a major limitation of our
dataset is the fact that it only represents two out of
30 Nahuatl variants, we annotated a small sample
of short stories in a third variant, Central Puebla
variety (ncx). We evaluate zero-shot, cross-lingual
experiments on this dataset, as well as the perfor-
mance of models jointly trained on both nhi and
azz training sets. The objective of this experiment
is to provide better a sense of the multi-variant
capabilities of a model trained on limited data rep-
resenting only a small set of Nahuatl varieties.
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Var. Experiment N Lemma UPOS Morph. UAS LAS

azz

Mono 1,134 0.92± 0.02 0.94± 0.01 0.85± 0.02 0.84± 0.02 0.77± 0.03
Cross 818 0.68± 0.02 0.68± 0.02 0.39± 0.01 0.67± 0.02 0.47± 0.03
Joint Adj. 976 0.89± 0.01 0.93± 0.01 0.75± 0.02 0.81± 0.02 0.73± 0.02
Joint 1,952 0.92± 0.01 0.95± 0.01 0.82± 0.03 0.85± 0.02 0.77± 0.02
Joint+MLM 1,952 0.92± 0.01 0.95± 0.01 0.82± 0.02 0.85± 0.02 0.78± 0.02

nhi

Mono 818 0.82± 0.02 0.93± 0.01 0.67± 0.02 0.83± 0.02 0.74± 0.02
Cross 1,143 0.65± 0.02 0.65± 0.02 0.44± 0.01 0.64± 0.02 0.42± 0.01
Joint Adj. 976 0.79± 0.02 0.91± 0.02 0.60± 0.02 0.81± 0.02 0.71± 0.02
Joint 1,952 0.82± 0.02 0.93± 0.01 0.67± 0.02 0.84± 0.02 0.76± 0.02
Joint+MLM 1,952 0.82± 0.02 0.93± 0.01 0.68± 0.01 0.85± 0.02 0.76± 0.03

Table 4: Accuracy of a neural, multi-task UD parsing model in various training configurations. Each result is the
average performance over 10 folds, followed by the standard deviation of the performance distribution. Note that,
given the distribution overlap, not much can be said about the difference in performance of most of these experiments
with the exception of the the cross-variant experiments, which consistently under-perform both monolingual (single-
variant) and jointly trained models. Mono=Monolingual; Cross=Cross-variant (e.g. train on azz and predict on
nhi); Joint=trained on the concatenation of both variants’ corpora; Joint Adj.=like the Joint model, but only use half
of the data from each variant during training; Joint w/ MLM=same as Joint, but with an additional masked language
modeling task. “N” is the number of sentences in the training data for each experiment.

5.3 Joint Training

We train a model on the concatenation of the train-
ing data from the two Nahuatl variants, and eval-
uate its performance on each individual variant’s
evaluation data (“Joint” in Table 4). Ideally, given
sufficient training data, the model can learn to im-
plicitly detect the variant of an input text and, since
a single set of model parameters is used for both
variants, benefit from the similarities and increased
coverage of Nahuatl linguistic features. Alterna-
tively, it is plausible that the diatopic variation
could add unhelpful noise during training.

By combining the training sets from two vari-
ants, we are also in effect doubling the training
data size. To get a sense of how variant diversity in
training effects model performance, while control-
ling for training data volume, we also experiment
with combining just half of each of the nhi and
azz training sets (Joint Adj. in Table 4).

5.4 Adding an Auxiliary Task During
Training

We have emphasized that there is little available
annotated Nahuatl text. However, there is a siz-
able amount of unlabeled text available that we
can leverage to potentially improve system per-
formance. We experiment with the Axolotl cor-
pus (Gutierrez-Vasques et al., 2016), a parallel
(Nahuatl-Spanish) collection of over 10,000 sen-
tences of Nahuatl from multiple regions and time

periods, including a large volume of colonial-era
Classical Nahuatl.

Specifically, we perform the same multi-task ap-
proach described above, with an additional masked
language modeling task using the Axolotl data
(“Joint+MLM” in Table 4).

Since part of the azz treebank comes from the
Axolotl corpus, we remove all text from source
before creating this datasets in order to avoid data
leakage.

6 Results and Discussion

The results of our experiments can be seen in Ta-
ble 4. All results report the average and standard
deviation of the performance on 10 folds.

6.1 Monolingual and Cross-variant
Performance

Comparing the monolingual model performances,
we note that the azz model performs either the
same or better than the nhi model on nearly ev-
ery task. This is likely due to the aforementioned
greater homogeneity of the linguistic samples and
genre in the azz treebank.

Secondly, the performance drops significantly
from the monolingual models to the cross-variant
models. Given the linguistic differences between
the two variants, not to mention other differing char-
acteristics of the corpora, this is largely expected.
These results suggest the importance of focusing
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on developing multi-variant capabilities in Nahuatl
NLP, since these data appear to be different enough
to impede straightforward cross-variant transfer,
at least with small data volume. Upon collecting
more annotated data, it would be valuable to also
evaluate the monolingual models on same-variant,
different-genre data in order to tease apart the in-
fluence of linguistic variation and other sources of
variation in the corpora.

6.2 Analyzing Multi-Variant Performance
In analyzing the results of these experiments, we
are most interested in the multi-variant perfor-
mance. For “Joint” experiments, where the train-
ing data of both training variants is concatenated,
the multi-variant performance is the combined per-
formance on both variants. These models can be
compared with a monolingual model evaluated on
both variants (e.g. the monolingual result on azz
and the cross-variant result on nhi).

For both variants, the jointly-trained model (See
the “Joint” rows in Table 4) performs on par with
two respective monolingual models, despite not
having explicit language labels. For some tasks,
the jointly-trained model has a higher average per-
formance (taking error into consideration, however,
the difference is not robust).

While the high performance of the jointly-
trained model may be due to exposing the model
to linguistic diversity during training, an impor-
tant caveat is that the jointly-trained experiment
has twice the volume of training data as the mono-
lingual or cross-variant experiments. In order to
investigate the extent to which data volume alone
(versus, e.g. more robust learning during training)
can explain the good multi-variant performance
of the jointly-trained model, we also performed a
volume-adjusted joint training experiment by com-
bining half of the training set from each variant.

The results of this experiment and a compari-
son with the full jointly-trained model, are listed
in Table 5. Unsurprisingly, here we see a dip in
performance compared to the full jointly-trained
model. Nonetheless, the volume-adjusted jointly-
trained model still shows better multi-variant per-
formance than the monolingual equivalent (mono-
lingual cross-variant), supporting the utility of di-
verse training data.

6.3 The Effect of an Additional Training Task
Even for the model trained on the concatenation of
datasets, the total available training data volume of

is low (barely over 2k sentences) compared to so-
called “high-resource” scenarios. Since no Nahuatl
variant nor any genetically- or aerially-related lan-
guage (with the exception of perhaps Spanish) was
included in the multilingual BERT training data,
we are interested in how we might be able to use
additional unlabeled Nahuatl data, even if from
different varieties or time periods, to improve the
mBERT representations for Nahuatl.

We investigated whether training on an addi-
tional task, MLM using the Axolotl data, improves
the model’s Nahuatl representations, impacting
parser performance. However, we do not see a
significant impact: results for all tasks were still
within the estimated margin of error (1 standard
deviation of the 10-fold results) when compared to
the jointly-trained model with no auxiliary tasks.

7 Performance of Monolingual and
Multi-Variant Models on a Third,
Unseen Nahuatl Variant

We evaluate the different trained models on parsing
text from the unseen ncx variant. Performance on
this unseen variant text are reported in Table 6.

As with the two-variant experiments listed in 4,
the jointly-trained model, which is trained on the
concatenation of the full nhi training data and the
full azz training data, achieves the top performance
on all tasks. Unlike the two-variant experiments,
however, here the volume-adjusted jointly-trained
model (trained on half of the nhi training data con-
catenated with half of the azz training data) does
not out-perform both monolingual models. Instead,
we see that the monolingual model trained on nhi
data performs comparably to the volume-adjusted
joint model on all tasks.

One plausible explanation is that the differences
in performance between the two mono-variant mod-
els is due to a combination of variant similarity and
genre overlap in the corpora. Namely, since nhi and
ncx are both Central Nahuatl variants, they share a
number of linguistic features, such as the presence
of the /tl/ phoneme and the use of the antecessive
o- on verbs in the past tense. For example, both nhi
and ncx tokenize the antecessive suffix o- and tag it
as AUX (e.g. o niquitac, “I saw it”, which in azz
is just niquitac). The azz corpus does not have any
instances of this, since this variety does not mark
past tense verbs with the antecessive, and instead
the only instances of the word o are the Spanish
conjunction meaning “or”. As a result, the anteces-
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Exp. N Lemma UPOS Morph. UAS LAS

Joint 1,952 0.86± 0.01 0.94± 0.01 0.75± 0.02 0.85± 0.01 0.77± 0.01
Joint Adj. 976 0.83± 0.01 0.92± 0.01 0.67± 0.01 0.81± 0.01 0.72± 0.01
azz alone 1,134 0.76± 0.01 0.79± 0.01 0.64± 0.01 0.74± 0.01 0.59± 0.01
nhi alone 818 0.74± 0.03 0.80± 0.01 0.53± 0.02 0.75± 0.02 0.60± 0.02

Table 5: Comparing the multi-variant performance of different training configurations. The “azz and nhi alone”
experiments use a monolingual model to parse multi-variant evaluation data. The “Joint” experiment trains a model
on the concatenation of nhi and azz training data, leading to twice the training data volume as the other experiments.
The “Joint Adj.” experiment similarly trains on multi-variant data, but subsamples data from each variant to control
for the possibility of data volume in and of itself being responsible for improved performance. “N” is the number of
sentences in the training data for each experiment.

Figure 3: A plot of how the performance on the ncx data changes for the different tasks changes as we move from a
monolingual model to a jointly-trained multi-variant model. As noted, ncx is linguistically-similar to nhi, and as
such, adding azz data (the left plot) provides very minimal improvements, most of which seem to happen only once
we’ve added 50% of the azz data. In the right plot, we see a larger improvement by just adding a small amount (the
biggest marginal improvement happens when going from 0% to 20%) of nhi data to the azz-trained model.

Exp. Lemma UPOS UAS LAS

Joint 0.73 0.92 0.77 0.68
Joint Adj. 0.7 0.89 0.73 0.62
nhi alone 0.71 0.89 0.75 0.63
azz-ified nhi 0.58 0.83 0.73 0.57
azz alone 0.62 0.64 0.63 0.36
nhi-ified azz 0.62 0.79 0.68 0.52

Table 6: Performance of different models on an unseen
Nahuatl variant, Central Puebla Nahuatl (ncx). Due to
time constraints, we did not annotate the morphological
analyses in this data, and thus do not report the perfor-
mance.

sive in the ncx data is never correctly analyzed by
the azz-only model.

To approach a better understanding of this pro-
posed explanation of the results, we make copies of
the monolingual datasets, altering the word forms
with respect to both the antecessive o- and the
/t/-/tl/ isogloss. That is, we make the nhi data
more azz-like by removing the antecessive tokens
and converting all instances of “tl” to “t”. We ex-

pect a model trained on this version of the data to
underperform on the ncx data since there is now
a discrepancy in two prominent isogloss values.
Likewise, we alter the azz add the antecessive to-
ken to all verbs with the morphological feature
Tense=Past, and replace “t” with “tl” in positions
that correspond to the latter segment in Nahuatl
in general.8 We expect a model trained on this
dataset to perform better on the ncx data than the
real azz data, since it has more common dialectal
isoglosses.

The results show that the monolingual model
trained on the nhi-ified azz data does indeed per-
form quite a bit better than that trained on the orig-
inal azz data. Likewise, the model trained on the
azz-ified nhi data peforms worse than that trained
on the original nhi data. This shows the importance
of dialectal similarity, even in the form of a pair of
simple isoglosses. This result, while intuitive, is
instructive for future work, since it indicates that,
in the absence of more training data, variant-based

8The process of converting “t” to “tl” in the wordforms
and lemmas was done via manual annotation.
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data augmentation may be effective in increasing
system performance.

It is also worth noting that, even after changing
the isogloss values in the two datasets, the model
trained on nhi data still outperforms that trained
on the azz data when evaluating on the held-out
Central variety, ncx. This fact indicates that mor-
phological and syntactic factors are also at play.
Furthermore, we also recognize the possible influ-
ence of genre on the performance differences.

With respect to genre and style, the unseen ncx
text, a pair of short stories, more closely reflects
the nhi corpus, which itself is largely made up
of short stories, whereas the azz corpus consists
almost entirely of transcriptions of recorded mono-
logues describing the medicinal and culinary uses
of plants. Findings such as those by Wang and Liu
(2017), that a small but significant effect of genre
on syntactic patterns such as adjacent dependency
rate and dependency direction, may partially ex-
plain the much lower UAS and LAS performance
by the azz model.

7.1 Learning Curve Experiment

To get a better sense of how adding different-variant
data changes model performance on the ncx evalu-
ation set, we perform a learning curve experiment
for each variant, progressively adding 10% of the
other variant’s training data. The results of this ex-
periment can be seen in Figure 3, plotting how
the performance changes as we transition from
a monolingual to a jointly-trained model by ran-
domly adding data from the other variant. The azz
model improves substantially with the addition of
just a small amount (20%) of nhi data, and contin-
ues to improve as more data is added. The nhi-only
model, on the other hand, improves only gradually
with the addition of azz.

8 Future work

Revisiting the map in Figure 1, where we see that
only two of Nahuatl variants have annotated tree-
banks, we recommend that the top priority for de-
veloping multi-variant NLP for Nahuatl be the con-
tinued collection of annotated corpora in additional
variants and from diverse domains. Once more data
is made available, we plan to empirically investi-
gate the role of linguistic and genre similarity in
multi-variant parsing using a variety of similarity
metrics. For example, with an annotated test set
for an additional Eastern Nahuatl variant, such as

Huasteca Nahuatl, or azz sentences from a more
diverse set of genres, further experiments could
help shed light on the relative impact of genre and
variant.

We also hope to explore other approaches to
pretraining/auxiliary tasks in order to improve
multi-variant parsing, such as building a language-
specific pretrained model as described in Gessler
and Zeldes (2022).

Finally, Nahuatl’s long-standing contact with
Spanish, a language with a significant number of
annotated resources, offers a promising avenue of
investigation of the extent to which Spanish data
can be leveraged to improve NLP performance for
Nahuatl.

9 Concluding Remarks

We reported the results of a series of experiments
on UD parsing for Nahuatl, with a specific empha-
sis on multi-variant capabilities. We found, perhaps
unsurprisingly, that the more examples of a given
variant there are in the training data, the better the
resulting model can perform on that variant. The
multi-variant model performed as well as or better
than two separate monolingual models, suggesting
that having more data from diverse variants leads to
a more robust model. Interestingly, we also found
that a model’s performance can be improved by su-
perficially altering other-variant training data based
on Nahuatl isoglosses. Though a number of points
are still left to be investigated more thoroughly,
this report serves as a first in-depth exploration of
shallow Nahuatl NLP with the currently available
datasets.
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Preslav Nakov, Ahmed Ali, Jörg Tiedemann, Yves
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Abstract

We study highly granular dialect normalization
and phonological dialect translation on Limbur-
gish, a non-standardized low-resource language
with a wide variation in spelling conventions
and phonology. We find improvements to the
traditional transformer by embedding the geo-
graphic coordinates of dialects in dialect nor-
malization tasks and use these geographically-
embedded transformers to translate words be-
tween the phonologies of different dialects.
These results are found to be consistent with
notions in traditional Limburgish dialectology.

1 Introduction

We argue in this paper that encoding geo-
graphic coordinates as continuous parameters into
transformer-based architectures allows for the im-
provement of normalization tasks between closely
related varieties and reveals new methods in han-
dling spatially-determined language variation.

In most tasks on multilingual data or closely re-
lated varieties, the varieties are treated on a coarse
level (Dabre et al., 2020; Wu et al., 2021), with-
out meaningfully encoding their relation to one an-
other. The main idea behind encoding the relation
between the different varieties is that knowledge
transfer will take place between closely related va-
rieties, therefore allowing for a solution to the issue
of imbalanced data and a more generalized and
continuous treatment of the studied varieties.

In this work we encode the geographic coor-
dinates of approximately 1000 locations within
the Limburgish language area - whose language
varieties we will refer to as dialects from now
on - by appending them as additional dimen-
sions after the positional encoding in the origi-
nal transformer architecture (Vaswani et al., 2023).
This geographically-embedded transformer is then
trained to normalize single dialect words following
various different spelling conventions to a single

phonetic-like spelling convention. The geographic
embedding also enables the transformer to translate
between any pair of Limburgish dialects on a highly
granular level. We therefore separately consider
the task of phonological dialect translation.

1.1 A Short Introduction to Limburgish

Limburgish is a West-Germanic language spoken
by at least a million1 native speakers in Belgium,
the Netherlands and Germany. Limburgish par-
tially underwent the High German consonant shift
and has some unique features such as 3 grammat-
ical genders, tonality, a gerund and a subjunctive
in some dialects. Due to its geography and his-
tory it remained relatively isolated from both the
Dutch and German standardization processes (Bele-
mans and Keulen, 2004). Nowadays, Limburgish
does not have a standard language and is super-
seded in official domains by the Dutch, German
and French standard languages in different parts of
the language area. As a result of this, Limburgish
retains a complex phonology that varies continu-
ously throughout its spoken area.

At the same time, Limburgish has been going
through an atypical codification process where vari-
ous standardized spelling conventions have existed
since the 19th century, but often codified for indi-
vidual towns. Its speakers consider all Limburgish
dialects to be equally important, yet distinct vari-
eties in what has been called a multidialectal space
(Assendelft, 2019). This results in Limburgish texts
featuring variation not only in terms of their native
speakers’ phonologies, but also in terms of the cho-
sen spelling conventions. Additionally, Limburgish
is one of the more extreme low-resource languages
among the Germanic language family (Blaschke
et al., 2023), making it very difficult to work with

1As per Ethnologue (2024), no elaborate estimates are
known as the language only enjoys some official recognition
in the Netherlands and the French-speaking community of
Belgium (Limburgish Academy, 2024).
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in most Natural Language Processing tasks.
Due to the structure of the used dataset (see

Section 3), we will only consider the Limburgish
dialects spoken in Belgium and the Netherlands,
although there is a priori no linguistic reason to
separate the dialects in Germany from the ones in
Belgium and the Netherlands.2

2 Related Work

2.1 Limburgish NLP
NLP research on Limburgish is scarce: Nguyen
and Cornips (2016) developed dialect identification
for Limburgish using the Limburgish Wikipedia
as a corpus. This is the only available corpus for
Limburgish apart from very limited web crawl and
Ubuntu localization files corpora (Blaschke et al.,
2023). Michielsen-Tallman et al. (2017) is work-
ing on a Limburgish corpus which is not publicly
accessible yet, and Meta’s No Language Left Be-
hind included the Maastricht dialect through its
FLORES-200 dataset (NLLB Team et al., 2022),
which is now included in some applications on
Hugging Face. Franco et al. (2019a,b) previously
applied a statistical approach to study lexical diver-
sity and the influence of geography on loanwords
in Limburgish using the WLD (Section 3).

2.2 Dialect Normalization
Methods related to normalizing dialects using ma-
chine learning and neural approaches have been
studied by Pettersson et al. (2014); Scherrer and
Ljubeić (2016); Bollmann and Søgaard (2016);
Honnet et al. (2018); Lusetti et al. (2018); Parta-
nen et al. (2019); van der Goot (2021). To the best
of our knowledge, no dialect normalization task
has been considered where the geographic coordi-
nates are explicitly embedded in the transformer
architecture with the goal of improving knowledge
transfer. Neither has such a smooth, highly gran-
ular geographic normalization task been studied.
Scherrer (2011) previously studied continuous vari-
ation of Swiss-German through a statistical word
generation approach. Ramponi and Casula (2023)
introduced a coordinate-tagged variety corpus for
Italy using Tweets and studied highly granular lan-
guage identification, which was previously also
considered on other languages by Han et al. (2016);
Gaman et al. (2020); Chakravarthi et al. (2021).

2Limburgish is typically demarcated between the major
Uerdinger and Benrather isoglosses within West-Germanic
(Goossens, 1965). This region extends into Germany, where it
is also known as Südniederfränkisch.

2.3 Dialect Translation

Character or syllable-based dialect machine transla-
tion have been considered for Swiss-German (Hon-
net et al., 2018), and for Japanese (Abe et al., 2018).
To the best of our knowledge, no approach has con-
sidered a smooth, highly granular dialect transla-
tion task of our magnitude or considered the di-
rect embedding of geographic coordinates for the
purpose of knowledge transfer between dialects in
dialect machine translation.

3 Data

The dataset used for this work is the digitized (van
Hout et al., 2024) version of the Woordenboek van
de Limburgse Dialecten (Dictionary of the Limbur-
gish Dialects) or WLD (Weijnen et al., 1983-2008),
an onomasiological dictionary of Limburgish, cov-
ering the dialects spoken in the Belgian and Dutch
provinces of Limburg and the north of Liège. The
dictionary is onomasiological in the sense that it is
indexed along semantic concepts such as agrarian
(e.g. ploughing, cattle), professional (e.g. bakery,
mining) and general concepts (e.g. health, reli-
gion). Per semantic concept, it groups all variants
per cognate, geotagged with their exact town of
origin. The structure of this dictionary therefore al-
lows us to study the phonological and orthographic
variation of the Limburgish lexicon and how they
interact with geography.

The WLD contains approximately 17k concepts,
featuring 139k cognates and a total of 1.7M Lim-
burgish words spread over approximately 1000 lo-
cations. About half of the entries follow a high-
quality morpho-phonological spelling, a combina-
tion of standard Dutch orthography, the Interna-
tional Phonetic Alphabet (IPA) and some custom
diacritics. This part of the WLD was carefully re-
viewed by its original curators (Weijnen et al., 1983-
2008). The remainder follows various spelling con-
ventions from local dictionaries or standardized
conventions such as the Veldeke spelling (Bakkes
et al., 2003).

The locations are tagged with kloeke codes, geo-
graphic tags that refer to all locations in Belgium,
the Netherlands, northern France and western Ger-
many. We converted these kloeke codes to geo-
graphic coordinates, which were then normalized
to unit intervals. Entries corresponding to locations
that were clearly outside the Limburgish area were
omitted. We carried out some preprocessing and
cleaning steps on the data such as deleting entries
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Figure 1: 2D frequency histogram of the geographic
spread of entries in the WLD.

with overly noisy characters (as a result of poor
digitization), splitting sentence entries into indi-
vidual words and omitting superfluous characters
such as punctuation marks. The geographic spread
of the resulting data are shown in Fig 1. Finally,
we applied some manually curated rules to resolve
predictable digitization errors, such as converting
incorrect ASCII characters.

3.1 Task-Specific Datasets

Since we did not have access to curated datasets
or parallel corpus data for Limburgish or any of
its dialects, two new datasets needed to be gen-
erated from the WLD for the normalization and
phonological dialect translations tasks.

For the normalization task, we aimed to train a
model that correctly converts the characters of any
of the Limburgish (conventional) spelling systems
to the high quality morpho-phonological standards
that constitute approximately half the WLD. These
standards closely resemble IPA, and enable fur-
ther study of Limburgish text data, which is often
blurred by localized spelling conventions.

We therefore split the dataset into words follow-
ing an accurate phonetic spelling convention and
words with local or other conventional spelling
conventions. This is achieved using manually se-
lected filters containing typical conventions in the
Veldeke spelling and other local conventions that
are not known within the WLD’s phonetic system,
such as the use of ieë, aa or äö. Any words that

do not contain any n-grams which are exclusively
used in conventional spelling are then assumed to
be in phonetic notation, which a manual inspec-
tion confirms. This results in an approximately
equal split in normalized-unnormalized data. For
each unnormalized entry, cognates of nearby di-
alects are then selected as the normalized equiva-
lents. By defining a nearby dialect as being within
a 0.5 km radius, we ensure that the variation is
more likely due to spelling conventions rather than
a change in phonology between the two dialects.
Typically, the phonologies of Limburgish dialects
stay consistent within such a radius, unless major
isoglosses are crossed. This results in a dataset of
118k unnormalized-normalized pairs, with an aver-
age pair distance of 0.39 km. An example of such
a pair is given below (with both words originating
from the dialect of Echt).

kroedwès- krutweš (without translation;
a folkloristic herb)

For the task of phonological dialect machine
translation, we again chose a character-based
approach and trained a model to translate the
phonology between any dialects, as this is the
largest source of variation in Limburgish apart from
spelling variation. We only used the part of the
WLD dataset that is already normalized (approxi-
mately 805k entries), therefore avoiding arbitrary
spelling conventions, and generated a new dataset.
We paired each word in this normalized subset with
all cognates from other dialects in the same dataset.
Very frequent words such as in (English: in) or van
(English: of) were omitted, as were words that are
rare in other dialects (a frequency of <10). For each
family of cognates, we undersampled the available
cognates due to the imbalance in geographic rep-
resentativeness of the data (see Fig 1). The under-
sampling was done by weighting the geographic
frequency distribution of the cognates according to
a 2D Gaussian kernel smoothing with a bandwidth
factor of 0.2 and then undersampling by 70%.

As the entries in the new dataset grow quadrati-
cally with the number of cognates, a 10% subset is
sampled of all pairs in the new dataset, resulting in
a phonological dialect translation dataset of 20.2M
entries. For example, the word šo.l (originating
from Bree) is paired with 85 different cognates
from other dialects:

sxo:l (Grote-Brogel), šō– l (Kanne), šu@l
(Kerkrade), šo.@l (Valkenburg), sxo.l
(Nederweert) . . .
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4 Methods

4.1 Encoding

We tried two encoding methods: a simple one-
hot encoding and an experimental method using
phonological vectors from the PanPhon library
(Mortensen et al., 2016) in Python. The main idea
was that encoding 24 articulatory features is more
meaningful and compact for data that varies greatly
phonologically. The phonological encoding was
surprisingly outperformed by a simple one-hot en-
coding in all experiments. This was likely due to
the high complexity of the phonology of some di-
alects. For example, the dialect of Weert has 28
vowels over 5 heights, for which PanPhon’s binary
vowel height system is insufficient.

We opted for a 92-dimensional one-hot encod-
ing, corresponding to all unique characters that re-
mained after the preprocessing and cleaning steps.
Due to the complexity of Limburgish phonology,
many special diacritics are featured to realize the
correct vowels or tonality. These diacritics are rep-
resented as separate characters. All words above
10 characters were omitted, and shorter words were
padded to 10-dimensional vectors.

4.2 Coordinate Embedding in Transformer

The modification to the traditional transformer ar-
chitecture was done in Tensorflow’s functional API
v2.12 (Abadi et al., 2015), Keras v2.15 (Chollet
and et al., 2015), and KerasNLP v0.4.1 (Watson
et al., 2022). Typically when discrete language
tokens are used for multilingual models (and there-
fore different from our approach), this is done at
the tokenizer level, thereby increasing the input
vocabulary dimension or dimension of the input
embedding. We instead pass the geographic co-
ordinates as two extra dimensions directly after
the positional encoding, resulting in a similar num-
ber of weights and training complexity when com-
pared to the traditional transformer architecture.
The (rescaled) coordinates are only appended to
the first dimension of the embedded vector (after
the input embedding and positional encoding) to
keep the data sparse and can be visualized as




e1,1 e1,2 . . . e1,9 e1,10
...

...
...

...
eN,1 eN,2 . . . eN,9 eN,10

y 0 . . . 0 0
x 0 . . . 0 0



,

where ei,j represent the floats of the embedded
vector after the input embedding and positional en-
coding, N the dimension of the embedding vector
space and x, y the rescaled geographic coordinates.

For the encoder block, the coordinates corre-
sponding to the input word are embedded. For the
decoder block, the first input (using autoregression)
is the embedded start token with the coordinates of
the target word appended as two extra dimensions.

4.3 Evaluation
We consider two evaluation metrics::

Levenshtein ratio: the Levenshtein ratio be-
tween two words s1 (reference) and s2 (hypothesis)
is defined as (Bachmann, 2021)

1− Levenshtein distance(s1, s2)
len(s1) + len(s2)

(1)

where the Levenshtein distance between s1 and
s2 is defined as the number of single-character in-
sertions, deletions, and substitutions required to
transform s1 into s2. The Levenshtein ratio is a
character-based measure of similarity between two
words, normalized for the lengths of the words (un-
like the typical Levenshtein distance). Two identi-
cal words have a Levenshtein ratio of 1, the mini-
mum ratio is 0.

CharacterF: character n-gram F-score or chrF
(Popović, 2015) is the character-based machine
translation equivalent of the traditional F-score. As
it relies on character n-grams, it is more sensitive
towards morpho-syntactic phenomena. The chrF
score between two words s1 (reference) and s2
(hypothesis) is defined as (Popović, 2015)

chrF = 2
chrP · chrR

chrP + chrR
(2)

where chrP is the percentage of n-grams from s2
that can be found in s1 and chrR the percentage of
n-grams from s1 in s2. We use 3-grams as these
correspond closely to human judgment (Popović,
2015).

We initially expect both these metrics to under-
value the performance in this task; the WLD is
very rich in diacritics and it is undesirable that the
predicted normalized word is penalized for using a
diacritic that is phonologically very close, but not
identical to the expected diacritic. To mitigate this,
we will also compute these metrics after stripping
the diacritics, and thus only considering the ASCII
characters. An example of how these metrics be-
have can be found in Table 1.
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Unnormalized - Normalized ChrF Levenshtein ratio ChrF Levenshtein ratio
(translation) (no diacritics) (no diacritics)
vief - viêf (five) 0 0.75 1 1
kroedwès - krutweš (herb) 0 0.4 0.18 0.53
waere - wěre (to become) 0 0.8 0.4 0.8
aafdoeë - āfdū@ (to mow grass) 0 0.33 0.25 0.33
schoppen - sxop@ (to kick) 0 0.46 0 0.46

Table 1: A sample of the normalization dataset and their evaluation according to the selected metrics.

We observe that chrF is generally much too strict,
while chrF with diacritics removed is significantly
more tolerant. The Levenshtein ratio seems more
tolerant than the non-diacritic chrF, while the non-
diacritic Levenshtein ratio seems the most tolerant
metric. A more in-depth manual analysis showed
that the non-diacritic chrF metric corresponded
closest to human judgement.

An inherent difficulty of working with Limbur-
gish data is discerning the variation caused by dif-
ferences in phonology from the variation caused
by different spelling conventions, which is also a
barrier for any other language that varies phono-
logically and orthographically (usually the case for
non-standardized languages or families of dialects).
To establish some baselines, we determined a lower
boundary for all four metrics by measuring them
on the unnormalized-normalized word pairs in the
dataset, reflecting the accuracy when the same in-
put were to be predicted. We also determined an
upper boundary by estimating the inherent varia-
tion in spelling conventions: we computed the four
metrics for all cognates within a radius of 6 km
of each unnormalized word in the dataset. The as-
sumption is that most remaining variation will then
be due to differences in orthography, rather than
phonology. This baseline therefore indicates the
maximally attainable values for these metrics. We
found the following lower and upper boundaries:

ChrF ChrF Lev. Lev.
no diac. no diac.

Lower 0.112 0.242 0.599 0.710
Upper 0.440 0.589 0.751 0.84

Table 2: Expected lower and upper boundaries for the
evaluation metrics.

Due to a lack of any curated data for Limburgish
and the inherent variation in the data, these bound-
aries and a manual analysis in Section 6 are our
best available approaches for evaluation, for a more

elaborate discussion we refer to Section 8.

4.4 Normalization Task
To test whether embedding geographic coordinates
improves the traditional transformer architecture,
we first ran a hyperparameter search on the task us-
ing a traditional transformer without coordinate em-
bedding. Using the traditional transformer for this
task is possible since the target words follow the
(relatively) uniform morpho-phonological spelling
of the WLD and no dialect or spelling variation is
required from the decoding part. We split the data
in a 80− 10− 10 train, validation, test dataset and
varied stacking of encoder and decoder blocks from
1 − 5, the embedding dimension from 1 − 1024,
the latent dimension from 1− 1024 and the num-
ber of attentions heads in each block from 1− 16
using the Optuna library (Akiba et al., 2019). We
used the Adam training method and a Sparse Cate-
gorical Crossentropy metric and ran 100 iterations
using Optuna’s Tree Parzen Estimator. The op-
timized set of parameters was then used to train
the traditional transformer and the geographically-
embedded transformer and compare their perfor-
mance on the test set.

The optimized traditional transformer has a total
of 5.1M parameters, the geographically-embedded
transformer has 5.2M parameters due to the ex-
tra 2 dimensions after the positional encoding step.
These additional parameters only allow for a hetero-
geneous interaction between the coordinates and
the embedded characters in the attention mecha-
nism, and do not allow for any further inference of
information in the attention mechanism that could
otherwise be associated with having slightly more
parameters.

4.5 Phonological Dialect Translation Task
Unlike the previous task, performance in the phono-
logical dialect translation cannot be readily com-
pared to the traditional transformer architecture
as it does not natively allow for variation of the
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target dialect. We therefore only considered the
geographically-embedded transformer.

We again used an 80− 10− 10 train, validation,
test dataset split but did not run a hyperparameter
search due to resource constraints. We instead used
standard parameter values such as an embedding
dimension of 256, a latent dimension of 1024, 8
attention heads, and no stacked encoder or decoder
blocks, resulting in a total of 7.6M parameters. For
the optimizer and loss we again opted for Adam
with a Sparse Categorical Crossentropy loss.

5 Results

5.1 Normalization Task

The hyperparameter search for the traditional trans-
former architecture yielded the following parame-
ters: 2 layers of stacked encoder/decoder blocks, an
embedding dimension of 150, a latent dimension
of 1000, and 7 attention heads, resulting in a total
of 5.1M parameters. The evaluation metrics on the
test sets for the traditional transformer and the ar-
chitecture with geographic coordinates embedded
can be found in Table 3. We also present some
representative examples of the geographically-
embedded transformer’s performance when nor-
malizing the test set, along with the non-diacritic
chrF metric in Table 5.

coords ChrF ChrF Lev. Lev.
no diac. no diac.

no 0.353 0.506 0.713 0.817
yes 0.363 0.516 0.718 0.821

Table 3: The evaluation metrics on the test set for the
traditional transformer and the transformer with geo-
graphic coordinates embedded.

5.2 Phonological Dialect Translation Task

The evaluation of the geographically-embedded
transformer on the phonological dialect translation
task can be found in Table 4. We again present
some representative examples of the translation
task with their corresponding non-diacritic chrF
metrics and the locations of the input and target
dialects in Table 6.

6 Discussion

6.1 Normalization Task

As can be seen in Table 3, the geographically-
embedded transformer outperforms the normal

ChrF ChrF Lev. Lev.
no diac. no diac.

0.407 0.485 0.687 0.736

Table 4: The evaluation metrics on the test set for the
phonological translation task.

transformer according to all metrics that we mea-
sured. The results are statistically significant (p <
0.001) according to two-sided Wilcoxon hypoth-
esis tests. The improvements to the traditional
transformer’s performance are most prominent in
ascending order of ‘tolerance’ of the metrics, as
we could have expected. When comparing these
results with our established lower and upper bound-
aries (Table 2), we again find that the upper bound-
aries are approached more closely by the more
tolerant metrics. A geographic analysis of the
evaluation metrics showed that there is no geo-
graphic bias, as the performance is relatively ho-
mogeneously spread.

Manually analyzing a sample of the
geographically-embedded transformer’s pre-
dictions (Table 5), we find that the model generally
succeeds in correctly normalizing various Limbur-
gish spelling conventions to a phonetic spelling.
For example, in entry 3 (daavekot → dāv@ko– t), the
long aa is normalized to ā, the e to the schwa and
the o to the correct Limburgish phoneme.

The model also abides by well-known notions
in Limburgish dialectology: in entry 1 (sjnaps →
snaps), the sj is normalized to an s, even though this
is a neologism derived from High German, show-
ing that the model correctly applies the Panninger
isogloss within Limburgish that is associated with
the s→S rule (Bakkes et al., 2007). In entry 7 (kool
→ ki@l), the unnormalized word uses the Dutch
phoneme o which does not occur for that word in
Limburgish, but the model correctly predicts i@.

In other instances such as as 5 and 13, the model
predicts normalized words that are more accurate
than the original target normalizations. This is due
to the fact that we generated this dataset ourselves
without a very elaborate manual curation, as we
did not have access to a curated or golden stan-
dard dataset. Despite inaccuracies in the generated
dataset, the model has generalized well to avoid
conventional spelling: in entry 3 an ò is included
in the target, which is not part of the phonetic nota-
tion used in the WLD. The model instead correctly
normalized this phoneme to o– . The evaluation met-

157



Unnormalized word Prediction Target ChrF (no diac.) Translation
1 sjnaps snaps snàps 1.0 schnaps (drink)
2 zeik ze– i

“
.k ze– i

“
.k 1.0 fecal sludge

3 daavekot dāv@ko– t dāv@kòt 1.0 dovecote
4 sjollek šol@k šo– l@k 1.0 type of apron
5 volle vo– l@ vo– l 0.667 full
6 strooie stroi

“
@ strō@n 0.5 of straw (material)

7 kool ki@l kī@l 1.0 cabbage
8 hèndich@ hendix hendixe 0.889 handy
9 kwartsche kwartse kwē<rtš@ 0.2 quarter
10 hiemël hi:m@l hi:m@l 1.0 heaven
11 lintteeke lintēk@ lentēk@ 0.6 scar
12 sjei še– i

“
še– i

“
1.0 vagina (horse)

13 tweede twēd@ de 0 second
14 preuv@ prèùve prēūv@ 0.75 to taste
15 áfzétt@ ifzet@ afzEt@ 0.75 to rip off/defraud

Table 5: A random sample of the geographically-embedded transformer’s performance on the test set.

Input Prediction Target ChrF Translation Locations
(no diac.)

1 špat spat spat 1.0 osteoarthritis Moresnet→Meeuwen
(horse)

2 remp@l rimpels rumpels 0.6 wrinkles Meterik→Blerick
3 moder moj@r moj@r 1.0 mother Bocholt→Millen
4 xeld xē– lt xēld 0.5 money Gulpen→Moelingen
5 bo– t@rham bot@ram bot@ram 1.0 sandwich Achel→Blitterswijck
6 werk werk werk 1.0 work Sittard→Beverst
7 be–s@l be–s@l be– .s@l 0.286 bushel (hay) Beverst→Munsterbilzen
8 we–x wex wex 1.0 road Landen→Venray
9 hō– t@ ho– wt@ ho– wt@n 0.857 wooden Genk→Neeroeteren
10 bri@.k@ brē– .k@ brē– .k@ 1.0 to spread manure Jesseren→Nerem
11 kát kat kat 1.0 cat Wijchmaal→Blitterswijck
12 sle– i

“
p sle– i

“
.p sle– i

“
.p 1.0 field drag Neeritter→Bocholt

13 wilde wel wøl 0 wild Ophoven→Lummen
14 nak nek nek 1.0 neck Munsterbilzen→Horst
15 hūs hōēs hôêês 0.4 house Gruitrode→Lottum

Table 6: A random sample of the geographically-embedded transformer’s performance on the phonological dialect
translation test set.

rics penalize these instances, even though they are
desirable for our purposes.

The model fails in a few instances in predict-
ing the correct normalization: in 8 the wrong gen-
der/plural is predicted, in 9 (pred.: kwartse, target:
kwē<rtš@) and in 15 (pred.: ifzet@ target: afzEt@)
some characters are incorrectly normalized. In en-
try 14, conventional spelling is used in the predic-
tion (prèùv@).

From this manual analysis and the close corre-
spondence to the estimated upper boundaries we

can conclude that the geographically-embedded ar-
chitecture is appropriate for normalization of Lim-
burgish spelling to phonetic notation and an im-
provement over the traditional transformer archi-
tecture for this purpose.

6.2 Phonological Dialect Translation Task

The evaluation metrics (Table 4) approach the esti-
mated upper boundaries, but not as closely as in the
normalization task. There is again no geographic
bias as the evaluation metrics are homogeneously
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spread over the studied language area. A manual
analysis of a sample of some predictions (Table 6)
shows that the model succeeds in correctly trans-
lating the phonology of various words from one
Limburgish dialect to another: in for example entry
1 (špat → spat), the s→S rule associated with the
Panninger isogloss is correctly applied. In entry 10
(bri@.k@ → brē– .k@), the correct sound ē– is translated
for Nerem, even though the place of origin Jesseren
is only 10 km removed and uses the sound i@.

In most instances, the translation matches the
expected target. In some entries such as 2 and 13
the model corrects the input: entry 2 is an incorrect
singular as the other cognates are plurals and the
missing pluralization is therefore an error in the
dataset, entry 13 is likewise a transcription error in
the WLD and should have been wel.

In entries such as 4, 9, and 15 the model also per-
forms better than the dataset and correctly predicts
phonetic notation: t instead of d for entry 4 (pred.:
xē– lt target: xēld), no end-n for entry 9 (pred.: ho– wt@
target: ho– wt@n) and no conventional Limburgish
spelling in the case of entry 15 (pred.: hōēs target:
hôêês).

In some instances the model fails to predict the
correct diacritics, such as in entry 7 (pred.: be–s@l
target: be– .s@l), but most of the low evaluation met-
rics correspond to instances where the model pre-
dicted more desirable results than the dataset pro-
vided as target words.

From this manual analysis and the evaluation
metrics we can conclude that phonological dialect
translation was successfully achieved using the
geographically-embedded transformer.

6.3 Language Variation Maps
The phonological translation model allows us to
specify any input and target coordinates for the
translation task; by fixing an input word and co-
ordinates and varying the target coordinates we
can generate highly granular language variation
maps that show the phonological variation of the
input word/phoneme. These maps can be used
to extensively compare the model’s predictions to
traditional dialectological maps, or to study gener-
alizations the model has learned due to the inherent
language variation. In Fig 2 we provide such a map
with all variation of school for fixed location Bree
with input word šo.l. Overlaid on this map we indi-
cate the natural variation of Limburgish phonology
using dots, sourced from the WLD. We notice the
close correspondence to the natural phonological

Figure 2: Generated variation map for school (šo.l) with
Bree as fixed input. The overlaid dots correspond to the
natural variation as found in the WLD. The color scheme
purposely groups closely related phonemes. The black
lines indicate the major isoglosses in the Limburgish
area (Bakkes et al., 2007).

variation, in particular the clear separation between
variants starting with sx and š. This isophone is part
of the Panninger side line, an important isogloss
in the Limburgish language area (in black, right
next to Hasselt and converging in the north with
the other isoglosses).

6.4 Availability
The trained models, datasets, figures and GIS
data will be made available on github.com/
AndreasJCSimons/LimburgishNLP.

7 Conclusion

We found that embedding geographic coordinates
after the positional encoding allows us to normalize
highly phonologically and orthographically vary-
ing data more accurately than the traditional trans-
former architecture. Additionally, we found that
this geographic embedding allows us to translate
the phonology of words between any Limburgish
dialects and to generate language variation maps
that can be compared to traditional dialectology or
to study generalized phonological patterns that the
model has implicitly learned.
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8 Limitations

This work is limited by the lack of properly cu-
rated datasets and methodologies to evaluate the
performance of dialect normalization and transla-
tion tasks, which hinders a more accurate evalua-
tion of the used methods. We therefore had to eval-
uate the trained models using a manual analysis and
estimates for an expected upper boundary on some
evaluation metrics, given the inherent phonological
and orthographic variation in the data. In Subsec-
tions 6.1 and 6.2 it is clear that in some instances
the dataset is of low quality. However, due to the
size of the dataset it is likely that the model has gen-
eralized beyond the low-quality entries: this can be
seen both in the manual analysis where the model
corrects wrong targets (even though it is penalized
by the loss function) as well as in the language
variation maps of Subsection 6.3 where the model
has correctly learned Limburgish sound changes.

Another limitation is that the normalization and
phonological dialect translation tasks only took the
spelling and phonology of the words into account
and not their semantics. While this rarely resulted
in inaccurate predictions, a more elaborate normal-
ization or translation scheme should take semantic
information into account, as this can sometimes be
tied to phonological patterns. For example, High
German loanwords such as sjnaps (Table 5) are
typically not subject to internal Limburgish sound
changes and remain invariant.

Finally, the data of the WLD is not fully syn-
chronous: it contains older dialect surveys such as
the data from the Willems survey (19th century),
SGV (1914), and ZND (from 1922 onwards). Ad-
ditionally, data was collected in Belgian Limburg
from the 1960s onwards to match missing data with
respect to Dutch Limburg (Weijnen et al., 1983-
2008). This means that the data collection occurred
during a period of a major linguistic shift: between
1950 and 1980 a period of hyperstandardization oc-
curred in Belgium that sought to promote Algemeen
Beschaafd Nederlands (General Civilized Dutch)
and stigmatize any other languages or language
variation (Hoof and Jaspers, 2012). We also did
not have access to any data from beyond the Dutch-
German border, even though there is linguistically
no reason to separate the dialects spoken between
the Uerdinger and Benrather lines in Germany from
the dialects in Belgium and the Netherlands.

9 Ethics Statement

This work complies with the ACM Code of
Ethics and Professional Conduct (https://www.
acm.org/code-of-ethics) with particular atten-
tion to articles 1.1 and 1.4: many underserved lan-
guages and language communities exist, and lan-
guage variation and diversity is itself an exercise in
low-resource NLP. By contributing to the research
of non-standardized languages, low-resource lan-
guages or methods in NLP that can handle language
variation, we hope to provide instruments that may
be beneficial to disadvantaged languages commu-
nities.

The data used in this work, the Woordenboek van
de Limburgse Dialecten, was manually processed
over many years using dialect surveys and native
speakers, who have been anonymized in the final
dataset. Regardless, we are aware that by the very
nature of this research, i.e. highly granular geo-
graphic analysis of language variation using meth-
ods in Deep Learning, we are studying phenomena
that are tied to a person’s native dialect, upbringing
and socioeconomic situation. It is worrying that
in recent years this has been abused for purposes
of surveillance. For example, language variation
has been used in dialect identification software by
countries to evade privacy regulations during asy-
lum procedures (European Digital Rights et al.,
2021).
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Abstract

Code-switching research depends on fine-
grained language identification. In this work,
we study existing corpora used to train token-
level language identification systems. We ag-
gregate these corpora with a consistent la-
belling scheme and train a system to iden-
tify English code-switching in multilingual
text. We show that the system identifies code-
switching in unseen language pairs with abso-
lute F1 measure 2.3-4.6% better than language-
pair-specific SoTA. We also analyse the cor-
relation between typological similarity of the
languages and difficulty in recognizing code-
switching.

1 Introduction

Code-switching is when bilinguals alternate be-
tween languages at the sentence or word level. In-
creasing attention is being placed on computational
approaches to code-switching, driven by six code-
switching workshops to date (Solorio et al., 2014;
Molina et al., 2016; Aguilar et al., 2018b; Solorio
et al., 2020, 2021; Winata et al., 2023). In part,
this line of research is due to the rise in the use of
code-switching on social media (Jose et al., 2020),
potentially as a result of language contact (Gardner-
Chloros, 2020).

Language technology users now expect auto-
matic speech recognition systems, text-to-speech
engines, generative models etc. to handle code-
switching as a natural form of language. But
even SoTA large language models (LLMs) per-
form poorly on zero-shot NLP tasks with code-
switching data (Zhang et al., 2023). They are out-
performed by smaller fine-tuned models. Further,
Yong et al. (2023) report acceptability judgements
of LLM-generated code-switching, showing few
generations are acceptable. Despite the prevalence
of code-switching in spoken and online discourse,
code-switching is likely a linguistic phenomenon
severely underrepresented in the training data of

models like those in the GPT family (Brown et al.,
2020). The availability of code-switching data has
therefore become a common barrier to address the
limitations of existing NLP tools on code-switching
input. A tool required to address this barrier is fine-
grained and multilingual language identification
systems.

In this paper, we develop a fine-grained tool that
distinguishes words between English and any other
language.1 We make our models and code avail-
able.2

2 Background

There are many works aimed at identifying lan-
guages in documents at more fine-grained levels,
e.g. the word-level (Lyu and Lyu, 2008; Solorio
et al., 2014; Mave et al., 2018; Zhang et al., 2018;
Nguyen et al., 2021; Hidayatullah et al., 2022;
Hegde et al., 2024) or even sub-word level (Mager
et al., 2019; Sabty et al., 2021). Figure 1b shows the
annotation scheme of one German–English work
which aims for very fine-grained classification.

Approaches to compile code-switching corpora
traditionally involved collecting spoken recordings
of bilinguals (Myers-Scotton, 1992; Deuchar, 2009;
Nguyen and Bryant, 2020) or more recently gener-
ating synthetic code-switching (Chang et al., 2019;
Gupta et al., 2020; Rizvi et al., 2021). Manually
collecting recordings is an expensive, arduous and
lengthy task; meanwhile, synthetic code-switching
is inherently limited in the code-switching phenom-
ena it exhibits. But with automatic code-switching
identification systems, much larger corpora of nat-
urally occurring code-switching have begun to be
collected (Nayak and Joshi, 2022; Sterner and

1In practice, the choice to focus only on languages
switched with English was as a result of data availability.

2Code-switching identification: https://huggingface.
co/igorsterner/AnE-LID, binary named entity recog-
nition: https://huggingface.co/igorsterner/AnE-NER,
code: https://github.com/igorsterner/AnE
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Teufel, 2023; Wintner et al., 2023). The source
of such data is large troves of social media posts.

Such corpora offer the potential to test various
theories of code-switching, theories of when hu-
mans code-switch and why. An example is the trig-
gering hypothesis (Clyne, 1980), which suggests
that shared lexical items (e.g. named entities) are
triggers of code-switching. Broersma and De Bot
(2006) and Broersma (2009) found statistical sig-
nificance between such lexical triggers and code-
switching points for a small handful (c. 100) of
switch points in recorded corpora. Soto et al. (2018)
test on the larger Spanish–English spoken corpus
of Deuchar (2009), but limit their study to a small
list of cognates. Wintner et al. (2023) test on data
of three different language pairs (Arabic–English,
Spanish–English and German –English) with a to-
tal of 648,498 switch points from almost 10M to-
kens of mostly automatically language-identified
social media content. They found statistical cor-
relation suggesting switch points tend to be close
to the shared lexical items. For this to be possible,
substantial effort was invested to build word-level
language identifiers specific to each of the three
language pairs they explore (Aguilar et al., 2020;
Shehadi and Wintner, 2022a; Osmelak and Wint-
ner, 2023). Corpus-linguistic approaches to code-
switching will continue to depend on the quality of
such fine-grained language identification tools.

Existing code-switching identification systems
are language-specific; they distinguish between
a fixed number of (typically two) specified lan-
guages in a training corpus. This approach fails to
support code-switching research in lower-resource
languages, where annotated training data is either
not available or available at much smaller scales.
To collect more data for low-resource language
pairs requires an identification system, a circular
problem. This circular problem applies more gen-
erally to language identification. But it is espe-
cially challenging in code-switching because code-
switching sentences are often only found in seas
of spoken/written data of primarily monolingual
sentences.

3 Existing Corpora

Large language-identified corpora of code-
switching with English only exist in a small set
of language pairs, namely Hindi–English (Singh
et al., 2018), Spanish–English (Molina et al., 2016;
Aguilar et al., 2018a), Nepali–English (Solorio

et al., 2014), German–English (Osmelak and
Wintner, 2023) and Arabic–English (Shehadi
and Wintner, 2022b). Smaller corpora of code-
switching of low-resource language pairs also
exist, e.g. Indonesian–English (Barik et al., 2019),
Turkish–English (Yirmibeşoğlu and Eryiğit, 2018)
and Vietnamese–English (Nguyen and Bryant,
2020). These corpora are derived from posts on
social media platforms such as Twitter and Reddit,
except for the Vietnamese–English corpus which
is of spoken code-switching.

Of the corpora, there is a variation in the labelset
used to classify the words. The variation is centred
around the annotation of shared words and words of
mixed morphology. Example labelsets, alongside
the frequency of words of each label, are given in
Tables 1 and 2.

In many public corpora of low-resource language
pairs, code-switching is identified at a coarser-
grained level. These corpora only include labels
for each of the two languages, and sometimes a
third label for all tokens not of the two languages.
Meanwhile, higher-resource language pairs include
the identification of named entities, or more gener-
ally shared words, mixed words and foreign words
not of either the two languages in question. The
labelset proposed by (Molina et al., 2016, the sec-
ond shared task on language identification in code-
switching) includes ‘lang1’, ‘lang2’, ‘other’, ‘ne’
(named entity), ‘fw’ (foreign word), ‘mixed’, ‘unk’
and ‘ambiguous’ labels. This labelset was adapted
from Solorio et al. (2014, the first shared task)
which has the same labels except without ‘fw’ or
‘unk’.

Hindi–English, Spanish–English and Nepali–
English code-switching datasets have been brought
together in the LinCE benchmark (Aguilar et al.,
2020), under a language identification (LID) task
for code-switching data. They use the labels of
Molina et al. (2016) or Solorio et al. (2014).

In addition to code-switching identification,
LinCE includes a benchmark for named entity
recognition (NER) in code-switching data. The
code-switching examples in the LID and NER
benchmarks are different.

In the Denglisch corpus of Osmelak and Wintner
(2023), German–English code-switching is iden-
tified at a more fine-grained level. Figure 1b dis-
plays the fine-grained labels they annotate words
for, demonstrating the number of linguistic phe-
nomena in code-switching inter-play. In their work,
they use 100% of their human-annotated data in the
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1 2 punct EOS EOP 4b 3a 3a-D 3a-E 3a-AD 4a 3a-AE url 4c 3-O 3c-C

Train (3364) 24134 23598 9016 3351 2976 899 460 405 311 210 206 191 184 99 96 80
Dev (420) 2621 3093 992 420 212 58 51 37 46 26 18 18 15 10 2 11
Test (421) 3125 2914 1082 417 279 80 62 43 35 26 19 21 10 9 12 9

3c-M 4d 4b-D 3-D 3b 4 3-E 4d-D 3c-EC 4e-E 4b-E 4d-E 3c 3 3c-EM

Train (3364) 76 71 65 60 58 48 46 41 22 15 14 14 12 7 5
Dev (420) 13 10 4 0 13 1 9 7 1 0 3 5 2 0 1
Test (421) 9 7 5 0 16 2 6 3 5 1 0 2 0 0 0

(a) Label frequencies

(b) Annotation scheme. Source: Osmelak and Wintner (2023)

Table 1: Details of the Denglisch corpus of German–English code-switching (Osmelak and Wintner, 2023)

lang1 lang2 other ne fw mix unk amb

Train (4823) 54720 19134 14017 6069 398 33 10 8
Dev (744) 8942 3303 2210 837 29 5 2 1
Test (1854) 20635 7487 5369 2432 106 14 5 32

(a) Hindi–English (Singh et al., 2018)

lang2 lang1 other ne amb unk mix fw

Train (21030) 111422 77843 53851 4725 263 210 27 22
Dev (3332) 14787 16618 7810 769 37 32 3 2
Test (8289) 42850 31916 20311 2059 100 80 17 8

(b) Spanish–English (Molina et al., 2016)

lang2 lang1 other ne mix amb

Train (8451) 49936 38827 29847 3146 90 72
Dev (1332) 8385 5557 4653 452 13 11
Test (3228) 19881 14009 11321 1268 48 32

(c) Nepali–English (Solorio et al., 2014)

id un en

Test (825) 11200 5917 5608

(d) Indonesian–English (Barik et al., 2019)

t e

Test (377) 3941 1489

(e) Turkish–English (Yirmibeşoğlu and Eryiğit, 2018)

@vie @eng @non

Test (3313) 16974 7219 614

(f) Vietnamese–English (Nguyen and Bryant, 2020)

Table 2: Code-switching identification corpora, with
frequencies of labels. lang1 is always English.

cross-validation setup. Their data can be collapsed
to have a labelset similar to the data in LinCE.

The Arabic–English code-switching dataset con-
tains labels for ‘Shared Other’ words, which are
less simple to adapt to the LinCE labelset, likely
requiring some further annotation.

For low-resource language pairs, Turkish–
English (Yirmibeşoğlu and Eryiğit, 2018) in-
cludes only binary labels (Turkish and English),
Indonesian–English (Barik et al., 2019) adds an
‘other’ (or ‘unknown’ as they called it) category
for named entities, punctuation and other non-
language units. The Vietnamese–English CanVEC
corpus includes the same three categories, but their
data is semi-automatically annotated; a human only
corrects words not contained in wordlists of either
language, and words in both wordlists.

SoTA language identification performance for
the high-resource language pairs is displayed on
the LinCE benchmark leaderboard.3 As of 23 April
2024, the best system is the XLM-RoBERTa lan-
guage model (Conneau et al., 2020) fine-tuned sep-
arately for classification on each of the language
pairs. This is an anonymous submission and no
reference is given to the exact training setup. There
is no existing language identification baseline on
the Vietnamese–English corpus, likely because it is
semi-automatically annotated data. For Indonesian–
English and Turkish–English, SoTA language iden-
tification performance remains from the original
works; both using conditional random field (CRF)
classifiers. Like Osmelak and Wintner (2023) do
for German–English, these systems also use 100%
of their corpora in the cross-validation setup. They
release no separate test set.

The disparity in size and labelset of these code-
switching corpora has presented a challenge to re-
search in this field. The best code-switching iden-

3https://ritual.uh.edu/lince/leaderboard
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tification systems are language pair-specific. This
has left low-resource language pairs behind in code-
switching research. In addition, there is no base-
line for research on new language pairs to evaluate
against.4

4 AnE

Our goal is to develop an Any-English (AnE) code-
switching identification system, which we refor-
mulate as the task of identifying English code-
switching in a sea of text of other languages. En-
glish here encompasses the many local varieties
of English present in the aforementioned corpora
of code-switching. We aim to achieve our goal by
matching up the labelsets of existing corpora with
this task in mind. A key challenge we face is that
some corpora distinguish named entities, whilst
others do not.

To alleviate this challenge, we will train two
classifiers:

1. Code-switching identification - one will dis-
tinguish between English, other languages
(hereinafter notEnglish), words that mix En-
glish and another language within the word
(Mixed) and other words such as punctuation,
emojis and mentions (Other).

2. Binary named entity recognition - the other
will make a binary distinction as to whether a
word is part of a named entity or not.

The data we searched for to train these classi-
fiers broadly fits into three categories. The first
is corpora that classify the language of the words
but also have a named entity class (LID+NER).
These corpora are labelled with the previously dis-
cussed labelsets of Molina et al. (2016) or Solorio
et al. (2014). The second is corpora that only clas-
sify the language of the words as L1 or L2 (LID).
Some of these corpora also have an ‘other’ category
which includes named entities/punctuation/emojis
etc., and some simply remove ‘other’ words from
the data by manual means. The third is derived
from the task of named entity recognition on code-
switching text; such corpora include the named
entity labels and classes in BIO (Ramshaw and
Marcus, 1995) format (NER).

We preprocess the corpora as follows.

4Except by prompting LLMs, of which only the largest
models perform well (Zhang et al., 2023). This is currently a
subpar and prohibitively expensive solution.

English notEnglish Mixed Other

Train (4823) 54720 19550 33 14017

(a) Hindi–English (LinCE-LID, Singh et al., 2018)

Train (21030) 77843 111917 27 53851

(b) Spanish–English (LinCE-LID, Molina et al., 2016)

Train (33611) 78588 199723 45 110015

(c) Spanish–English (LinCE-NER, Aguilar et al., 2018a)

Train (8451) 38827 50008 90 29847

(d) Nepali–English (LinCE-LID, Solorio et al., 2014)

Train (3364) 24725 24865 195 16525

(e) German–English (Osmelak and Wintner, 2023)

Table 3: Collapsed LID training data statistics

I O

Train (4823) 6069 88320

(a) Hindi–English (Singh et al., 2018)

Train (21030) 4725 243638

(b) Spanish–English (Molina et al., 2016)

Train (8451) 3146 118772

(c) Nepali–English (Solorio et al., 2014)

Train (3364) 1577 65193

(d) German–English (Osmelak and Wintner, 2023)

Train (1243) 2222 17806

(e) Hindi–English (Singh et al., 2018)

Train (33611) 11722 385055

(f) Spanish–English (Aguilar et al., 2018a)

Table 4: Binary NER training data statistics

• LID+NER Each corpora becomes two sub-
corpora. In the first, the language other than
English, foreign words, ambiguous words and
unknown words all become nonEnglish. The
English, Mixed and Other tags stay as English,
Mixed and Other. Named entities receive a
special ID to be ignored in all training updates.
In the second subcorpora, named entities be-
come a generic inside (I) and all other labels
become outside (O).

• LID All labels are taken directly, which al-
ways includes English and notEnglish. Other
is also taken if included in the data. There
were no Mixed labels in any of these corpora.
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• NER All B or I labels of any type become an
inside (I) label. All outside (O) labels stay.

Table 3 gives statistics for the output from the
collapse of the corpora into our LID scheme, and
Table 4 for the collapse into binary NER. Statis-
tics for the LID-only category of corpora follow
directly from Table 2 (d)-(f).

5 Experiment

5.1 Experimental Setup

Systems and Baselines Our AnE system is an
ensemble of the language identification (AnELID)
and binary named entity recognition (AnENER)
classifiers. The ensemble is achieved by classifying
words based on each classifier separately, and then
overwriting labels of words AnENER predicts to
be named entities. For the high-resource language
pairs, these labels make up the NamedEntity class.
For the low-resource language pairs with an Other
category, they are moved into there. For languages
without any Other category, AnENER is not used
and AnELID’s Other labels become NotEnglish.
The low-resource language pair copora also do not
include a Mixed category, so such predicted words
become NotEnglish.

For the LinCE benchmark language pairs, and
German–English, we train separate baseline clas-
sifiers using only data from each single language
pair. This baseline corresponds to reproducing the
SoTA (anonymous) system on the LinCE leader-
board. For the low-resource language pairs, we
test on 100% of the data. Therefore, we are un-
able to train a baseline system. Instead, we use the
best-performing system from the original works
as baseline, even though these were trained in the
cross-validation setup.5

All classifiers are single-layer perceptron classi-
fication heads on XLM-RoBERTa (large).

Data We use the data described in Section 4.
In particular, we use the provided splits from the
LinCE benchmark (Aguilar et al., 2020), which
includes three language pairs. We also mix in
Denglisch (German–English) data from Osmelak
and Wintner (2023). In their work, they train with
the cross-validation setup. We instead split their
data into train/dev/test with splits 80:10:10%.

5Therefore, numbers are not directly comparable. But
either way, our system is not favoured as it does not have any
training data for these language pairs.

We balance the training data between these four
language pairs by up-sampling until all language
pairs contribute the same number of training sen-
tences.

We also evaluate on 100% of the three low-
resource language pair corpora, namely Indonesian–
English, Turkish–English and Vietnamese–English.
We remind the reader that the Vietnamese–English
corpus is different to all other corpora in that (a) it
is a corpus of spoken code-switching and (b) it is
only silver-standard data.

Training We train all systems for 3 epochs with
a learning rate of 1e-5 and a batch size of 32. All
parameters are updated using a cross-entropy loss
criterion and the Adam optimizer (Kingma and Ba,
2014). We use weight decay = 0.01 for the op-
timizer with β = (0.9, 0.999) and ϵ =1e-8. For
the named entity tokens without language subcat-
egorization, as described in Section 4, losses are
zeroed. These hyperparameters were chosen based
on recommendations from prior work (e.g., De-
vlin et al., 2019). No hyperparameter tuning was
performed.

When training the baseline systems, we continue
training for additional epochs until the same num-
ber of sentences are seen as in the up-sampled AnE
data for the language pair in question. We found
validation accuracy monotonically increases and
plateaus by the end of training; there was no evi-
dence of overfitting despite this extended training
setup.

Metrics We will compare the performance of the
AnE system against baseline by computing preci-
sion (P ), recall (R) and weighted-average F1 mea-
sure. All the measures are word-based. The LinCE
submission portal generates P , R and F1 metrics
for each label, and an overall weighted F1 mea-
sure.6 We also use weighted-average F1 measure
for other evaluations.

XLM-RoBERTa uses byte-pair encoding for sub-
word tokenization. If there is more than one unique
subword label for a given word, we select the most
frequent label. In the event of a tie, we select the
label which appeared first. This detail is likely
to particularly affect the classification of mixed-
morphology words, which will often be split into
subwords. Further investigation of this effect is
beyond the scope of this work.

6No overall P or R is provided.
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English notEnglish Mixed
P R Ft P R Ft P R Ft

Hindi–English (20635) (7487) (14)
hi-en only 98.39 98.47 98.43 95.77 96.66 96.21 47.37 64.29 54.55
AnE 98.32 98.49 98.40 94.24 96.61 95.41 61.54 57.14 59.26

Spanish–English (42850) (31916) (17)
es-en only 98.22 98.94 98.58 98.98 99.22 99.10 0.00 0.00 0.00
AnE 98.51 98.62 98.57 99.01 99.13 99.07 54.55 35.29 42.86

Nepali–English (19881) (14009) (48)
ne-en only 96.34 96.90 96.62 98.27 98.07 98.17 54.29 39.58 45.78
AnE 96.71 96.25 96.48 97.78 98.40 98.09 62.50 41.67 50.00

German–English (3134) (2978) (23)
de-en only 98.76 99.23 99.00 99.39 98.93 99.16 78.26 78.26 78.26
AnE 97.13 99.27 98.19 99.06 98.62 98.84 63.64 60.87 62.22

Named Entity Other Ambiguous

Hindi–English (2432) (5369) (32)
hi-en only 90.18 89.14 89.66 99.16 98.96 99.06 0.00 0.00 0.00
AnE 91.77 87.54 89.60 98.38 98.44 98.41 0.00 0.00 0.00

Spanish–English (2059) (20311) (100)
es-en only 87.76 82.18 84.88 99.82 99.78 99.80 0.00 0.00 0.00
AnE 77.45 81.40 79.37 99.81 99.82 99.82 0.00 0.00 0.00

Nepali–English (1268) (11321) (32)
ne-en only 73.07 74.68 73.87 97.63 97.32 97.48 8.33 3.12 4.55
AnE 72.52 75.95 74.19 97.68 97.06 97.37 0.00 0.00 0.00

German–English (187) (1877)
de-en only 90.67 93.58 92.11 100.00 99.63 99.81 - - -
AnE 88.54 90.91 89.71 99.89 96.70 98.27 - - -

Unknown Foreign Word Overall

Hindi–English (5) (106) (36080)
hi-en only 0.00 0.00 0.00 87.10 50.94 64.29 - - 97.33
AnE 0.00 0.00 0.00 0.00 0.00 0.00 - - 96.86

Spanish–English (80) (8) (97341)
es-en only 50.00 5.00 9.09 0.00 0.00 0.00 - - 98.58
AnE 0.00 0.00 0.00 0.00 0.00 0.00 - - 98.44

Nepali–English (46559)
ne-en only - - - - - - - - 96.76
AnE - - - - - - - - 96.66

German–English (8199)
de-en only - - - - - - 99.03 99.02 99.03
AnE - - - - - - 98.17 98.15 98.15

Table 5: Results for the LID task for language pairs in the training data

5.2 Results

Table 5 gives test results on the four language pairs
included in the training data. Mixing the data to
train one AnE model does not result in a large
change in performance compared to the separate
baseline models. Overall F1 measures for the base-
line and AnE are 97.33/96.86% for Hindi–English,
98.58/98.44% for Spanish–English, 96.76/96.66%
for Nepali–English, and 99.03/98.15% for German–
English. AnE is numerically worse for all language
pairs, but only by a small margin of less than 1%
absolute F1.

For the first three, which are all from LinCE,
the differences are all less than 0.5%. For German–
English, it is slightly larger (-0.88%). We collapsed
the labels for German–English to match the LinCE
evaluation labels where possible. But there may
be some differences between the LinCE data and
the German–English data scheme. This may be
a cause of the slightly greater drop in the overall
performance of AnE for this language pair.

AnE also does not have predictive classes ‘Am-

biguous’, ’Unknown’ or ’Foreign Word’. There are
few (all < 106) words in these categories in the test
data. Nevertheless, the AnE system scores zero for
all these categories, which may be another reason
for the small numerical drop in overall performance
compared to the baselines.

The separate baseline classifiers perform near-
identical to the anonymous SoTA reported on the
LinCE leaderboard.

In terms of evaluating our approach of separat-
ing out the binary NER task, the results show that
AnENER in the AnE ensemble is near-identical
to the baseline where ‘Named Entity’ is simply
a label amongst the other labels. In particular,
named entity F1 measure for the baseline and AnE
is recorded at 89.66/89.60% for Hindi–English,
84.88/79.37% for Spanish–English, 73.87/74.19%
for Nepali–English and 92.11/89.71% for German–
English. The reduced performance in Spanish–
English compared to the baseline can be attributed
to a substantially worse precision (77.45 vs. the
baseline 87.76). AnENER was trained on both the
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English notEnglish Other Overall
P R Ft P R Ft P R Ft P R Ft

Indonesian–English (5608) (11200) (5917) (22725)
id-en SoTA 89.90 84.42 87.07 88.13 96.22 91.99 94.99 83.96 89.14 90.70 87.38 88.86
AnE 86.86 97.63 91.93 95.44 94.86 95.15 97.13 86.83 91.69 93.76 93.45 93.45

Turkish–English (1489) (3941) (5430)
tr-en SoTA 91.7 92.2 91.9 97.2 96.8 97.0 - - - 95.7 95.5 95.6
AnELID 94.16 98.46 96.26 99.41 97.69 98.54 - - - 97.97 97.90 97.91

Vietnamese–English (7219) (16974) (614) (24807)
AnE 90.64 95.07 92.80 98.17 95.82 96.98 60.72 65.96 63.23 95.05 94.86 94.93

Table 6: Zero-shot LID results. SoTA results from Barik et al. (2019); Yirmibeşoğlu and Eryiğit (2018). No existing
Vietnamese–English SoTA.

training sets of the LID task we are evaluating here,
and collapsed NER training splits. It is possible
that introducing these NER datasets brings a con-
flict of annotation guidelines. Alternatively it is
possible that introducing additional data here was
simply not necessary. Either way, we have shown
here that AnENER is an optional NER module in
our system that performs on-par with baseline.

We now proceed to evaluate performance on
low-resource language pairs, for which AnE is
not explicitly fine-tuned on any code-switching
data. Table 6 gives results in P , R and F1 mea-
sure on the Indonesian–English, Turkish–English
and Vietnamese–English language pairs.

Zero-shot AnE outperforms SoTA classifiers
fine-tuned directly (in the cross-validation setup)
for the language pairs. F1 measures in all
categories are improvements over SoTA. For
Indonesian–English code-switching, AnE is eval-
uated at overall F1 = 93.45%, outperforming the
previous SoTA of 88.86%. The same holds for
Turkish–English, where AnELID is evaluated at
F1 = 97.9% compared to the previous SoTA of
95.6% (significant figures/digits reduced to match
reported SoTA).

Overall F1 for Vietnamese–English is 94.93, but
this is severely affected by the low score in the
‘Other’ category of F1 = 63.23%. This is because
their ‘X’ category (which we collapse to ‘Other’)
represents language-neutral words, rather than
named entities/punctuation/emojis as our ‘Other’
here is targeted at. There is a mismatch here. Such
labelled words only arise as a result of human in-
tervention in their semi-automatic language iden-
tification process, which may be a factor. Another
factor is that the Vietnamese–English data is the
only corpus originating from recordings. Many of
these ambiguous words arise from the conversa-
tional discourse setting not present in social me-
dia, like interjections and fillers. AnE is not able
to effectively handle such words. We have still

set baseline performance for Vietnamese–English
code-switching identification.

We hypothesize the good zero-shot performance
of AnE may be attributed to two factors. The first
is the multilingual pre-training of XLM-RoBERTa.
Monolingual training data in Indonesian, Turkish
and Vietnamese as well as English is included in the
multilingual pre-training data of XLM-RoBERTa.
This may contribute to the performance of AnE in
distinguishing these languages from English. The
second factor is the way we formulated this task:
distinguishing English from not English. This task
formulation aimed to be independent of the other
language.

This zero-shot evaluation shows that AnE per-
forms well at identifying code-switched English
amongst words of other languages not seen in the
fine-tuning data. We consider this a good result,
and it means AnE can be a baseline system for
future research on code-switching between any lan-
guage and English. It can also be a tool to quickly
gather more data for low resource language pairs
in code-switching research.

5.3 Correlation With Typological Similarity

We finish by investigating the connection between
language typology and difficulty in recognizing
code-switching. To this end, we used lexical sim-
ilarity as a measure of linguistic similarity. We
note that our language identification task is mostly
lexical, in identifying the language of individual
words. But for lexically similar languages it can-
not be solved perfectly even with an ideal lexicon;
interlingual homographs, words with the same sur-
face form in two languages but different meanings,
are one example for why.

A challenge in this investigation is what measure
of difficulty in recognizing code-switching to use.
We found earlier that overall F1 score is heavily
affected by how named entities and other words are
annotated. Meanwhile, annotation schemes also
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Figure 1: Normalized Levenshtein distance (LDN) be-
tween the ASJP wordlists in each of the languages,
against English recall of AnE.

lead to some large variations between precision and
recall. In the end, we decided to use the recall of
English words as our measure. Ultimately, we an-
ticipate this is the measure of most interest to those
searching for code-switching in large corpora.

Figure 1 presents a plot of this recall measure
against a measure of lexical similarity for each
of the language pairs we explored in this work.
Lexical similarity is computed as a distance using
the ASJP corpus (Wichmann et al., 2022) and as-
sociated methods of Müller et al. (2010), but we
acknowledge that no measure will be perfect.7 We
find a strong (ρ=-0.82) and significant (p=0.02)
Spearman’s correlation between lexical distance
and English recall. But the correlation is nega-
tive, indicating that lexically similar languages are
easier to distinguish. This is a surprising result,
as one would expect that lexically dissimilar lan-
guages could be distinguished near-perfectly with a
hashtable. We posit that an explanation may reside
in the monolingual pre-training of the language
model. It is plausible that the model learns repre-
sentations that better distinguish lexically similar
languages. An alternate hypothesis is that this cor-
relation arises from the volume of pre-training data
in each of the languages. It is also possible that the
correlation is just a facet of the difficulty of each
code-switching corpus we investigate.

6 Conclusion

In this work, we have presented a system (AnE) that
distinguishes English words and words of other lan-
guages in multilingual text. On high-resource lan-
guage pairs, the system underperforms language-

7We use the numbers released here.

pair-specific SoTA by a numerically small margin
(always less than 1% absolute F1). Meanwhile,
it outperforms SoTA on low-resource language
pairs, even though it was not trained on any code-
switching of these language pairs. Analysis of our
results revealed a negative correlation between lex-
ical similarity and difficulty in recognizing code-
switching, a surprising result which we leave to
future work for further exploration. We believe
our work bridges some of the resource-gap in code-
switching research. We make it possible to com-
pile new large-scale code-switching corpora of cur-
rently underrepresented language pairs. AnE is also
a new and competitive baseline in code-switching
identification research between any language and
English.

Limitations

The main limitation of this work is in the language
pairs AnE is able to support. The main motiva-
tion for this work was to make the most of exist-
ing high-resource code-switching data to support
research on lower-resource language pairs in code-
switching. We achieved this, but only for language
pairs where one language is English.

There are of course many code-switching lan-
guage pairs that do not involve English. But we
found the data is not available today to train an
AnE-type system to support those lines of research.
For example, we would have wished to train a
system that distinguished between code-switching
of different language families, e.g. Romance vs.
notRomance.

Ethics Statement

The Turkish–English and Vietnamese–English cor-
pora we used were made available to us on our
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for evaluation. All other corpora are publically
available.
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Abstract
This paper discusses the re-usability of existing
approaches, tools and automatic techniques for
the manual annotation and automatic extraction
of events in a challenging variant of centuries
old Dutch in documents of the Dutch East India
Company. We describe our annotation process
and provide a thorough analysis of different
versions of manually annotated data and the
first automatic results from two fine-tuned Lan-
guage Models. The paper studies to what extent
we can use NLP theories and tasks formulated
for modern English to design an annotation
task for early modern Dutch and to what ex-
tent we can use NLP models and tools built for
modern Dutch (and other languages) on early
modern Dutch. We believe these analyses give
us insight into how to deal with the large varia-
tion that language shows in describing events,
and how this variation may differ across do-
mains. We release the annotation guidelines,
annotated data, and code (https://github.
com/StellaVerkijk/VarDial2024).

1 Introduction

Event extraction is a well-researched but very
challenging task in Natural Language Processing
(NLP). Though there are many datasets, systems
and ontologies created for event extraction, there
is little consensus on how to create a robust sys-
tem for heterogeneous material. This problem is
amplified when the texts are centuries old and the
context is to a large extent unknown.

In this paper, we study a use case of annotating
early modern Dutch texts for event trigger detection
and classification. These texts originate from the
Dutch East India Company (VOC) archives. This
corpus of handwritten communications within the
VOC holds a vast amount of information on trade,
culture, business, slavery and early globalisation,
which took place across much of the Indian Ocean
World in the 17th and 18th centuries. The complete
corpus consists of twenty-five million pages. It has

Figure 1: Snippet of the VOC archives

been hard to conduct historical research with this
corpus, because of its size, and because not many
people can read the handwritten text (see Figure
11).

This paper describes the creation of a small an-
notated dataset that serves as a starting point for an
automatic system that labels the archival material
and enables a human-computer interaction solution:
we are developing an event reconstruction pipeline
to support a (re)search interface for historians.

The challenging nature of event extraction is
showcased in recent results as reported in Hong
et al. (2018) where deep learning systems achieve
f-scores in the seventies for English, but drastically
drop in performance when tested on data from a
slightly different domain. Hong et al. (2018) also
show how reaching high recall is a persistent prob-
lem in event extraction. We hypothesize that the
main reason for this is because there is so much
variation in how language is used to refer to events.
We note that high recall is essential when building
software that should support a search engine. In our
case, we start our task unknown to the type and de-
gree of variation in the language used, since much
of the corpus’ content and form remains unstud-
ied. Although this poses considerable challenges,
we can utilize event extraction as a looking glass

1National Archive, The Hague, The Netherlands, 1.04.02
(Archive of the VOC), inventory no. 1812, p. 33. https:
//www.nationaalarchief.nl/onderzoeken/archief/1.
04.02/invnr/1812/file/NL-HaNA_1.04.02_1812_0803
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through which we study the variation in the lan-
guage.

In order to create any automatic system for event
extraction, we have to ask ourselves the question:
What kind of variation of Dutch are we dealing
with? The subjects discussed and the way they are
discussed might be vastly different from other early
modern sources. We are looking at two centuries
of history of a huge organization that in the early
17th century had more operations in Asia than all
other European nations combined (Lucassen, 2004).
There were no spelling conventions, countless dif-
ferent clerks writing, summarizing or translating
texts, and intricate political and cultural conven-
tions to adhere to in the language.

We find that i) the challenging nature of event
extraction as a task, ii) the fact that the performance
of automatic solutions highly depends on how sim-
ilar the domain they were trained on was and iii)
the complexity of the language we work with it-
self specifically call for a tailored solution. In our
case this begins with defining a new annotation
task and subsequently fine-tuning language models
pre-trained on different varieties of Dutch.

Our contributions are the following. Firstly, we
discuss and illustrate the complexity of interpret-
ing the language in this specific corpus, provid-
ing deep analyses of examples of our data. Sec-
ondly, we evaluate the re-usability of existing tools
and resources by employing them on these exam-
ples, showing how models trained on modern lan-
guage struggle with the variation present in our
data. Thirdly, we present a new annotation ap-
proach where annotators work in teams and an-
notations are guided by an ontology specifically
built for our data. We provide agreement analyses
at different stages of the annotation process and
show how our approach leads to an inter-annotator
agreement (IAA) of 84% for trigger detection, 86%
for classification (of 80+ event types) and 72% for
the combined task of detection and classification.
We also provide first insights of automatic solutions
fine-tuned on the annotated data. Lastly, we pub-
lish our annotated datasets, containing a thoroughly
analysed test set with annotations adjudicated by
four historians and a linguist.

2 Related Work

Various English datasets have been annotated with
events. While these approaches yielded valuable
insights, none of the existing annotation schemes

satisfies the needs of our use case. The main lim-
itation lies in the selection of events annotated.
Some of the proposed schemes only cover event
types that refer to an event’s aspectuality (distin-
guishing between state, process, action etc.) such
as in Saurí et al. (2006) (as used in for exam-
ple TempEval-3 (UzZaman et al., 2013)), ISO-
TimeML (Pustejovsky et al., 2010) and THYME-
TimeML (Styler IV et al., 2014) (as used in
SemEval-2016: Clinical TempEval (Bethard et al.,
2016)). Other datasets contain semantically more
informative event types like TRANSPORT, but still
only represent one corner of a modern Western
world, such as ACE (Walker et al., 2006) and a
light-weight version of ACE, ERE (Chen et al.,
2023), both created to represent a limited num-
ber of event types of interest to the military, the
latter created to make annotation easier and more
consistent (Aguilar et al., 2014). FrameNet (Baker
et al., 1998) is too specific for our purposes, requir-
ing specialised linguistic knowledge about frame
semantics not relevant for historical analysis. Prop-
Bank (Kingsbury and Palmer, 2003) and VerbNet
(Schuler, 2005) are overly driven by syntax and lex-
ica. Existing lexical and syntax-driven approaches
do not fit our purposes because we are dealing with
text that has no clear sentence boundaries (see Sec-
tion 4) and for which we have very limited lexical
semantic resources.

There has also been extensive research in the
field of event-centric ontologies. However, the
event classes they contain are mostly not representa-
tive for an early modern Dutch world (e.g., SUMO
(Pease et al., 2002), DOLCE (Borgo et al., 2022)).
For example, SUMO has a class for PoliticalRev-
olution, but none for Mutiny or a revolt that does
not result in overthrowing of government. Also,
while it has an entity class for HumanSlave, it does
not feature an event like Enslaving. Still, we can
draw on the way general ontologies include certain
axioms, such as the Brandeis Semantic Ontology
(BSO) (Pustejovsky et al., 2006) and the Rich Event
Ontology (REO) (Bonial et al., 2021) that explicitly
incorporate qualia relations. Even more relevant in
this respect is the Circumstantial Event Ontology
(CEO) (Segers et al., 2017), which includes pre-,
during- and post- states of events, to incorporate
weak causality. One event possibly causes a second
when the post-state of the first equals a pre-state
of the second. Pustejovsky (2021) urges to embed
the state-change model from AI within the com-
positional model of semantics adopted in linguis-
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Figure 2: Event Reconstruction pipeline

tics. Verkijk and Vossen (2023) take Pustejovsky’s
and Segers’ frameworks as a starting point and
model Static Events (states) as logically inferred
post-conditions of Dynamic Events (changes), e.g.
an event like killing leads to a post-state of someone
being dead. For this ontology, a team of histori-
ans identified and formulated event classes that are
relevant for historical research in the VOC archive.

Recent state-of-the-art event extraction models
using distributional embedding representations do
not acquire an F-score above 0.77 for trigger de-
tection and 0.74 for trigger detection + event clas-
sification on the ACE dataset (Hong et al., 2018).
Hong et al. (2018) also show that systems trained
on the broadcast news and newswire parts of the
dataset and evaluated on the webblogs drop in F1
performance with 19.5-22 percentage points. This
shows that even when adhering to the same an-
notation scheme, a difference in domain heavily
influences performance. Finally, Hong et al. (2018)
show that many systems demonstrate large gaps
between precision and recall, where precision is al-
most always higher. We speculate that the variation
in describing events is much larger than expected
and requires other approaches than those offered
by traditional NLP. We therefore expect that an
end-to-end neural system for our use case can only
partially reconstruct events and needs to be aug-
mented with richer and more explicit semantics to
connect the dots.

3 Approach

In order to support event-centric search in the
archives, we aim to build an event-centric Knowl-
edge Graph (KG). There are several steps that have
to be undertaken to reach this end product: Figure 2
shows the most important steps in this pipeline.
The handwritten documents first have to go through
Handwritten Text Recognition (HTR) in order to
become digitised (see Section 4). We then per-
form manual annotation on the digitised text. We
plan to perform and experiment with some data
augmentation at a later stage of the project, i.e. cre-
ate synthetic training data. Finally, we fine-tune a

Language Model (LM) to automatically annotate
the rest of the corpus. This will provide us triple
representations of events, which we gather in a
KG. Through ontological reasoning we filter and
complement our KG.

For the last step, we utilise the event ontology
described by Verkijk and Vossen (2023). This event
ontology is made for VOC archival material and
models Static Events (SEs) as logical implications
of Dynamic Events (DEs). For example, the elec-
tion of a new person as king or raja in a certain
region implies their status of being a leader from
the moment of the election onward. Similarly, the
Agent of a Leaving event is no longer at the place
it left from the time of the event onward. These
post-states of events are automatically inferable
through the ontology. The ontology also features
a taxonomic structure of DEs, allowing for gen-
eralizations like a Leaving event being a type of
Translocation event. Such generalizations capture
the variation in the data and language.

The ontology features 65 dynamic and 18 static
events. Of the DEs, 50 of them imply a SE as a
post-condition. There are only two SEs that cannot
be inferred from the occurrence of a DE. The class
Dynamic Event branches out in two classes that
do not have any subclasses and five broad classes
that branch out into more fine-grained subclasses.
Those five classes are SocialStatusChange, Change-
OfPossession, SocialInteraction (with subclasses
like Mutiny, StartingAConflict), Translocation and
InternalChange (with subclasses like Dying, In-
creasing, FallingIll). The taxonomic structure of
DEs is four steps at the deepest level.

The choice to create new manually annotated
data following the event classes of Verkijk and
Vossen’s (2023) ontology was motivated by results
of preliminary experiments we performed where
we tried to use existing resources for automatic
event detection (see Section 5). Furthermore, the
ontology forms a closed world that guides annota-
tions, where the richer semantics steer annotators to
look for specific information in the text. It also en-
ables us to alleviate some of the annotation labour:
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The possibility of automatic inference allows us to
infer unexpressed information. We expect that the
automatic extraction of SEs will help solve a recall
gap in future automatic labelling systems.

4 Data

4.1 The Corpus and its Contents

The corpus is the collection of Overgekomen
Brieven en Papieren (Received Letters and Papers,
OBP) within the VOC archive. The OBP contains
the Generale Missiven (General Missives) and a
large and varied collection of documents on which
these missives are based. The General Missives
are reports from the VOC’s central administration
(Council of India) in Batavia to the board (Gen-
tlemen Seventeen) in the Dutch Republic. They
contain accounts of all things current for the VOC
world over almost two centuries, including, for
example, detailed overviews of historical events,
as well as social, political, economic and ecologi-
cal developments. These narrative accounts begin
with a brief introduction and then report in long
sentences events that are more broadly described
in the other documents that make up the OBP. In
the margins are small summaries, which we call
marginalia (see Figure 1).

The OBP spans the period 1610-1796 and con-
tains around seven million handwritten pages.
While the OBP has an average document length
of 28 pages, a General Missive is on average 207
pages. For annotation, we selected pages from dif-
ferent types of documents from a range of different
years. The annotated data we are releasing upon
publication comprise 62 pages of 6 different doc-
uments. They include parts of General Missives,
original missives, letters, journals and notes and
they span a period of 151 years (1626-1777).

Throughout this paper we will refer to Example
(1), the transcribed text of Figure 1, to illustrate
the complexity of interpreting our data through an
event annotation task. Example (1) is a snippet
of a paragraph that spans four pages1. Within the
paragraph, there is no indication of the end or be-
ginning of a sentence. The text is written as one
long description of happenings in a specific place
at a specific time, which is a very common way of
writing in our corpus. In order to illustrate the type
of language used, we offer a word-by-word transla-
tion to English in (1b). For a paraphrased and more
readable version and its translation to English, see
Appendix A. Event triggers are printed in boldface.

Corresponding event classes from our annotation
scheme are Getting; Request; SocialInteraction;
Giving; HavingInPossession; ForcingToAct; Finan-
cialTransaction; FinancialTransaction.

(1a) Original source
‘(...) op ontfangst van dat „schrijvens, dato
29„e xb: te laten versoecken, dat hij ten
Eersten ordre geliefde te stellen, aen wie dat
men, de gestipuleerde recognitie goederen
nu geeven bal, en niet verpligt, als pro dato
soo Lange aen tehouden, sulx thans de zijde
buijten belastinge daer van overgaet, en na
deesen dat bedragen, eerst het comptoir gen-
erael aengereekend; en ten Lasten gebragt
sal kunnen werden, (...)2

(1b) Literal translation
(...) on reception of that writing, date 29 xb
to be requested that he firstly an order would
like to establish, to who that one, the before
identified taxable goods now shall give, and
not obliged, if per the date so long to hold, so
that the silk free of tax there from go off, and
after these the amounts, first the local office
general charged; and debited will be, (...)

4.2 Data Processing: HTR
For HTR we use Loghi3. As mentioned, the archive
contains handwritings of a vast amount of different
people living in time periods that can differ more
than a hundred years and there were no spelling
conventions in early modern Dutch. On top of
that, defining reading order and separating main
text from marginalia is very challenging. Because
of this, we are often dealing with very noisy out-
put. For example, (1) showcases a character mis-
classification that transforms a verb into a noun.
The transcribed ‘bal’ (ball) in ‘aan wie men de
gestipuleerde recognitie goederen nu geeven bal"
(to whom one the identified taxable goods now give
ball) represents ‘sal’ (shall) in the original text.
The untouched transcription of (1) is given in Ap-
pendix A, also showcasing how the HTR pipeline
mis-identifies text regions, complicating the anno-
tation process. Different transcription conventions
in the different ground truth sets that Loghi was
trained on, especially for punctuation, affect the
transcriptions and make the Character Error Rate
(CER) currently quite high (>10 percent). However,

2HTR errors related to region detection have been taken
out of this example for clarity reasons

3https://github.com/knaw-huc/loghi
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Loghi’s HTR quality on our data using a classify-
ing tool that was created for our data4 shows that
the HTR quality of a large majority of our corpus
is what domain experts on the project classify as
‘good’. Loghi is still under development and we
expect to have digitized data of sufficient quality
for our Event Extraction pipeline in the future.

5 Early Modern Dutch and Existing Tools

Since we have seen how unique our corpus is, we
can expect existing NLP tools and models to per-
form poorly on our data. Also, we expect a high
degree of variation, so even in cases where modern
Dutch is similar, it is extremely hard to generalise.
For example, early modern Dutch contains lexical
items that no combination of subtokens in a Dutch
Language Model (LM) trained on modern data can
approximate to represent. An example of this is
the word ‘natgierig’ (having alcoholic tendencies
being described as an illness), which would be split
in ‘nat’ (wet) and ‘gierig’ (greedy). We conducted
several preliminary experiments to assess to what
degree existing resources could be used to process
our data, which we will discuss in this section.

5.1 Predicate Mapping
With a large amount of data to be annotated with
a large amount of event classes, it is good prac-
tice to adopt heuristic methods to narrow down
trigger and type candidates and automatically pre-
label to help annotators (Wang et al., 2020). In the
NewsReader pipeline (Vossen et al., 2016), events
were extracted by linking them to FrameNet frames
with the Predicate Matrix (PM) (Lopez de Lacalle
et al., 2016). This matrix links entries in WordNet,
VerbNet, PropBank, and FrameNet in different lan-
guages. As an experiment we tried to apply this
approach on our data. We first extracted possible
predicates with dependency parsing with spaCy,
after which we automatically annotated the possi-
ble predicates with the corresponding lemmas and
POS-tags by mapping them to a historic Dutch lex-
icon created by the Institute for Dutch Language
(INT) made for OCR and OCR-postcorrection (for
the period from 1550 to around 1970)5. We pro-
ceeded to select the set of lemmas with a verb
POS-tag annotation of a mid-frequency range (oc-
curring between 5 and 15 times in the corpus we

4https://github.com/LAHTeR/
htr-quality-classifier

5https://taalmaterialen.ivdnt.org/download/
tstc-int-historische-woordenlijst/

had available at that time). We then provided those
with translations to modern Dutch lemmas man-
ually, using a dictionary that covers Dutch word
meanings over several ages (Woordenboek der Ned-
erlandsche Taal, WNT)6. Those translations were
mapped to the PM and the corresponding FrameNet
frames were extracted. We performed a small error
analysis of this experiment which showed that the
PM produced more false positives (126) than true
positives (95)7. These results indicate that using ex-
isting resources for pre-annotation poses too many
issues; we expect that developing our own lexicon
for pre-annotation will be more fruitful.

5.2 Zero-shot POS-tagging

In order to see to what extent several LMs are famil-
iar with lexical and syntactic aspects of early mod-
ern Dutch sentences, we tested their zero-shot POS-
tagging accuracy on sample (1). Measuring zero-
shot performance can give us insight into which
models are best suited to fine-tune on our event
extraction task. We do this by masking each token
in the sample one by one and asking the models
to fill the masked token each time. We then manu-
ally label the predicted tokens with POS-tags and
compare these to the gold labels. Gold labels as
well as the labelling of the predictions was done by
an expert linguist. We also test two Dutch spaCy
models.

The LMs we compare are RobBERT (Delobelle
et al., 2020), trained on modern Dutch, XLM-R
(Conneau et al., 2019), a multilingual RoBERTa
model, which outperformed Dutch LMs in an entity
labeling task on early modern Dutch in a study by
Arnoult et al. (2021), and two versions of GysBERT
(Manjavacas and Fonteyn, 2022), a LM pre-trained
on historical Dutch. The first version of GysBERT
was trained on 7.1B tokens spanning almost 500
years of Dutch data (up to 20th-century Dutch).
Early modern Dutch was underrepresented in the
training data. The second version of GysBERT was
pre-trained in exactly the same way but with the
inclusion of 1.3B extra tokens from early modern
Dutch datasets, of which 940M tokens from our
HTR’ed VOC archival material.

As we can see in Table 1, all scores are low. The
second version of GysBERT outperforms all other
models but not the best performing spaCy model. It
is noteworthy that GysBERT outperforms XLM-R

6https://ivdnt.org/woordenboeken/
woordenboek-der-nederlandsche-taal/

7The full report of this experiment can be found here
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and RobBERT but has severely lower performance
than GysBERT-v2.

model accuracy
spacy_sm .61
spacy_lg .66
RobBERT .38
XLM-R .38
GysBERT .46
GysBERT-v2 .65

Table 1: Zero-shot performance on POS-tagging of sam-
ple text in early modern Dutch

Looking at the individual predictions8, we see
a trend where XLM-R predicts very general to-
kens (adverbs, adpositions, determiners, pronouns,
auxiliary verbs, conjunctions). This makes sense
since XLM-R is trained to carry general informa-
tion about several languages and is expected to be
stronger when fine-tuned. This is worth further
investigation. Parsing example (1) with the best
performing model at this task, the largest spaCy
model, still shows many issues, for example with
‘versoucken’ (requesting) being labeled as a noun,
‘buijten’ (free/outside) and ‘bedragen’ (amounts)
as verbs and ‘belastinge’ (tax) as an adjective.

The results indicate that existing models seem to
have encountered a diverging lexicon and syntactic
structure in their training data. Though a base un-
derstanding of syntactic structure is necessary for
any meaningful NLP task, we want to investigate
whether existing models can be useful for other
aspects of linguistic modelling.

5.3 Fill-mask for Events

In order to see whether LMs perform better at a
semantically relevant task, we check how they fill
masked event triggers (to control for cases where
a model for example predicts the verb ‘receive’ in
the place of the noun ‘reception’).

We used all LMs to fill masked event triggers
in example (1) and provide results in Tables 11
and 12 in Appendix B. RobBERT, GysBERT and
XLM-R all show very poor results. XLM-R and
RobBERT do not predict the right token in any of
their top 5 predictions for any masked event trig-
ger, nor a token that has a similar meaning, and
GysBERT only once. Noteworthy is that XLM-R
predicts Dutch words in almost all cases both in
this task and zero-shot POS-tagging. It therefore
recognises this version of the language as Dutch.

8https://github.com/StellaVerkijk/VarDial2024

Also telling is the fact that RobBERT never pre-
dicts any token with a confidence score of above
0.39; for GysBERT this is even lower, namely 0.27.
GysBERT-v2 outperforms all models by far.

Existing resources and tools show unpromis-
ing results when confronted with our data. Even
a model trained on historical Dutch but not on
the VOC letters (GysBERT) is enormously out-
performed by the exact same model but in which
the VOC letters were included in the pretraining
(GysBERT-v2). Additionally, pre-annotation meth-
ods using existing resources and heuristics also fail.
We therefore argue for a new annotation scheme
that captures the information we want to extract by
clearly establishing i) our model of the world and
ii) the way we deal with the variation in sense and
reference, since the language in our corpus is often
vague and woolly.

6 Annotation

6.1 Task

Annotators are presented with a document and are
instructed to label any token or span of tokens that
refers to an event that corresponds to one of the 83
event classes described in the ontology of Dynamic
and Static events (Verkijk and Vossen, 2023). Apart
from event trigger detection and classification, our
annotators also labeled participants of each event.
Which participants could be annotated for each
specific event was specified in our event wiki.9

One of the most challenging parts of this task
is deciding what it means for a string of tokens
to refer to an event class (trigger detection). In or-
der to facilitate the labelling of explicitly described
events (directly referring to an event class) as well
as implicitly described events (indirectly referring
to an event class), we adopt two types of reference.
A (span of) tokens either isOfType <eventclass>
or evokes <eventclass>. We adopt this distinction
from Postma et al. (2020) and Remijnse and Min-
nema (2020), who propose a very similar distinc-
tion for FrameNet annotation. The distinction is
important for our annotation task because of the
vague language in our data. For example, in (1),
‘requested’ directly refers to our event class Re-
quest, while ‘order’ is a noun that directly refers
to an intangible entity, while it evokes a type of
SocialInteraction. Also, ‘to hold’ directly refers
to keeping something, but evokes HavingInPosses-

9https://github.com/globalise-huygens/
nlp-event-detection/wiki
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sion and also BeingAtAPlace. Indirect referrals are
essential to extract and model as much important
information as possible (i.e., that fits in our model
of the world, i.e. the predefined event classes).

The combination of the difficulties of the
HTR’ed handwritten language we work with, as il-
lustrated in Section 4.2, the linguistic and historical
knowledge needed to annotate, and the inclusion of
implicit reference annotation makes our task very
challenging. We tried out different annotation set-
tings in order to see what best practices are, which
we will describe in the following section.

6.2 Annotation Settings

All annotations were performed by expert histo-
rians. They annotated individually in the first set-
ting. Agreement was analysed on annotations of a
General Missive of 162810, where we noticed that
agreement in trigger detection was very low. We
asked individual annotators to check each other’s
annotations, which we will refer to as the check-
task. This check-task consisted of the following:
each annotator was presented individually with all
spans annotated by the other annotators as trigger-
ing an event, but not by them. They were asked to
indicate whether they would now, reviewing it for a
second time, also label it with an event class, and if
so, with which one. We saw that they often agreed
with each other’s mention detection – hence, anno-
tators were initially missing event triggers, most
probably due to the demanding nature of the task.
We further adjudicated the document we performed
this experiment on into a test set, which meant we
discussed each possible annotation among all an-
notators and an expert linguist after the check-task.
We calculated precision and recall scores for trig-
ger detection (no classification) before and after the
check-task compared to the final test set. We see a
steep increase in recall scores after the check-task
(see Tables 7 and 8 in Appendix B). We therefore
performed all further annotations in teams of two,
so that annotators can discuss annotations and cor-
rect each other. We performed two more annotation
rounds in this team setting. After each round, we
sharpened the annotation guidelines, taking into
account continuous feedback and questions.

10National Archive, The Hague, The Netherlands, 1.04.02
(Archive of the VOC), inventory no. 1092, folio 1, r. https:
//www.nationaalarchief.nl/onderzoeken/archief/1.
04.02/invnr/1092/file/NL-HaNA_1.04.02_1092_0017

6.3 Ontological Resolutions
In order to compensate for the difficulty of the an-
notation task and provide a valuable IAA analysis,
we also analyse results after performing two types
of automatic resolutions.

Taxonomic resolutions We resolve disagree-
ments on direct subclasses of the same class. E.g.,
when one annotator labels a token as a trigger for
Leaving and another labels it for Voyage, it is re-
solved to a Translocation annotation (the superclass
of Leaving, Voyage, Arriving and Transportation).
If one annotator uses the superclass (Translocation)
and another a direct subclass (Transportation), it is
also resolved to the superclass.

Implicative resolutions The second type of res-
olution has to do with the implications built in
the ontology, modeling how some dynamic events
automatically imply a change in state, hence the
occurrence of a static event (Section 3). Any event
trigger label disagreements where one annotator
chose a dynamic event and the other a related static
event (e.g., one annotator chose Attacking and the
other BeingAtConflict), the annotation was counted
as an agreement and resolved to the static event
(BeingAtConflict). This was done because the static
event is the most conservative meaning (there are
often multiple dynamic events that share the same
static event as implication).

6.4 IAA Evaluation
Agreement on event mention detection + classifi-
cation among annotators or annotator teams, pre-
sented in Table 2, was calculated with

Ā =
1

2
(
Axy

Sx
+

Axy

Sy
)

where Axy is the number of spans both teams la-
beled with the same event class (using span overlap,
not exact span matching), Sx is the total number
of spans annotated with an event class by one an-
notator team and Sy is the total number of spans
annotated with an event class by the other annotator
team. We then calculate the ratio of agreed upon an-
notations out of all annotations made by one of the
teams. We calculate this ratio for both teams and
then take the average of the ratios as our agreement
score. We decide to use a simpler calculation than
Cohen’s Kappa (Cohen, 1960), which includes a
chance of accidental agreement in the calculation.
Since we have many class types, chance of acciden-
tal agreement is quite low. Given that the Kappa
score is not transparent and sensitive to skewed
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distributions, it is more informative to consider a
simple ratio. We also provide results on only class
agreement in Table 2. These results were calculated
by comparing how often two annotators agreed on
the class label, only considering those spans that
received a class label from both annotators. In the
first annotation round, there were four individual
annotators. In the second annotation round, there
were three teams of two, of which one new to the
task. In the third round there were four, of which
also one new to the task. The scores in Table 2
are average scores: for individual comparisons, see
Appendix B, Tables 4 to 6.

Det. + Class. Class.
R1* R2 R3 R1* R2 R3

Before Resolution .32 .49 .57 .59 .70 .68
After Resolution .48 .55 .72 .91 .78 .86

Table 2: Average agreement scores on event detection +
classification (Det. + Class.) and class agreement scores
(Class.) between individuals* or teams in different an-
notation rounds (R = Round) (partial span overlap)

The results show that agreement increased with
each round, indicating the task became more clearly
defined through several rounds of discussion and re-
flection. The high score in classification in Round 1
can be explained through the low score in detection:
the most obvious event triggers are also easiest to
classify. In Round 2, trained teams annotated a
total of 79 and 62 triggers respectively, whereas the
untrained team annotated a total of only 21 triggers.
In Round 3, trained teams annotated a total of 139,
147 and 151 triggers and the untrained team 141.
Agreement score on only event trigger detection
for the last round was 84% (see Table 9 in Ap-
pendix B), while in Round 2 this score was 63%
comparing only trained teams and 45% including
the untrained team. Note that class agreement is
high in spite of a large selection of event classes
(more than 80). It is hard to compare our results to
IAA scores of other annotated datasets (like ACE)
because they either do not evaluate trigger detec-
tion, cover much fewer event types, or report on
different metrics. Wang et al. (2020) report a Co-
hen’s Kappa score for trigger and type annotation
of 38.2% and 42.7% respectively for crowd-source
annotation with 168 event types in their contempo-
rary English dataset MAVEN using pre-annotation
with heuristics. See Table 10 in Appendix B for an
overview of the annotated data we are releasing.

7 Automatic Baselines

The annotations should serve as training data for
software that supports event-centric search in the
VOC archives. In order to establish a baseline for
this, we fine-tuned XLM-R and GysBERT-v2 on
our event trigger detection task. Although XLM-
R showed disappointing results in our preliminary
experiments, it has shown to outperform general
LMs at NLP tasks on historical Dutch (Arnoult
et al., 2021) and there might be ways to leverage its
general knowledge of language in the fine-tuning
phase. For this experiment we split the develop-
ment data we currently have available (‘Dev’ in
Table 10) into a train set of 171KB and a test set of
22KB (json format). We fine-tuned both LMs on
a token classification task for event mention detec-
tion (binary BIO classification). Since results with
fine-tuned versions with early stopping showed low
scores, we decided to try the grokking principle
(Power et al., 2022; Murty et al., 2023) and eval-
uate several versions of fine-tuned models trained
for increasing amounts of epochs, thereby training
far beyond overfitting.

XLM-R GysBERT-v2
epochs P/R P/R
6 0 / 0 .31 / .06
9 .35 / .24 .20 / .08
12 .40 / .36 .26 / .14
20 .40 / .43 .35 / .16
50 .54 / .32 .42 / .20
150 .47 / .32 .55 / .22

Table 3: Precision and recall scores of fine-tuned models
on event trigger detection

Table 3 shows precision and recall scores on
token level, which were obtained by mapping the
model’s prediction of the first sub-token to the com-
plete token. The results show that GysBERT-v2
learns earlier from our data than XLM-R, which
is in line with the results of our zero-shot experi-
ments (Section 5). Surprisingly, XLM-R surpasses
GysBERT-v2 in recall, and, for several epoch set-
tings, also in precision. GysBERT-v2 eventually
reaches slightly higher precision. The results in-
dicate potential to leverage different LMs for dif-
ferent aspects of our task. Users could leverage
different LMs at different levels of the system, al-
lowing them to chose a model that suits their needs.

8 Discussion & Conclusion

This paper motivated a newly defined event an-
notation task by on the one hand discussing ex-
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isting literature and theories on event extraction
and on the other hand experimenting with exist-
ing tools. We show that the early modern Dutch
used in the archives of the VOC is different from
modern Dutch to such an extent that it calls for a
tailored solution. We presented our bespoke anno-
tation scheme and showed that a reasonable IAA
could be reached by taking into account annotator
needs and following an ontology that allows for the
grouping of event classes through inference where
necessary. Experiments with baseline automatic
solutions for a VOC event-centric search engine
show that we need to do more research into what
kind of training strategies are needed for this task,
and whether grokking can be a solution. Results
seem to indicate that both more general LMs and
more domain-specific LMs can be useful for dif-
ferent purposes. Future research should include
a thorough comparison of different LMs, such as
GysBERT and GysBERT-v2. We also aim to create
more manually annotated data, develop a domain-
specific lexicon for pre-annotation and experiment
with automatic data augmentation techniques.
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A Example texts

• Original source, parts of marginalia in
boldface and in brackets11

‘(...) op ontfangst van dat „schrijvens, dato
29„e xb: te laten versoecken, dat hij ten
Eersten [zomee conconeren„] ordre geliefde
te stellen, aen wie dat men, de gestipuleerde
recognitie goederen nu geeven bal, en niet
verpligt, als pro dato soo Lange aen tehouden,
sulx thans de zijde buijten belastinge daer van
overgaet, en na deesen dat bedra„ „gen, eerst
het comptoir generael aengereekend; en ten
Lasten gebragt sal kunnen werden(...)’1

• Literal translation
(...) on reception of that writing, date 29 xb
to be requested that he firstly would like to
be put an order, to who that one, the beforely
identified taxable goods shall give, and not be
obliged, if per the date so long to hold, so that
the silk free of tax there be shipped off, and
after these the amounts, first the local office
general charged; and debited will be, (...)

11‘zomee conconeren„’ is one line in a marginalium that
originally reads ‘zo meede concerneerende(...)’, meaning also
concerning....
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• Paraphrased Dutch
(...) op ontvangst van die brief, heeft hij op
29 december verzocht om instructies te krij-
gen aan wie dat men de besproken belastbare
goederen zal geven, zodat hij niet gedwon-
gen is de goederen zo lang ter plaatse te laten
blijven dat hij daardoor belasting zal moeten
betalen over de zijde, wat het lokale comptoir
zal worden aangerekend, (...)

• Paraphrased English
(...) on receiving the letter, he requested
instructions on the 29th of December as to
whom the goods should be given to, so that
he will not be forced to keep the goods for
such a long time that he would be forced to
pay taxes for the silk, for which the regional
office would be charged, (...)

B IAA results, data characteristics,
fill-mask results
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T1/T2 T2/T1 T1/T3 T3/T1 T2/T3 T3/T2 avg-tr avg
Before Resolution .46 .58 .19 .71 .26 .76 .52 .49
After Resolution .52 .66 .22 .81 .27 .81 .59 .55

Table 4: Agreement between seperate teams in Round 2 on event trigger detection + classification. avg-tr: only
trained teams, avg: including the untrained team

T4/T5 T5/T4 T4/T6 T6/T4 T4/T7 T7/T4 T5/T6 T6/T5 T5/T7 T7/T5 T6/T7 T7/T6 avg
BR .52 .51 .60 .56 .57 .60 .53 .57 .57 .60 .60 .58 .57
AR .68 .67 .72 .68 .71 .76 .74 .77 .71 .74 .74 .74 .72

Table 5: Agreement between separate teams in Round 3 on event trigger detection + classification. avg: including
the untrained team

Ann1 Ann2 Ann3 Ann4
Before Resolution

Ann1 x .36 .40 .31
Ann2 .26 x .29 .22
Ann3 .43 .43 x .34
Ann4 .25 .25 .25 x

After Resolution
Ann1 x .59 .49 .54
Ann2 .43 x .38 .43
Ann3 .54 .59 x .50
Ann4 .44 .47 .37 x

Table 6: Agreement between individual annotators on
event trigger detection + classification (Round 1).

P R n
Ann1 .85 .55 131
Ann2 .95 .35 75
Ann3 .81 .43 108
Ann4 .85 .44 105

Table 7: Precision and recall scores per annotator on
event trigger detection before check-task. Gold = test
set. n = true + false positives

P R n
Ann1 .83 .81 199
Ann2 .85 .80 192
Ann3 .86 .70 166
Ann4 .82 .71 176

Table 8: Precision and recall scores per annotator on
event trigger detection after check-task. Gold = test set.
n = true + false positives

T4/T5 T4/T6 T4/T7 T5/T6 T5/T7 T6/T7
.82 .84 .83 .85 .83 .86

Table 9: Event trigger detection agreement in Round 3

Pages Docs Agreement years
Dev 57 5 59% 1626-1777
Test 5 1 100% 1628

Table 10: Characteristics of annotated data currently
processed and of acceptable quality, which includes
data annotated by the two trained teams in Round 2 and
the adjudicated test set. The third annotation round is
currently still in process
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RobBERT XLM-R
Masked token Prediction Probability L2C? FW? Prediction Probability L2C? FW?
ontfangst grond 0.26 no no grond 0.55 no no
(reception) basis 0.13 no no basis 0.01 no no
Getting een 0.09 no yes Grund 0.01 no no

straffe 0.05 no no aanleiding 0.01 no no
elk 0.02 no yes grond 0.01 no no

versoucken weten 0.15 no no weten 0.77 no no
(requesting) zien 0.05 no no zien 0.04 no no
Request staan 0.04 no no wissen 0.02 no no

toe 0.04 no yes merken 0.02 no no
zeggen 0.03 no no horen 0.02 no no

ordre is 0.05 no no de 0.21 no yes
(order/instruction) om 0.03 no yes , 0.07 no yes
SocialInteraction , 0.02 no yes een 0.04 no yes

heeft 0.02 no no is 0.03 no no
bekent 0.01 no no in 0.02 no yes

geeven te 0.10 no yes te 0.04 no yes
(giving) , 0.05 no yes reeds 0.02 no no
Giving niet 0.04 no yes al 0.02 no no

kan 0.02 no no betalen 0.02 no no
sal 0.02 no no , 0.02 no yes

verpligt meer 0.07 no no meer 0.12 no no
(obliged/ to oblige) anders 0.02 no no langer 0.07 no no
ForceToAct is 0.02 no no , 0.05 no yes

ook 0.01 no yes zoo 0.02 no yes
zijnde 0.01 no no zo 0.02 no yes

belastinge , 0.39 no yes , 0.30 no yes
(tax) en 0.09 no yes d 0.04 no yes
FinancialTransaction de 0.08 no yes s 0.04 no yes

ende 0.06 no yes en 0.04 no yes
daer 0.02 no no der 0.03 no no

aengereekend is 0.12 no no , 0.08 no yes
(charged) wordt 0.03 no no aan 0.03 no yes
FinancialTransaction eert 0.02 no no zal 0.03 no no

e 0.02 no yes naar 0.02 no no
int 0.01 no yes dient 0.01 no no

Table 11: Top 5 predicted tokens per model with probability scores. L2C = whether the predicted token is linkable
to the corresponding event class. FW = whether the predicted token is a function word.
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GysBERT GysBERT-v2
Masked token Prediction Probability L2C? FW? Prediction Probability L2C? FW?
ontfangst ordre 0.17 no no ontfang 0.14 yes no
(reception) copie 0.10 no no antwoorde 0.10 no no
Getting grond 0.04 no no antwoord 0.08 no no

last 0.04 no no grond 0.06 no no
ende 0.03 no yes dato 0.04 no no

versoucken weten 0.27 no no versoeken 0.70 yes no
(requesting) weeten 0.24 no no dienen 0.06 no no
Request volgen 0.15 no no weten 0.04 no no

blijken 0.04 no no weeten 0.03 no no
verstaan 0.03 no no versoecken 0.03 yes no

ordre , 0.07 no yes ordre 0.82 yes no
(order/instruction) soo 0.05 no yes ordres 0.07 yes no
SocialInteraction dat 0.03 no yes vast 0.06 no no

vast 0.03 no no order 0.01 yes no
daer 0.02 no no uijt 0.00 no yes

geeven te 0.13 no yes soude 0.04 no no
(giving) doen 0.02 no no toe 0.03 no yes
Giving sal 0.02 no no kan 0.02 no no

geeven 0.02 yes no moet 0.02 no no
, 0.01 no yes sal 0.02 no no

verpligt anders 0.17 no no anders 0.41 no no
(obliged/ to oblige) meer 0.14 no no meer 0.09 no no
ForceToAct deselve 0.05 no yes langer 0.09 no no

die 0.03 no yes verder 0.05 no no
om 0.03 no yes deselve 0.05 no no

belastinge , 0.09 no yes , 0.05 no yes
(tax) cours 0.05 no no verwagting 0.05 no no
FinancialTransaction die 0.04 no yes verantwoording 0.04 no no

ende 0.02 no yes factuur 0.04 yes no
##waerts 0.02 no yes gebruijk 0.03 no no

aengereekend is 0.07 no no belast 0.13 yes no
(charged) , 0.02 no yes gebragt 0.08 no no
FinancialTransaction gebracht 0.02 no no overgebragt 0.08 no no

overgegeven 0.02 no no verantwoord 0.07 yes no
gehouden 0.02 no no toegesonden 0.04 no no

Table 12: Top 5 predicted tokens per model with probability scores. L2C = whether the predicted token is linkable
to the corresponding event class. FW = whether the predicted token is a function word.
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Abstract

Chavacano is a Spanish Creole widely spoken
in the southern regions of the Philippines. It is
one of the many Philippine languages yet to be
studied computationally. This paper presents
the development of a language identification
model of Chavacano to distinguish it from lan-
guages that influenced its creolization using
character-level Convolutional Neural Networks
(CNN). Unlike studies that discriminated simi-
lar languages based on geographical proximity,
this paper reports a similarity based on a lan-
guage’s creolization. We established the simi-
larity of Chavacano and its related languages,
Spanish, Portuguese, Cebuano, and Hiligaynon,
from historical accounts and lexical similarity
based on the number of common words in the
corpus for all languages. We report an accu-
racy of 93% for the model generated from a
CNN using ten filters with a filter width of 5.
The training experiments reveal that increasing
the filter width, number of filters, or training
epochs is unnecessary even if the accuracy in-
creases because the generated models present
irregular learning behavior or may have already
been overfitted. This study also demonstrates
that the character features extracted from CNN,
similar to n-grams, are sufficient in identify-
ing Chavacano. Future work on the language
identification of Chavacano includes improving
classification accuracy, especially for short or
code-switched texts for practical applications
such as social media sensors for disaster re-
sponse and management.

1 Introduction

Language Identification (LI) is the task of deciding
which natural language a particular text is written
in. The research in this field aims to mimic the
ability of humans to recognize these languages. LI
enables many natural language applications and
language processing (NLP) tasks. For example,
automatic machine translation applications must
identify the text’s language before translating it into

English. It can be used for document collections
where the languages of the documents are unknown
beforehand (Jauhiainen et al., 2019), such as in the
case of crawling the web as part of corpus-building.

Many LI systems and studies target English and
other major languages spoken worldwide. It is
especially understandable since large repositories
of language texts exist for these languages. There
are also initiatives to identify low-resource lan-
guages such as Uralic languages (Jauhiainen et al.,
2020) and Austronesian languages (Dunn and
Nijhof, 2022). However, many other low-resource
languages do not have enough digital resources for
extensive research. While LI is generally consid-
ered a solved task, the work on LI for low-resource
languages persists due to the widespread use of
the Internet and the development of applications
based on natural language understanding, such
as chatbots. Selamat and Akosu (2016) argued
that the inability to identify a language makes the
language invisible in any multilingual environment,
such as in the case of Chavacano, the Philippines’
Creole Spanish.

Chavacano is one of those under-researched,
low-resource languages. Websites with automatic
translations identify Chavacano as Spanish, given
the former’s similarity with the latter. Chavacano’s
lexicon is predominantly Spanish (Lipski and
Santoro, 2007) but with orthographic shifts.

Languages can differ in many ways. They
may use different sounds, other writing systems,
different vocabulary, or put words together to
form a sentence differently. For similar languages,
however, such as language variants and dialects,
discriminating between them remains challenging
(Zampieri et al., 2014) and is one of the bottlenecks
of state-of-the-art language identification systems.
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This paper reports the language identification
of Philippine Creole Spanish. Unlike the similar
languages investigated in the Discriminating
between Similar Languages (DSL) shared tasks,
whose language similarities are mostly due to
geographic proximity, this study investigates the
identification of a Creole, i.e., Chavacano, among
its related languages.

This study brings forward the unique charac-
teristics of Philippine Creole Spanish (PCS) as
an amalgamation of foreign and native languages.
In the case of Chavacano, it is the complex
intermixing of Spanish, Portuguese, Cebuano,
and Hiligaynon during centuries of colonization,
migration, and trade. The linguistic features of
Chavacano that combine elements of multiple
language sources make it a linguistically rich and
unique variety.

The language identification of Chavacano is
expressed as a character-level sentence classifi-
cation that discriminates among similar, related
languages and where the languages are considered
as the target classes.

The remainder of this paper is organized as fol-
lows. Section 2 presents the linguistic properties
of Chavacano and its similarities with related lan-
guages. Section 3 introduces related works imple-
menting CNN for language identification. Section
4 gives a detailed overview of the steps to build
the language identification model. In particular,
Section 4.2 provides an overview of char-CNN,
the character-level Convolutional Neural Network
used to train the model. In Section 5, we report and
analyze our experimental results, while Section 6
concludes this paper and gives some directions for
future research.

2 Chavacano: Philippine Creole Spanish

The Philippine Creole Spanish, collectively known
as Chavacano, comprises three major dialects
spoken in Ternate, Cavite, and Zamboanga (Lipski,
2001). Both the Ternate and Cavite dialects are
classified as the Manila Bay PCS. Ternateño was
the oldest Spanish-based Creole in the Philippines,
and Caviteño was an off-shoot. Zamboangueño,
on the other hand, comprises the largest group
of Chavacano speakers in Zamboan a City and
neighboring towns and cities in Mindanao. In

this study, we refer to the variant Zamboangueño,
as it is the only thriving variant. Aside from the
population of speakers, Zamboangueño is actively
used in blogs, news, and social media that can be
used as digital resources.

The formation of Chavacano in Zamboanga
resulted from historical and cultural interactions in
the Philippines during the Spanish colonial period
from 1565 to 1898. Chavacano belongs to the
Creole family of languages of Spanish descent
(Eberhard et al., 2023).

The language started to develop during the Span-
ish garrison in Zamboanga, beginning with the
absorption of grammatical and lexical structures
from Manila Bay PCS in the 18th century. Manila
Bay PCS is said to have been influenced by the
Portuguese language (University of Hawai’i Press,
1975; Lipski, 2001). Ilonggo or Hiligaynon later
influenced Chavacano as Iloilo became a stopover
for ships from Manila to Zamboanga. Later in
the 20th century, immigration from the Central
Visayan region to southwest Mindanao added
some Visayan or Cebuano items to the language.
Given this history, Chavacano is described as a
"contact vernacular that has undergone numerous
remakings by an ever-changing population that
has never given up their native languages" (Lipski,
1992). It is easy to see that Chavacano’s words are
predominantly Spanish, but an inspection of usage
tells us that they are not entirely Spanish.

Over three centuries of Philippine history
influenced the morphology, grammar, and syntax
of Chavacano (Lipski and Santoro, 2007). It has
retained its Austronesian foundation, evidenced
by the Verb-Subject-Object word order, with
many alternative possibilities (Lipski, 1992). The
Philippine languages belong to the Austronesian
language family. This contrasts Spanish’s Subject-
Verb-Object word order (Lee, 2017).

The lexicon of Chavacano is largely Spanish
(Lipski and Santoro, 2007) but with orthographic
shifts. It has experienced several stages of
relexification to include lexical items of Philippine
origin from regional Visayan (Cebuano), Ilonggo
(Hiligaynon), and occasionally Tagalog (Lipski,
2001). It has also adopted a heavy English lexical
transfer (Lipski, 1992) over time.
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Chavacano words are spelled using the alphabet
of the word’s traced etymology (DepEd-IX, 2016).
For example, the Spanish-derived words zacate
(grass) and mañana (tomorrow) are spelled using
the Spanish alphabet, the Abecedario. In contrast,
the Chavacano words of local origin, like kanila
(them) and kanamon (us), are spelled using the
Philippine alphabet system. The letter r in the
Spanish verbs like comer (to eat), bailar (to dance)
are dropped in Chavacano, i.e., come, baila. In
general, Chavacano words are spelled the way they
are pronounced. It is also interesting to note that
the Spanish writing utilizes diacritics that are not
necessarily applied in Chavacano.

In summary, Chavacano began as a hybrid pan-
Philippine contact language whose Spanish items
had already been filtered through Philippine lan-
guages and which was, therefore, a Philippine lan-
guage in the structural sense at every point of its
existence (Lipski, 2001).

3 Related Works

Jauhiainen et al. (2019) assert that from a compu-
tational perspective, the algorithms and features
used to discriminate between languages, language
varieties, and dialects are identical. Hence, the
choice of features and algorithms depends on the
researcher and the data used for the study.

Both discriminative and generative algorithms
have been explored in more recent LI studies.
Hidden Markov Models and Latent Dirichlet
Allocation are the common generative methods
used. Decision trees, support vector machines,
neural networks, and ensembles are widely used
discriminative models.

Characters are the building blocks of a lan-
guage’s writing system. Although most languages
follow an alphabetic system, the languages still
differ in character combinations and orthography.
Hence, characters and their combinations have
been widely used in LI.

An example of character combinations is
n-grams. Character n-grams are widely used
character sequences that may capture a language’s
orthography (Simões et al., 2014). Character
n-grams are sequences (consecutive or overlap-
ping) of characters of length n. The frequency of

these n-grams has been used as feature vectors for
most LI research involving discriminative methods.

Using CNN for LI is seen as a means of auto-
matically extracting character features from text
for classification. Zhang et al. (2015) was among
the first to introduce character-level CNN for text
classification. In this case, text is seen as a kind
of raw signal at the character level where CNN
extracts features (Zhang et al., 2015; Kim et al.,
2016). The successful application of Zhang et al.
(2015) and Kim et al. (2016) also sparked interest in
CNN for LI. Guggilla (2016), Belinkov and Glass
(2016), Jaech et al. (2016b), Jaech et al. (2016a),
Ali (2018a), Ali (2018b), Chung et al. (2019) are
among those who have successfully implemented
CNN for LI. It has grown in acceptance in LI be-
cause it eliminates the need to extract or handcraft
features separately, such as feature engineering.

4 Methodology

4.1 Data Preparation

The corpus used in the study is mixed-domain. The
monolingual Hiligaynon and Cebuano sentences
were taken from the PH-MNMT corpus (Coronia,
2022), which consists of web-scraped articles and
bible translations. The Spanish and Portuguese
sentences were mainly taken from the DSL Corpus
Collection (Tan et al., 2014), which consists of
news articles. Additional sentences for Spanish
and Portuguese were taken from Bible translations
as well.

On the other hand, the Chavacano sentences
were collected from print sources (de Saint Ex-
upéry (Author) and De Los Reyes (Translator),
2018) and online sources (Herrera; Zamboanga
News Online; Wycliffe Bible Translators, Inc.).

The corpus contains 107,500 sentences with
21,500 sentences for each language (Table 1).

The raw sentences used in the corpus are made
available at https://github.com/ajvicente/
cbk-li.

The Spanish and Portuguese sentences were
tokenized using tokenizers specific to the language.
Cebuano and Hiligaynon, on the other hand, were
tokenized using English-based tokenizers. Punc-
tuation and numerical literals were later removed
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Language Source
Domains

No. of
Sentences

Traning
Data

Testing
Data

Validation
Data

Chavacano
bible translations,
blogs, book,
feature articles

21,500 18,000 2,000 1,500

Cebuano
bible translations,
web-scraped documents

21,500 18,000 2,000 1,500

Hiligaynon
bible translations,
web-scraped documents

21,500 18,000 2,000 1,500

Spanish
bible translations,
news articles

21,500 18,000 2,000 1,500

Portuguese
bible translations,
news articles

21,500 18,000 2,000 1,500

107,500 90,000 10,000 7,500

Table 1: Chavacano and Related Languages Corpus

from the data set. The texts were converted to
lowercase after all unnecessary characters had been
removed. The alphabet of the corpus contained
46 characters. Digraphs such as ch, ng, rr, and lh
are counted as single characters. Characters with
diacritics are also counted separately.

Language Unique
Words

Overlap Words
with Chavacano

Unique
Characters

Sentence Length
(Max Characters)

Chavacano 5,740 36 424
Cebuano 26,486 981 27 639

Hiligaynon 20,832 941 27 574
Spanish 50,836 2,580 42 3,654

Portuguese 38,790 1,357 45 4,846

Table 2: Corpus Statistics

There are 5,740 unique Chavacano words in the
corpus. Of these, 44.95% overlap with Spanish,
23.64% with Portuguese, 17.09% with Cebuano,
and 16.39% with Hiligaynon (Table 2). Most of
the shared words or overlaps are content words.

The small number of unique words in the Chava-
cano corpus is due to shorter sentence fragments in
Chavacano and because most of the sentence frag-
ments in the dataset were sourced from bible trans-
lations. Unlike the Cebuano, Hiligaynon, Spanish,
and Portuguese datasets were primarily sourced
from news articles and web texts covering more
topics than bible translations. Hence, there is a
greater variety of words in the related languages.

4.1.1 Character Encoding
The characters for each word in the corpus are
sequentially encoded as in the work of Zhang
et al. (2015). Encoding is based on an alphabet
dictionary of size m = 47 that consists of the 46
common alphabet characters in the corpus and
the space as the word delimiter. Each character is
then quantized using 1-of-m encoding (or one-hot
encoding). A fixed sentence length of l = 1000
characters is set. This value was empirically

identified to cover all the words in the Chavacano
sentence fragments. Shorter sentences are padded,
while longer sentences (especially for Spanish and
Portuguese) are truncated.

The labels are similarly one-hot encoded over
five language classes: Chavacano, Cebuano, Hili-
gaynon, Spanish, and Portuguese.

4.1.2 Data Split
Training, Validation, and Test sets were extracted
from the corpus using stratified sampling to ensure
that all language classes are represented propor-
tionally in each data set. 18,000 sentences per
language are used for training, 2,000 for validation,
and 1,500 for testing.

4.2 charCNN: Character-based Convolutional
Neural Network

Figure 1: charCNN Network Architecture adapted from
Kim et al. (2016)

Following the work of Kim et al. (2016) and
Zhang et al. (2015), a simple convolutional neu-
ral network was used to extract features from the
training data and then fed to a dense layer for clas-
sification. Figure 1 illustrates the neural network
architecture.

4.2.1 Convolution Layer
Based on Kim et al. (2016), a 2D convolution is ap-
plied between the input sentence Cs and a filter H
∈ Rm×w where the filter width w ∈ {2, 3, 4, 5, 6}.
With each filter, a feature vector fs ∈ R(l−w)+1 is
generated where the i − th element of f is given
by:

fs(i) = ⟨Cs[∗, i : i+ w − 1]H⟩ (1)
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where ⟨A,B⟩ = Tr(ABT ) is the Frobenius
inner product.

Characters, as used in the study, correspond to
signals in images, videos, and sounds (Zhang et al.,
2015) that are typical inputs in CNN-based tasks.

4.2.2 Pooling Layer

The maximum value in fs is extracted at the
pooling layer as the feature corresponding to
the filter H when applied to the sentence Cs.
According to Kim et al. (2016), in this process,
the filter essentially picks out a character n-gram
whose size of the n-gram corresponds to the filter
width.

Given that multiple filters h are used in the
study, then the representation of the input sentence
is a concatenation of max pooling layers in the
form ys = [ys1, ..., y

s
h].

A bias is added, and a non-linear transformation
(tanh) is applied.

4.2.3 Dense Layer

A dense layer of 512 units followed by a dropout
at 0.5 is added to the convolutional network be-
fore concluding with a softmax layer of 5 units to
represent each of the five language classes. The cat-
egorical cross-entropy loss is used to fit the model.
The model is optimized with Adam optimizer using
a learning rate of 0.001.

4.3 Model Evaluation

Loss and accuracy metrics are collected during
training (validation) and testing to evaluate the
model’s performance. The validation step during
training uses the validation dataset to assess the
model’s performance during training. Model
testing is performed after training using unseen
data to simulate real-world scenarios. Ideally, the
accuracy and loss values during validation and
testing should be close enough to ascertain that the
model does not overfit or underfit the data. The use
of overall accuracy in this study is sufficient, given
that the data is balanced for all language classes.

Several experiments that involved changes in
the number of filters and combining filter widths
are also conducted to arrive at optimized network
parameters.

5 Results

Various training configurations using the number
of filters (5, 10, and 15), range and combination
of filter widths (2, 3, 4, 5, and 6), and number of
epochs (10, 20, and 30) were experimented on in
this study. The following sections report the result
of such experiments and insights from the language
identification modeling of Chavacano.

5.1 Experiments

The results of the experiments on various training
configurations based on the number of filters, filter
widths, and epochs show that the accuracy of the
model naturally increases with increasing number
of filters, filter widths, and epochs, as shown in
Figure 2 and Figure 3.

Figure 2: Comparison of Model Performances for Vary-
ing Filter Widths

Figure 3: Comparison of Model Performances for Com-
bined Filter Widths

The comparison in Figure 2 also shows that
there is generally a sharp increase in performance
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using filter width 2 to 4 with the increasing number
of filters and epochs, after which a slight and
steady increase in the performance is observed
except for the degradation of performance of the
model learned at 15 filters and 20 epochs.

On the other hand, the combined filter widths in
Figure 3 show similar behavior in the increase in
accuracy until the combined filter widths of 2, 3, 4,
and 5.

Figures 2 and 3 show that increasing the number
of filters and the number of times these are seen
during training does not necessarily contribute to a
better model.

In the same way, a comparison of training
and validation losses also reveals that although
increasing the number of filters and the number of
epochs increases validation accuracy, the model’s
training performance seemed irregular, as shown
in an example in Figure 4.

Figure 4: Comparison of Training/Validation Losses for
Filter Width = 5.

The comparison shows that the divergence in
the training and validation losses increases as
the number of filters and epochs increases. This
behavior indicates that the models may have
already picked up noise in the data and overfit.

Finally, based on the model accuracy and
variance of training and validation losses, the
model generated using 10 filters with a filter
width of 5 and trained in 20 epochs, earn-
ing a validation accuracy of 0.9376, is chosen
as the best model among all training configurations.

5.2 Error Analysis

Figure 5: Confusion Matrix based on Model Testing

The confusion matrix in Figure 5 reveals
that Chavacano can be confused with Cebuano,
Hiligaynon, Spanish, and Portuguese. The related
languages are also often mistaken for Chavacano.

It is observed that Hiligaynon and Cebuano,
both local languages, are mostly confused with
each other and that Hiligaynon is only confused
with Cebuano and rarely Chavacano.

On the other hand, Chavacano is mostly
confused with Cebuano, followed by Portuguese,
Spanish, and Hiligaynon. Interestingly, Chavacano
exhibits a greater overlap with Spanish and
Portuguese when compared to Cebuano and
Hiligaynon. Yet, Chavacano is mostly confused
with the local language, Cebuano. This behavior
may be attributed to Chavacano’s orthography.
Despite following the Spanish’s Abecedario
(DepEd-IX, 2016), Chavacano does not use many
of the diacritics used by Spanish and Portuguese in
writing.

The model confuses Spanish and Portuguese
with Chavacano more than the local languages.
In the case of Spanish, 20 of 33 (61%) misclas-
sifications do not contain diacritics, and the rest
of the 13 sentences only contained at most three
characters with diacritics. For Portuguese, all 17
sentences that are misclassified did not contain
diacritics.
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The error analysis also revealed that 63% (35
of 56) of the Chavacano sentences misclassified
as Cebuano were single-word sentence fragments.
The longest misclassified sentence consists of 11
words. This result indicates that the model may
be unable to correctly classify short sentences,
significantly since most words overlap with other
languages. Language identification involving short
texts continues to be a challenging task for many
languages (Jaech et al., 2016b; Jauhiainen et al.,
2019).

The misclassification of Chavacano to Hili-
gaynon, Spanish, and Portuguese also share the
same observation, albeit not as short as the Ce-
buano misclassifications. All misclassified sen-
tences fall within less than 30% of the maximum
number of words in the language’s corpus.

6 Conclusions and Recommendations for
Future Work

6.1 Conclusion

The experiments show that the language identifi-
cation of Chavacano does not require a complex
and deep CNN network. The model can already
learn to discriminate the language from among
its related languages using 10 filters with a filter
width of 5. The hyperparameter search reveals
that because the related languages share common
characters to a large extent, it is vulnerable to
overfitting. With the performance at 93%, the
model can be used in the future to develop web
applications to collect Chavacano documents.

This study demonstrates the viability of char-
acter features, specifically those generated by a
convolutional neural network, to identify related
languages. Instead of manually extracting n-gram
features, this study demonstrates an end-to-end
system of training a language identification model
using neural networks.

The study also gleaned the orthographical sim-
ilarities between Chavacano and Cebuano despite
the latter being predominantly Spanish in cognates,
although further studies need to be undertaken to es-
tablish this relatedness. Diacritics was also consid-
ered a contributing factor in discriminating Chava-
cano from Spanish and Portuguese.

6.2 Recommendations for Future Work

This paper presents a benchmark study for
Chavacano LI that can be used as a baseline for
future works. Further experimentation is recom-
mended, including using other learning algorithms,
such as SVM, or deep learning models, such as
Transformers. In addition, the study uses mixed
domains in training. The effect of the dataset
domain in training needs to be experimented as
this has been one of the issues in discriminating
similar languages.

This preliminary work on Chavacano opens
many other opportunities to understand and docu-
ment Chavacano computationally and study Creole
languages. The next step of this project is to imple-
ment the network design to discriminate Chavacano
in natural settings, i.e., no preprocessing and within
the context of multilingual documents. Based on
the results, the language identification study can
be extended to improve the classification of Chava-
cano in shorter, maybe code-switched, sentences
such as those coming from Tweets to be used for
practical applications such as social media sensors
for disaster monitoring and management or more
natural translation from code-switched sentences.

Limitations

While most language identification of related lan-
guages worked on dialects or variants, this study
is limited to the related languages of Creole. The
similarity is based on the languages’ lexical, syntac-
tical, and morphological influence on Chavacano.
Another limitation is using CNN as the only model
experimented with in the study. Experiments with
other models to improve LI for Chavacano are en-
couraged as future works.
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Abstract
This report presents GMUNLP’s participation
to the Dialect-Copa shared task at VarDial
2024 (Chifu et al., 2024), which focuses on
evaluating the commonsense reasoning capa-
bilities of large language models (LLMs) on
South Slavic micro-dialects. The task aims
to assess how well LLMs can handle non-
standard dialectal varieties, as their perfor-
mance on standard languages is already well-
established. We propose an approach that com-
bines the strengths of different types of lan-
guage models and leverages data augmenta-
tion techniques to improve task performance on
three South Slavic dialects: Chakavian, Cerkno,
and Torlak. We conduct experiments using a
language-family-focused encoder-based model
(BERTić) and a domain-agnostic multilingual
model (AYA-101). Our results demonstrate
that the proposed data augmentation techniques
lead to substantial performance gains across all
three test datasets in the open-source model
category. This work highlights the practical
utility of data augmentation and the potential
of LLMs in handling non-standard dialectal
varieties, contributing to the broader goal of
advancing natural language understanding in
low-resource and dialectal settings.1

1 Introduction

Recent advancements in large language models
(LLMs) have led to remarkable performance on
a wide range of natural language understanding
tasks, particularly in standard languages. However,
the effectiveness of these models on non-standard
dialectal varieties remains an open question (Faisal
et al., 2024). The Dialect-Copa shared task, in-
troduced by Ljubešić et al. (2024), aims to bridge
this gap by evaluating the commonsense reasoning
capabilities of LLMs on South Slavic dialects.

Commonsense reasoning, as originally proposed
by Gordon et al. (2011), requires models to make

1Code and data are publicly available: https://github.
com/ffaisal93/dialect_copa

plausible inferences based on everyday knowledge
and understanding of the world. Extending this task
to dialects poses unique challenges, as models must
capture the nuances and variations specific to these
language varieties. The Dialect-Copa shared task
provides a platform to explore the adaptability and
generalization capabilities of LLMs in this context.

In this GMUNLP submission, we explore the po-
tential of data augmentation techniques in enhanc-
ing the performance of language models on dialec-
tal commonsense reasoning tasks. Our approach
harnesses the power of state-of-the-art LLMs to
generate synthetic training data, which we com-
bine with the provided training dataset. By employ-
ing a diverse set of language models, we aim to
quantify the performance gains achievable through
data augmentation. Specifically, we utilize three
categories of language models to maximize dialec-
tal task performance: (1) smaller language models
that are well-suited for low-resource settings and
can be easily customized, (2) mid-size language
models that strike a balance between task-specific
performance and language understanding capabil-
ities, and (3) closed-source language models that
generate high-quality synthetic task data to further
enhance the performance of the other two cate-
gories of language models.

We achieved the highest scores across all three
test datasets in the open-source model category. In
addition, our solution performed on par with the
GPT-4 zero-shot iterative prompting approach em-
ployed by one of the teams, demonstrating the com-
petitiveness of the proposed approach against state-
of-the-art closed-source models. Furthermore, we
achieved substantial performance improvements
for the small-scale, language-family-focused model
BERTić by combining it with our data augmenta-
tion strategy, showcasing the effectiveness of our
approach in boosting the performance of language
models tailored for low-resource settings.

The remainder of this paper is organized as
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follows: Section 2 provides an overview of the
Dialect-Copa shared task and dataset, Section 3
describes our methodology and experimental setup,
Section 4 presents our results and analysis, and
Section 5 concludes the paper and discusses future
directions.

2 The Dialect-Copa shared task

Task Information In the Dialect-Copa shared
task, a premise sentence is provided along with
a question that can be either a cause or an effect.
The objective is to build a classifier that selects
the most plausible response from two candidate
answer choices based on the given premise and
question. To illustrate, consider the following
training example in English, where the task is to
identify the most plausible cause:

{"premise": "My body cast a shadow over the grass.",
"choice1": "The sun was rising.",
"choice2": "The grass was cut.",
"question": "cause", "label": 0, "idx": 0}

The Dialect-Copa dataset consists of such
cause-effect examples across 8 languages and
dialects, challenging models to perform com-
monsense reasoning in non-standard language
varieties.

code language train val. test

en English 400 100
sl Slovenian 400 100
sl-cer Cerkno 400 100 500
hr Croatian 400 100
hr-ckm Chakavian - - 500
sr Serbian 400 100
sr-trans Serbian (transliterated) 400 100
sr-tor Torlak 400 100
sr-tor-trans Torlak (transliterated) 400 100 500
mk Macedonian 400 100
mk-trans Macedonian (transliterated) 400 100

Table 1: Dialect-Copa dataset statistics for different
languages and their dialectal varieties.

Languages The Dialect-Copa dataset encom-
passes training and validation data in 7 languages,
including English, 6 moderately resourced South
Slavic languages, and two related micro-dialects.
The test dataset features these two micro-dialects
along with an additional previously unseen dialect.
The three dialects in the test set are as follows:

1. The Cerkno dialect of Slovenian, spoken in
the Slovenian Littoral region, specifically in
the town of Idrija.

Base model Fine-tuning (FT)/Prompting Epoch Acc. (%)

en hr

Aya-101 4 shot (2 cause, 2 effect) - 80 75
MaLA-500 4 shot (2 cause, 2 effect) - 50 –
Llama2-CHAT (7B) 4 shot (2 cause, 2 effect) - 75 50

BERT FT (eval. lang) 3 66 55
mBERT FT (eval. lang) 3 55 57
XLM-R FT (eval. lang) 3 54 54
BERTić FT (eval. lang) 3 48 64

Table 2: Preliminary evaluation results on the English
and Croatian validation set for different base models.

2. The Chakavian dialect of Croatian from the
northern Adriatic, particularly from the town
of Žminj.

3. The Torlak dialect, spoken in southeastern
Serbia, northeastern North Macedonia, and
northwestern Bulgaria, with the specific test
instances coming from the town of Lebane.

Cerkno and Torlak dialects are present in all
three dataset splits (training, validation, and test)
whereas, the Chakavian dialect is intentionally held
out from the training and validation splits and
is exclusively encountered during the test phase.
Each dialect in the test dataset comprises 500 in-
stances. Table 1 presents the detailed statistics of
the Dialect-Copa dataset, providing an overview of
the distribution of instances across languages and
dialects.

3 Experimental Phases

In this section, we report different phases of our
experiments. We step by step perform experiments
to choose appropriate base models followed by
data augmentation, combination and task-specific
model tuning.

Phase 1: Model Selection In the preliminary
phase of our experiments, we conduct a series of
trials to identify base language models that demon-
strate strong performance on language understand-
ing tasks in a multilingual context. To achieve this,
we fine-tune widely-used encoder-based models,
such as BERT (Devlin et al., 2019), mBERT, and
XLM-R (Conneau et al., 2020), on the English
and Croatian subsets of the Dialect-Copa training
dataset. Additionally, we explore the potential of
more recently open-sourced large language mod-
els (LLMs) of varying sizes, such as LLaMA-2
(Touvron et al., 2023), Aya-101 (Üstün et al., 2024)
and MaLA-500 (Lin et al., 2024), to gauge their
effectiveness on the task.
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Data Identifier Description Covered Language

[lang]-train Original Dialect-Copa training data en, hr, mk, sl, sl-cer, sr, sr-tor
[lang]-trans Transliterated (Cyrillic → Latin) training data mk, sr, sr-tor
[lang]-claude Providing grammar rules and few-shot Croatian-Chakavian ex-

amples to generate synthetic parallel hr-ckm-train examples
given the hr-train examples

hr-ckm

[lang]-gpt4 Additional synthetic English training data generated by GPT-
4 (Whitehouse et al., 2023)

en

[lang]-reverse Reverse-augmentation on [lang]-train, [lang]-trans, and
[lang]-claude data

en, hr, mk, sl, sl-cer, sr, sr-tor

[lang]-nllb Machine translation of en-gpt4 source data to other languages
using the NLLB-6B model

hr, mk, sl, sr

Table 3: Training data augmentation approaches

Our key observations from this preliminary
phase are as follows:

→ BERT, mBERT, and XLM-R exhibit compara-
ble performance on the Croatian subset, achiev-
ing an accuracy of around 55%(+/-) after 3
epochs of in-language fine-tuning. However,
the monolingual English BERT model sur-
passes the multilingual models on the English
subset when fine-tuned for the same number of
epochs.

→ BERTić (Ljubešić and Lauc, 2021), a
transformer-based model pre-trained on
Bosnian, Croatian, Montenegrin, and Serbian
languages, aligns well with the target lan-
guages of the Dialect-Copa test set. Fine-tuning
BERTić on the Croatian subset yields a notable
performance improvement of approximately
12 percent (i.e. 7 percentage points) compared
to the aforementioned multilingual models.

→ Employing 4-shot prompting with the LLaMA-
2 7B parameter model results in better perfor-
mance on the English subset. However, for
the Croatian subset, LLaMA-2 generates ran-
dom inferences. This finding aligns with expec-
tations, as LLaMA-2 is primarily an English-
centric model and not inherently multilingual.
In an effort to address the multilingual limita-
tions of LLaMA-2, Lin et al. (2024) proposed
MaLA-500, a multilingual adaptation of the
model that underwent fine-tuning using a causal
language modeling objective. However, after
this adaptation, MaLA-500 produces random-
level inferences on the English subset.

→ Aya-101, a 13B parameter mt5-xxl-based
model (Xue et al., 2021) instruction-tuned in
101 languages. It shows superior performance
both in English and Croatian.

Based on these preliminary findings, we se-
lect the two best-performing models, Aya-101 and
BERTić , for further experimentation in the subse-
quent phases of our study. We report our prelimi-
nary experimental findings in Table 2. The results
of our preliminary experiments are summarized in
Table 2.

Phase 2: Data Augmentation To address the
limited size of the Dialect-Copa training dataset,
which consists of only 400 instances per language,
we employ various data augmentation techniques
to expand the available training data. This step is
crucial in mitigating the data scarcity bottleneck
and improving the models’ ability to generalize
across diverse dialectal variations. By augmenting
the training data, we aim to provide a more repre-
sentative dataset for task-specific fine-tuning and
instruction tuning of our selected language mod-
els. The data augmentation approaches we explore
include:

→ The test dataset primarily contains instances
written using the Latin script. Hence, we
transliterate the Macedonian (mk) dataset from
Cyrillic to Latin script to maintain consistency
with the already available Serbian, and Torlak
transliterated datasets.

→ For each instance in the training data, we swap
the premise and the correct answer choice, ef-
fectively transforming cause examples into ef-
fect examples and vice versa, thereby doubling
the number of training instances. For exam-
ple consider the following premise and two
‘effect’ choices:

premise: I poured water on my sleeping friend.
choice1: My friend awoke. ✓
choice2: My friend snored. ×

Now our proposed reverse-augmentation
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Setting Description Data Combination

o All original dialect-copa training
data mixed together

[en, hr, mk, sl, sl-cer, sr, sr-tor]-train
[sr, sr-tor]-trans

otrsl Combining all original,
transliterated as well as reverse-
augmented and synthetic training
data (only latin script ones)

[en, hr, sl, sl-cer]-train
[sr, sr-tor, mk]-trans
[en, hr, mk-trans, sl, sl-cer, sr-trans, sr-tor-trans]-reverse
en-gpt4, hr-ckm-claude
[hr, sl, mk-trans, sr-trans]-nllb

otrslc Combining all original, transliter-
ated as well as reverse-augmented
and synthetic training data (Both
latin and cyrillic script)

all available training data

otrslmk-hr-ckm Selective otrsl setting with upsam-
pled data count by repetition for mk,
hr and hr-ckm

hr-train, mk-trans, hr-ckm-claude
[hr-train, mk-trans, hr-ckm-claude]-reverse
[hr, mk-trans]-nllb

otrslhr-ckm Selective otrsl setting with upsam-
pled data count by repetition for hr
and hr-ckm

hr-train, hr-ckm-claude
[hr-train, hr-ckm-claude]-reverse
hr-nllb

otrslsl-cer Same as previous but for sl and sl-
cer

[sl, sl-cer]-train
[sl, sl-cer]-reverse
sl-nllb

otrslsr-tor Same as previous but for sr and sr-
tor

[sr, sr-tor]-trans
[sr-trans, sr-tor-trans]-reverse
sr-nllb-trans

otrslcsr-tor Same as previous but we include
both transliterated as well as Cyrillic
script data

[sr, sr-tor]-train, [sr, sr-tor]-trans
[sr, sr-trans, sr-tor, sr-tor-trans]-reverse
sr-nllb, sr-nllb-trans

otrslmix Cross-lingual mix and match using
all data from otrsl setting

[en, hr, sl, sl-cer]-train
[sr, sr-tor, mk]-trans
[en, hr, mk-trans, sl, sl-cer, sr-trans, sr-tor-trans]-reverse
en-gpt4, hr-ckm-claude
[hr, sl, mk-trans, sr-trans]-nllb

otrslmix-mk-hr-ckm Cross-lingual mix and match using
all data from otrslmk-hr-ckm setting

hr-train, mk-trans, hr-ckm-claude
[hr-train, mk-trans, hr-ckm-claude]-reverse
[hr, mk-trans]-nllb

otrslmix-hr-ckm Cross-lingual mix and match using
all data from otrslhr-ckm setting

hr-train, hr-ckm-claude
[hr-train, hr-ckm-claude]-reverse
hr-nllb

otrslcmix-testset Cross-lingual mix and match using
all data from otrslc setting except
English

all available training data except English

Table 4: After performing data augmentation, we create various data combinations by merging the augmented data
blocks described in Table 3 with the original training datasets. These carefully designed data settings are then
employed to conduct task-specific fine-tuning or instruction tuning on the selected base models, enabling us to
evaluate the impact of different data configurations and therefore, select the suitable ones for the test-set evaluation
phase.
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method will transform the above example in
a ‘casue-specific’ question as follows:

premise: My friend awoke.
choice1: I poured water on my sleeping friend.✓
choice2: My friend snored. ×

→ We utilize a publicly available English COPA-
style synthetic dataset generated by GPT-
4 (Achiam et al., 2023), as introduced by White-
house et al. (2023). To expand the coverage of
this synthetic data to other languages, we trans-
late the English examples using the NLLB-6B
machine translation model (Team et al., 2022)
to all the four Dialect-Copa standard languages:
Croatian, Macedonian, Serbian and Slovenian.

→ The Dialect-Copa dataset does not provide any
training or validation data for the Chakavian
dialect. To overcome this limitation, we com-
pile a set of Croatian to Chakavian conver-
sion rules and corresponding examples from
online language community forums (uni). In
addition to these rules, we also gather a few
Croatian to Chakavian lyrics translations (lyr).
We then prompt the Claude-3 language model
(ant) with these rules and examples, instruct-
ing it to translate the Croatian sentences from
the Dialect-Copa training set into their Chaka-
vian equivalents. Through this process, we
create a synthetic Chakavian training set in
the style of Dialect-Copa, which we refer to
as [lang]-claude. Here is an example with
ground truth Croatian to Chakavian translation
(words identically translated to the available
gold translations are bolded):

→ Croatian (source): Djevojka je pronašla kukca u
žitaricama. Izgubila je apetit.

→ Chakavian (gold-translation): Mlada je našla neko
blago va žitaricah. Je zgubila tiek.

→ Chakavian (claude-translation): Divojka je našla
buba u žitarican. Zgubila je tiek.

We observe that only a small number of words,
specifically three in this instance, are correctly
translated from Croatian to Chakavian. De-
spite the limited accuracy of the translation,
this synthetic translated dataset enables us to
train and evaluate models on the Chakavian
dialect, despite the absence of original train-
ing data for this specific dialect. The detailed
report on the dialect conversion rules and the
Claude-3 prompt template used for generating

the synthetic Chakavian dataset can be found
in Appendix A.

Table 3 provides a comprehensive overview of the
data augmentation techniques employed and the
languages covered by each approach.

Phase 3: Data Selection Following the data aug-
mentation process, we create various data combi-
nations by merging the augmented data with the
original training datasets. Table 4 provides a com-
prehensive overview of the various training data
combination settings we employ, along with their
respective descriptions and the specific data sources
included in each combination. These combinations
are designed to investigate the impact of differ-
ent data characteristics on the performance of our
models. For instance, the otrsl setting combines
all original, transliterated, reverse-augmented, and
synthetic data while excluding any data written
in the Cyrillic script. The rationale behind this
combination is to assess whether our Latin-only
Dialect-Copa test set benefits from the absence of
script variations in the training data. Additionally,
we introduce a language-agnostic data combination
denoted as otrslmix, in which we perform cross-
lingual modifications by ensuring that the premise,
choice1, and choice2 for each example are pre-
sented in different languages. This combination
allows us to evaluate the models’ ability to handle
language-agnostic reasoning.

Phase 4: Prompt Design Encoder-based mod-
els can be fine-tuned using any of the data settings
created in the previous steps. However, to perform
few-shot prompting or instruction tuning with gen-
erative language models (LLMs), we need to design
prompt-based instructions. During our preliminary
experiments, we observed that using 4-shot same-
class prompting (i.e., providing 4 cause examples
for a cause-based question) yields slightly better
results compared to combining 2 cause and 2 ef-
fect examples in the prompt. Specifically, this ap-
proach led to a 4.9% improvement on the English
validation set. So we opted for 4-shot same-class
prompting to perform inference. Here, these 4-shot
same-class examples are randomly drawn from the
training set of the target dialect. When the training
set is unavailable for a specific dialect, a closely
related language is used (eg. Croatian training set
for Chakavian examples).

The following prompt template is used for
inference and instruction tuning of the Aya-101
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model:

Instruction: Given the premise, {premise}, What is the correct
{question} {‘before’/‘after’} this?
A: {choice1}
B: {choice2}
Correct {question}: {correct_answer}

By designing the prompt in this manner, we pro-
vide the model with a clear instruction, the premise,
and the two answer choices. The model is then ex-
pected to select the correct answer based on the
given question type (cause or effect). This template
is employed both during inference and instruction
tuning of the Aya-101 model to ensure consistency
and optimize performance on the Dialect-Copa
dataset.

Phase 5: Task-Specific Tuning We employ two
distinct approaches for task-specific tuning of our
selected models. The first approach, known as
full model fine-tuning, involves updating all the
weights of the model during the training process.
We apply this method to the BERTić model, fine-
tuning it for 5-10 epochs on the Dialect-Copa
dataset. However, for mid-size models like Aya-
101, full fine-tuning may be unnecessarily compu-
tationally expensive, especially considering the lim-
ited amount of training data available. To address
this concern, we use LoRA (Low-Rank Adaptation)
adapter tuning (Hu et al., 2022) which is a more
parameter-efficient tuning approach. LoRA intro-
duces a small number of trainable parameters in
the form of low-rank matrices, which are inserted
between the layers of the pre-trained model. Note
that this draws from a long history of efficient adap-
tion using dedicated units (Houlsby et al., 2019;
Pfeiffer et al., 2020; Faisal and Anastasopoulos,
2022). During training, only these newly intro-
duced parameters are updated, while the original
model weights remain frozen. This approach sig-
nificantly reduces the number of trainable param-
eters, making it more suitable for fine-tuning on
smaller datasets. By employing LoRA adapter tun-
ing, we can effectively adapt the Aya-101 model to
the Dialect-Copa dataset without the need for full
model fine-tuning, thereby striking a balance be-
tween performance and computational efficiency.

4 Results and Discussion

In this section, we present and discuss the results
of our experiments on the Dialect-Copa dataset.

4.1 Validation Set Insights

Table 5 summarizes the key takeaways from our
incremental experiments conducted on the valida-
tion dataset using BERTić and Aya-101. First, we
observe that combining datasets from multiple lan-
guages boosts performance on the Croatian subset,
as opposed to training on a single language. This
finding motivates us to utilize all available train-
ing data and prepare different data combinations,
as described in Table 4. Second, we find that in-
creasing the data quantity through various data aug-
mentation techniques (Table 3) primarily improves
performance for most languages and low-resource
dialects. Furthermore, discarding instances written
in the Cyrillic script can boost performance for cer-
tain languages and dialects (e.g., Croatian, Cerkno,
and Serbian), while hurting others.

We also explore cross-lingual mix-and-match
strategies, but we do not find any conclusive pat-
terns indicating that this approach consistently
makes the model more language-agnostic, as it
helps in some cases while hindering performance
in others. Additionally, we experiment with dis-
carding English examples and upsampling specific
language groups (e.g., Serbian and Torlak exam-
ples for the Torlak dialect), which leads to slight
performance improvements for the Torlak dialect.

Notably, we observe that full fine-tuning of the
comparatively smaller, non-instruction-tuned, but
language-specific BERTić model cannot surpass
the performance of the multilingual, instruction-
tuned Aya-101 model. Finally, we apply the same
data combinations to perform instruction tuning
on the Aya-101 model and observe an overall per-
formance boost. However, our experiments with
different numbers of training epochs (5 and 10)
yield inconclusive findings.

4.2 Test Set Insights

Team-specific ranking Table 6 presents a com-
parison of the best-performing submissions from
different teams on the Dialect-Copa test set. We
categorize the submissions into two groups: Cat-
egory 1 includes teams that utilize closed-source
model weights, while Category 2 consists of teams
that rely on open-source model weights. Our sub-
missions belong to the latter category. We observe
that the closed-source GPT-4 model achieves the
best overall performance. Team JSI employs GPT-
4 with a 10-shot prompting approach, where they
provide the first 10 test instances without revealing
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Base Model Setting en hr mk sl sl-cer sr sr-tor Avg. (acc)

Takeaway 1: Combining all training data helps

BERTić Finetune (hr) - 64 - - - - - -
BERTić o 0.65 0.67 0.55 0.67 0.49 0.66 0.59 0.61

Takeaway 2: Data augmentation helps for low-resource languages in most cases

BERTić otrslc 0.46 0.7 0.69 0.67 0.42 0.68 0.65 0.61

Takeaway 3: Script choice makes a difference (Using only Latin script performs better on Latin script evaluation)

BERTić otrsl 0.51 0.77 0.64 0.64 0.59 0.72 0.64 0.65

Takeaway 4: Cross-lingual mix-and-match effect: inconclusive

BERTić otrslmix 0.56 0.76 0.68 0.57 0.52 0.66 0.63 0.63

Takeaway 5: Upsampling certain language groups might help targeted evaluation in some cases

BERTić otrslsr-tor 0.55 0.74 0.63 0.61 0.48 0.64 0.66 0.62
BERTić otrslsl-cer 0.54 0.68 0.65 0.57 0.58 0.66 0.64 0.62

Takeaway 6: A multilingually-instruction-tuned 13B parameter model performs significantly better

Aya-101 4-shot 0.83 0.77 0.75 0.76 0.62 0.81 0.73 0.75

Takeaway 7: Further task-specific instruction tuning helps even more

Aya-101 otrsl 0.86 0.79 0.81 0.91 0.7 0.82 0.77 0.81

Takeaway 7: Training for 10 epochs instead of 5: inconclusive

setting epochs en hr mk sl sl-cer sr sr-tor mean max count

otrsl 10 0.52 0.74 0.65 0.56 0.61 0.67 0.59 0.62 5
5 0.50 0.72 0.62 0.57 0.58 0.65 0.61 0.61 2

otrslmk-hr-ckm 10 0.49 0.76 0.66 0.62 0.51 0.67 0.70 0.63 1
5 0.48 0.76 0.68 0.64 0.52 0.71 0.67 0.64 4

otrslsl-cer 10 0.56 0.64 0.65 0.62 0.58 0.65 0.60 0.62 5
5 0.54 0.68 0.65 0.57 0.58 0.66 0.64 0.62 5

otrslcsr-tor 10 0.50 0.70 0.65 0.55 0.48 0.62 0.68 0.60 4
5 0.49 0.69 0.63 0.60 0.51 0.62 0.70 0.61 4

Table 5: Takeaways from incremental experiments performed on the Dialect-Copa validation dataset. The best
language-specific scores for each setting are underlined (Takeaway 7).

Team Base Model System Description sl-cer hr-ckm sr-tor Avg. (acc)

Closed Source Model Weights

JSI GPT-4 10-shot with first 10 test instances (without answer) 0.734 0.890 0.974 0.866
UNIRI GPT-4 RAG implementation; Chakavian and Cerkno lexical dictionary; Reasoning instruc-

tion and self referral grading task
0.708 0.764 - -

UNIRI GPT-4 0-shot iterative prompt 0.664 0.774 0.894 0.777

Open Source Model Weights

GmuNLP Aya-101 4-shot prompting 0.694 0.756 0.840 0.763
GmuNLP Aya-101 LORA adapter tuning on otrslhr-ckm → 4-shot prompting 0.700 0.750 0.824 0.758
GmuNLP Aya-101 LORA adapter tuning on otrsl → 4-shot prompting 0.682 0.760 0.824 0.755
GmuNLP Aya-101 LORA adapter tuning on otrslhr-ckm → 4-shot prompting 0.660 0.742 0.848 0.750
WueNLP Mixtral LORA adapter tuning on standard variety of target dialect 0.556 0.606 0.738 0.633
CLaC XLM-R Fine-tuning XLM-RoBERTa base for multiple choice QA task 0.564 0.522 0.570 0.552

Table 6: Performance comparison of different submissions on Dialect-Copa test set.
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base model setting epoch sl-cer hr-ckm sr-tor Avg. (acc)

Aya-101 4-shot - 0.694 0.756 0.840 0.763
Aya-101 otrslcmix-mk-hr-ckm 5 0.690 0.756 0.836 0.761
Aya-101 otrslmix-hr-ckm 5 0.700 0.750 0.824 0.758
Aya-101 otrsl 5 0.682 0.760 0.824 0.755
Aya-101 otrslmk-hr-ckm 5 0.660 0.742 0.848 0.750
Aya-101 otrslsl-cer 5 0.686 0.718 0.836 0.747

BERTić otrslhr-ckm 10 0.572 0.626 0.722 0.640
BERTić otrslmk-hr-ckm 5 0.582 0.634 0.682 0.633
BERTić otrslcmix-testset 5 0.576 0.622 0.692 0.630
BERTić otrsl 10 0.540 0.622 0.700 0.621

Table 7: GMUNLP system submissions for test-set evaluation. The best dialect-specific scores for each base-model
type are bolded.

the answers. Interestingly, even the 0-shot prompt-
ing using GPT-4 (by team UNRI) outperforms all
submissions in Category 2 using open-source mod-
els. Among the Category 2 submissions, GMUNLP
(our submission) achieves the highest performance
on all varieties. The base Aya-101 model with 4-
shot prompting yields the best average score across
all languages. However, LoRA adapter tuning on
different data combinations results in language-
specific best scores.

GMUNLP submission Table 7 presents the re-
sults of our selected 10 system submissions. We
observe that the best performance achieved by
the BERTić model on the otrsl setting is 62%,
which is approximately 17% lower compared to
the otrcl-tuned Aya-101 model. When comparing
language-specific results, we find that the Torlak
(sr-tor) dialect is the easiest to predict for both the
Aya-101 and BERTi’c models, while the Cerkno
dialect (sl-cer) proves to be the most challenging
to learn.

Interestingly, upsampling the Cerkno dialect-
related data (otrslsl-cer-tuned) does not yield the
best score for the Cerkno test-set. Instead, upsam-
pling the Chakavian dialect-related data using the
otrslmk-hr-ckm setting leads to better scores on the
Cerkno test set. This observation holds true for
both the Aya-101 and BERTić base models, indi-
cating that leveraging data from more closely re-
lated languages does not always provide the most
significant benefit. However, all varieties here are
from the same language group and it is not un-
natural that oversampling other languages or di-
alects can have a positive impact as well (given
the brittleness of the fine-tuning process). We be-
lieve this phenomenon warrants further investiga-
tion to gain a deeper understanding of the complex
interplay between language-relatedness and task-

specific model performance.

5 Conclusion

In this study, we explored the impact of data aug-
mentation techniques on fine-tuning multilingual
language models for improving common sense rea-
soning in dialectal variations. Our experiments
encompassed a range of language models, from
smaller to mid-sized architectures, to investigate
their adaptability to dialectal nuances. The ob-
served variations in performance and the upper lim-
its achieved by different models reflect the diverse
ways in which language models handle and adapt to
dialectal variations. The insights gained from this
work may contribute to the development of more ro-
bust and adaptable language models that can handle
the challenges posed by dialectal variations. Future
work can explore advanced data augmentation tech-
niques, investigate the impact of domain-specific
knowledge integration, and develop novel archi-
tectures tailored to the unique characteristics of
dialects.
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A Croatian to Chakavian conversion
rules

Here we report the collected Croatian to Chaka-
vian conversion rules and their corresponding ex-
amples (uni), the lyrics translations (lyr) and the
Claude-3 prompt we used to generate the Cahaka-
vian synthetic translations.

Conversion rules

Rule: m's at the end of words become n's
Examples:
Ja sam = Ja san
osam = osan
s ženom = s ženon
vidim = vidin

Rule: đ becomes j
Examples:
mlađi=>mlaji
među=>meju

Rule: The sounds ć and đ actually do not
exist separately from č and dž

Rule: genitive plural in the feminine and
neuter takes a zero ending:
Examples: žena = žen, sela = sel

Rule: dative/instrumental plurals are
also somewhat different.

Rule: Masculine and neuter nouns can have
an alternate ending.
Examples:
it can be gradovima or gradoviman

Rule: For feminine nouns, it's shortened.
Examples:
ženama=>ženan

Rule:-ao endings are shortened to just -a
Examples:
išao je => iša je
rekao sam => reka san

Rule:-io endings change to -ija
Examples:
govorio je => govorija je

vidio sam => vidija san

Rule:ča, aside from meaning "what" can
also be used as a particle meaning "away"
or "out".
Examples:
gremo ča (let's get out of here)

Rule: some of the third person plural
forms can often be extended into longer
-u ending forms.
Examples:
govore -> govoru -> govoridu
rade -> radu -> radidu
pišu -> pišedu

Rule: Infinitive is shortened .
There is no I at the end.
In some speeches there is neither T/Ć at
the end
Examples:
bit =>bi
pivat =>piva
znat => zna
plivat => pliva
ronit => roni

Rule: change lj=>j
Examples:
zaljubiti se=>zajubit se
ljubav =>jubav
ljuska =>juska
ljudi=>judi

Rule: Change O => E in some cases
Example:
nekoga-nikega
svakoga-svakega
tomu-temu
toga-tega
bijeloga-bilega
jednoga-jenega
jednomu-jenemu

Rule: In standard croatian third person
plural has ending in some verbs E.
In chakavian it is always U
Examples:
vide =>vidu
hoće =>hoću
stoje =>stoju
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stave =>stavu
motre =>motru
leže=>ležu

Rule: Change H=>V
Examples:
kruh =>kruv
kuhati =>kuvati
suh =>suv
gluh =>gluv[/b]

Lyrics translations We collected Croat-
ian to Chakavian lyrics translations from the
lyricstranslate.com site (lyr).

Claude-3 prompt We use the following prompt
consisting the the above mentioned conversion
rules, examples and lyrics translations:

<conversion_file.txt>

This file contains Croatian to Chakavian
dialect conversion grammar rules with
examples.

Now here are some Croatian sentences and
it's parallel Chakavian sentences:

<Croatian_lyrics.txt>
<Chakavian_lyrics.txt>.

Given these resources, I want you to translate
the following Croatian sentences to Chakavian
dialect.

<Croatian_training_sentences.txt>
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Abstract
The paper presents the JSI and WüNLP systems
submitted to the DIALECT-COPA shared task
on causal commonsense reasoning in dialectal
texts. Jointly, we compare LLM-based zero-
shot and few-shot in-context inference (JSI
team), and task-specific few-shot fine-tuning,
in English and respective standard language,
with zero-shot cross-lingual transfer (ZS-XLT)
to the test dialects (WüNLP team). Given the
very strong zero-shot and especially few-shot
in-context learning (ICL) performance, we fur-
ther investigate whether task semantics, or lan-
guage/dialect semantics explain the strong per-
formance, showing that a significant part of
the improvement indeed stems from learning
the language or dialect semantics from the in-
context examples, with only a minor contribu-
tion from understanding the nature of the task.
The higher importance of the dialect semantics
to the task semantics is further shown by the
finding that the in-context learning with only
a few dialectal instances achieves comparable
results to the supervised fine-tuning approach
on hundreds of instances in standard language.

1 Introduction

Causal commonsense reasoning is an important
aspect of natural language understanding (NLU)
abilities of the large language models (LLMs);
their performance on such tasks probes the extent
to which the LLMs have acquired commonsense
and world knowledge. Choice Of Plausible Alter-
natives (COPA) dataset (Roemmele et al., 2011)
has de facto been the standard evaluation bench-
mark for causal commonsense reasoning for over
a decade.1 Like on most other NLU tasks, state-
of-the-art LLMs exhibit impressive performance

1Inter alia, the COPA dataset is included to the selection
of tasks in the well-known benchmark for general-purpose

on the English COPA dataset (Chowdhery et al.,
2023; Zhong et al., 2022). LLMs, unlike their
smaller encoder-based predecessors (e.g., BERT,
RoBERTa), also offer spectacular COPA perfor-
mance for other languages (Ponti et al., 2020; Ža-
gar and Robnik-Šikonja, 2022; Shi et al., 2023),
including South Slavic languages, both with Latin
and Cyrillic scripts, reaching accuracy levels be-
tween 94% and 97%2. Though LLMs excel on
high-resource and moderately resourced standard
languages, their utility for commonsense reasoning
in truly low-resource languages (Senel et al., 2024)
and especially dialects (Joshi et al., 2024) has been
much less scrutinized. In the DIALECT-COPA
shared task of the VarDial Evaluation Campaign
2024 (Chifu et al., 2024), COPA is extended to ge-
ographically very localized dialects (i.e., micro- or
nano-dialects) of South Slavic languages that are
very rarely present in texts online, and thus could
not have been (except perhaps in minimal traces)
present in the pretraining corpora of LLMs.

In this work, we focus on benchmarking decoder-
style LLMs in the DIALECT-COPA task, covering
a variety of closed-source and open-source LLMs
in zero-shot and few-shot in-context learning (ICL)
inference setups. Subsequently, we select the best-
performing open-source model during in-context
learning (Mixtral Instruct) and fine-tune it for the
task in the standard supervised fashion – assuming
a somewhat larger training dataset – with training
instances either in English or in the respective stan-
dard language of the target dialect (e.g., Slovenian
for the Cerkno dialect).

natural language understanding SuperGLUE (Wang et al.,
2019).

2https://github.com/clarinsi/benchich/tree/
main/copa
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We make use of all the development data pro-
vided inside the shared task, namely the transla-
tions of the COPA dataset (Roemmele et al., 2011)
into the standard Slovenian, Croatian, Serbian and
Macedonian languages, as well as the translations
available for two out of three dialects, namely the
Cerkno and the Torlak dialects (Ljubešić et al.,
2024). While we have access to both training and
development portions of COPA datasets for other
languages and dialects, the Chakavian dialect is
a surprise dialect: findings from the other two di-
alects thus steered decisions for Chakavian too.

To sum up, we evaluate the LLMs in the fol-
lowing scenarios: 1) zero-shot inference where the
model is presented with the task description in En-
glish and needs to provide an answer to the COPA
instances in the South Slavic dialects; 2) few-shot
in-context learning (ICL) where the prompt is ex-
tended with additional examples from the respec-
tive COPA dataset; and 3) fine-tuning zero-shot
cross-lingual transfer (ZS-XLT) (Lauscher et al.,
2020; Schmidt et al., 2022), in which an LLM is (in
a parameter-efficient manner) fine-tuned on train-
ing data in English or a standard South Slavic lan-
guage (Slovenian, Serbian, and Croatian, respec-
tively) and then used to make predictions in the
corresponding target dialect (Cerkno, Torlak, and
Chakavian, respectively).

The ICL variants in general, with few target di-
alect instances in the context, exhibit a significantly
improved performance in comparison to zero-shot
performance. Comparing ICL to fune-tuning zero-
shot cross-lingual transfer, we observe a compara-
ble performance.

Following the finding of significant improve-
ments through just a few target dialect examples,
we investigate the source of these few-shot ICL per-
formance gains. We find that the exposure to the
dialect itself through the few in-context instances
is key, as opposed to exposure to the COPA task
itself.

2 Multi-Parallel COPA Datasets

Our work focuses on the Choice Of Plausible Al-
ternatives (COPA) dataset, originally published in
English (Roemmele et al., 2011), and its translation-
based derivatives in a selection of South Slavic
languages and dialects. All COPA datasets have
the same set of instances, and they differ only in
the language variety in which the instances are
written. The COPA dataset consists of 1,000 exam-

ples, split into 400 training, 100 development and
500 test instances. Each instance consists of three
sentences: a statement (premise) and two possible
effects or causes (alternatives) for the statement,
e.g., a premise All my socks were in the laundry
is coupled with two effect choices: I wore sandals
(correct/plausible) and I wore boots (incorrect).

We evaluate the models on ‘standard language’
and dialectal versions of a selection of South
Slavic languages. More precisely, we use the fol-
lowing COPA datasets for three South Slavic di-
alects – the Slovenian Cerkno dialect (COPA-SL-
CER), the Croatian Chakavian dialect (COPA-HR-
CKM), and the Torlak dialect of Serbian (COPA-
SR-TOR) (Ljubešić et al., 2024). The models’
performance on the dialectal datasets is compared
with their performance on the datasets in the stan-
dard South Slavic language that is closest to them,
namely Slovenian (COPA-SL) (Žagar et al., 2020),
Croatian (COPA-HR) (Ljubešić, 2021), Serbian
(COPA-SR) (Ljubešić et al., 2022b) and Macedo-
nian (COPA-MK) (Ljubešić et al., 2022a). All the
datasets were translated from the English COPA
dataset (Roemmele et al., 2011) following the
XCOPA translation and adaptation methodology
(Ponti et al., 2020), except for Slovenian which
was translated as part of the Slovenian SuperGLUE
benchmark (Žagar and Robnik-Šikonja, 2022). Tor-
lak, Serbian and Macedonian datasets are written
in Cyrillic and all other in Latin script.

The COPA datasets for the standard South
Slavic languages and English are openly available,
whereas the dialectal COPA datasets have been in-
troduced in the DIALECT-COPA shared task, part
of the VarDial Evaluation Campaign 2024 (Chifu
et al., 2024) and are currently only partly available:
as part of the shared task, the training and devel-
opment portions were made publicly available for
all languages (Ljubešić et al., 2024);3 the test splits
have been made available only to the shared task
participants. Inside the shared task, no training
and development data were given for the Chaka-
vian dialect, to enable estimation and analysis of
models’ performance “in the wild” for a new (truly
low-resource) dialect.

3 Models in Evaluation

In this work, we extend the prior experiments that
focused on the use of LLMs for the task (Wi-

3The training and development splits can be accessed at the
CLARIN.SI repository: http://hdl.handle.net/11356/
1766.
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bowo et al., 2023; Ljubešić et al., 2024) by (i)
evaluating a larger number of open- and closed-
source instruction-tuned generative LLMs, and by
(ii) widening investigation from the basic zero-shot
scenarios to few-shot in-context learning and cross-
lingual transfer of supervised fine-tuning. In this
section, we outline all the models, with links to the
models provided in Appendix A.

GPT-3.5 Turbo and GPT-4 are closed-source mod-
els provided by OpenAI through their payable
API (OpenAI, 2023a,b). We use the versions
gpt-3.5-turbo-0125 and gpt-4-0125-preview
through the chat completion endpoint, with temper-
ature set to 0. The models are said to be trained on
massive multilingual web text collections; however,
the details on pretraining data, as well as the details
of the training procedure and model architecture
are not publicly known.

Mistral 7B Instruct is an open-source
model provided by Mistral AI (Jiang et al.,
2023). We experiment with two 7B model
variants, Mistral-7B-Instruct-v0.1 and
Mistral-7B-Instruct-v0.2, where the main
difference is that v0.2 extends the context size
from 8k to 32k input tokens. The details on the
pretraining data have not been made available.

Mixtral 8×7B Instruct is another open-source
model from Mistral AI (Jiang et al., 2024). We use
the Mixtral-8x7B-Instruct-v0.1 variant. The
main difference between Mistral and Mixtral is
the introduction of a sparse mixture-of-experts net-
work in Mixtral, where 8 feed-forward blocks are
added to each layer. For each token, two blocks are
selected to process it. As a consequence, despite
having 47B parameters in total, only 13B active
parameters are used for each token. Furthermore, it
is stated that Mixtral was pretrained on much larger
quantities of multilingual data than Mistral. The
context size is 32K tokens.

mT0-XXL is an open-source model developed by
the BigScience academic initiative (Muennighoff
et al., 2023). We use the mT0-XXL variant which has
13 billion parameters. The model is a fine-tuned
version of the multilingual mT5 model (Xue et al.,
2021), which was pretrained on a sample from the
mC4 dataset covering 101 languages.

Aya 101 is an open-source model developed by
Cohere For AI (Üstün et al., 2024). We use the
aya-101 variant with 13B parameters. As mT0
above, it is an instruction-tuned version of mT5

(Xue et al., 2021), relying on a multilingual dataset
that covers 101 languages.

Gemma 7B It is an open-source model provided by
Google (Mesnard et al., 2024). It is a lightweight
7B version of Google’s closed-source Gemini
model family (Anil et al., 2023), and it was trained
primarily on English data.

Falcon-7B-Instruct is an open-source 7B model
developed by the Technology Innovation Insti-
tute (Almazrouei et al., 2023). It is an instruction-
tuned version of the Falcon-7B language model
which was pretrained on English and French data.

Llama-2-7B-Chat is a 7B open-source model from
Meta (Touvron et al., 2023), with the context size
of 4000 tokens, intended primarily for English.

In sum, the coverage of evaluated models is ex-
tensive, where the models vary in their availability
(open-sourced versus ‘black-box’ commercial mod-
els), size, as well as their pretraining data. For in-
stance, while mT0 and Aya 101 were pretrained on
massively multilingual datasets, other models are
primarily built for English only, such as Gemma
and Llama-2-Chat. Further, while most models
have 7B parameters, Mixtral 8×7B Instruct, mT0
and Aya 101 have 13B parameters.

To maximize the comparability between the re-
sults of the models, we provide them all with iden-
tical prompts (available in Appendix B). We ran all
our experiments on a single A100 40GB.4

4 Results and Discussion

We now delve into the main experiments, covering
zero-shot and different 10-shot ICL scenarios, fol-
lowed by ablations on the importance of learning
‘language/dialect semantics’ versus ’task semantic-
s/structure’ in ICL. Finally, we report experiments
with supervised fine-tuning.5

4.1 Zero-Shot Inference
Table 1 summarizes the results of zero-shot infer-
ence with LLMs on the training portions of the
datasets (400 examples), with models listed in de-
creasing order of performance on standard lan-
guage datasets (column STD), that is, Slovenian
(sl), Croatian (hr), Serbian (sr) and Macedonian

4Due to this, we relied on an 8-bit quantization for Mistral
models and a 4-bit quantization for Mixtral models.

5While the data for Serbian, Macedonian and Torlak are
available both in the Latin and in the Cyrillic script, we report
only the results on Serbian and Torlak Latin data and Macedo-
nian Cyrillic data; these options yielded higher absolute scores
across the models.
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(mk). The ranking of the models based on the di-
alectal performance (column DIA), i.e., on Cerkno
(sl-cer) and Torlak (sr-tor), is similar.

While the model ranking is relatively similar rel-
ative on both standard and dialect varieties, all mod-
els expectedly perform substantially worse on di-
alectal datasets. For instance, the best-performing
system, GPT-4, drops 36.5 accuracy points (from
96 to 59.5) between Slovenian (sl) and its Cerkno
dialect (sl-cer), and from 95.8 to 76 on average.
Such drops are observed for all the other models as
well (e.g., mT0 as the best-performing open-source
model has 14 points lower average accuracy on DIA

compared to STD).
Overall, GPT-4 outperforms the open-model

competition by a wide margin, with mT0 as the
closest follower (10 accuracy points difference on
DIA). Expectedly, Mixtral performs much better
than its smaller Mistral 7B Instruct counterparts.
Two systems that perform worse than expected are
Aya 101, which closely follows the design of an
earlier mT0 model, and Gemma 7B It. Finally,
Falcon-7B-Instruct and Llama-2-7B-Chat perform
worse than the random baseline of 50% due to their
inability to follow instructions, frequently provid-
ing answers in which neither of the two alternatives
is chosen. This might stem from their limited mul-
tilingual capabilities, as outlined in Section 3.

Other Observations. It is worth noting that mod-
els generally tend to exhibit similar performance
across the standard language variety: there are no
large or consistent differences in performance on
Slovenian, Croatian, Serbian and Macedonian, de-
spite the fact that these languages are not equally
resourced (e.g., Slovenian is by far the most re-
sourced of the four, whereas Macedonian is the
least resourced (Terčon and Ljubešić, 2023)).

In contrast, models’ performance across the two
dialects is vastly different. The Cerkno dialect
seems to be much more challenging for all models
than the Torlak dialect. This, we believe, stems
from the fact that Torlak is significantly closer to
the standard Serbian and Macedonian than Cerkno
is to standard Slovenian (Ljubešić et al., 2024).

4.2 Few-Shot In-Context Learning

We next perform in-context learning (ICL) only
over the models that performed above the random
baseline in the zero-shot evaluation. First, we note
that mT0 and Aya 101, both based on mT5, actually
experienced performance decrease when moving

from zero-shot to few-shot ICL scenarios. We spec-
ulate that this might be a consequence of limited
context size and encoder capacity, which might be
incapable of encoding a longer prompt. We thus
present only the results where models show gains
moving from zero-shot to ICL scenarios.

In our preliminary experiments, we varied the
number of few-shot examples from the develop-
ment set provided to the models. The results show
consistent improvements as the number of shots in-
creases up to 10, followed by minor and negligible
gains with 20 instead of 10 shots. For that reason,
we report the results in the 10-shot scenario. An
example of a prompt is provided in Appendix B.
An overview of results with zero-shot (Section 4.1)
versus 10-shot prompting scenarios is provided in
Table 2.

The main finding is that ICL, for the models
with sufficient context sizes where ICL works as
expected, offers substantial performance benefits
both for the standard languages (column STD) and
for the target dialects (column DIA). Interestingly,
the largest absolute gains from 10-shot ICL are
observed for the most difficult, Cerkno dialect: per-
formance of GPT-4 rises from 60% to 74% in ac-
curacy.

The observed gains with ICL thus open up the
following question – where do the gains come
from? Is it the adaptation to the task and its struc-
ture, or is it rather the adaptation to the target lan-
guage and dialect and a better understanding of it?
We discuss this next in the prompt ablation tests.

Prompt Ablation Experiments. We aim to dis-
criminate between the contributions of learning the
‘task semantics’ versus learning the ’language/di-
alect semantics’ by performing two experiments:
1) in the list experiment we add to the initial
zero-shot prompt only lists of sentences of the tar-
get language, and 2) in the task experiment the
structure of the task is added to the initial prompt
by providing instances from the COPA dataset but
without any answer. As before, we use the develop-
ment dataset instances for few-shot prompts. With
list we ablate the task definition, while with task
we ablate the information on the answer, but still
provide information on task itself.

The results are given in Table 3. The main find-
ing is that the substantial part of the total improve-
ment comes from the language/dialect semantics,
represented by the list results. An answer to the
task, missing in the task scenario, but included in
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Model STD DIA sl sl-cer hr sr sr-tor mk
gpt-4-0125-preview 0.958 0.760 0.960 0.595 0.960 0.968 0.925 0.943
mT0-xxl 0.798 0.660 0.787 0.540 0.738 0.765 0.713 0.838
gpt-3.5-turbo-0125 0.799 0.646 0.802 0.547 0.820 0.830 0.745 0.745
aya-101 0.710 0.610 0.728 0.530 0.645 0.665 0.623 0.720
Mixtral-8x7B-Instruct-v0.1 0.691 0.521 0.682 0.405 0.705 0.713 0.637 0.665
gemma-7b-it 0.599 0.546 0.593 0.522 0.570 0.618 0.552 0.605
Mistral-7B-Instruct-v0.2 0.524 0.396 0.515 0.285 0.542 0.537 0.487 0.497
Mistral-7B-Instruct-v0.1 0.510 0.495 0.507 0.487 0.507 0.515 0.500 0.502
falcon-7b-instruct 0.432 0.442 0.500 0.485 0.463 0.458 0.510 0.357
llama-2-7b-chat 0.114 0.032 0.175 0.020 0.152 0.145 0.090 0.035

Table 1: Zero-shot results, with additional averages reported over the three standard languages (STD) and the three
dialects (DIA). Results are reported in accuracy scores.

Model # shots STD DIA sl sl-cer hr sr sr-tor mk

Mistral-7B-Instruct-v0.2 0 0.524 0.396 0.515 0.285 0.542 0.537 0.487 0.497
Mistral-7B-Instruct-v0.2 10 0.734 0.570 0.718 0.507 0.757 0.752 0.632 0.708
Mixtral-8x7B-Instruct-v0.1 0 0.691 0.521 0.682 0.405 0.705 0.713 0.637 0.665
Mixtral-8x7B-Instruct-v0.1 10 0.780 0.624 0.802 0.5 0.818 0.795 0.748 0.703
gpt-3.5-turbo-0125 0 0.799 0.646 0.802 0.547 0.820 0.830 0.745 0.745
gpt-3.5-turbo-0125 10 0.828 0.666 0.845 0.53 0.84 0.858 0.802 0.77
gpt-4-0125-preview 0 0.958 0.760 0.960 0.595 0.960 0.968 0.925 0.943
gpt-4-0125-preview 10 0.984 0.853 0.98 0.738 0.988 0.99 0.968 0.978

Table 2: Zero- and ten-shot results in terms of accuracy across models that improve with few-shot prompting.
Averages for datasets in standard languages (STD), i.e., Slovenian, Croatian, Serbian and Macedonian, and dialectal
datasets (DIA), i.e., Cerkno and Torlak, are given.

Variant STD DIA sl sl-cer hr sr sr-tor mk
zero-shot 0.691 0.521 0.682 0.405 0.705 0.713 0.637 0.665
10-shot 0.780 0.624 0.802 0.5 0.818 0.795 0.748 0.703
list 0.745 0.607 0.74 0.515 0.775 0.757 0.698 0.708
task 0.786 0.619 0.818 0.492 0.805 0.802 0.745 0.72

Table 3: Results over the ablated 10-shot examples on the Mixtral 8×7B Instruct model, either to the level of a
list of sentences (list) or tasks without any answer given (task), compared to the previous results of zero-shot and
10-shot experiments. We additionally provide averages over standard languages (STD) and dialects (DIA).

the 10-shot scenario, seems to be almost irrelevant
for ICL. However, the remaining gap between the
list and the task rows in Table 3 indicates that
providing examples of the task, although without
the answer, is still beneficial.

These results shed important light on why in-
context learning offers substantial gains both on
standard languages and on dialects. However, there
is another angle, specific to this shared task, that
these results open up. Namely, both the list- and
the task- transformed prompts do not require the
correct answer to be known as part of in-context
examples; they can therefore be run even on the
Chakavian dialect, for which no training and de-
velopment data were available in the shared task.
Interestingly, omitting an answer even yields minor
gains on the datasets in standard languages, and

just a minor drop in performance on the dialectal
datasets.

4.3 Fine-Tuning and ZS-XLT

The WüNLP team next investigates zero-shot cross-
lingual transfer (ZS-XLT) with an LLM fine-tuned
on English training data or the training data in the
corresponding standard language (e.g., for Chaka-
vian as target, we train on the instances from the
training portion of Croatian COPA). Following the
JSI team’s zero-shot inference and few-shot ICL
results, we opt to tune Mixtral 8×7B Instruct as the
best-performing open-source LLM in their ICL ex-
periments. We fine-tune the model generatively, us-
ing the prompt below, and constraining the output
vocabulary to “1”, “2” (we minimize the standard
negative log likelihood loss):
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'Premise: "{PREMISE}"
Question: "{QUESTION}"
Choice 1: "{CHOICE1}"
Choice 2: "{CHOICE2}"
Answer: '

Since we are running supervised fine-tuning, we
chose to prepend the task description to the
prompt.6 We carry out fine-tuning in a parameter-
efficient manner, using quantized (4-bit) low-rank
adaptation (Q-LoRA) (Hu et al., 2021; Dettmers
et al., 2024), optimizing the LoRA matrices with
AdamW (Loshchilov and Hutter, 2018) (learning
rate 10−5 with linear decay, no warmup). We train
on the whole training set (400 instances) in batches
of 32 instances, for 10 epochs, checkpointing the
model after every update.

Although the DIALECT-COPA shared task of-
fers validation portions in target languages/dialects,
one should note that, following Schmidt et al.
(2022, 2023b), using target language development
set for model selection violates true zero-shot cross-
lingual transfer: the labeled target language vali-
dation instances would, in fact, be better used as
training data (Schmidt et al., 2023b). Because of
this, we report results for two model variants: (1)
training on English instances (en) vs. instances
of the corresponding standard language (x) × (2)
selecting the last checkpoint (last) of the training
run (true ZS-XLT) vs. selecting the model check-
point that has the best performance on the target
language validation set (val, violates true ZS-XLT).
These four variants are named as: MixtralLoRA-
{en,x}-{last,val}. Table 4 summarizes the perfor-
mance for all four variants on the validation data of
standard South Slavic languages as well as target
dialects. The final official shared task results for all
four variants (runs), on the test portions of target
dialects, are reported in the next section.

4.4 Results on Test Data
We present the official test data results of both
teams in Figure 1. The runs from WüNLP com-
prise fine-tuning Mixtral 8×7B Instruct either on
the English or the standard data across two model
selection scenarios, as described in Section 4.3.
Similar to the results during the development phase
(Table 4), there is no strong difference between the
variants: the averages are almost identical. How-
ever, comparing this set of results to the zero-shot

6Recent work indeed suggests that, unlike in zero-shot
inference and few-shot ICL, task description prompts have
limited effect on performance in supervised fine-tuning (Li
et al., 2023).

approach with Mixtral 8×7B Instruct, we observe
positive impact of fine-tuning, even if fine-tuning
was conducted on English or standard language
data.

The list and the task approaches in the 10-
shot ICL scenario with Mixtral 8×7B Instruct, con-
ducted by JSI, improve over the zero-shot scenario,
arriving roughly to the level of the WüNLP fine-
tuning results.

The best results of the two teams, as in the shared
task overall, are obtained, not surprisingly, with
the GPT-4-based take on zero-shot inference, and
even more on the two approaches to 10-shot ICL
without having the correct answers at hand. While
zero-shot prompting already improves over any of
Mixtral results on each of the three dialects, achiev-
ing an average result of 75% accuracy, the model
excels further once 10 examples of the language
are provided for ICL, even only as examples of the
dialect in question, with the average result rising to
83%. Describing the nature of the task combined
with the 10 shots, but without the correct answer,
yields an additional gain, resulting in an average
accuracy of 87%.

Interestingly, the ‘harder’ the dialect, the more
is gained by just submitting exemplary sentences
of the dialect during in-context learning, with a
much more significant jump from zero-shot sce-
nario (gpt4-zero) to the scenario with a list of sen-
tences in the dialect added (gpt4-list) on the Cer-
kno dialect (considered a ‘hard dialect’) than on the
Torlak dialect (considered an ‘easy dialect’). We
see similar further gains moving from the scenario
with the list of sentences in the dialect (gpt4-list)
to the scenario where examples of the task are
added (gpt4-task).

5 Conclusion

In this work, we benchmark three mainstream ap-
proaches for using LLMs for causal commonsense
reasoning in three South Slavic dialects: (1) zero-
shot inference with LLMs, (2) few-shot in-context
learning, and (3) supervised fine-tuning and zero-
shot cross-lingual transfer. We find that, for the
same LLM, both few-shot ICL and cross-lingual
transfer with supervised fine-tuning (with training
instances in English or in the standard language
of the target dialect) expectedly outperform zero-
shot inference with LLMs. Somewhat surprisingly,
few-shot ICL with as few as 10 in-dialect instances
tends to perform comparably to fine-tuning based
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Variant STD DIA sl sl-cer hr sr sr-tor mk
MixtralLoRA-en-last 0.815 0.615 0.82 0.52 0.82 0.87 0.71 0.75
MixtralLoRA-en-val 0.82 0.645 0.82 0.57 0.82 0.87 0.72 0.77

MixtralLoRA-x-last 0.825 0.675 0.80 0.57 0.83 0.89 0.78 0.78
MixtralLoRA-x-val 0.833 0.69 0.82 0.60 0.84 0.89 0.78 0.78

Table 4: Fine-tuning zero-shot cross-lingual transfer results (ZS-XLT) on the validation data: fine-tuning Mixtral-
Instruct 8x7B with Q-LoRA, either on English training data (en) or the training portion of the standard language
corresponding to the target dialect (x); For each of the two models (en vs. x) we report the performance of the last
checkpoint as well as the checkpoint that yields the best validation performance. We additionally provide averages
over standard datasets (STD) and dialectal datasets (DIA).

Figure 1: Test data results

on 400 instances in standard languages that are
related to the corresponding dialect. Further in-
spection reveals that the LLMs leverage the few
provided in-dialect instances to improve their un-
derstanding of the target dialect, rather than to learn
the task and its structure. Future work will in-
vestigate further recent strategies for improving
performance of LLMs for low-resource languages
and in cross-lingual transfer, including, inter alia,
checkpoint averaging in fine-tuning (Schmidt et al.,
2023a) and supervised in-context learning (Li et al.,
2023).
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6 Limitations

One of the limitations of the presented paper is the
use of closed-source models. While we decided to
include them in the analyses to be able to obtain
an insight into how well the open-source models
perform in comparison to the closed-source mod-
els, we should note that we have limited insights
to the architecture of these models and that the re-
producibility of these results might be hindered by
updates to the models that might not be communi-
cated openly.
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NLU: Transfer to low-resource languages with big
brother’s help – a benchmark and evaluation for Tur-
kic languages. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1672–1688, St. Julian’s, Malta. Association
for Computational Linguistics.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das,
and Jason Wei. 2023. Language models are multi-
lingual chain-of-thought reasoners. In The Eleventh
International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.
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A Overview of Models

The models in evaluation (see Section 3) along with
the links to access them are available in Table 5.

B Overview of Prompts

Zero-shot prompt An example from the Slove-
nian Cerkno dataset.

You will be given a task. The task definition is in
English, but the task itself is in another language.
Here is the task!

Given the premise "Muoje telu je metalu sinca
na traua.", and that we are looking for the cause of
this premise, which hypothesis is more plausible?

Hypothesis 1: "Sunce je šlu guor.".
Hypothesis 2: "Traua je bla pakuošena.".
Answer only with "1" or "2".
Answer:

Ten-shot prompt An example from the Croatian
Chakavian dataset.

You will be given a task. The task definition is in
English, but the task itself is in another language.
You are to choose the more likely hypothesis given
a premise. Take into account that we are either
looking for a cause or an effect of the premise. An-
swer only with "1" or "2". Here are some examples
of the task:
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Model Link
gpt-3.5-turbo-0125 –
gpt-4-0125-preview –
Mistral-7B-Instruct-v0.1 https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
Mistral-7B-Instruct-v0.2 https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
Mixtral-8x7B-Instruct-v0.1 https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
mT0-xxl https://huggingface.co/bigscience/mt0-xxl
aya-101 https://huggingface.co/CohereForAI/aya-101
gemma-7b-it https://huggingface.co/google/gemma-7b-it
falcon-7b-instruct https://huggingface.co/tiiuae/falcon-7b-instruct
llama-2-7b-chat https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

Table 5: Models in evaluation along with their huggingface.co links.

Example 1:
Premise: "Muški je otpra špino."
Question: "effect"
Hypothesis 1: "Školjka ot zahoda se je napunila

z oduon."
Hypothesis 2: "Oda je počela teć z mlaznici."
Answer: "2"
Example 2:
Premise: "Mlada je našla neko blago va žitar-

icah."
Question: "effect"
Hypothesis 1: "Nalila je mlieko va škudelico."
Hypothesis 2: "Je zgubila tiek."
Answer: "2"
Example 3:
...
Example 10:
Premise: "Šlovek je čuda popi na fešte."
Question: "effect"
Hypothesis 1: "Ta drugi dan ga je bolela glava."
Hypothesis 2: "Ta drugi dan mu je kapa nuos."
Answer: "1"
Now to your task!
Premise: "Moje tielo je hitalo hlat na travo."
Question: "cause"
Hypothesis 1: "Sunce je hodilo van."
Hypothesis 2: "Trava je bila pokošena."
Answer:

List prompt The ten-shot prompt, but omitting
the structure of the task in the examples, and rather
giving just samples of the language the task will be
in.

You will be given a task. The task definition is in
English, but the task itself is in another language.
Here are some samples of the language the task is
in:

Sample 1:
"Muški je otpra špino."
"Školjka ot zahoda se je napunila z oduon."

"Oda je počela teć z mlaznici."
Sample 2:
"Mlada je našla neko blago va žitaricah."
"Nalila je mlieko va škudelico."
"Je zgubila tiek."
Sample 3:
...
Sample 10:
"Šlovek je čuda popi na fešte."
"Ta drugi dan ga je bolela glava."
"Ta drugi dan mu je kapa nuos."
Now to your task! You are to choose the more

likely hypothesis given a premise. Take into ac-
count that we are either looking for a cause or an
effect of the premise. Answer only with "1" or "2".

Premise: "Moje tielo je hitalo hlat na travo."
Question: "cause"
Hypothesis 1: "Sunce je hodilo van."
Hypothesis 2: "Trava je bila pokošena."
Answer:

Task prompt The ten-shot prompt, but without
an answer provided. An example from the Croatian
Chakavian dataset.

You will be given a task. The task definition is in
English, but the task itself is in another language.
You are to choose the more likely hypothesis given
a premise. Take into account that we are either
looking for a cause or an effect of the premise. An-
swer only with "1" or "2". Here are some examples
of the task without a solution:

Example 1:
Premise: "Muški je otpra špino."
Question: "effect"
Hypothesis 1: "Školjka ot zahoda se je napunila

z oduon."
Hypothesis 2: "Oda je počela teć z mlaznici."
Example 2:
Premise: "Mlada je našla neko blago va žitar-

icah."

218



Question: "effect"
Hypothesis 1: "Nalila je mlieko va škudelico."
Hypothesis 2: "Je zgubila tiek."
Example 3:
...
Example 10:
Premise: "Šlovek je čuda popi na fešte."
Question: "effect"
Hypothesis 1: "Ta drugi dan ga je bolela glava."
Hypothesis 2: "Ta drugi dan mu je kapa nuos."
Now to your task!
Premise: "Moje tielo je hitalo hlat na travo."
Question: "cause"
Hypothesis 1: "Sunce je hodilo van."
Hypothesis 2: "Trava je bila pokošena."
Answer:
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Abstract

The choice of plausible alternatives (COPA)
task requires selecting the most plausible out-
come from two choices based on understanding
the causal relationships presented in a given
text. This paper outlines several approaches
and model adaptation strategies to the Var-
Dial 2024 DIALECT-COPA shared task, fo-
cusing on causal commonsense reasoning in
South-Slavic dialects. We utilize and evalu-
ate the GPT-4 model in combination with var-
ious prompts engineering and the Retrieval-
Augmented Generation (RAG) technique. Ini-
tially, we test and compare the performance
of GPT-4 with simple and advanced prompts
on the COPA task across three dialects: Cer-
kno, Chakavian and Torlak. Next, we enhance
prompts using the RAG technique specifically
for the Chakavian and Cerkno dialect. This in-
volves creating an extended Chakavian-English
and Cerkno-Slovene lexical dictionary and in-
tegrating it into the prompts. Our findings in-
dicate that the most complex approach, which
combines an advanced prompt with an injected
dictionary, yields the highest performance on
the DIALECT-COPA task.

1 Introduction

The choice of plausible alternatives task, intro-
duced by Roemmele et al. in 2011 (Roemmele
et al., 2011), presents a scenario where the model is
required to comprehend cause-effect relationships
from provided input and select the most plausible
outcome from two choices. This task encapsulates
various linguistic aspects, including lexical seman-
tics, syntactic structure, and world knowledge, mak-
ing it a challenging assessment for NLP systems
(Ponti et al., 2020). It is an important benchmark
in the domain of NLP, specifically designed to eval-
uate models’ abilities in causal reasoning and infer-
ence making.

In recent years, the advancement of neural net-
work architectures has led to the creation of a wide

range of neural text representation models (Babić
et al., 2020). Particularly transformer-based mod-
els like BERT (Devlin et al., 2018) and GPT (Rad-
ford et al., 2019), has significantly impacted the
landscape of NLP tasks. Models pre-trained on
extensive text corpora are commonly referred to
as Large Language Models (LLMs). Through this
process, they capture linguistic patterns and se-
mantic connections, enabling them to perform bet-
ter than traditional language models in a range of
NLP tasks. Thus, LLMs have demonstrated re-
markable performance across tasks such as text
classification (Sun et al., 2019; Balkus and Yan,
2022), sentiment analysis (Babić et al., 2021; Be-
liga et al., 2021), paraphrase detection (Vrbanec
and Meštrović, 2023), information spreading pre-
diction (Meštrović et al., 2022), machine transla-
tion (Zhu et al., 2020; Yang et al., 2020), metaphor
generation (Tong et al., 2024), question answering
(Wang et al., 2019), etc.

Evaluating the performance of LLMs in tasks
like COPA remains important to assess their true
capabilities in causal reasoning inference. Further-
more, while LLMs exhibit strong performance in
languages with abundant resources, such as En-
glish, their effectiveness decreases for small(er)
dialects of non-major and low-resource languages
(Kantharuban et al., 2023). Thus, it is important
to explore novel approaches and model adaptation
strategies that may enhance LLMs’ abilities to com-
prehend dialects.

This paper aims to study language understanding
in micro-dialects for moderately-resourced South-
Slavic languages. Precisely, we experiment with
the COPA task in Cerkno dialect (Slovenia), Chaka-
vian dialect (Croatia) and Torlak dialect (Serbia).
In addition, we evaluated some of our approaches
to COPA task on datasets in several languages: En-
glish, Slovenian, Croatian, Serbian, and Macedo-
nian language.

In this work, our focus is on examining and dif-
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ferentiating various methods specifically designed
for the DIALECT-COPA task, with a particular
emphasis on causal commonsense reasoning. The
essence of this task lies in its ability to test mod-
els on understanding causal relationships within
given scenarios, a crucial component of common-
sense reasoning. For instance, consider the premise:
"The girl found a bug in her cereal." In this case,
the DIALECT-COPA task presents two possible
effects: 1) "She poured milk in the bowl," and 2)
"She lost her appetite." The challenge for the model
is to deduce the most plausible effect of the initial
event. While the first option is a neutral action that
could occur in any context of preparing cereal, the
second option directly relates to the discovery of
a bug in the cereal, which would naturally lead to
a loss of appetite. This task not only assesses the
model’s ability to infer logical consequences from
specific events but also its capacity to navigate and
understand nuanced human reactions, thereby eval-
uating its grasp of causal commonsense reasoning
within varied contexts.

We consider and examine four distinct model
adaptation strategies of utilising GPT-4 in the
DIALECT-COPA task as follows.

1. Simple Prompt Engineering for GPT-4:
This initial method involves straightforward sim-
ple prompt engineering with GPT-4, employing an
iterative, 0-shot framework. It serves as our base-
line, testing the model’s innate ability to understand
and reason about the given dialectal inputs without
prior examples.

2. Advanced Prompt Engineering for GPT-4:
Building on the first approach, we introduce ad-
vanced prompt engineering techniques that incor-
porate explicit reasoning instructions. This method
enhances the model’s capacity for logical deduc-
tion and causal inference, aimed at improving its
performance on the task.

3. Simple Prompt Engineering with Retrieval-
Augmented Generation (RAG): The third strategy
extends the simple prompt engineering approach
by integrating the RAG technique. This imple-
mentation includes an expanded lexical database,
featuring 11,000 Chakavian and 4,000 Cerkno lexi-
cal entries, to facilitate deeper understanding and
generation capabilities in these dialects.

4. Advanced Prompt Engineering with RAG
for GPT-4: Our most sophisticated approach com-
bines advanced prompt engineering, reasoning in-
structions, and RAG (see Fig. 1). This comprehen-
sive method leverages the expanded dictionaries —

comprising 11,000 Chakavian and 4,000 Cerkno
lexical items — and integrates reasoning instruc-
tions to optimize the model’s performance on the
DIALECT-COPA task by enhancing its reasoning
capabilities and dialect understanding.

Augmenting GPT models with dialect dictionar-
ies represents a strategic enhancement aimed at
enhancing LLMs’ efficacy in dialect-rich linguis-
tic environments. This augmentation approach, by
integrating dialect-specific lexical resources into
the model’s pre-training regimen, is designed to
elevate the model’s comprehension and operational
performance across varied linguistic landscapes.
Such a strategy not only promises improvements
in understanding diverse dialects but also champi-
ons the cause of inclusivity and accuracy in natural
language processing applications.

To complement this augmentation strategy, we
incorporate a novel self-referral grading task. This
mechanism serves as an internal feedback loop, en-
abling the model to assess its own performance and
adapt more effectively to the nuances of different
dialects. This framework showcases a pioneering
blend of dialect augmentation and self-evaluation
capabilities, setting new approach for adaptability
and accuracy in processing dialectical variations
within LLMs.

2 Experiment Setup

2.1 DIALECT-COPA Shared Task

The DIALECT-COPA task, a component of the Var-
Dial 2024 shared tasks, presents a unique challenge
in understanding causal relationships within sce-
narios expressed in various South-Slavic dialects
(Ljubešić et al., 2024; Chifu et al., 2024). The
task involves selecting the most plausible outcome
from two options provided, based on the compre-
hension of causal connections embedded within
the context of these dialectal variations. This task
aims to explore and evaluate models’ capabilities in
reasoning across different South-Slavic languages
and dialects, emphasizing the nuanced linguistic
differences and their impact on reasoning abilities.

Within the task, participants are presented with
datasets containing sentences written in South-
Slavic dialects, along with adequate annotations of
sentences designed to probe the understanding of
causal relationships within these linguistic contexts.
The datasets encompass a diverse range of dialects,
namely Cerkno, Chakavian, and Torlak. This broad
representation of dialects enables a comprehensive
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Figure 1: Framework whick inlude advanced prompt engineering and Retrieval Augmented Generation using
external data incorporated in dialect dictionaries.

examination of how language variations influence
the interpretation and identification of causal con-
nections within the given scenarios. In addition, the
organizers have provided several datasets in various
languages, such as English, Slovenian, Croatian,
Serbian, and Macedonian, annotated specifically
for the COPA task. These datasets can be utilized
for training and validating the proposed models,
enhancing the robustness and versatility of the so-
lutions developed.

To address the complexities of reasoning within
dialectal contexts, participants are required to an-
alyze the provided sentences and discern the un-
derlying causal relationships. This task challenges
participants to navigate the linguistic intricacies in-
herent in South-Slavic dialects, such as variations
in vocabulary, syntax, and grammatical structures,
which may impact the interpretation of causal con-
nections. By engaging with dialectal variations,
participants have the opportunity to explore the in-
tersection of language diversity and causal reason-
ing, thereby contributing to a deeper understanding
of how linguistic differences shape cognitive pro-
cesses.

Taking the example: The girl found a bug in
her cereal. is translated in Croatian (Hr): Djevo-
jka je pronašla kukca u žitaricama., in Croatian
dialect Chakavian (Hr-Ckm) as: Mlada je našla
neko blago va žitaricah. with options: 1) Nalila
je mlijeko u zdjelicu. (Hr) and Nalila je mlieko
va škudelico. (Hr-Ckm) (She poured milk in the
bowl.), or 2) Izgubila je apetit. (Hr) Je zgubila
tiek. (Hr-Ckm) (She lost her appetite.) In this anal-
ysis, the primary challenge revolves around the
semantic ambiguity inherent in language transla-

tion, exemplified by the Croatian noun kukac and
its Chakavian dialect translation blago. The term
"blago" in Standard Croatian predominantly con-
notes "treasure" and, to a lesser extent, "cattle". It
is notably perplexing to encounter its use in the
Chakavian dialect where it assumes the meaning
"bug".

This example highlights the broader linguistic
issue of polysemy—where a single word has multi-
ple meanings depending on context—which poses
significant challenges for accurate translation and
understanding. Such ambiguities are especially pro-
nounced in dialects and regional languages, which
may not be sufficiently documented, thereby com-
plicating the task of linguistic models like Large
Language Models (LLMs) in processing and inter-
preting such data accurately. For instance, with no
data implying the meaning "bug" the reasoning is
guided in the direction of misleading translation
The girl found a treasure in her cereal. with no
meaningful connotation to the either of two causal
options, which often leads to phenomenon referred
as AI semantic hallucination. This situation under-
scores the necessity for enhanced data inclusivity
and sophisticated contextual analysis capabilities
in language processing technologies.

2.2 Datsets
We use several available datasets annotated for the
COPA task: (i) COPA-HR for Croatian language
(Ljubešić, 2021), (ii) COPA-SR for Serbian lan-
guage (Ljubešić et al., 2022b) and (iii) COPA-MK
for Macedonian language (Ljubešić et al., 2022a).
In addition, we also used data sets for the corre-
sponding dialects, Chakavian from Croatian, Cer-
kno from Slovenian and Torlak from Serbian, as
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well as a data set for the English language.
All datasets use the Latin alphabet, but for the

Macedonian and Serbian languages, as well as for
the Torlak dialect, we used a dataset written in
Cyrillic. The statistics of the distribution of exam-
ples into sets for training, validation and testing are
shown in the Table 1.

Table 1: Datasets distribution for languages and South-
Slavic dialects.

Lang./Dialect Train Val. Test

English 400 100 -
Slovenian 400 100 -
Croatian 400 100 -
Serbian 400 100 -
Macedonian 400 100 -
Cerkno Dialect 400 100 500
Chakavian Dialect 400 100 500
Torlak Dialect 400 100 500

2.3 Prompt Engineering

Prompt engineering has emerged as a valuable tech-
nique for improving the effectiveness of LLMs
(Reynolds and McDonell, 2021). This method
leverages task-specific instructions to expand
model capabilities without altering the core model
parameters.

In this research, we explore various strategies
to formulate prompts to Generative Pre-trained
Transformer 4 (GPT-4) (OpenAI et al., 2023) for
the COPA task. In the first step, we experiment
with the 0-shot learning approach defining a simple
prompt and iterating it across all examples in the
datasets, for all languages. Here is the prompt used
for generating responses in the simple version.

This is a reasoning task
with statement in {language} language.
Given the PREMISE = {premise}
please determine {question} of the PREMISE,
choosing between two statements
offered in choices:
CHOICE1 = {choice1}
or
CHOICE2 = {choice2}
Format response in JSON format
with keys:
index:{index}, label: integer(range: 0-1).

Next, we pursue the 0-shot learning approach
further by providing more comprehensive instruc-
tions that incorporates reasoning on the causal re-
lationships within the given sentences. We extend

the previous prompt (simple prompt) to advanced
prompt with a following instruction:

This is statement in {language}.
Based on the PREMISE = {premise}
please determine what could be
the plausible {"cause"|"effect"}
of the PREMISE,
choosing between two choices:
CHOICE1 = {choice1}
or
CHOICE2 = {choice2}
Reason about this problem step by step.

Again, we iterate the advanced prompt across all
examples in the datasets, for all languages.

In this approach we were able to analyze the rea-
soning process in the LLM, as well as the elements
guiding the erroneous decision in the system. For
instance, in the example with the girl and the bug
in her cereal, the reasoning in English is correct:

"Finding a bug in one’s cereal is generally an
unpleasant and unexpected experience that could
lead to a loss of appetite. The presence of the
bug would likely overshadow the normal routine of
adding milk to the cereal, as the discovery would be
off-putting and could cause disgust. Therefore, it
is more plausible that the effect of finding a bug in
her cereal would be that she lost her appetite rather
than her continuing with the meal preparation by
pouring milk into the bowl."

However, the Chakavian reasoning explanation
is plagued with wrong translation of nouns bug
(Chak. blago) and appetite (Chak. tiek). The GPT4
reasoning is as follows: "The premise ’Mlada je
našla neko blago va žitaricah’ translates to ’The
young woman found some treasure in the cereals’.
Neither of the choices directly relate to finding
treasure in cereals. However, CHOICE_0 ’Nalila
je mlieko va škudelico’ translates to ’She poured
milk into a bowl’, which could be indirectly related
to cereals as one might pour milk into a bowl of
cereal. CHOICE_1 ’Je zgubila tiek’ does not seem
to be related to the premise as it translates to ’She
lost a thread’, which has no apparent connection to
finding treasure or cereals. Therefore, CHOICE_0
is selected as it has a weak indirect connection to
the premise.".

Consequently, without a comprehensive resolu-
tion of the lexical concepts embedded within the
sentence, the effectiveness of the reasoning prompt
in facilitating accurate comprehension and analy-
sis is significantly diminished. This highlights the
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critical need for precise semantic interpretation to
ensure that cognitive processing mechanisms can
effectively engage with and extrapolate meaningful
insights from the textual content presented.

2.4 Retrieval-Augmented Generation

In the next step, we propose an approach that com-
bines prompts using GPT-4 and RAG techniques
for dialect processing. RAG is a general-purpose
fine-tuning technique which combines pre-trained
parametric and non-parametric memory for lan-
guage generation (Lewis et al., 2020). This ap-
proach has shown promise through the integration
of knowledge from external databases, resulting in
improved accuracy and credibility of the models,
especially for tasks requiring substantial domain
knowledge (Gao et al., 2023). It also facilitates
ongoing knowledge updates and the incorporation
of domain-specific information.

Within the framework of the DIALECT-COPA
task, we utilized an external knowledge base,
specifically, a dictionary of the Chakavian dialect
and a dictionary of the Cerkno dialect (we could
not find a freely available version of the Torlak di-
alect dictionary). By including dialect dictionaries
as external knowledge into the model we enhance
our model’s understanding of this linguistic variety.

The cornerstone of the Chakavian dictionary dic-
tionary is the work of Cvjetana Miletić (Miletić,
2019), which catalogues approximately 10,800
words, predominantly from the Kastav region in
Croatia. In addition, an online version of the Cer-
kno dictionary called Ana Mičken’s zbíerka crk-
lajnskih besít1, was used as a source of external
knowledge for the Cerkno dialect. This dictionary
contains about 4000 lemmas with corresponding
descriptions and some linguistic examples of us-
age.

In dialectal dictionaries, in addition to lemmas
and corresponding definitions, we also found deter-
minants about the meaning and grammatical cate-
gory of words. However, we expanded the dictio-
naries in order to offer as much external knowledge
as possible to the model. Thus, we expanded the
dictionaries to have the following determinants:
lemmas in original dialectal form, lemmas trans-
lated into English, examples of use, examples of
use translated into English, definitions, expanded
definitions and suggestions of use offered by GPT.

We thus proceeded with broadening definitions

1https://www2.arnes.si/ supmrazp/zbirkacb.htm

and examples of usage within the Chakavian and
Cerkno contexts, as well as facilitating automatic
translations into English. The prompt used for ex-
panding the dictionary examples was structured as
follows:

Given a dictionary entry "{line}",
expand the definition and provide usage
examples in {language_dict},
with the source lexeme in {language_source}.
Format the response in JSON, including:
'definition': A string containing
the expanded definition,
'GPT_suggestion_of_use':
Two examples of usage in {language_source},
'source_nd_translated':
The source lexeme translated into English,
'example_of_use_translated':
Usage examples translated into English.

This methodology was designed to enrich the
dictionary and augment GPT-4’s ability to compre-
hend and utilize terms and expressions unique to
the Chakavian dialect.

Dictionaries containing linguistic data from the
Croatian Chakavian and Slovenian Cerkno dialect
were processed using a Retrieval-Augmented Gen-
eration (RAG) approach. The process began by
transforming data into a CSV format for ease of
manipulation and analysis. Following data importa-
tion, specialized Recursive Character Text Splitter
tool in Langchain library was employed to segment
the text into manageable parts, enhancing the han-
dling and vectorization of the data, using the chunk
size 200 characters with 50 characters overlap.

The segmented data was then vectorized using
an embedding function that facilitated the creation
of a persistent vector store in a Chroma database.
This vector store serves as a retriever, enabling
the efficient retrieval of vectorized text segments
based on their semantic content. This setup was
designed for integrating the enriched dictionaries
with advanced language models, thereby allowing
for more contextually aware processing and gener-
ation of text based on the Chakavian and Cerkno
dialect, respectively.

Enriched dictionaries were used as context in
conjunction with the first two previously described
prompt strategies (simple prompt engineering strat-
egy and advanced prompt engineering strategy) by
inserting the whole enriched dictionary into the
prompt.

This is a reasoning task
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with statement in {language} language.
Using aditional knowledge
about the {language} language
from the provided dictionary in the
{context}, answer the following
Question:{question}

By introducing retrieval augmentation approach,
we further evaluated the model’s performance on
the DIALECT-COPA task.

In addition to the augmentation approach, we
introduced a self-referential grading aspect into
the prompt. This mechanism establishes an in-
ternal feedback loop, empowering the model to
autonomously evaluate its own performance. By
integrating this self-referral aspect, the proposed ap-
proach provides a deeper insight into the reasoning
procedures within the DIALECT-COPA task. For
this purpose, we define a specific prompt in which
we instruct the model to translate the premise and
choices into the English language using the dialect
dictionary. And then we instruct the model to pro-
vide a reasoning for the choice it made. The prompt
is formulated as follows:

Translate the premise and choices using
the dictionary knowledge in the {context},
especially if the connection of the
premises and choices is apparently weak,
or you do not understand the phrase or
word and the choices.
Provide a reasoning for the choice
you made.
Assess your certainty in a range 0-1.
Format response in JSON format with
keys: index:{index},
label: integer(range: 0-1),
reasoning: str,
certainty: float (range:0-1).

The inclusion of a self-referential grading mecha-
nism called certainty within the prompt is using the
model’s autonomous evaluative capabilities with
a potential to elevate its ability to introspect and
rationalize decision-making processes. Although
we did not proceed with the feedback mechanisms
based on these values, this approach can be further
developed as a framework for the development of
more self-aware and adaptive language processing
systems in future linguistic research.

3 Results

The initial measurement for English, Macedonian,
Serbian, Slovenian, and Croatian was performed

on the training data2 to serve as an orientation and
provide an initial insight into the success of the
GPT-4 0-shot approach. The performance of the
dialects (Chakavian, Cerkno and Torlak) was also
measured on available training datasets. Thus, the
baseline performance of the GPT-4 model was ob-
tained for all languages in their standard variant, as
well as the baseline values for 3 dialects.

The left part of Table 2 shows the model ac-
curacy results for the GPT-4 0-shot with simple
prompt (left) and GPT-4 0-shot with advanced
prompt framework (right). The results are shown
in 3 columns in both cases. The first column con-
tains the measured values for the classification task
where the question is cause, the second column
shows the accuracy when the question is effect, and
the third column presents a question-independent
accuracy (i.e. accuracy on average).

As expected, in the 0-shot - simple prompt vari-
ant, but also in the 0-shot - advanced prompt vari-
ant demanding iterative reasoning, the model for
the English language achieves the highest accuracy
(96% and 98.3% on average, respectively). This
is expected given the large amount of English lan-
guage data available to train the model in contrast
to the availability of data in other languages. Unex-
pected, the success of the model in Slovenian and
English is identical in the 0-shot - simple prompt
variant.

If we consider the 0-shot - simple prompt cases
in more detail (left part of the Table 2), two ob-
served facts are interesting. First, the other lan-
guages are not far behind the results for English
and Slovenian. English, and Slovenian reaches an
accuracy on average 96%, while all other languages
are below that, but none are below 91%. They are
behind by a small number of percentage points.
Second, the differences in results with respect to
the examination of cause or effect do not oscillate
drastically. The differences are up to 4 percent-
age points in all cases, except for the Croatian and
Serbian, where the deviation is approximately 6 or
8%. Third, also expected, the results for dialects
are significantly worse than the results of the same
languages in standard varieties. 4% worse for Ser-
bian, 18.3% for Croatian, and even 31.7% for the
case of Slovenian.

Unexpectedly, slightly worse results are
achieved in the case where the baseline for GPT-4

2training and validation data are available at
https://github.com/clarinsi/dialect-copa/?tab=readme-ov-file
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Language Dialect Alphabet GPT-4 0-shot - simple GPT-4 0-shot - advanced ∆

Cause Effect Avg Cause Effect Avg

ENG - Latin .98 .941 .96 .985 .98 .983 +.0225
MCD - Cyrillic .934 .896 .915 .894 .931 .913 -.0025
SRB - Cyrillic .965 .881 .923 .939 .936 .938 +.015
SRB Torlak Cyrillic .894 .871 .883 .828 .881 .855 -.0275
SLO - Latin .98 .941 .96 .904 .921 .913 -.0475
SLO Cerkno Latin .621 .663 .643 .581 .604 .593 -.05
CRO - Latin .97 .916 .943 .965 .901 .933 -.01
CRO Chakavian Latin .748 .772 .76 .677 .629 .653 -.1075

Table 2: Achieved results in terms of accuracy for GPT-4 0-shot - simple promt (left) and GPT-4 0-shot - advanced
prompt (right) in terms of accuracy representing the baselines for English, Macedonian, Serbian, Slovenian and
Croatian as well as Torlak, Cerkno and Chakavian dialects. The delta column (∆) indicates the average change in
accuracy, and refers to the average difference in accuracy achieved by the andvanced and simple prompts.

0-shot are prompted with more sophisticated
prompt (right part of the Table 2) against plain
0-shot. This is the case for Macedonian (-0.2%),
Croatian (-1%), and Slovenian (-4.7%). However,
the results are favorable for Serbian (+1.5%
improvement) and English (+2.3% improvement)
when sophisticated reasoning is prompted. Al-
though small, a positive change in the performance
of the advanced prompt relative to the simple
prompt is evident for English (+.0225) and Serbian
(+.015) in the last column of the Table 2, where ∆
indicates the average accuracy difference between
the advanced and simple prompts. A positive value
indicates the advantage of advanced prompts over
simple prompts.

The preliminary results and findings from this
study provide initial evidence that further investi-
gation into sophisticated causal reasoning is war-
ranted, given its modest improvements in accu-
racy. This suggests potential benefits that could
enhance understanding and application in related
fields. Moreover, it gave us a strong indication
that the model needs an external source of di-
alect knowledge and the need to apply the RAG
paradigm to augment the model’s ability to more ef-
ficiently handle a dialect it was not initially trained
for.

Therefore, in Table 3 experimental results based
on advanced prompt engineering which includes
iterative reasoning and the RAG approach were
presented only for dialects. Test data prepared for
the DIALECT-COPA shared task were used (Chifu
et al., 2024; Ljubešić et al., 2024) .

Results in terms of accuracy for upgrading the

Approach Cer. Cha. Tor.
GPT-4 0-shot-simple .664 .774 .894
GPT-4 0-shot-advanc. .608 .664 .806
GPT-4-augm-simple .688 .76 -
GPT-4-augm-advanc. .708 .764 -

Table 3: Results in terms of accuracy for 4 different
approaches: (1) GPT-4 0-shot - simple promt, (2) GPT-
4 0-shot - advanced prompt, (3) GPT-4 augmented with
external knowledge for Cerkno and Chakavian dialect,
and (4) GPT-4 augmented with external knowledge for
Cerkno and Chakavian dialect and advanced prompt
engineering.

basic 0-shot technique with an iterative reasoning
prompt (GPT-4 0-shot-advanced) did not yield fruit-
ful results. The success of such an approach for all
dialects recorded a negative effect, namely -5.6%
for Cerkno, -8.8% for Torlak and -11% for the
Chakavian dialect.

Augmentation of the model with external knowl-
edge (GPT-4-augm-simple approach) from the di-
alect dictionaries for Chakavian and Cerkno man-
aged to improve the accuracy of Cerkno to 68.8%,
which is 2.4% better than the initial 0-shot. How-
ever, this was not the case for the Chakavian dialect.
One possible reason for this outcome is the incom-
pleteness of the dictionary and lack of polysemous
definitions. For example, there is no relation of
the Chakavian word blago to suggested English
equivalent bug. Therefore, one way to improve this
process would require a better dictionary resources,
or even a different way of representing the poly-
semous nature of lexical networks, such as using
lexical graphs (Ban Kirigin et al., 2022; Perak and
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Kirigin, 2023).
Finally, with RAG and prompt engineering

that requires sophisticated reasoning (GPT-4-augm-
advanced), progress is made in both dialects. With
such an approach, Chakavian still lags behind the
basic 0-shot approach, but Cerkno reaches 70.8%,
which is 4.4% more successful than the initial 0-
shot.

Experimental findings suggest that the advanced
prompt in our study tends to underperform when
dealing with languages and dialects that are less
familiar to the GPT-4 model. This observation
is further substantiated by the statistical measure
of Pearson’s correlation, which explores the rela-
tionship between the simple prompt and the delta
(∆)3. The correlations for all languages are nega-
tive. The most pronounced values are observed for
English with statistically significant correlations
(r = −.7655, p = 3.1040 × 10−78, α = .05) and
Serbian (r = −.6202, p = 6.9432 × 10−44, α =
.05), which is expected given their positive aver-
age delta values (refer to the rightmost column in
Table 2). Correlation values are also negative for
all other languages, but significantly lower, and ex-
tremely low for dialects (although for Chakavian
and Cerkno are not statistically significant).

4 Conclusion

In this paper, we propose and compare several
model adaptation strategies for DIALECT-COPA
task. We combine prompt engineering and RAG
techniques to enhance the dialect understanding of
GPT-4 model.

Research indicated that sophisticated causal rea-
soning has slight advantages in accuracy, suggest-
ing the need for further investigation. The model
requires external dialect knowledge and the ap-
plication of the RAG paradigm for more efficient
handling of dialects for which it was not initially
trained. The enhancement of the basic 0-shot
method with iterative reasoning did not produce
significant results, negatively impacting Cerkno
and Chakavian dialects. The model’s augmenta-
tion with external knowledge from Chakavian and
Cerkno dialect dictionaries increased Cerkno’s ac-
curacy to 68.8%, a 2.4% improvement over the
initial 0-shot. Lastly, employing RAG and prompt
engineering that demands complex reasoning led

3Delta (∆) represents an absolute value that is calculated
as the difference in accuracy achieved by a advanced and
simple prompt.

to improvements in both dialects. Although Chaka-
vian still trails the basic 0-shot method, Cerkno
achieves an accuracy of 70.8%, marking a 4.4%
improvement over the initial 0-shot.

The top achievements of our UNIRI team, as
detailed in this paper, hold the second position
overall when oposed with the outcomes reported
by other teams in the DIALECT-COPA Task on
Causal Commonsense Reasoning, a part of the Var-
Dial Evaluation Campaign 2024. Specifically, for
the Cerkno dialect, we achieved the second-best
result using a simple prompt, with an accuracy
of .774. In the case of the Chacavian dialect, we
obtained the third-best result by combining an ad-
vanced prompt with reasoning and the RAG ap-
proach, achieving an accuracy of .708.

The main contribution of this paper is the pro-
posed approach, which utilizes prompt engineering
alongside the RAG technique. In this method, RAG
facilitates enhancements by integrating Chakavian
and Cerkno dictionaries into the prompt. During
testing, we showcased that prompts augmented
with RAG outperform those without RAG on the
Cerkno test dataset. To the best of our knowledge,
this represents the first attempt to integrate dialect
dictionaries into RAG with the objective of address-
ing the COPA task focused on causal commonsense
reasoning in South-Slavic dialects.

Future work will be concentrated on extend-
ing these methods to encompass other dialects
and tasks akin to COPA. This includes exploring
the adaptation of similar approaches to additional
South-Slavic dialects and extending the application
to a broader spectrum of tasks requiring nuanced
linguistic understanding and reasoning abilities.
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Čibej, Stefan Milosavljević, Peter Rupnik, and Taja
Kuzman. 2024. DIALECT-COPA: Extending the
standard translations of the COPA causal common-
sense reasoning dataset to south slavic dialects. In
Eleventh Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial 2024), Mexico City,
Mexico. Association for Computational Linguistics.

Ana Meštrović, Milan Petrović, and Slobodan Beliga.
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Abstract

We present a one-shot prompting approach to
multi-class classification for similar language
identification with an off-the-shelf pre-trained
large language model that is not particularly
trained or tuned for the language identifica-
tion task. Without post-training or fine-tuning
the model, we simply include one example per
class when prompting the model and surpris-
ingly the model is able to generate the language
and locale labels accordingly.

1 Introduction

Recent works validated the idea of using language
models generation performs well in classification
task (Li et al., 2018a; Thant and Nwet, 2020; Hadar
and Shmueli, 2021) and generation models can also
perform competitively as zero-shot text-classifiers
(Yin et al., 2019; Meng et al., 2022; Sun et al., 2023;
Wang et al., 2023). Particular to language identifica-
tion, Gillin (2022) have trained an encoder-decoder
model for the French Cross-Domain Dialect Identi-
fication (FDI) dataset (Găman et al., 2023) for the
VarDial 2022 shared task (Aepli et al., 2022a).1

Previously one might find it appealing to train or
fine-tune a model to achieve state-of-the-art NLP
models for specific tasks, but recent advancement
in large language models and prompt-based solu-
tions have made us think,

What if we just prompt a popular LLM
and make it work like a classifier without
tuning it?

To test the idea of just prompting a pre-trained
model for language identification, we evaluated the
approach on the English, French, Portuguese and
Spanish subset of the DSL Multi-label classifica-
tion of similar languages (DSL-ML) shared task

1The general idea is to generate language labels as how a
language model will generate the next token/word in natural
text (Li et al., 2018b,c).

at VarDial 2024 (Chifu et al., 2024).2 A few of
example inputs and outputs of the DSL-ML test
data are as follows:

[IN]: It took a lifetime, three trips to the moon
and the downfall of communism to make it hap-
pen...

[OUT]: EN-GB,EN-US

[IN]: ...as an artist, there is no shortage of
colour in my life.

[OUT]: EN-GB

[IN]: ...the annual pop culture event bringing
colorful cosplayers, entertainment aficionados
and comic book lovers together under one roof...

[OUT]: EN-US

The English varieties contains 3 classes, EN-US,
EN-GB or both EN-GB,EN-US. The Portuguese and
Spanish varieties also have 3 classes. Respectively,
PT-BR, PT-PT and PT-BR,PT-PT for Portuguese
from Brazil, Portugal or both and ES-AR, ES-ES
and ES-AR,ES-ES for Spanish from Argentina,
Spain or both.

For the French varieties, the single label classes
comprises the Belgium, Canada, Switzerland and
France, viz. FR-BE, FR-CA, FR-CH and FR-FR. And
the combinations of multi-labels may come from
either of the labels, e.g. FR-CA,FR-CH,FR-FR to
represent texts that could be in classified as ei-
ther Canadian, Swiss and French varieties. Also,
we note that the input text from the French vari-
eties subtask contains masked named-entities rep-
resented by the $NE$ tokens.

2https://sites.google.com/view/vardial-2022/
shared-tasks
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2 TL;DR (Experimental Setup)

We use the Mistral instruct model with 7 billion
parameters (Mistral-7B) (Jiang et al., 2023) for all
our experiments .3

Off the shelf, we did not post-train, i.e. continue
training the language model generation with raw
monolingual texts, nor fine-tune the model with
language identification datasets.

Without using the training data, we only selected
one example per class from each language family
from the development dataset provided by the DSL-
ML shared task organizers. These examples were
used as one-shot prompt and prepended to texts in
the test sets.

For example, given an example from each class
in the English development set from Section 1 and
a input text from the test set:

[IN]: Conducting an amateur orchestra and per-
forming with it as a soloist are parts of the learn-
ing process for young professionals.

We process the above to put them in the format
that the Mistral-7B model expects, e.g.

<s>[INST] It took a lifetime... [/INST]
EN-GB,EN-US</s>
<s>[INST] ...as an artist... [/INST]
EN-GB</s>
<s>[INST] ...the annual pop culture... [/INST]
EN-US</s>
[INST] Conducting an amateur orchestra... [/INST]

And we expected the model to generate EN-US,
EN-GB or EN-GB,EN-US as a continuation to the
examples and input sentence we entered. We will
refer to this as one-shot prompting for the rest of
the paper.4 We repeated the one-shot prompting
approach for the French, Portuguese and Spanish
test sets (Zampieri et al., 2024, 2023; Găman et al.,
2023; Bernier-colborne et al., 2023).

2.1 One-shot Prompting with Instructions
Additionally, for the English variety test set (Tan
et al., 2014a), we experimented with a instruction
prompt where we prepend the following instruc-
tions before the examples and the test instance, aka.
instructed one-shot prompting.

3https://huggingface.co/mistralai/Mistral-7
B-v0.1

4We acknowledge that the terminology of "*-shot" has
not been defined formally in previous literature, e.g. https:
//datascience.stackexchange.com/q/120637/122. In
this case, we refer to one-shot as giving the model one example
per class as context before requiring it to infer the label given
the test instance.

Label the following text as (i) EN-US if it's
in United States English or (ii) EN-GB if it's
in United Kingdom English or (iii) EN-US,EN-GB
if it can be both in United States or
United Kingdom. <s>[INST] ...[/INST]... </s>...
[INST] Conducting an amateur orchestra... [/INST]

3 Results

Lang Train Dev Test
EN 75.1 74.8 74.5
ES 21.2 20.6 21.3
PT 20.0 20.6 18.5
FR - 15.6 12.9

Table 1: Weighted Averaged F1 Score of One-shot
Prompting

Table 1 presents the weighted F1 scores of the
one-shot prompting without instructions. In addi-
tion to the test set scores, we report the performance
of the results of classifying the training (Train) and
development (Dev) of the one-shot prompting ap-
proach.

We note that these numbers for the test set F1
scores differ from the ones reported in the offi-
cial shared task findings papers (Chifu et al., 2024)
since we didn’t do any special label processing
to compute partial matches for multi-class true la-
bels before computing the weighted F1-score with
sklearn.5

Split One-shot Prompt-shot
Train 75.1 69.9
Dev 74.8 68.7
Test 74.5 74.8

Table 2: Results of English Variety Classification be-
tween One-shot Prompting without (One-shot) vs with
Instructions (Prompt-shot)

Table 2 reports the results of the English variety
classification with and without the pre-example in-
struction prompt as described in Section 2.1. The
one-shot prompts with instructions consistently per-
forms worse on the training and development sets
as compared to the one-shot prompting without in-
structions. However, one-shot prompting performs
almost equally on F1-scores on the test sets with or
without instructions.

5https://scikit-learn.org/stable/modules/gene
rated/sklearn.metrics.precision_recall_fscore_su
pport.html
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4 Related Works

As language coverage of identification systems in-
creases (Jauhiainen et al., 2019; Agarwal et al.,
2023; Burchell et al., 2023), language identification
between similar languages, dialects and national
varieties remains an active and challenging task in
NLP (Tiedemann and Ljubešić, 2012; Gaman et al.,
2020; Bouamor et al., 2019; Chakravarthi et al.,
2021; Aepli et al., 2022b, 2023).

Early studies on language varieties classification
created annotations through proxy signals such us-
ing the top-level domain of the text source’s web-
site as the locale label (Tan et al., 2014b). However,
datasets with locale labels created through proxy
signals are often unreliable since there might be
no linguistics marker that distinguish one language
variety to another language variety (Zampieri et al.,
2014; Ács et al., 2015; Goutte et al., 2016).

Zampieri et al. (2023) and Bernier-colborne et al.
(2023) redefined the language variety identification
task as a multi-label task instead of assigning only
a single language variety to each text.

5 Conclusion

By prompting the Mistral-7B model, which was not
particularly known to be trained on language identi-
fication, we were able to make it classify language
varieties to some extent. However, like many large
language models, it is largely English-centric and
we observed that the English variety classification
performance far exceeds the French, Portuguese or
Spanish varieties classification task. While a lan-
guage model ‘open source’ its model parameters,
the lack of transparency in what goes into train-
ing the model makes its usage a grey-box probing
exercise.6

References
Judit Ács, László Grad-Gyenge, and Thiago Bruno Ro-

drigues de Rezende Oliveira. 2015. A two-level clas-
sifier for discriminating similar languages. In Pro-
ceedings of the Joint Workshop on Language Tech-
nology for Closely Related Languages, Varieties and
Dialects, pages 73–77, Hissar, Bulgaria. Association
for Computational Linguistics.

Noëmi Aepli, Antonios Anastasopoulos, Adrian Chifu,
William Domingues, Fahim Faisal, Mihaela Găman,
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Abstract

The VLP team participated in the DSL-ML
shared task of the VarDial 2024 workshop
which aims to distinguish texts in similar lan-
guages. This paper presents our approach to
solving the problem and discusses our experi-
mental and official results. We propose to inte-
grate semantics-aware word embeddings which
are learned from ConceptNet into a bidirec-
tional long short-term memory network. This
approach achieves good performance – our sys-
tem is ranked in the top two or three of the best
performing teams for the task.

1 Introduction

Discriminating between similar languages (e.g.,
Croatian and Serbian) and language varieties (e.g.,
Brazilian and European Portuguese) has been a
popular research topic related to the study of di-
atopic language variation from a computational
perspective (Aepli et al., 2023). In the DSL-ML
shared tasks of The Eleventh Workshop on NLP
for Similar Languages, Varieties and Dialects (Var-
Dial) 2024 (Chifu et al., 2024), participating teams
are expected to provide multi-label annotations
for the instances of datasets from five different
macro-languages and with different types of multi-
label annotations, including BCMS (Bosnian, Croa-
tian, Montenegrin, Serbian) (Rupnik et al., 2023;
Miletić and Miletić, 2024), EN (American and
British English), ES (Argentinian and Peninsu-
lar Spanish), Portuguese (Brazilian and European
Portuguese) (Zampieri et al., 2024), and FR (Bel-
gian, Canadian, French and Swiss French) (Găman
et al., 2023; Tan et al., 2014; Bernier-Colborne
et al., 2023). Participating systems are evaluated
on macro-average F1 for each test set, and aggre-
gated over the five test sets.

This paper presents an approach to improving
the performance of our participating system in this
shared task. The main idea of our approach is the

integration of semantic word embeddings which are
learned from the ConceptNet knowledge graph into
a recurrent neural network model. The ConceptNet
word embeddings are readily available for multiple
languages that are concerned with this task.

The paper is structured as follows. Section 2
describes our method. Section 3 presents and
discusses empirical results on the development
datasets and on the private test set as announced by
the shared task organizers. Section 4 concludes the
paper and outlines several possible directions for
future work.

2 Methods

In this shared task, participants are expected to
provide multi-label annotations for the test set in-
stances. There are two tracks. In the closed track,
systems may only use the labeled training data
provided for the task. The use of pre-trained mod-
els is allowed as long as they are not specifically
pre-trained or fine-tuned on language identifica-
tion tasks. In the open track, systems may use any
data and pre-trained models, except the prohibited
datasets listed in the language description. Our sys-
tem is essentially in the closed track since we do
not use any external training data and the Concept-
Net embeddings are not specifically pre-trained or
fine-tuned on any language identification task.

We aim to develop a method which does not
utilize pre-trained models for this task. Thus, we
use bidirectional long short-term memory networks
(BiLSTMs) for learning text representation.

2.1 Bidirectional LSTM Model

Let xj be the embedding of token wj and RNNθ(x)
be an abstraction of a LSTM that processes the
sequence of vectors x = [x1,x2, . . . ,xn], then
output for xj is defined as v⃗j := RNNl

θ(xj) ⊕
RNNr

θ(xj). We consider multi-layer BiLSTMs
where the output v⃗kj of the k-th layer is fed as input
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to the (k + 1)-th layer. In our experiments, each
token embedding xj is either initialized randomly
or is a static pre-trained word embedding provided
by ConceptNet Numberbatch as presented in the
next subsection.

For decoding, we use a fully-connected feed-
forward network which is fed the output of the last
BiLSTM. The output is simply computed by a soft-
max layer as common in multiway classification:

P (yj |v⃗j) = softmax(Wv⃗j + b⃗),

where W and b are parameter matrices. The overall
network architecture that we use is as follows:

EmbeddingLayer(w) → stacked BiLSTM(h)
→ Dense(d, ReLu)→ Dense(softmax),

where the hyperparameters w, h and d are the word
embedding size, the recurrent hidden size and the
dense hidden size, which are tuned on the develop-
ment datasets for the best performance.

2.2 ConceptNet Numberbatch
ConceptNet is a freely-available semantic network,
designed to help computers understand the mean-
ings of words that people use (Speer et al., 2017)1.
Figure 1 illustrates an excerpt of the concept of
ConceptNet. It has been used to create word em-
beddings – representations of word meanings as
vectors, similar to word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), or fastText (Bo-
janowski et al., 2016). These word embeddings are
free, multilingual, aligned across languages, and
designed to avoid representing harmful stereotypes.
Their performance at word similarity, within and
across languages, was shown to be state of the art
at SemEval 2017 (Speer and Lowry-Duda, 2017).

ConceptNet Numberbatch is a set of semantic
vectors which are trained on ConceptNet that can
be used directly as a representation of word mean-
ings. These embeddings benefit from the fact that
they have semi-structured, common sense knowl-
edge from ConceptNet, giving them a way to learn
about words that isn’t just observing them in con-
text. Unlike most embeddings, ConceptNet Num-
berbatch is multilingual from the ground up. Words
in different languages share a common semantic
space, and that semantic space is informed by all
of the languages. These appealing properties of
ConceptNet embeddings make them suitable for
multilingual processing tasks which deal with lexi-
cal semantics. Discrete structures of ConceptNet

1https://conceptnet.io/

ConceptNet semantic network

let computer understand what
people already know

knowledge graph commonsense
knowledge

natural language
understanding

word embedding

artificial
intelligence

motivated by goal

is a

has

is used for

part of

part of

part of

Figure 1: An illustration of ConceptNet in graph.

Language Training Dev. Test
BCMS 368 122 123
EN 2,097 599 300
ES 3,467 989 495
FR 340,363 17,090 12,000
PT 3,467 991 495

Table 1: Statistics of the datasets used in the shared task.

have been recently exploited to improve natural
language inference (Le-Hong and Cambria, 2023)
and dependency parsing (Le-Hong and Cambria,
2024). In this work, we demonstrate that Concept-
Net Numberbatch is also helpful in the problem of
similar languages classification.

3 Results

3.1 Datasets

Some statistics of the five datasets of the DSL-
ML-2024 shared task are given in Table 1. Some
observations about the datasets are as follows.

First, the BCMS dataset contains texts in
Bosnian, Croatian, Montenegrin, Serbian. There
are no multi-label samples in the training split of
this dataset but multi-label samples are present in
the development and test splits. The size of this
dataset is quite small but its sample text is often
very long2. These properties make supervised mod-
els less accurate. Second, while the English and
Portuguese datasets are of the same size, the French
training dataset is about 100 times larger. This
makes the training of French models much more
time consuming.

2The longest training sample has 159,440 characters.
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3.2 Experimental Settings

We carry out two experiments. In the first experi-
ment, the model is applied on randomly initialized
word embeddings which are fine-tuned on the train-
ing set. This experiment allows us to estimate the
performance that a purely supervised learning sys-
tem can achieve. In the second experiment, the
same model is applied on the ConceptNet embed-
dings. This experiment investigates the advantage
of using semantics-aware embeddings in detecting
similar languages in a multilingual context. All the
models have the same training objective, which is
to set the score of the correct language label above
the scores of incorrect ones. We use the common
cross-entropy loss to minimize the objective func-
tion over the training data. This correlates with
maximizing the number of correct predictions in
the predicted outputs. Note that we consider each
target label as atomic; for example, “EN-GB,EN-
US” is considered a single label instead of two
labels “EN-GB” and “EN-US”3.

The ConceptNet Numberbatch word embed-
dings are freely available for download from
the ConceptNet open data project4; we use the
19.08 version, numberbatch-en-19.08.txt.gz for En-
glish and numberbatch-19.08.txt.gz for multilin-
gual word vectors, each also has 300 dimensions.

Since the model is trained in an end-to-end fash-
ion, the gradients of the entire network, including
the embedding matrices for tokens with respect
to the sum of the losses are computed using the
backpropagation algorithm. We perform multiple
training epochs, using early stopping – the train-
ing process is stopped when the accuracy does not
increase after three consecutive epochs on the de-
velopment dataset. The maximal sequence length
of each sentence is set to 40 tokens5. The models
are all trained by the Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 5 × 10−5. The
batch size is set to 326. On each dataset, we run
a set of experiments with a different number of
hidden units in each recurrent layer or in the dense
layer (cf. subsection 3.4). Each experiment is run
five times, its results are averaged for reporting.

3We have not tried any multi-label classification method in
this task; the problem is considered multi-class classification.

4ConceptNet Numberbatch: https://github.com/
commonsense/conceptnet-numberbatch

5This threshold is validated on the training split of the
English dataset where 84.07% of samples are ≤ 40 tokens.

6All models are implemented in the Scala programming
language using the BigDL library.
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Figure 2: Maximal performance of the LSTM-r model
with respect to the word embedding size and the re-
current size on the English training and development
sets.

3.3 Evaluation Metrics

The organizers of this task provide an evaluation
script and a baseline system which uses tf-idf-
weighted character-level and word-level n-gram
features in a linear SVM classifier7. The offi-
cial scoring script provides per-class F1-scores,
weighted and macro-averaged F1-scores. However,
during the development stage, we did not use this
script to evaluate our models; we used the common
accuracy score on the training set and development
set when validating the models. Despite of not be-
ing a good score for evaluating imbalanced datasets,
this metric is found to be effective in model tuning.

3.4 Results

In this subsection, we first present the performance
of our models on the development datasets. We
then report the performance on the test datasets.
We carried out the same experiments for all the
languages. For brevity, we report only the process
on the English dataset.

In the simple LSTM-r model where the word em-
beddings are initialized randomly, we vary the word
embedding size w in the range [64, 100, 200, 300]
and the recurrent size h in the range [100, 200, 300].
The dense hidden size is fixed at 32 heuristically.
Figure 2 shows the accuracy of this model on the

7https://github.com/yvesscherrer/DSL-ML-2024/
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Figure 3: Performance of the LSTM-c model with re-
spect to the recurrent size on the English training and
development sets. The ConceptNet word embedding
size is 300.

training and development splits. This model has a
peak performance when w = 100 (and h = 300,
not shown in the figure), having an accuracy of
61.17% on the development split. It seems that
the model overfits the training data, which has a
relatively small size.

In the enriched LSTM-c model where the
words embeddings are ConceptNet embeddings,
we vary the recurrent size h in the range
[100, 200, 256, 300]. As above, the dense hidden
size is 32. Figure 3 shows its accuracy. This model
is not able to achieve a high accuracy on the train-
ing set but its development accuracy is significantly
better than the LSTM-c model. This is maybe due
to our choice of freezing the embedding layer, that
is, the ConceptNet embeddings are not fine-tuned
during training. The best accuracy of LSTM-c on
the development dataset is 66.57%, which is 5.4%
of absolute points better than that of LSTM-r.

Table 2 presents the official results of our LSTM-r
and LSTM-c models on the test datasets of all the
languages (Chifu et al., 2024). The ConceptNet
embeddings are not available for BCMS languages,
there is thus only one submission for this dataset.

As shown in these results, the ConceptNet em-
beddings help improve the accuracy of the English
and French datasets by about 1.2% for English and
0.2% for French. However, they are not helpful for
the Spanish and Portuguese datasets. It is surpris-

Language M. F1 W. F1 EM VLP
BCMS 27.22 36.97 00.00 1
EN 76.98 77.64 16.67 2

75.88 76.30 26.67 1
ES 75.39 76.06 45.51 1

74.14 74.36 42.31 2
FR 25.96 25.96 – 2

25.74 25.74 – 1
PT 66.36 69.13 13.56 1

56.58 62.01 00.00 2

Table 2: Official results of our systems on the test
datasets as announced by the organizers. M. F1, W.
F1 and EM is the macro F1, the weighted F1 and the
exact match score, respectively. The VLP column is the
submission index where number 1 indicates the LSTM-r
model and number 2 indicates the LSTM-c model.

ing that the LSTM-c model is significantly worse
than the LSTM-r model on the Portuguese datasets
with a gap of about 10% of macro F1. It is possible
due to a technical problem of our system during the
training stage for this model. We plan to investigate
further on this problem once the gold labels of the
test datasets are available for additional analysis.

4 Conclusion

In this paper, we have presented a recurrent neural
network model for tackling the problem of distin-
guishing similar languages. Our method utilizes
semantics-aware ConceptNet embeddings for four
languages. Despite its simplicity, the proposed
model achieves relatively good results.

We are currently using the simple multi-class
classification approach for this task. We plan to
apply specific methods of multi-label classification
for the task in a future work.

Recent works have shown that learning to clas-
sify texts can be beneficial by unsupervised rep-
resentation learning methods such as contrastive
learning (Su et al., 2022). The goal of contrastive
learning is to learn a representation of text such
that similar instances are close together in the rep-
resentation space, while dissimilar instances are
far apart. A combination of similarity embeddings
learned by contrastive learning and semantics em-
beddings learned from knowledge graphs such as
WordNet and ConceptNet can be helpful for this
task.

Finally, in the last few years, pre-trained large
language models such as XLM-R (Conneau et al.,
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2020), GPT (Brown et al., 2020) and LLaMa (Tou-
vron et al., 2023) are making new waves in the
field of natural language processing due to their
emergent ability and generalizability. We have in-
vestigated using a pre-trained XLM-R model for
this shared task but initial results are mediocre com-
pared to our proposed approach. However, a more
throughout inquiry of using large language models
is necessary before a firm conclusion about their
usefulness can be drawn.
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Abstract

This paper describes the Brandeis University
submission to VarDial 2024 DSL-ML Shared
Task on multilabel classification for discrim-
inating between similar languages. Our sub-
mission consists of three entries per language
to the closed track, where no additional data
was permitted. Our approach involves a set
of simple non-neural baselines using logistic
regression, random forests and support vector
machines. We follow this by experimenting
with finetuning multilingual BERT, either on
a single language or all the languages concate-
nated together. In addition to benchmarking
the model architectures against one another on
the development set, we perform extensive hy-
perparameter tuning, which is afforded by the
small size of the training data. Our experiments
on the development set suggest that finetuned
mBERT systems significantly benefit most lan-
guages compared to the baseline. However,
on the test set, our results indicate that simple
models based on scikit-learn can perform sur-
prisingly well and even outperform pretrained
language models, as we see with BCMS. Our
submissions achieve the best performance on
all languages as reported by the organizers. Ex-
cept for Spanish and French, our non-neural
baseline also ranks in the top 3 for all other
languages.

1 Introduction

Language identification (LID) is the task of deter-
mining which language a piece of text is written
in (Jauhiainen et al., 2019). While robust LID soft-
ware already exists (e.g. Google’s CLD31), there
are still several unsolved problems that plague cur-
rent state-of-the-art LID models. One of the most
pressing issues is lack of proper language cover-
age, which recent work has fortunately started to
address as more data becomes available for more

1https://github.com/google/cld3

languages (e.g. Adebara et al., 2022; Burchell et al.,
2023a; Kargaran et al., 2023).

Despite these promising developments, detec-
tion of lower-resourced languages, variants, and
dialects still poses problems for modern NLP. The
lack of resources also generally correlates with
poor quality of the resources that are available
which can lead to, for instance, datasets with un-
usually short sentences which may make the task
difficult (Baldwin and Lui, 2010). To make mat-
ters worse, low-resource language variants tend to
also be deceptively similar to other languages or
dialects which makes differentiating between them
accurately all the more challenging (Jauhiainen
et al., 2019).

In the last ten years, the NLP for Similar Lan-
guages, Varieties, and Dialects workshop (VarDial)
has emerged as the principal venue for discussion
around these problems (e.g. Aepli et al., 2023,
2022; Chakravarthi et al., 2021). The workshop
also features an annual shared task on discrimi-
nating between similar languages (DSL). The first
VarDial DSL shared task DSL was organized with
the purpose of better understanding the difficul-
ties faced by state-of-the-art systems when dif-
ferentiating between similar languages and vari-
eties (Zampieri et al., 2014). Since then, multiple
DSL shared tasks have been organized, leading to
the development of a robust research community
(Zampieri et al., 2014, 2015; Malmasi et al., 2016;
Zampieri et al., 2017).

In the most recent VarDial DSL shared task, an-
notated datasets were added (Aepli et al., 2023).
In the current iteration of the task, the labels were
treated as a multi-label classification problem as
proposed in Bernier-colborne et al. (2023).

In this paper, we describe our submission to the
most recent VarDial shared task. For our submis-
sion, we experimented with simple non-neural base-
lines using scikit-learn, extensive hyperparameter
tuning, data augmentation, and concatenating the
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Mean Mean
Total Sentences Tokens

Language Split Documents per doc per doc

EN train 2,097 1.5 38.3
EN dev 599 1.4 34.8
EN test 300 1.4 35.3

BCMS train 368 428.7 6,540.3
BCMS dev 122 429.0 6,672.8
BCMS test 123 465.1 6,999.1

FR train 340,363 9.0 80.4
FR dev 17,090 7.7 78.4
FR test 12,000 12.0 96.7

PT train 3,467 1.8 44.3
PT dev 991 1.8 44.0
PT test 495 1.8 43.7

ES train 3,467 1.9 58.7
ES dev 989 1.9 58.6
ES test 495 1.9 60.2

Table 1: Counts of documents, average sentences per
document, and tokens per document for each dataset.

datasets in an attempt at enhancing multilingual
transfer. Ultimately, we found the best perform-
ing models for all languages tended to be fine-
tuned mBERT variants (Devlin et al., 2018), ex-
cept BCMS whose best performing model was a
non-neural random forest model implemented in
scikit-learn (Pedregosa et al., 2011).

2 Task Description

The shared task (Chifu et al., 2024) consisted of dis-
tinguishing between different varieties of a macro-
language. There were 5 macro-language groups in
the shared task. Some datasets differ notably in the
size of a single classification instance, which we
refer to as documents. In Table 1, the number of to-
tal documents for each of the splits is shown along
with the mean sentences and tokens per document.
The tokens and sentences are obtained by using the
spaCy library and the *_core_small models for
each language. For BCMS, we used the Croatian
model, since it was the only language explicitly
supported by spaCy. It can be seen that the French
dataset is much larger than the others and that the
BCMS dataset contains much longer documents in
terms of sentences and tokens than any of the other
datasets.

Data Sources The English, Spanish, and Por-
tuguese data is from DSL-TL (Zampieri et al.,
2024), which is manually annotated labels from
the Discriminating Similar Languages Corpus Col-
lection (DSLCC) (Tan et al., 2014). The French

data partially comes from FreCDo (Găman et al.,
2023) and DSLCC. French is also the only lan-
guage whose dataset has named entities masked out.
The Bosnian, Croatian, Montenegrin, and Serbian
(BCMS) data comes from BENCHić-lang (Rup-
nik et al., 2023) and Twitter HBS 1.0 (Ljubešić
and Rupnik, 2022) as well as Miletić and Miletić
(2024). Given that much of the BCMS data is de-
rived from Twitter, it is fairly different than the
other datasets in terms of content. Details regard-
ing the origins of the datasets and how they were
annotated are summarized in Table 2.

3 System Descriptions

We made three submissions for the closed track.
The three submissions consisted of our best per-
forming models for scikit learn based classifiers,
our best performing models using fine-tuning of
mBERT, and a fine-tuned mBERT model using the
concatenation of all datasets.

3.1 Run 1: scikit-learn Baselines
For Run 1, we submitted our best model
from testing a series of scikit-learn classi-
fiers: logistic regression models, linear-kernel
SVMs and random forest models. For all
models, we used bag-of-n-grams-style features
where the n-grams were defined over (a) space-
separated tokens (analyzer=word) or (b) char-
acters (analyzer=char). In addition to integer
counts (CountVectorizer), we also experimented
with real-valued tf-idf weights (TfidfVectorizer)
as an alternative representation. To prevent overfit-
ting, we did not consider n-grams beyond n = 2.
The full set of hyperparameters is shown in Table 3.
The best performing configurations can be found
in Table 4.

3.2 Run 2: Per-language mBERT Models
For our second run, we experimented with fine-
tuning multilingual BERT (Devlin et al., 2018)
independently on each language. We used
bert-base-multilingual-cased for each sub-
mission2. The multilingual BERT model is pre-
trained on masked language modeling and next sen-
tence prediction. All macro-languages are included
in mBERTs pre-training data. While the documen-
tation of mBERT is less clear about variants of the
macro-languages are included, for BCMS, individ-
ual languages are listed. All BCMS languages are

2https://huggingface.co/google-bert/
bert-base-multilingual-cased
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Lang. Original data Varieties Train Dev / Test Annotation Entities

English DSL-TL British English Multi-label Multi-label Manually Present
American English

Spanish DSL-TL Castillian Spanish Multi-label Multi-label Manually Present
Argentinian

Portuguese DSL-TL Brazilian, Portugal Multi-label Multi-label Manually Present

French FreCDo, DSLCC Canadian, Belgian Multi-label Multi-label Automatically Masked
Metropolitan French, Swiss

BCMS BENCHić-lang / Bosnian, Serbian, Single-label Multi-label Manually Present
Twitter HBS 1.0 Montenegrin, Croatian

Table 2: Description of datasets included in the shared task.

Hyperparameter Values

Architecture Random forest, log. reg., SVM
Mode multilabel, multiclass

Feature type count, tf-idf
n-gram level word, char
n-grams range unigrams, bigrams, both

Solver newton-cg, lbfgs, liblinear, sag, saga
Regularizer (C) 0.001, 0.01, 0.1, 1, 10, 100
Class weight unadjusted, balanced
Max. iterations off, 5000
Max. features off, sqrt
No. of estimators 50, 100
Max. depth 30, 50

Table 3: Hyperparameter values used in non-neural
scikit-learn experiments (Run 1).

represented in mBERTs pre-training data except for
Montenegrin. We experimented with different hy-
perparameters for fine-tuning; the full set of values
used can be seen in Table 5.

We adapt mBERT to multi-label classification by
using a linear layer for classification, applying a sig-
moid function to the logits and setting a threshold
of 0.5 for the label to be included in the output. At
inference time, if no output label meets the thresh-
old, we relax the threshold to ensure each example
is labeled first to .25, then .05. If after relaxing the
threshold no label is assigned, we assign the most
common label for the dataset.

Because the BCMS dataset had particularly
longer documents with multiple sentences, we seg-
mented each example first into sentences using
spaCy (Honnibal et al., 2020). We then trained
a model to predict on independent sentences. For
inference we segment the documents first and clas-
sify each of their sentences. We then obtain final
labels for the document by including labels that
occur over a threshold of a proportion of the com-
posite sentences. The threshold was set at 0.2 by
adjusting to the development set.

All hyperparameters were tuned using an exhaus-
tive grid search through all possible options. The
hyperparameter configurations we experimented
with for Run 2 can be found in Table 5.

3.3 Run 3: Finetuning All Languages at Once

For Run 3, we submitted mBERT fine-tuned on
the concatenation of all the datasets. As we had
already performed extensive hyperparameter tun-
ing for Run 2, we opted to re-use well-performing
hyperparameters from prior mBERT training runs
for Run 2. Specifically, we used a learning rate of
2.0E-5, a batch size of 64, and 3 epochs to train the
model with the concatenated dataset. We used a
naive concatenation for this run and did not weight
or sample the combined dataset in any special way.
The motivation for this run is that it would provide
a single model capable of distinguishing between
similar languages for multiple macro-languages.
As we discuss further in Section 5, this combined
single model works decently well for most lan-
guages, but performs very poorly on the BCMS
data.

4 Additional Experiments

In addition to the submitted systems, we conducted
other experiments. These additional experiments
included exploring data augmentation and segmen-
tation of BCMS documents. Ultimately the BCMS
segmentation was used for Run 2, but the data aug-
mentation approaches did not appear to be useful
enough to be included any of our submitted sys-
tems.

4.1 Segmenting BCMS

Noticing that performance was lower on BCMS
and that the dataset had a much higher propor-
tion of sentences per document compared with the
datasets of other macro-languages, we compared
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Language BCMS English Spanish Portuguese French

Model Random forest Log. Reg. (OvR) Random forest SVM (OvR) SVC (OvR)

Text features

Count type tf-idf tf-idf tf-idf tf-idf count
n-gram level word word word word char
n-gram range unigrams unigrams unigrams both bigrams

Common hyperparameters

Solver - sag - - -
Regularization (C) - 10 - 10 100
Max iterations - 100 - 5000 5000

Random forest params

Bootstrap False - False - -
Class weight balanced - - - -
Max depth 50 - 50 - -
Max features - - sqrt - -
No. of estimators 50 - 100 - -

F1 (macro) 71.33 79.75 82.99 72.01 55.00

Table 4: Best hyperparameters for scikit-learn models as computed on the development set.

Language Batch Size Learning Rate Epochs

EN 16 2.0E-05 3
BCMS 16 2.0E-05 3
FR 16 2.0E-05 3
ES 64 3.0E-05 3
PT 16 2.0E-05 3

Table 5: Hyperparameters for individual mBERT mod-
els submission (Run 2).

Orig. BCMS Segmented BCMS

Macro F1 20.67 72.2
Weighted avg. F1 47.73 79.8

Table 6: Comparison of mBERT model on original
BCMS dataset with segmented data.

performance from segmenting and not segmenting
the data first. When segmenting the data into sen-
tences, we used spaCy (Honnibal et al., 2020) with
the Croatian model for all BCMS languages. In
order to map back to the original examples, we
label the example with any label that shows up in
more than 20% of the composite sentences.

The results of this experiment are shown in Table
6. When applying segmentation and the strategy of
classifying on each sentence individually, we saw
a large gain of more than 50 points of macro F1
when segmenting first and then recombining.

4.2 Data Augmentation

Since some of the datasets had only a few thousand
samples, we explored data augmentation as a way

to obtain additional samples while still using only
the datasets available for the closed track. Because
the French and BCMS datasets contained hundreds
of thousands of training sentences, we focused our
data augmentation experiments on English, Span-
ish, and Portuguese. We attempted two simple data
augmentation strategies.

First, since very simple word replacements have
been shown to help model robustness (Wei and Zou,
2019; Kolomiyets et al., 2011) we tried naively
splitting documents in half and recombined these
half sentences with other half sentences of the same
labels. The pieces from each sentence must have
the same label. An example of this process is
shown in Figure 1, where the label is EN-GB for
all sentences in the example.

Second, similar to Zhang et al. (2022) or Andreas
(2020), we attempted to replace segments based
on spans from dependency trees with spans from
other documents with the same labels. For the
syntactic span augmentation, we use spaCy to get
a dependency parse of each sentence. We then take
a node and replace its children token span with
another token span from a node of the same part
of speech and parent dependency relation from a
randomly sampled sentence with the same label.
An example can be seen in Figure 2. In Figure 2,
the label is EN-US for each sentence.

Unfortunately, neither of these approaches ended
up providing a significant performance increase
when evaluating on the development set.

We compare the naive augmentation, tree-based
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[One of Scotland’s only female butchers 
has just launched a crowd-
funding] [campaign to raise £22,500 to 
enable her to move to larger premises.]

[DARLINGTON R’n’B Club have 
announced a real coup, with a] [show 
by arguably the greatest living Blues 
harmonica players Billy Branch.]

[One of Scotland’s only female butchers 
has just launched a crowd-funding] [show 
by arguably the greatest living Blues 
harmonica players Billy Branch.]

Naive Augmentation

Figure 1: Naive augmentation approach.

Maryland lost its third prominent 
thoroughbred trainer this month 
when [H. Steward Mitchell] died 
Tuesday [of heart failure] at the age of 
81.

Tree  Augmentation

Maryland lost its third prominent 
thoroughbred trainer this month 
when [H. Steward Mitchell] died 
Tuesday [on a new 150-bedroom “high-
end” hotel] at the age of 81.

GOV. [PARRIS N. Glendening] is thinking 
about the L-word these days.

WORK has begun [on a new 150-
bedroom “high-end” hotel] next door to 
the Grand Hotel in York city centre.

Maryland lost its third prominent 
thoroughbred trainer this month 
when [PARRIS N. Glendening] died 
Tuesday [of heart failure] at the age of 81.

Original Examples Synthetic Examples

Figure 2: Tree augmentation approach.

Augmentation Strategy EN ES PT

No Augmentation 84.18 82.36 74.45
Naive Aug. 82.47 82.09 76.05
Tree Aug. 81.8 81.19 73.69

Table 7: Results from data augmentation experiments.
Scores are Macro-F1.

augmentation, and no augmentation in Table 7
and find the macro-average F1 for each language
is lower with the augmentations except for Por-
tuguese. Since the Portuguese performance was
only .04 higher than the concatenation model (run
3) and only seemed to benefit Portuguese, we de-
cided not to submit any of the data augmentation
approaches as part of our final submission.

EN ES FR BCMS PT

Run 1 79.75 74.49 54.26 69.32 72.01
Run 2 83.49 83.50 96.58 72.20 75.20
Run 3 84.67 82.75 68.40 20.67 76.01

Table 8: Macro F1 scores on the development set for
each of our submissions on each language group.

5 Results

Based on performance on the development set as
seen in Table 8, we expected Run 2 to perform
best for Spanish, French, and BCMS and Run 3 to
perform best for English and Portuguese.

Results from each submission are reported in
Table 9. Run 3, the concatenated dataset with
mBERT, does perform best for English and Por-
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Language Run F1 (m.) F1 (w.)

BCMS Run 1: scikit-learn 76.20 84.28
BCMS Run 2: mBERT 71.90 75.61
BCMS Run 3: mBERT-all 19.85 45.30

EN Run 1: scikit-learn 80.60 80.78
EN Run 2: mBERT 85.27 85.56
EN Run 3: mBERT-all 85.48 85.62

ES Run 1: scikit-learn 74.59 75.31
ES Run 2: mBERT 82.27 82.68
ES Run 3: mBERT-all 82.09 82.31

PT Run 1: scikit-learn 72.36 75.49
PT Run 2: mBERT 71.40 74.10
PT Run 3: mBERT-all 75.21 77.71

FR Run 1: scikit-learn 27.03 27.03
FR Run 2: mBERT 26.53 26.53
FR Run 3: mBERT-all 38.51 38.51

Table 9: Test set results for all submitted runs. F1 (m.)
and F1 (w.) refer to macro-F1 and weighted F1.

tuguese. However, for Run 1, Random Forest
performed better on the test set for BCMS than
mBERT-based models. Additionally, for Run 3, the
concatenated dataset with mBERT, outperformed
for French instead of Run 2 as seen on the develop-
ment dataset.

To better understand the results, we created con-
fusion matrices for our submitted runs for each
dataset. Figure 3 shows the confusion matrix for
Run 1 and 4 for Run 2. A confusion matrix for Run
3 is included in Appendix A.

Class imbalance appears to be a challenge, es-
pecially for BCMS and French. For Run 3, all
predictions were for Serbian. Run 2 appears most
capable for BCMS of making predictions that are
ambiguous but still at least partially correct. Run 1
clearly performs well on BCMS, but seems to strug-
gle with French class imbalance. For French, class
imbalance seems to affect Run 1 the most with all
varieties being mistaken for Metropolitan French
at a higher rate than other runs. Run 3 appears to
do better at correctly classifying Belgian and Swiss
French.

For English, Run 2 predicts British English more
often. All runs appear to struggle with ambigu-
ous examples in English and Portuguese. It ap-
pears models are better able to correctly predict am-
biguous examples in Spanish than in other macro-
languages.

6 Discussion and Conclusion

In this paper, we presented the Brandeis submis-
sions to the VarDial 2024 DSL-ML Shared Task.

We conclude by discussing some relevant aspects
of our findings.

Baselines Perform Remarkably Well Some-
what contrary to our initial expectations,
scikit-learn-based models seemed to perform
well on both the development and test sets for
many languages. On English, Portuguese and
BCMS, the non-neural baselines underperformed
mBERT by less than 4 macro-F1 points which is
remarkable given the drastically smaller size of the
baselines. This suggests that simple baselines may
carry more utility than initially anticipated.

Further, the baseline performance on the test
set shows stronger evidence of their utility. On
French, Portuguese and BCMS, the baselines even
outperform mBERT. While the differences in test
set macro-F1 are less than 1 point in for both Por-
tuguese and French, on BCMS the best baseline
outperforms mBERT by more than 4.3 F1 points.

While this is a positive sign, we find the trend
reversal somewhat perplexing. Since other trends,
such as the universally low performance of Run 3
on BCMS, are replicated on both the test and de-
velopment set, it stands to reason that this may not
entirely be an issue of domain mismatch. Instead,
we hypothesize that this may have to do with inher-
ent noisiness in the kinds of low-resource data the
shared task deals with.

Concatenation of Fine-Tuning Languages Con-
trary to the findings of Baldwin and Lui (2010),
who showed that language identification becomes
more difficult as the number of languages increases,
we find that performance does not degrade signif-
icantly even after we increase the number of out-
put labels from 2-4 per macrolanguage (indepen-
dent mBERT models) to 14 (mBERT finetuned on
all languages). One exception to this is BCMS,
where mBERT-all underperforms even the official
baseline. We hypothesize that with such a com-
paratively small number of languages (with other
models like Burchell et al. (2023b) handling more
than 200), increasing the number of languages to
be classified does not degrade performance when
the number of samples is comparable between lan-
guages. We speculate that BCMS languages may
have underperformed with the concatenated model
because there were drastically fewer examples. The
majority class for BCMS is Serbian, and the minor-
ity classes are especially under-represented.
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Figure 3: Confusion matrices for Run 1 on the test set. Correct labels are the x-axis and predicted are on the y-axis.

Simple Data Augmentation Does Not Help
Much. We did not see improvement from fairly
simple data augmentation approaches. It is possible
that the models for discriminating similar models
mostly rely on small spans of tokens that are al-
ready well represented in the original data. It is
plausible that changing mixing spans of tokens into
different contexts does not make much of a dif-
ference if those spans are already well weighted
features and do not highly depend on what context
they occur in. In future work, it may be worth at-
tempting to better identify which spans are more
informative features and experiment with data aug-
mentation approaches that focus on the portion of
the text that is most helpful in distinguishing the

language variety.
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A Run 3 Confusion Matrix

Figure 5 shows the confusion matrix for Run 3.
Run 3 performs poorly on the BCMS dataset and
only predicts Serbian for all examples. For French,
Run 3 appears to do worse at predicting Metropoli-
tan French, but better at Swiss and Belgian than
Run 2.
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Figure 5: Confusion matrices for Run 3 on the test set. Correct labels are the x-axis and predicted are on the y-axis.
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