@inproceedings{steel-ruths-2024-multi,
title = "Multi-Target User Stance Discovery on {R}eddit",
author = "Steel, Benjamin and
Ruths, Derek",
editor = "De Clercq, Orph{\'e}e and
Barriere, Valentin and
Barnes, Jeremy and
Klinger, Roman and
Sedoc, Jo{\~a}o and
Tafreshi, Shabnam",
booktitle = "Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, {\&} Social Media Analysis",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.wassa-1.16/",
doi = "10.18653/v1/2024.wassa-1.16",
pages = "200--214",
abstract = "We consider how to credibly and reliably assess the opinions of individuals using their social media posts. To this end, this paper makes three contributions. First, we assemble a workflow and approach to applying modern natural language processing (NLP) methods to multi-target user stance detection in the wild. Second, we establish why the multi-target modeling of user stance is qualitatively more complicated than uni-target user-stance detection. Finally, we validate our method by showing how multi-dimensional measurement of user opinions not only reproduces known opinion polling results, but also enables the study of opinion dynamics at high levels of temporal and semantic resolution."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="steel-ruths-2024-multi">
<titleInfo>
<title>Multi-Target User Stance Discovery on Reddit</title>
</titleInfo>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Steel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derek</namePart>
<namePart type="family">Ruths</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Orphée</namePart>
<namePart type="family">De Clercq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valentin</namePart>
<namePart type="family">Barriere</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Barnes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shabnam</namePart>
<namePart type="family">Tafreshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We consider how to credibly and reliably assess the opinions of individuals using their social media posts. To this end, this paper makes three contributions. First, we assemble a workflow and approach to applying modern natural language processing (NLP) methods to multi-target user stance detection in the wild. Second, we establish why the multi-target modeling of user stance is qualitatively more complicated than uni-target user-stance detection. Finally, we validate our method by showing how multi-dimensional measurement of user opinions not only reproduces known opinion polling results, but also enables the study of opinion dynamics at high levels of temporal and semantic resolution.</abstract>
<identifier type="citekey">steel-ruths-2024-multi</identifier>
<identifier type="doi">10.18653/v1/2024.wassa-1.16</identifier>
<location>
<url>https://aclanthology.org/2024.wassa-1.16/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>200</start>
<end>214</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Target User Stance Discovery on Reddit
%A Steel, Benjamin
%A Ruths, Derek
%Y De Clercq, Orphée
%Y Barriere, Valentin
%Y Barnes, Jeremy
%Y Klinger, Roman
%Y Sedoc, João
%Y Tafreshi, Shabnam
%S Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F steel-ruths-2024-multi
%X We consider how to credibly and reliably assess the opinions of individuals using their social media posts. To this end, this paper makes three contributions. First, we assemble a workflow and approach to applying modern natural language processing (NLP) methods to multi-target user stance detection in the wild. Second, we establish why the multi-target modeling of user stance is qualitatively more complicated than uni-target user-stance detection. Finally, we validate our method by showing how multi-dimensional measurement of user opinions not only reproduces known opinion polling results, but also enables the study of opinion dynamics at high levels of temporal and semantic resolution.
%R 10.18653/v1/2024.wassa-1.16
%U https://aclanthology.org/2024.wassa-1.16/
%U https://doi.org/10.18653/v1/2024.wassa-1.16
%P 200-214
Markdown (Informal)
[Multi-Target User Stance Discovery on Reddit](https://aclanthology.org/2024.wassa-1.16/) (Steel & Ruths, WASSA 2024)
ACL
- Benjamin Steel and Derek Ruths. 2024. Multi-Target User Stance Discovery on Reddit. In Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis, pages 200–214, Bangkok, Thailand. Association for Computational Linguistics.